汽车盘式制动器优化设计2

汽车盘式制动器优化设计2
汽车盘式制动器优化设计2

#设计与计算#

汽车盘式制动器优化设计

沈荣华 邹定平 黎桂英

(广东石化专科学校 茂名 525000)

摘 要 以制动时间最短、制动温升最低为目标函数,应用复合型优化方法,对汽车盘式制动器进行了优化设计计算。为实际生产和设计提供

了理论指导。

关键词 盘式制动器 优化设计 目标函数中图分类号 U 27012

汽车盘式制动器常规设计是保证制动盘有足够的强度和刚度,并验证制动块磨损量,据此选择各结构参数。其缺陷是对热负荷的考虑仅凭经验,而缺乏理论指导。因此,在盘式制动器表面温升定量计算的基础上进行优化设计

112

是很有实际意义的。

1 数学模型的建立

为分析问题的方便,作以下假设:(1)制动盘为实心盘;

(2)制动钳浮动,以消除盘上的弯曲应力;(3)制动块为矩形;

(4)吸收的摩擦热均匀分布在整个制动器上。111 设计变量

盘式制动器的结构设计见图1所示,包括以下3项主要内容

:

图1 卡钳与制动盘的结构关系

(1)制动盘尺寸参数:直径D 、厚度h ;

(2)制动块尺寸参数:表面尺寸为I @b 、厚度为h p ;

(3)制动块相对于制动盘的尺寸参数:制动块作用半径R 1。

制动块厚度h p 的确定是一个比较复杂的专项课题,在此不作深入分析。从设计制动器的一般要求出发,为保证制动器有足够的输出力矩,足够的热容量和散热面积,取D 、h 、I @b 、R 1这5个主要结构参数作为设计变量。

112 目标函数

制动时间对保证汽车安全行驶非常重要。此外,制动摩擦副表面温升直接影响制动器寿命,故取这两者为最优化目标。考虑到这2项指标在重要程度方面的差异,引入加权因子,将它们组合到总的目标函数中:

f (x )=w 1t z +w 2T

式中:w 1为制动时间t z 的加权因子,取w 1=1;

w 2为制动摩擦副表面温升T 的加权因子,取w 2=0.5。

t z =2G #v 0#R/(n #L #P #D 22#p L #R 1+ 2L r #G #g #R )(1)T =C 1#t z (6t z -10C z #t 2z +

4C 3#t 3z )

1/2(2)

C 1=1/(48K p #R #I #b )#A 1/2#L #

P #D 2

2#p L #R 1(1-C 0)C 2=(L #P #D 22#p L #R 1)/(G #R #v 0)

式中:t z 为制动时间(s),G 为车质量(kg ),v 0为制动前车速(m/s),R 为车轮半径(m),R 1为衬片作用半径(m),n 为制动器个数,L 为衬片摩擦系数,L r 为车轮滚动摩擦系数,K p 为衬片导热系数1W/(m #K)2,A

为热扩散率(m 2

/s),C 0为热流分配系数,D 2为制动油缸直径(m),p L 为制动器管路油压(Pa),T 为制动

#

19#第12卷第1期

5机械研究与应用6

MECHANICAL RESE ARC H &APPLICATION

Vol 12No.1 1999

温升(e )。113 约束条件112

11311 性能约束

(1)制动盘不应出现热裂纹,流入制动盘的热流密度:

q R =0.25(1-s)#G #v 0#a/(2@778A R )@

0.2930[17@105(W/m 2)

(3)

式中:s 为滑移率(s =1.0),a 为制动减速度(m/s 2),A R 为制动盘摩擦环表面积(m 2

),(A R =2P #R 1#b)。(2)制动器不应出现严重的热衰退,衬片吸收的热流密度:

q p =1.41@0.25@(1-s)#G #v 0#a/(2@778I #b )@0.2930[1.3@105

(W/m 2

)(4)

(3)衬片不应过度磨损,应满足:

p 1#L [2.40(MPa) (5)p 1[[p 1]=7.00(MPa)

(6)式中:p 1为衬片比压(Pa)1p 1=0.

25P #D 2

2p L /

(I #b)2。

(4)制动盘一次制动的体积温升:

$T =2#G #v 20/(n #Q #A #P #D 2

#h #C )

[[$T]=150(e )

(7)

式中:Q 为制动盘密度,A 为热功当量,C 为制动盘比热。

(5)制动时车不应打滑,制动力矩应小于附着力矩: n #2#L #I #b #R 1[U #G #g #R (8)

式中:U 为附着系数(U =0.6)。11312 几何约束

(1)D [[D]=0.305(9)(2)h [[h]=0.015

(10)(3)衬片安装位置不应超出制动盘范围:

R 1+b /2[D/2

(11) (4)衬片不应与轮毂干涉:

D g /2+b /2[R 1(12)

114 数学模型

综上所述,盘式制动器优化设计的数学模型为:设计变量:X =(x 1x 2x 3x 4x 5)T

=(DIbhR 1)T

目标函数:f (x )=f 1(x )+0.5f 2(x )式中:f 1(x )=2G #v 0#R /(n #L #P #D 22#p L #x 5+

2L r #G #g #R )f 2(x )=C 1(x )#t #[6t -10C 2(x )#t 2

+4C 3(x )#t 3]1/2

C 1(x )=1/(48K p #R #x 2#x 3)#A

1/2

#L #P #D 22#P L #x 5

(1-r 0)

C 2(x )=L #P #

D 2#p L #x 5/(G #v 0#R )C 3(x )=C 2

2(x )

约束条件:

g 1(x )=6.7465@10-6G #v 0#a -17@105x 3#x 5[0g 2(x )=5.9739@10-5G #v 0#a -1.3@105x 3#x 5[0g 3(x )=0.25P #D 22#p L -70x 2#x 3[0g 4(x )=0.25P #D 22#p L #L #24x 2#x 3[0g 5(x )=2G #v 20/(150n #Q #A #P #C)-x 21#x 4[0g 6(x )=015P #D 22#p L #n #x 5-0.6G #g #R [0

g 7(x )=x 1-0.305[0 g 8(x )=x 4-0.015[0g 9(x )=2x 5+x 3-x 1[0 g 10(x )=D g -x 3-2x 5[0

2 复合型优化法的程序编制

应用复合型优化法122对国产红旗CA774型小轿车的制动器(型号QY-P)

112

进行优化设计。

211 变量名表

N 为变量个数(N =5),K 为复合型顶点数(K =7),KG 为约束条件数(KG =10),E 为终止迭代精度(E )(E =015),DL 为映射系数(D )最小许用值(DL =011),ALO 为初始映射系数(a 0)(ALO =113),A (I )、B(I )为存放各设计变量上、下限许用值。212 主程序框图(图

2)

图2 主程序框图

3 优化结果及其分析

311 优化结果(表1)

表1 国产红旗CA 774型小轿车盘式制动器优化设计结果v 0(m/s)p L (kPa)d

(mm)h

(mm)l

(mm)b

(mm)R 1

(mm)t z

(s)T (e )25

710294107646118 3.8314510294107447118 4.525815710294107447118 2.3148510294107546118 2.712020

610

295

10

75

47

119

3.3

206

从表1可以看出,不论汽车在什么条件制动,优

#

20#Vol 12No.1 19995机械研究与应用6

MECHANICAL RESE ARC H &APPLIC ATION

第12卷第1期

化设计出的制动器尺寸大致不变,故取下列值作为优化设计综合结果:D=295mm,h=10mm,I=75m m, b=47mm,R1=119m m。

312优化前后结果对比分析(表2、表3)

表2优化前后QY-P型盘式制动器结构参数的对比

D(mm)H(m m)A p(mm2)R1(mm)优化前2951229.76124

优化后2951035.52119

注:A

p

=I@b(衬片表面积)

结果表明,现有盘式制动器除衬片面积略小了点外,其余基本上接近最优值。按最优值设计的制动器,其制动性能在不同制动情况下都有改善,高速下制动尤为明显。

表3优化前后QY-P型盘式制动器性能参数的对比

制动初速

v0(m/s)

制动油压

p L(kPa)

制动时间t z(s)制动温升T(e)

?ò?ò25

710

510

3.9

418

3.8

418

358

303

314

258 20610 3.4 3.3258206

15

710

510

2.4

219

2.3

217

151

144

148

120注:上表中?栏为优化前数据,ò栏为优化后结果。

参考文献

1邹定平,黎桂英1利用计算机模拟热现象的汽车盘式制动器最优化设计方法研究:[学位论文]1广州:华南理工大学,1990.3~6

2刘惟信1机械优化设计1北京:清华大学出版社,198617~11 (收稿日期:1998-02-23)

#产品信息#

LWZ1X110型冷弯型钢轧机

LWZ1X110型冷弯型钢轧机是生产轻钢龙骨等冷弯钢的关键设备。轻钢龙骨广泛应用于建筑领域和机电行业等。这种轧机的设计合理,选材得当,结构紧凑,成本低。

主要技术指标:

入料薄板厚度:0125~1100mm;

宽度:30~110mm;

型材轧制速度:\12m/min;

电源及功率:AC380V4kW。

研制单位:甘肃省机械科学研究院

(地址:兰州市金昌路140号邮编:730030)

YSD-6L液压升降机

该机主要适用于商场、宾馆、车站、建筑、广告、装修、工厂及高层建筑大厅的各项空中作业。结构合理,外形美观,选用高性能铝合金升降桅杆、垂直升降、液压驱动、板式起重链传动,平稳可靠,底座采用矩形无缝钢管,强度高、稳定性好。

主要技术性能:

起升高度:014~610m;

额定载量:100kg;

油压:10MPa;

升降速度:011m/s;

电源:AC220V;

自重:300kg。

参考价格:215万元/台

研制单位:甘肃省机械科学研究院兰州四达机械厂DW15-630万能式断路器

该系列产品适用于交流50Hz电压为380V、660 V和1140V,额定电流为110~630A的配电网络中,用来分配电能,保护线路及电源设备的过载、欠电压和断路,还可在正常条件下作为电动机的不频繁起动和对电动机的过载、欠电压及短路故障进行保护。

主要性能指标:

额定电压:1140V;

额定工作电压:至1140V;

额定电流:100~630A;

额定短路分断能力:50kA(380V);

不通电操作次数:5000次。

研制生产单位:甘肃天水二一三机床电器厂

#

21

#

第12卷第1期

5机械研究与应用6

MECHANICAL RESE ARC H&APPLICATION

Vol12

No.11999

微型载货汽车盘式制动器

第1章绪论 1.1研究的目的和意义 盘式制动器具有散热性好、制动效能稳定、抗水衰退能力强、易于保养和维修等优点,可广泛应用于飞机、铁路、车辆和项目机械。对盘式制动器的早期研究侧重于实验研究其摩擦特性,随着用户对其制动性能和使用寿命要求的不断提高,有关其基础理论与应用方面的研究也在深入进行。 高速行驶的轿车,因为频繁使用制动,制动器的摩擦将会产生大量的热,使制动器温度急剧上升,这些热如果不能很好地散出,就会大大影响制动性能,出现所谓的制动效能热衰退现象,制动器直接关乎生命。因此,制动器的设计是汽车的设计过程中非常重要的一环,确定制动器结构类型,设计制动器中传动的主要零部件,对主要零部件进行校核,对优化汽车制动性能和经济性能,培养我们严谨的设计能力及规范的设计程序具有重要意义,使我们在机械加工工艺规程编制、编写技术文件及查阅技术文献等各个方面受到一次综合性的训练,通过零件图、装配图绘制,使我们对AutoCAD绘制软件的使用能力得到进一步的提高。 1.2制动系统国内外现状及发展趋势 汽车制动系是汽车总要组成部分,其作用是将行驶中的汽车减速或停车。汽车制动系直接影响着汽车行驶的安全性和停车的可靠性。随着高速公路的迅速发展和车速的提高以及车流密度的日益增大,为了保证行车安全、停车可靠,汽车制动系的工作可靠性显得日益重要。也只有制动性良好、制动系工作可靠的汽车,才能从份发挥其动力性能。 汽车制动系至少应有两套独立的制动装置,即行车制动装置和驻车制动装置;重型汽车或经常在山区行驶的汽车要增设应急制动装置及辅助制动装置;牵引汽车还应有自动制动装置。 汽车制动装置用于使行驶中的汽车强制减速或停车,并使汽车在下短坡时保持适当的稳定车速。构常采用双回路或多回路机构,以保证其工作可靠。 驻车制动装置用于汽车可靠而无时间限制的停驻在一定位置甚至在斜坡上,它也有助于汽车在坡路上起步。驻车制动装置应采用机械式驱动机构而不是用液压或气压驱动,以免其产生故障。 应急制动装置用于当行车制动装置意外发生故障而失效时,则可以用机械力源<如强力压缩弹簧)实现汽车制动。应急制动装置不必是独立的制动系统,它可利用行车制动装置或驻车制动装置的某些制动器件。应急制动装置也不是每车必备的,因为普

盘式制动器课程设计方案

中北大学 课程设计说明书 学生姓名:学号: 学院(系):机电工程学院 专业:车辆工程 题目:夏利汽车盘式制动器方案设计 综合成绩: 职称: 年月日

目录 一、夏利汽车主要性能参数---------------------4 二、制动器的形式-----------------------------5 三、盘式制动器主要参数的确定-----------------7 四、盘式制动器制动力矩的设计计算-------------9 五、盘式制动器制器的校核计算----------------10 1.前轮制动器制动力矩的校核计算 2.摩擦衬片的磨损特性计算 六、经过计算最终确定后轮制动器的参数--------13 七、设计小结--------------------------------13 八、设计参考资料----------------------------13

轿车前轮制动器设计说明书前言汽车制动系是用以强制行驶中的汽车减速或停车、使下坡行驶的汽车车速保持稳定以及使已停驶的汽车在原地(包括在斜坡上)驻留不动的机构。随着高速公路的迅速发展和车速的提高以及车流密度的日益增大,为了保证行车安全,汽车制动系的工作可靠性显得日益重要。也只有制动性能良好、制动系工作可靠的汽车,才能充分发挥其动力性能。本次课程设计根据任务要求只对夏利汽车盘式制动器方案设计。

一、汽车主要性能参数 主要尺寸和参数: (1)、轴距:L=2405mm (2)、总质量:M=900kg (3)、质心高度:0.65m (4)、车轮半径:165mm (5)、轮辋内径:120mm (6)、附着系数:0.8 (7)、制动力分配比:后制动力/总制动力=0.19 (8)、前轴负荷率:60%;即质心到前后轴距离分别为 L1=L?(1?60%)=962mm L2=L?60%=1443mm (9)、轮胎参数:165/70R13; 轮胎有效半径r e为: 轮胎有效半径=轮辋半径+(名义断面宽度×高宽比) 所以轮胎有效半径r e=(240 2 +165×70%)=235.5mm (10)、制动性能要求:初速度为50KM/h时,制动距离为15m。则 满足制动性能要求的制动减速度由:S=1 3.6(τ2‘+τ2“ 2 )μ0+μ02 25.92 a bmax 计算最大减速度 a bmax,其中μ0=U =50Km/h;S=15m;τ2‘= 0.05s;τ2“=0.2s。经计算得 最大减速度 a bmax≈7.47m s2 ?

毕业设计盘式制动器设计说明书

汽车盘式制动器设计 摘要:本文主要是介绍盘式制动器的分类以及各种盘式制动器的优缺点,对所选车型制动器的选用方案进行了选择,针对盘式制动器做了主要的设计计算,同时分析了汽车在各种附着系数道路上的制动过程,对前后制动力分配系数和同步附着系数、利用附着系数、制动效率等做了计算。在满足制动法规要求及设计原则要求的前提下,提高了汽车的制动性能。 关键词:盘式制动器;制动力分配系数;同步附着系数;利用附着系数;制动效率

Automobile disc brake design Abstract:This paper is mainly the disc brake of the classification and various kinds of disc brake of the advantages and disadvantages are introduced, the selection scheme of the chosen vehicle brake was selected and for disc brake do the main design calculation and analysis of the car in a variety of attachment coefficient road on the braking process of, of braking force distribution coefficient and the synchronous adhesion coefficient, utilization coefficient of adhesion, braking efficiency calculated. Under the premise of meeting the requirements of the braking regulation requirement and design principle and improve the braking performance of automobile. Key words: Disc brake,Braking force distribution,coefficient,Synchronization coefficient,Synchronous adhesion coefficient,The use of adhesion coefficient,Braking efficiency

基于的汽车盘式制动器多学科设计优化

万方数据

19农业机械学报2010年 可观,工作难度也很大;本文应用多学科优化设计方法进行汽车盘式制动器的设计。 1模型的建立 汽车盘式制动器由制动盘和制动钳体组成,如图1所示。制动时,缸筒中的高压油推动活塞,进而推动摩擦片与制动盘发生摩擦,将汽车动能转化为制动盘的内能,以使汽车减速制动。 油 图1浮钳盘式制动器的结构 Fig.1Structureoffloatingclampdiskbrake制动盘与摩擦片的几 何模型如图2所示,汽车 盘式制动器的优化问题可 描述为:设计汽车盘式制 动器的制动盘和摩擦片, 使得制动器质量最小,制图2制动盘与 动时间最短以及制动过程摩擦片几何模型 中制动盘最高温度最低,Fig.2Geometrymodelof同时要满足摩擦片压力不brakediscandbrakepads超过许用值、油缸油压不超过许用值以及制动摩擦力矩不超过车轮与地面间附着力矩等约束条件。据此建立盘式制动器多学科设计优化数学模型。 1.1设计变量 确定盘式制动器设计变量为7个,即 X=(R1,R2,D。,口,0,Po,D)= (髫1,髫2,省3,鬈4,菇5,髫6,髫7) 式中冠.——摩擦片内径,mm R2——摩擦片外径,[Rift D。——活塞直径,mm 口——制动盘的1/2厚度,mm 口——摩擦片半角,(o)P。——油压,MPa D——制动盘直径,mm 1.2制动器各学科优化分析模型 1.2.1运动学优化模型 运动学优化目标为制动时间最短,约束条件包括:制动力矩21f不应大于车轮与路面的附着力矩;制动片的压力q不应超过规定值q…;以及油缸内的油压P。不得超过规定的范围P~。运动学优化问题描述为 min^(X1)=tbr.k。 s.tX6≤p。“ qm.。一0墅}≥o ‰?I一琢丽到 嘶卜亟鲁盟≥。 Xl=(髫l,并2,茗3,髫5,茗6) 式中形。——单个车轮承受的总重,N 妒——附着系数,给定妒=1 r——轮胎滚动半径,mm 广一制动盘与摩擦片间的摩擦因数,取厂= O.38 1.2.2结构优化模型 结构优化目标为制动盘和制动片总质量最小,并满足结构上的设计约束要求:摩擦片不应与轮毂发生干涉;摩擦片的安装位置不应超出制动盘的范围之外;油缸不应与轮毂发生干涉,设油缸的中心在摩擦片的平均半径处;制动盘的外径不能大于规定的最大值。结构优化问题描述为 min厶(X2)=m。。 ,). s.t.髫l—i--II≥O }一菇2t>0 半一等_一丁Dh≥。 22re2’ D…一茗7≥0 X2=(菇1,髫2,菇3,菇7) 式中Dh——轮毂直径,Dh=65mm tc——油缸壁厚,t。=5mm D。。。——制动盘最大直径 1.2.3热力学优化模型 热力学优化目标为制动过程中制动盘的最高温度最小,约束条件为最高温度不能超过制动盘的许用最高温度L。。。即热学科优化问题描述为 min六(X3)=瓦。。 s.t.L。≤L。 X3=(菇1,嚣2,髫,,菇4,耳5,聋6,髫7) 1.3MDO优化模型 在上述各学科分析基础上,通过一个MDO框架将各学科集成(图3),其实施模型见图4所示。 其中各子系统学科分析模型见前,MDO模型的目标函数为(推导略) 八X)=24tb,止。+4m。。。+0.3T,。。= —24W—1v2+4。。。+0.3T.4m0 3 。 T ——+…。+.. ∞ofg 18” 4万方数据

盘式制动器设计

目录 绪论 (3) 一、设计任务书 (3) 二、盘式制动器结构形式简介 ................... 错误!未定义书签。 2.1、盘式制动器的分类...................... 错误!未定义书签。 2.2、盘式制动器的优缺点.................... 错误!未定义书签。 2.3、该车制动器结构的最终选择.............. 错误!未定义书签。 三、制动器的参数和设计 ....................... 错误!未定义书签。 3.1、制动盘直径 ........................... 错误!未定义书签。 3.2、制动盘厚度 ........................... 错误!未定义书签。 3.3、摩擦衬块的内半径和外半径.............. 错误!未定义书签。 3.4、摩擦衬块面积 ......................... 错误!未定义书签。 3.5、制动轮缸压强 ......................... 错误!未定义书签。 3.6、摩擦力的计算和摩擦系数的验算.......... 错误!未定义书签。 3.7、制动力矩的计算和验算.................. 错误!未定义书签。 3.8、驻车制动计算 ......................... 错误!未定义书签。 四、制动器的主要零部件的结构设计 ............. 错误!未定义书签。 4.1、制动盘 ............................... 错误!未定义书签。 4.2、制动钳 ............................... 错误!未定义书签。 4.3、制动块 ............................... 错误!未定义书签。 4.4、摩擦材料 ............................. 错误!未定义书签。

制动器时间优化设计报告

汽车盘式制动器的制动时间优化设计摘要:利用matlab编程及工程优化的算法,建立以制动的最短时间为目标函数的数学模型,对汽车的制动时间进 行科学的优化设计。有效减少汽车盘式制动器的制动 时间,从而提高汽车的制动与安全性能。 关键词:盘式制动器、最短制动时间、优化设计、单目标优化 盘式制动器以其结构简单、尺寸紧凑,制动性能好,在同样大小的制动力矩条件下,其结构尺寸和质量都比鼓式制动器小,热稳定性和水稳定性好,无机械衰退问题,制动盘高温下形成热裂和热点的可能性小,不会如制动鼓那样的热膨胀引起制动踏板行程损失以及具有安全可靠,迅速平稳,摩擦衬片使用寿命长,重量轻,维修方便等一系列优点,被广泛应用于工程机械和各种汽车上。但除了在一些高性能轿车上用于全部车轮以外,大都只用作前轮制动器,而与后轮的鼓式制动器配合,以期汽车有较高的制动时的方向稳定性。 1.目标函数与设计变量的确定 盘式制动器的设计本质上是一个多目标优化问题。在在制动器设计中有效提高制动效果、缩短制动时间是工程上普遍关注的问题。缩短制动时间是缩短制动距离的有效措施之一,能够有效提高汽车的制动效能,提高汽车的制动性及安全性能。汽车制动时间是重要的技术指标。相同类型、级别的汽车,制动时间较短则汽车的安全性较高以制动时间最短为目标函数, 2.建立盘式制动器优化设计的数学模型 为分析问题的方便,作如下假设引入几个简化条件: 1)制动盘为实体的 2)制动钳或盘是浮动的,一边消除盘上的 弯曲应力。 3)所有吸收的热量均匀分布在整个制动器 上。 盘式制动器的结构剖面图如图所示。如果将 制动器的摩擦衬片的圆形摩擦面划分为无数个与 盘心同心的圆弧单元,则该单元的摩摄与该处的 压力p与线速度v成正比。虽然摩擦衬片上的压力 开始是均匀的,但是随着单元所在半径r的加大, 其滑动线速度也会加大而导致单元磨损的加重。

盘式制动器设计说明书

盘式制动器设计说明书 一汽车制动系概述 使行驶中的汽车减速甚至停车,使下坡行驶的汽车的速度保持稳定,以及使已经停驶的汽车保持不动,这些作用统称为汽车制动。 对汽车起到制动作用的是作用在汽车上,其方向与汽车行驶方向相反的外力。作用在行驶汽车上的滚动阻力,上坡阻力,空气阻力都能对汽车起制动作用,但这外力的大小是随机的,不可控制的。因此,汽车上必须设一系列专门装置,以便驾驶员能根据道路和交通等情况,借以使外界在汽车上某些部分施加一定的力,对汽车进行一定程度的强制制动。这种可控制的对汽车进行制动的外力,统称为制动力。这样的一系列专门装置即成为制动系。 1 制动系的功用:使汽车以适当的减速度降速行驶直至停车;在下坡行驶时,使汽车保持适当的稳定车速;使汽车可靠的停在原地或--=-坡道上。 2 制动系的组成 任何制动系都具有以下四个基本组成部分: (1)供能装置——包括供给、调节制动所需能量以及改善传能介质状态的各种部件。其中,产生制动能量的部位称为制动能源。 (2)控制装置——包括产生制动动作和控制制动效果的各种部件。 (3)传动装置——包括将制动能量传输到制动器的各个部件。 (4)制动器——产生阻碍车辆的运动或运动趋势的力的部件,其中也包括辅助制动系中的缓速装置。 较为完善的制动系还具有制动力调节装置以及报警装置、压力保护装置等附加装置。 3 制动系的类型 (1)按制动系的功用分类 1)行车制动系——使行使中的汽车减低速度甚至停车的一套专门装置。 2)驻车制动系——是以停止的汽车驻留在原地不动的一套装置。 3)第二制动系——在行车制动系失效的情况下,保证汽车仍能实现减速或停车的一套装置。在许多国家的制动法规中规定,第二制动系是汽车必须具备的。 4)辅助制动系——在汽车长下坡时用以稳定车速的一套装置。 (2)按制动系的制动能源分类 1)人力制动系——以驾驶员的肢体作为唯一的制动能源的制动系。 2)动力制动系——完全靠由发动机的动力转化而成的气压或液压形式的势能进行制动的制动系。 3)伺服制动系——兼用人力和发动机动力进行制动的制动系。 按照制动能量的传输方式,制动系又可分为机械式、液压式、气压式和电磁等。同时采用两种以上传能方式的制动系,可称为组合式制动系。 4 设计制动系时应满足如下主要要求: 1)具有足够的制动效能。行车制动能力是用一定制动初速度下的制动减速度和制动距离两相指标来评定的;驻坡能力是以汽车在良好路面上能可靠的停驻的最大坡度来评定的。详见GB/T7258-2004

汽车液压盘式制动器结构优化设计

汽车液压盘式制动器结 构优化设计 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

摘要 汽车制动系统是汽车最重要的主动安全系统,制动器则是制动系统的执行机构,其性能好坏直接影响汽车的安全。盘式制动器作为鼓式制动器的替代产品,具有热稳定性好、反应灵敏等优势,但是盘式制动器本身也存在一些问题,并且鼓式制动器存在的一些问题,虽然盘式制 动 器有一定程度改善,但并未得到完全解决,如热衰退、制动噪声等。本文开篇阐明了盘式制动器发展与现状,然后是设计的背景,性质及任务。通过对轿车盘式制动器的深入学习和设计实践,主要是对轿车盘式制动器的零部件结构选型及设计计算,更好地学习并掌握盘式制动器的结构原理与设计计算的相关知识和方法。介绍了盘式制动器的各种类型,性能等,分析了盘式制动器和摩擦衬片的特性. 关键词:盘式制动器;设计;性能分析

Abstract Automobile brake system is the most important initiative safety system, brake is the enforcer of brake system, whose performance affects the vehicle’s safety directly. As the substitution of drum brake, disc brake has advantages of fine thermal stability, delicate feedback, and so on. But it also has some defects, and though the problems of drum brake have been improved, they are not resolved completely, such as thermal fade and brake noise. This paper illustrated disc brake’s development at beginning, then the design’s background, quality and mission. Through the disc brake in-depth study and design practice, mainly for c ar’s disc brake structure selection and design calculation, can better study and master the disc brake structure and working principle and the related knowledge and methods. Introduce the brake disc’s kind and performance. Analyze the disc brake and rub linings’behavior. Key words: disc brake; design; Performance Analysis

汽车盘式制动器故障成因及维修工艺分析

课程设计(论文)任务书

成绩评定表

目录 一、盘式制动器的工作原理和构造 1.1 定钳盘式制动器-----------------------------------------------1 1.2 浮钳盘式制动器-----------------------------------------------1 1.3 全盘式制动器-------------------------------------------------2 二、关于盘式刹车优缺点 2.1盘式刹车优点-------------------------------------------------2 2.2盘式刹车缺点-------------------------------------------------3 2.3刹车故障的判断-----------------------------------------------3 三、盘式制动器的常见故障及排除 3.1油管故障-----------------------------------------------------4 3.2制动盘故障-制动力不足疲软----------------------------------5 3.3制动钳故障-制动后跑偏----------------------------------------6 3.4制动分泵故障-制动发卡----------------------------------------7 3.5分泵故障-加力泵喷出制动液------------------------------------8 四、分析 分析各个故障----------------------------------------------------9 五、参考文献

(完整版)毕业设计浮钳盘式制动器

原始数据: 整车质量:空载:1550kg ;满载:2000kg 质心位置:a=L 1=1.35m ;b=L 2=1.25m 质心高度:空载:hg=0.95m ;满载:hg=0.85m 轴 距:L=2.6m 轮 距: L 0=1.8m 最高车速:160km/h 车轮工作半径:370mm 轮毂直径:140mm 轮缸直径:54mm 轮 胎:195/60R14 85H 1.同步附着系数的分析 (1)当0φφ<时:制动时总是前轮先抱死,这是一种稳定工况,但丧失了转向能力; (2)当0φφ>时:制动时总是后轮先抱死,这时容易发生后轴侧滑而使汽车失去方向稳定性; (3)当0φφ=时:制动时汽车前、后轮同时抱死,是一种稳定工况,但也丧失了转向能力。 分析表明,汽车在同步附着系数为0φ的路面上制动(前、后车轮同时抱死)时,其制动减速度为g qg dt du 0φ==,即0φ=q ,q 为制动强度。而在其他附着系数φ的路面上制动时,达到前轮或后轮即将抱死的制动强度φ

根据相关资料查出轿车≥0φ0.6,故取6.00=φ. 同步附着系数:=0φ0.6 2.确定前后轴制动力矩分配系数β 常用前制动器制动力与汽车总制动力之比来表明分配的比例,称为制动器制动 力分配系数,用β表示,即:u F F u 1 =β,21u u u F F F += 式中,1u F :前制动器制动力;2u F :后制动器制动力;u F :制动器总制动力。 由于已经确定同步附着系数,则分配系数可由下式得到: 根据公式:L h L g 02φβ+= 得:68.06 .285.06.025.1=?+=β 3.制动器制动力矩的确定 为了保证汽车有良好的制动效能,要求合理地确定前,后轮制动器的制动力矩。 根据汽车满载在沥青,混凝土路面上紧急制动到前轮抱死拖滑,计算出后轮制动器的最大制动力矩2M μ 由轮胎与路面附着系数所决定的前后轴最大附着力矩: e g r qh L L G M ?υ)(1max 2-= 式中:?:该车所能遇到的最大附着系数; q :制动强度; e r :车轮有效半径; max 2μM :后轴最大制动力矩;

汽车盘式制动器的维护与保养

汽车盘式制动器的维护与保养 汽车制动系统目前广泛使用的是摩擦式制动器,就其摩擦的结构形式可分成鼓式、盘式和带式三种。盘式制动器已广泛应用于各级轿车、轻型车、载货汽车、豪华客车及重型载货汽车等方面。因此,做好汽车盘式制动器的维护与保养至关重要。 一、盘式制动器维保养时的注意事项 拆卸车辆时要小心,避免损害制动器管路;拆卸车轮时,一定不要损伤制动盘、外部管路、放气螺钉以及挡泥板;安装非标准或偏位车轮时,需确保其与制动钳不接触;维修盘式制动器时,不要用气压软管或干刷子来清洁盘式制动器总成,要使用专业的真空吸尘器,避免呼吸制动器灰尘;仔细调整车轮轴承,消除轮端余隙;活塞回位从主缸储液罐中吸出的制动液应重新补足;行车前,应多次踩动制动踏板,使制动间隙达到规定要求;为防止制动块摩擦衬片的快速磨损,车辆行驶中不要对制动踏板施加压力(制动工况除外);液压系统排气时,可用木锤轻敲制动钳,以帮助清除制动液的气泡;用压缩空气吹取制动钳活塞时要小心,最好用厚布做缓冲垫,气体压力由小到大,逐渐增大。若活塞吹不出,可关断气源,用木锤轻敲制动钳,再试着通入压缩空气;卸转动盘而拆下制动钳时,在两侧制动块之间放置厚挡板,以防止制动钳的活塞被挤出轮缸;制动钳为两半壳时,不要解体。油脂、机油、制动液或任何其它异物不得触及制动摩擦块、制动卡钳、制动盘表面以及轮毂外表面;小心的对待制动盘和卡钳,避免损坏制动盘、刮伤或擦伤制动摩擦块。 二、盘式制动器的维护与保养的要点 1. 制动器摩擦衬片的维保 前轮或所有四轮上装有盘式制动器的汽车,需定期地检查制动器摩擦衬片(每行车12~15km)。靠举升机或安全架将车升起,在举升机或安全架上要确保居中与安全。车轮与轮毂轴承总成的关系在重新组装之后要确保恰当的车轮平衡,从前制动盘安装面卸下车轮与轮胎总成,小心别损伤制动卡钳、盘式制动盘罩(若有)以及前轮转向节,重新将夹持制动盘的两个车轮螺母装在轮毂轴承总成上。不用拆卸卡钳就能检查摩擦衬片,通过查看制动钳的每一端来检查外卡钳两端,这些区域是制动摩擦块磨损发生率最高的区域,还要检查内侧制动衬片上的摩擦衬片,确信没有过早磨损,若出现光泽(发亮或光滑)、烧损或被污物或制动液污染,则更换制动摩擦块,透过检查孔察看内制动摩擦块和摩擦衬片,有些进口车没有检查孔。 在装有浮动卡钳的车上,要检查内外摩擦衬片的磨损是否均匀。若内侧的磨损比外侧的多,则需大修卡钳。反之,则总成的滑动元件可能黏附、弯曲、或损坏。在任何情况下,制动器的不均匀磨损是制动器衬片或卡钳需要维修时的信号。当然,如果制动器在发出高震荡制动尖叫声时,要立即想到这表明系统需要维修。

盘式制动器设计说明书

错误!未找到引用源。盘式制动器设计说明书 一汽车制动系概述 使行驶中的汽车减速甚至停车,使下坡行驶的汽车的速度保持稳定,以及使已经停驶的汽车保持不动,这些作用统称为汽车制动。 对汽车起到制动作用的是作用在汽车上,其方向与汽车行驶方向相反的外力。作用在行驶汽车上的滚动阻力,上坡阻力,空气阻力都能对汽车起制动作用,但这外力的大小是随机的,不可控制的。因此,汽车上必须设一系列专门装置,以便驾驶员能根据道路和交通等情况,借以使外界在汽车上某些部分施加一定的力,对汽车进行一定程度的强制制动。这种可控制的对汽车进行制动的外力,统称为制动力。这样的一系列专门装置即成为制动系。 1 制动系的功用:使汽车以适当的减速度降速行驶直至停车;在下坡行驶时,使汽车保持适当的稳定车速;使汽车可靠的停在原地或--=-坡道上。 2 制动系的组成 任何制动系都具有以下四个基本组成部分: (1)供能装置——包括供给、调节制动所需能量以及改善传能介质状态的各种部件。其中,产生制动能量的部位称为制动能源。 (2)控制装置——包括产生制动动作和控制制动效果的各种部件。 (3)传动装置——包括将制动能量传输到制动器的各个部件。 (4)制动器——产生阻碍车辆的运动或运动趋势的力的部件,其中也包括辅助制动系中的缓速装置。 较为完善的制动系还具有制动力调节装置以及报警装置、压力保护装置等附加装置。 3 制动系的类型 (1)按制动系的功用分类 1)行车制动系——使行使中的汽车减低速度甚至停车的一套专门装置。 2)驻车制动系——是以停止的汽车驻留在原地不动的一套装置。 3)第二制动系——在行车制动系失效的情况下,保证汽车仍能实现减速或停车的一套装置。在许多国家的制动法规中规定,第二制动系是汽车必须具备的。 4)辅助制动系——在汽车长下坡时用以稳定车速的一套装置。 (2)按制动系的制动能源分类 1)人力制动系——以驾驶员的肢体作为唯一的制动能源的制动系。 2)动力制动系——完全靠由发动机的动力转化而成的气压或液压形式的势能进行制动的制动系。 3)伺服制动系——兼用人力和发动机动力进行制动的制动系。 按照制动能量的传输方式,制动系又可分为机械式、液压式、气压式和电磁等。同时采用两种以上传能方式的制动系,可称为组合式制动系。 4 设计制动系时应满足如下主要要求: 1)具有足够的制动效能。行车制动能力是用一定制动初速度下的制动减速度和制动距离两相指标来评定的;驻坡能力是以汽车在良好路面上能可靠的停驻

制动盘优化设计原稿

交通与汽车工程学院 课程论文说明书 课程名称: 车辆工程专业科技创新实践活动课程代码: 3510429 题目: 制动盘优化设计 年级/专业/班: 2011级/车辆工程/汽设一班 学生姓名: 刘陈 学号: 312011********* 开始时间: 2014 年 03 月 18 日 完成时间: 2014 年 05 月 25 日 课程论文成绩: 学习态度及平时成绩(30)技术水平与实际 能力(20) 创新(5) 说明书(计算书、图纸、分析 报告)撰写质量(45) 总分 (100) 指导教师签名:年月日

前言 (1) 1汽车刹车盘国内外研究现状与目标 (1) 1.1国外研究现状 (1) 1.2国内研究现状 (2) 2制动盘组织分析与性能要求 (2) 3制动盘温升对摩擦系数的影响 (3) 4制动盘直径D (3) 5制动盘厚度h (3) 6 制动盘常存在的问题 (4) 6.1气孔 (4) 6.2缩松 (4) 6.3砂眼缺陷 (4) 7制动盘catia图形 (4) 结论 (7) 致谢 (7) 参考文献 (8)

前言 汽车的设计与生产涉及到许多领域,其独有的安全性、经济性、舒适性等众多指标,也对设计提出了更高的要求。汽车制动系统是汽车行驶的一个重要主动安全系统,其性能的好坏对汽车的行驶安全有着重要影响。本次设计的主要内容就是运输车辆中的制动器,目前广泛使用的是摩擦式制动器,摩擦式制动器就其摩擦副的结构形式可分成鼓式、盘式和带式三种。其中盘式制动器较为广泛。盘式制动器有着制动效果更好,不易受外界条件影响,且制动较平稳等优势。 1汽车刹车盘国内外研究现状与目标 制动盘在汽车的制动系统中发挥着至关重要的作用,性能优良的制动盘是汽车安全行驶的前提条件之一。虽然经过多年的应用与发展,但是从早期的石棉制动盘到目前广泛使用的铸铁制动盘,在环保、质量等方面都存在一些缺陷,并不能完全满足市场需求。汽车产业的迅猛发展,汽车产量的大幅度增加,降低能源消耗、加强环境保护对汽车用材料轻量化的要求,迫使人们不停的开展对汽车制动盘的研究。 1.1国外研究现状 国外早期的制动盘是用石棉纤维填充酚醛树脂制造而成的,其中石棉由硅酸盐矿物质得,含有一定数量的结晶水。由于强制制动时制动盘表面瞬间温度可达到500到600摄氏度,所含的结晶水快速遗失,往往造成制动盘制动性能发生热衰退,同时制动盘自身磨损,再加上石棉在加工、使用中其粉尘具有致癌作用,因此石棉制动盘渐渐被禁用。 从20世纪60年代开始,美、欧、日等国家大面积推广使用的第二代刹车盘是半金属石墨复合材料制造的一。其主要成分是钢纤维、石墨、金属粉及其辅料,用改性酚醛树腊粘结成型。半金属刹车盘比石棉刹车盘耐磨性提高25%以上,摩擦系数高、导热性好加工易成型。同时,这种刹车盘也出现钢纤维在潮湿环境中易生锈、刹车时噪音大等缺点。 后来,由于铸铁具有一定的强度和良好的耐磨性,材料和制造成本都较低,

汽车液压盘式制动器设计研究

2009年第10期 科技经济市场 1汽车工业的发展 在人类历史发展的过程中,“衣”、“食”、“住”、“行”始终是人类生存的四大需要,是人类发展、进步的最重要的基本条件。而在“四大需要”中,“行”或“交通”的变化,在人类社会发展过程中 是最突出的,它对社会进步的影响也是最大的。 汽车是作为一种交通工具而产生的,但发展到今天已经不能把它理解为单纯的“行”的手段。因为“汽车化”改变了当代世界的面貌,它已经成为当代物质文明与进步象征及文明形态的一种代表。中国汽车工业的振兴也必然会使中国的面貌焕然一新,在繁荣经济,促进四个现代化的实现,提高中国人民的生活水平,推动社会与地球上近四分之一的人类进步方面,发挥巨大的作用。 2汽车零部件的工业现状及水平 在汽车行驶过程中,其零部件承受的载荷的大小和性质受着许多因素的影响。汽车的可靠性与在其使用期间作用在其零部件上的实际载荷有关。由于汽车的使用条件非常复杂,时间也不固定,有影响且变化的因素很多,致使在零件中的应力值会在很大的范围内变动,甚至应力性质也会改变。因此,确定汽车零部件所承受的实际载荷要比确定其他机械产品的载荷复杂很 多。而引起零件产生应力的力有些是恒定的(例如重力、 零件装配时产生的预紧力或过盈力),有些是不定的(例如汽车起步时和制动时产生的力,零件制造误差引起的力,发动机工作工况改变而引起转矩及力的改变,行驶阻力引起的力等等)。在设计中为了校核零件的静强度,首先就要确定其危险断面及其所承受的最大载荷;为了校核零件的疲劳强度,除了可按相关文献给出的计算方法进行疲劳强度的计算校核外,还常常以其实测的载荷谱为基础编制加载语并按加载谱的加载程序加载,在疲劳试验台上进行试验验证。可见,在设计中为了进行零部件的强度设计,首先要弄清其载荷工况、破坏机理,以便采取相应的强度计算方法进行有效的设计。 3汽车设计技术的发展 汽车设计技术在近百年中也经历了由经验设计发展到以科学实验和技术分析为基础的设计阶段,进而自60年代中期在设计中引入电子计算机后又形成了计算机辅助设计(CAD)等新方法,并使设计逐步实现半自动化和自动化。参阅相关权威资料了解到汽车设计的直接目的有以下三点: (1)提高汽车的技术水平,使其承载能力更强,使用性能更好,更安全,更可靠,更经济,更舒适,更机动,更方便,动力性更好,污染更少; (2)改善汽车的外观造型,特别对轿车来讲改善车身艺术效果,使其更美观、更科学、更新颖、更有时代感,往往是车型设计 的重要目的,也是提高市场竞争力的重要手段; (3)改善汽车的经济效果,调整汽车在产品系列中的档次,以便改善其市场竞争地位并获得更大的经济效益。 电子计算机的出现和在工程设计中的推广应用,使汽车设 计技术飞跃发展,设计过程完全改观。 汽车结构参数及性能参数等的优化选择与匹配、 零部件的强度核算与寿命预测、产品有关方面的模拟计算或仿真分析、车身的美工造型等等设计方案的选择及定型、设计图纸的绘制,均可在计算机上进行。 4盘式制动器设计、计算分析模块4.1概述 在轿车和中小型客车的设计中,一般其结构形式为前轮制动器采用浮钳式制动器,后轮制动器采用领从蹄自动定义浮销式鼓式制动器。而对总重大于20KN-40KN 的客车而言,前轮也有采用固定钳式盘式制动器,后轮采用自增力自动定义浮销式鼓式制动器。 在根据汽车的整车参数分析了汽车的制动力、制动力矩之后,就可以根据具体的制动器结构形式作相关设计、计算、分析等工作。 4.2基本原理(1)确定柱式制动器制动钳体主要结构参数的计算方法:在初步计算制动器制动钳体结构参数时,盘式制动器效能因数BF 的值可定为0.8。根据汽车前轮所需的最大理论制动力矩,初步选取制动钳体缸孔直径D 1可由下面的公式算出: M μ1=(P 1-P 10)Awc 1ηa .BF 1r 1……………1-1式中:Awc 1—盘式制动器制动钳体缸也的工作面积:(mm 2) BF 1—盘式制动器制动效能因数;P 10—前制动管路的开启压力;(M pa 或N/mm 2)ηa —主缸以后的机械效率;r l —制动盘有效半径;(m)P 1—前制动管压;(M pa 或N/mm 2)(2)确定盘式制动器计算用的最大制动力矩: 由于考虑到汽车实际制动时的最大输出制动力矩与理论值受很多因素影响而发生改变,如制动衬片与制动盘接触时不一定非常均匀使加制动力、制动衬片的摩擦系数受温度变化而发生改变等一些因素。这样用于计算的最大制动力矩应由下面公式算出: M 'u 1max=1.2M u 1max …………………1-2式中:M 'u 1max —用于计算的最大制动力矩(N.m ) M u 1max —单个前轮制动器理论最大制动力矩(N.m ) 作者简介:王亮,在读硕士,现工作在淮阴工学院,承担汽车服务工程专业的课程讲授工作。 汽车液压盘式制动器设计研究 王 亮关荣 (淮阴工学院,江苏淮安223001) 摘 要:本文主要是研究汽车液压盘式制动器设计计算程序, 通过运用V isual B asic 6.0软件和A ccess 数据库实现制动系的计算机辅助设计,基于制动器中的零部件数目较多,在掌握了汽车工业发展的历史和现状、 汽车设计技术理论知识构成以及汽车零部件的工业现状及水平的基础上,选取具有代表性的汽车液压盘式制动器设计、计算分析模块。从模块功能的概述、基本原理以及程序设计流程三个方面进行完整的模块设计说明。从而实现汽车液压盘式制动器设计的自动化,提升整车的安全性能。 关键词: 制动系;程序库;盘式制动器;模块技术平台 趤趽

制动盘优化设计原稿

交通与汽车工程学院课程论文说明书 课程名称: 车辆工程专业科技创新实践活动课程代码: 3510429 题目: 制动盘优化设计 年级/专业/班: 2011级/车辆工程/汽设一班 学生姓名: 学号: 6117 开始时间:2014 年03 月18 日 完成时间:2014 年05 月25 日课程论文成绩: 学习态度及平时成绩(30)技术水平与实际 能力(20) 创新(5) 说明书(计算书、图纸、分析 报告)撰写质量(45) 总分 (100)

指导教师签名:年月日

前言 (1) 1汽车刹车盘国外研究现状与目标 (1) 1.1国外研究现状 (1) 1.2国研究现状 (2) 2制动盘组织分析与性能要求 (2) 3制动盘温升对摩擦系数的影响 (3) 4制动盘直径D (3) 5制动盘厚度h (3) 6 制动盘常存在的问题 (4) 6.1气孔 (4) 6.2缩松 (4) 6.3砂眼缺陷 (4) 7制动盘catia图形 (4) 结论 (7) 致 (7) 参考文献 (8)

前言 汽车的设计与生产涉及到许多领域,其独有的安全性、经济性、舒适性等众多指标,也对设计提出了更高的要求。汽车制动系统是汽车行驶的一个重要主动安全系统,其性能的好坏对汽车的行驶安全有着重要影响。本次设计的主要容就是运输车辆中的制动器,目前广泛使用的是摩擦式制动器,摩擦式制动器就其摩擦副的结构形式可分成鼓式、盘式和带式三种。其中盘式制动器较为广泛。盘式制动器有着制动效果更好,不易受外界条件影响,且制动较平稳等优势。 1汽车刹车盘国外研究现状与目标 制动盘在汽车的制动系统中发挥着至关重要的作用,性能优良的制动盘是汽车安全行驶的前提条件之一。虽然经过多年的应用与发展,但是从早期的石棉制动盘到目前广泛使用的铸铁制动盘,在环保、质量等方面都存在一些缺陷,并不能完全满足市场需求。汽车产业的迅猛发展,汽车产量的大幅度增加,降低能源消耗、加强环境保护对汽车用材料轻量化的要求,迫使人们不停的开展对汽车制动盘的研究。 1.1国外研究现状 国外早期的制动盘是用石棉纤维填充酚醛树脂制造而成的,其中石棉由硅酸盐矿物质得,含有一定数量的结晶水。由于强制制动时制动盘表面瞬间温度可达到500到600摄氏度,所含的结晶水快速遗失,往往造成制动盘制动性能发生热衰退,同时制动盘自身磨损,再加上石棉在加工、使用中其粉尘具有致癌作用,因此石棉制动盘渐渐被禁用。

汽车盘式制动器设计

汽车盘式制动器设计 第一章绪论 1.1制动系统设计的意义 汽车是现代交通工具中用的最多最普遍也是最方便的交通运输工具。汽车制动系是汽车底盘上的一个重要系统。它是制约汽车运动的装置。而制动器又是制动系统中直接作用制约汽车运动的一个关键装置,是汽车上最重要的安全件。汽车的制动性能直接影响汽车的行驶安全性。随着公路业的发展和车流密度的日益增大人们对安全性、可靠性要求越来越高为保证人身和车辆安全、必须为汽车配备十分可靠的制动系统。 通过查阅相关的资料运用专业基础理论和专业知识进行部件的设计计算和结构设计使其达到以下要求:具有足够的制动效能以保证汽车的安全性;同时在材料的选择上应尽量采用对人体无害的材料[1]。 1.2 制动器的发展历程 制动器分车轮制动器和中央制动器两种,后者制动传动轴或变速器输出轴。由于中央制动器在应急制动时容易造成传动轴超载,所以现在大多数重型车辆在后轮制动器上附加手动机械式驱动机构使之兼起驻车制动和应急制动时用[2]。 从耗散能量的方式分制动器有摩擦式液力式电磁式和涡流式。 迄今为止人们已经把全息照相、激光多普勒分析、有限元分析以及试验模态技术等引入到制动器的振动和噪声研究中并取得了大量的成果。全息照相技术向人们展示了制动过程中振动的真实形态;有限元及模态分析的统一使得建立与实际相符合的振动的数学模型成为了可能这些都对制动系统的设计和分析提供了便利。 在对系统进行分析、综合和预测时需要给出系统的动态特性。此时实际系统可能尚未完成或者处十经济性、安全性等因素的考虑无法通过试验进行验证往往需要借助于系统仿真来实现这一要求。所谓系统仿真是指利用计算机来运行仿真

汽车盘式制动器优化设计2

#设计与计算# 汽车盘式制动器优化设计 沈荣华 邹定平 黎桂英 (广东石化专科学校 茂名 525000) 摘 要 以制动时间最短、制动温升最低为目标函数,应用复合型优化方法,对汽车盘式制动器进行了优化设计计算。为实际生产和设计提供 了理论指导。 关键词 盘式制动器 优化设计 目标函数中图分类号 U 27012 汽车盘式制动器常规设计是保证制动盘有足够的强度和刚度,并验证制动块磨损量,据此选择各结构参数。其缺陷是对热负荷的考虑仅凭经验,而缺乏理论指导。因此,在盘式制动器表面温升定量计算的基础上进行优化设计 112 是很有实际意义的。 1 数学模型的建立 为分析问题的方便,作以下假设:(1)制动盘为实心盘; (2)制动钳浮动,以消除盘上的弯曲应力;(3)制动块为矩形; (4)吸收的摩擦热均匀分布在整个制动器上。111 设计变量 盘式制动器的结构设计见图1所示,包括以下3项主要内容 : 图1 卡钳与制动盘的结构关系 (1)制动盘尺寸参数:直径D 、厚度h ; (2)制动块尺寸参数:表面尺寸为I @b 、厚度为h p ; (3)制动块相对于制动盘的尺寸参数:制动块作用半径R 1。 制动块厚度h p 的确定是一个比较复杂的专项课题,在此不作深入分析。从设计制动器的一般要求出发,为保证制动器有足够的输出力矩,足够的热容量和散热面积,取D 、h 、I @b 、R 1这5个主要结构参数作为设计变量。 112 目标函数 制动时间对保证汽车安全行驶非常重要。此外,制动摩擦副表面温升直接影响制动器寿命,故取这两者为最优化目标。考虑到这2项指标在重要程度方面的差异,引入加权因子,将它们组合到总的目标函数中: f (x )=w 1t z +w 2T 式中:w 1为制动时间t z 的加权因子,取w 1=1; w 2为制动摩擦副表面温升T 的加权因子,取w 2=0.5。 t z =2G #v 0#R/(n #L #P #D 22#p L #R 1+ 2L r #G #g #R )(1)T =C 1#t z (6t z -10C z #t 2z + 4C 3#t 3z ) 1/2(2) C 1=1/(48K p #R #I #b )#A 1/2#L # P #D 2 2#p L #R 1(1-C 0)C 2=(L #P #D 22#p L #R 1)/(G #R #v 0) 式中:t z 为制动时间(s),G 为车质量(kg ),v 0为制动前车速(m/s),R 为车轮半径(m),R 1为衬片作用半径(m),n 为制动器个数,L 为衬片摩擦系数,L r 为车轮滚动摩擦系数,K p 为衬片导热系数1W/(m #K)2,A 为热扩散率(m 2 /s),C 0为热流分配系数,D 2为制动油缸直径(m),p L 为制动器管路油压(Pa),T 为制动 # 19#第12卷第1期 5机械研究与应用6 MECHANICAL RESE ARC H &APPLICATION Vol 12No.1 1999

相关文档
最新文档