高中数学必修2知识点总结归纳-全
数学必修二知识点归纳

高中数学必修 2 知识点总结立体几何初步特殊几何体表面积公式( c 为底面周长, h 为高, h '为斜高, l 为母线)S直棱柱侧面积chS 正棱锥侧面积1 ch' 正棱台侧面积1(c 1 c 2 ) h'2 S2 S 圆柱侧2 rh圆柱表2 r r lSS圆锥侧面积rlS圆锥表r r lS 圆台侧面积(rR) lS 圆台表r 2 rlRl R 2柱体、锥体、台体的体积公式V 柱 Sh1 V 台 1 ' ' S S)h V 圆柱Shr 2hV 圆锥1 r2 h V 锥Sh(S S1 (S ' 3133V圆台S ' S S)h(r 2 rR R 2 )h 33(4)球体的表面积和体积公式:V 球=4R 3 ; S 球面=4 R23第二章 直线与平面的位置关系2.1 空间点、直线、平面之间的位置关系1 平面含义:平面是无限延展的2 三个公理:(1)公理 1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内 .符号表示为A ∈LAB ∈L => Lαα ·A ∈αLB ∈α公理 1 作用: 判断直线是否在平面内 .(2)公理 2:过不在一条直线上的三点,有且只有一个平面。
AB符号表示为: A 、 B 、C 三点不共线 => 有且只有一个平面α, α ·C ··使 A ∈α、 B ∈α、 C ∈α。
公理 2 作用: 确定一个平面的依据。
(3)公理 3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。
符号表示为: P ∈α∩β => α∩β =L ,且 P ∈Lβ公理 3 作用: 判定两个平面是否相交的依据 .2.1.2 空间中直线与直线之间的位置关系αPL· 1 空间的两条直线有如下三种关系:相交直线:同一平面内,有且只有一个公共点;共面直线平行直线:同一平面内,没有公共点;异面直线: 不同在任何一个平面内,没有公共点。
数学必修二知识点归纳

数学必修二知识点归纳Revised on November 25, 2020高中数学必修2知识点总结立体几何初步特殊几何体表面积公式(c 为底面周长,h 为高,'h 为斜高,l 为母线) 柱体、锥体、台体的体积公式(4)球体的表面积和体积公式:V 球=343R π ; S 球面=24R π第二章 直线与平面的位置关系空间点、直线、平面之间的位置关系 1 平面含义:平面是无限延展的 2 三个公理:(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内. 符号表示为 A ∈LB ∈L => L α A ∈α B ∈α公理1作用:判断直线是否在平面内.(2)公理2:过不在一条直线上的三点,有且只有一个平面。
符号表示为:A 、B 、C 三点不共线 => 有且只有一个平面α, 使A ∈α、B ∈α、C ∈α。
公理2作用:确定一个平面的依据。
(3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。
符号表示为:P ∈α∩β =>α∩β=L ,且P ∈L 公理3作用:判定两个平面是否相交的依据. 空间中直线与直线之间的位置关系 1 空间的两条直线有如下三种关系:相交直线:同一平面内,有且只有一个公共点;平行直线:同一平面内,没有公共点;异面直线: 不同在任何一个平面内,没有公共点。
2 公理4:平行于同一条直线的两条直线互相平行。
符号表示为:设a 、b 、c 是三条直线a ∥bc ∥b强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用。
公理4作用:判断空间两条直线平行的依据。
3 等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.4 注意点:① a'与b'所成的角的大小只由a 、b 的相互位置来确定,与O 的选择无关,为了简便,点O 一般取在两直线中的一条上;② 两条异面直线所成的角θ∈(0, ); ③ 当两条异面直线所成的角是直角时,我们就说这两条异面直线互相垂直,记作a ⊥b ;④ 两条直线互相垂直,有共面垂直与异面垂直两种情形;⑤ 计算中,通常把两条异面直线所成的角转化为两条相交直线所成的角。
高一必修二数学知识点归纳大全

高一必修二数学知识点归纳大全高一必修二人教版数学知识点归纳。
一、立体几何初步。
(一)空间几何体。
1. 棱柱。
- 定义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行的多面体。
- 性质:侧棱都平行且相等;两个底面与平行于底面的截面是全等的多边形;过不相邻的两条侧棱的截面是平行四边形。
- 分类:按底面多边形的边数分为三棱柱、四棱柱、五棱柱等;按侧棱与底面是否垂直分为直棱柱和斜棱柱。
2. 棱锥。
- 定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形的多面体。
- 性质:如果棱锥被平行于底面的平面所截,那么截面和底面相似,并且它们面积的比等于截得的棱锥的高与已知棱锥的高的平方比。
- 分类:按底面多边形的边数分为三棱锥(四面体)、四棱锥等。
3. 棱台。
- 定义:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分。
- 性质:各侧棱延长后交于一点;两底面是相似多边形;侧面是梯形。
4. 圆柱。
- 定义:以矩形的一边所在直线为轴旋转,其余三边旋转形成的面所围成的旋转体。
- 性质:轴截面是矩形;平行于底面的截面是与底面全等的圆;圆柱的侧面展开图是矩形。
5. 圆锥。
- 定义:以直角三角形的一条直角边所在直线为轴旋转,其余两边旋转形成的面所围成的旋转体。
- 性质:轴截面是等腰三角形;平行于底面的截面是圆;圆锥的侧面展开图是扇形。
6. 圆台。
- 定义:用一个平行于圆锥底面的平面去截圆锥,底面与截面之间的部分。
- 性质:轴截面是等腰梯形;平行于底面的截面是圆;圆台的侧面展开图是扇环。
7. 球。
- 定义:以半圆的直径所在直线为轴,半圆面旋转一周形成的旋转体。
- 性质:球心和截面圆心的连线垂直于截面;R = √(r^2)+d^{2}(R为球的半径,r为截面圆的半径,d为球心到截面的距离)。
(二)空间几何体的三视图和直观图。
1. 三视图。
- 主视图(正视图):从物体的前面向后面投射所得的视图,能反映物体的高度和长度。
部编版高中数学必修二第十章概率知识点总结归纳完整版

(名师选题)部编版高中数学必修二第十章概率知识点总结归纳完整版单选题1、抛掷一颗均匀骰子两次,E 表示事件“第一次是奇数点”,F 表示事件“第二次是3点”,G 表示事件“两次点数之和是9”,H 表示事件“两次点数之和是10”,则( )A .E 与G 相互独立B .E 与H 相互独立C .F 与G 相互独立D .G 与H 相互独立答案:A分析:先根据古典概型的概率公式分别求出四个事件的概率,再利用独立事件的定义P(AB)=P(A)P(B)判断个选项的正误.解:由题意得:P(E)=1836=12,P(F)=636=16,P(G)=436=19,P(H)=336=112 对于选项A :P(EG)=236=118,P(E)P(G)=12×19=118,P(EG)=P(E)P(G),所以E 和G 互相独立,故A 正确; 对于选项B :P(EH)=136,P(E)P(H)=12×112=124,P(EH)≠P(E)P(H),所以E 和H 不互相独立,故B 错误;对于选项C :P(FG)=136,P(F)P(G)=16×19=154,P(FG)≠P(F)P(G),所以F 和G 不互相独立,故C 错误; 对于选项D :P(GH)=0,P(G)P(H)=19×112=1108,P(GH)≠P(G)P(H),所以G 和H 不互相独立,故D 错误; 故选:A2、关于圆周率π,数学发展史上出现过许多很有创意的求法,如著名的浦丰实验和查理斯实验.受其启发,我们也可以通过设计下面的实验来估计π的值:先请全校m 名同学每人随机写下一个都小于1的正实数对(x,y );再统计两数能与1构成钝角三角形三边的数对(x,y )的个数a ;最后再根据统计数a 估计π的值,那么可以估计π的值约为( )A .4a mB .a+2m C .a+2m m D .4a+2m m答案:D解析:由试验结果知m 对0~1之间的均匀随机数x,y ,满足{0<x <10<y <1 ,面积为1,再计算构成钝角三角形三边的数对(x,y),满足条件的面积,由几何概型概率计算公式,得出所取的点在圆内的概率是圆的面积比正方形的面积,即可估计π的值.解:根据题意知,m 名同学取m 对都小于1的正实数对(x,y ),即{0<x <10<y <1, 对应区域为边长为1的正方形,其面积为1,若两个正实数x,y 能与1构成钝角三角形三边,则有{x 2+y 2<1x +y >10<x <10<y <1, 其面积S =π4−12;则有a m =π4−12,解得π=4a+2m m故选:D .小提示:本题考查线性规划可行域问题及随机模拟法求圆周率的几何概型应用问题. 线性规划可行域是一个封闭的图形,可以直接解出可行域的面积;求解与面积有关的几何概型时,关键是弄清某事件对应的面积,必要时可根据题意构造两个变量,把变量看成点的坐标,找到试验全部结果构成的平面图形,以便求解.3、《史记》卷六十五《孙子吴起列传第五》中有这样一道题:齐王与田忌赛马,田忌的上等马劣于齐王的上等马,优于齐王的中等马,田忌的中等马劣于齐王的中等马,优于齐王的下等马,田忌的下等马劣于齐王的下等马,现两人进行赛马比赛,比赛规则为:每匹马只能用一次,每场比赛双方各出一匹马,共比赛三场.每场比赛中胜者得1分,否则得0分.若每场比赛之前彼此都不知道对方所用之马,则比赛结束时,田忌得2分的概率为( ).A .13B .23C .16D .12答案:C分析:根据题意,设齐王的上,中,下三个等次的马分别为a , b ,c ,田忌的上,中,下三个等次的马分别为记为A ,B ,C ,用列举法列举齐王与田忌赛马的情况,进而可得田忌胜出的情况数目,进而由等可能事件的概率计算可得答案.设齐王的上,中,下三个等次的马分别为a ,b ,c ,田忌的上,中,下三个等次的马分别为记为A ,B ,C ,双方各出上、中、下等马各1匹分组分别进行1场比赛,所有的可能为: Aa ,Bb ,Cc ,田忌得0分;Aa ,Bc ,Cb ,田忌得1分Ba ,Ab ,Cc ,田忌得1分Ba ,Ac ,Cb ,田忌得1分;Ca ,Ab ,Bc ,田忌得2分,Ca ,Ac ,Bb ,田忌得1分田忌得2分概率为P =16,故选:C4、甲、乙二人玩猜数字游戏,先由甲任想一数字,记为a ,再由乙猜甲刚才想的数字,把乙猜出的数字记为b ,且a,b ∈{1,2,3,4},若|a −b|≤1,则称甲乙“心有灵犀”.现任意找两个人玩这个游戏,则他们“心有灵犀”的概率为( )A .38B .58C .316D .516 答案:B分析:利用列举法根据古典概型公式计算即可.B 两人分别从1,2,3,4四个数中任取一个,共有16个样本点,为:(1,1),(1,2),(1,3),(1,4), (2,1),(2,2),(2,3) ,(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2) (4,3),(4,4),这16个样本点发生的可能性是相等的.其中满足|a −b|≤1的样本点有(1,1),(1,2),(2,1),(2,2),(2,3),(3,2),(3,3),(3,4),(4,3),(4,4),共10个,故他们“心有灵犀”的概率为P =1016=58. 故选:B5、当P(A)>0时,若P(B|A)+P(B̅)=1,则事件A 与B 的关系是( ) A .互斥B .对立C .相互独立D .无法判断答案:C分析:根据条件概率的公式,化简原式,再根据相互独立事件的性质即可得出结论.∵P(B|A)+P(B ̅)=P(B|A)+1−P(B)=1,∴P(B|A)=P(B),即P(AB)=P(B),P(A)∴P(AB)=P(A)P(B),∴事件A与B相互独立.故选:C.6、已知100件产品中有5件次品,从这100件产品中任意取出3件,设E表示事件“3件产品全不是次品”,F表示事件“3件产品全是次品”,G表示事件“3件产品中至少有1件是次品”,则下列结论正确的是()A.F与G互斥B.E与G互斥但不对立C.E,F,G任意两个事件均互斥D.E与G对立答案:D分析:列出基本事件,再结合互斥事件,对立事件的定义即可判断.设1表示取到正品, 0 表示取到次品,所有事件Ω={(1,1,1),(1,1,0),(1,0,0),(0,0,0)}.则E={(1,1,1)},F={(0,0,0)},G={(1,1,0),(1,0,0),(0,0,0)}F∩G=F,故F与G不互斥,故A,C错E∩G=∅,E∪G=Ω,故E与G互斥且对立,故B错,D正确故选:D7、素数分布是数论研究的核心领域之一,含有众多著名的猜想.19世纪中叶,法国数学家波利尼亚克提出了“广义孪生素数猜想”:对所有自然数k,存在无穷多个素数对(p,p+2k).其中当k=1时,称(p,p+2)为“孪生素数”,k=2时,称(p,p+4)为“表兄弟素数”.在不超过30的素数中,任选两个不同的素数p、q(p<q),令事件A={(p,q)为孪生素数},B={(p,q)为表兄弟素数},C={(p,q)|q−p≤4},记事件A、B、C发生的概率分别为P(A)、P(B)、P(C),则下列关系式成立的是()A.P(A)P(B)=P(C)B.P(A)+P(B)=P(C)C.P(A)+P(B)>P(C)D.P(A)+P(B)<P(C)答案:D解析:根据素数的定义,一一列举出不超过30的所有素数,共10个,根据组合运算,得出随机选取两个不同的素数p 、q (p <q ),有C 102=45(种)选法,从而可列举出事件A 、B 、C 的所有基本事件,最后根据古典概率分别求出P(A),P(B)和P(C),从而可得出结果.解:不超过30的素数有2、3、5、7、11、13、17、19、23、29,共10个,随机选取两个不同的素数p 、q (p <q ),有C 102=45(种)选法,事件A 发生的样本点为(3,5)、(5,7)、(11,13)、(17,19)共4个,事件B 发生的样本点为(3,7)、(7,11)、(13,17)、(19,23)共4个,事件C 发生的样本点为(2,3)、(2,5)、(3,5)、(3,7)、(5,7)、(7,11)、(11,13)、(13,17)、(17,19)、(19,23),共10个,∴P(A)=P(B)=445,P(C)=1045=29, 故P(A)+P(B)<P(C).故选:D.小提示:关键点点睛:本题考查与素数相关的新定义,考查古典概型的实际应用和利用列举法求古典概型,考查组合数的计算,解题的关键在于理解素数的定义,以及对题目新定义的理解,考查知识运用能力.8、打靶3次,事件A i 表示“击中i 发”,其中i =0、1、2、3.那么A =A 1∪A 2∪A 3表示( )A .全部击中B .至少击中1发C .至少击中2发D .以上均不正确答案:B分析:利用并事件的定义可得出结论.A =A 1∪A 2∪A 3所表示的含义是A 1、A 2、A 3这三个事件中至少有一个发生,即可能击中1发、2发或3发. 故选:B.多选题9、连续抛掷一枚质地均匀的硬币3次,每次结果要么正面向上,要么反面向上,且两种结果等可能.记事件A 表示“3次结果中有正面向上,也有反面向上”,事件B 表示“3次结果中最多一次正面向上”,事件C 表示“3次结果中没有正面向上”,则( )A.事件B与事件C互斥B.P(A)=34C.事件A与事件B独立D.记C的对立事件为C,则P(B|C)=37答案:BCD分析:对A,根据事件B包含事件C判断即可;对B,根据概率的性质,用1减去全为正面和全为反面的情况概率即可;对C,根据相互独立事件的公式判断即可;对D,先求得P(C)=18,再利用条件概率公式求解即可选项A:显然B发生的情况中包含C,故可同时发生,错误;选项B:P(A)=1−123×2=34,正确;选项C:P(B)=123+C31×123=12,P(AB)=C31×123=38=P(A)P(B)故A与B独立,正确;选项D:P(C)=123=18,P(B|C)=P(BC)P(C)=C31×1231−18=37,正确;故选:BCD.10、在一次歌唱比赛中,以下表格数据是5位评委给甲、乙两名选手评出的成绩(分数),则下列说法正确的是()B.甲选手成绩的75%分位数小于乙选手成绩的75%分位数C.从甲的5次成绩中任取2个,均大于甲的平均成绩的概率为310D.从乙的5次成绩中任取3个,事件“至多1个超过平均分”与事件“恰有2个超过平均分”是对立事件答案:ABD分析:直接由极差、百分位数、古典概型概率以及对立事件的概念依次判断4个选项即可.对于A选项,根据极差的概念,可知甲选手成绩的极差为96−86=10,乙选手成绩的极差为95−86=9.故A正确;对于B选项,5×75%=3.75,则甲成绩的75%分位数是91,乙成绩的75%分位数是92.故B正确;×(87+90+96+91+86)=90,从甲的5次成绩中任取2次成绩样本空间对于C选项,甲的平均成绩为15有Ω={(87,90),(87,96),(87,91),(87,86),(90,96),(90,91),(90,86),(96,91),(96,86),(91,86)},共10个样本点,,故C错误.其中均大于甲的平均成绩的样本点只有1个为(96,91),故所求概率为110对于D选项,乙的平均成绩为1×(90+86+92+87+95)=90,抽到不超过平均分的个数为0,1,2,5所以事件“至多1个超过平均分”与事件“恰有2个超过平均分”是对立事件,故D正确;故选:ABD.11、(多选题)从装有大小和形状完全相同的5个红球和3个白球的口袋内任取3个球,那么下列各对事件中,互斥而不对立的是A.至少有1个红球与都是红球B.至少有1个红球与至少有1个白球C.恰有1个红球与恰有2个红球D.至多有1个红球与恰有2个红球答案:CD解析:根据互斥不对立事件的定义辨析即可.根据互斥事件与对立事件的定义判断.A中两事件不是互斥事件,事件“3个球都是红球”是两事件的交事件;B中两事件能同时发生,如“恰有1个红球和2个白球”,故不是互斥事件;C中两事件是互斥而不对立事件;至多有1个红球,即有0个或1个红球,与恰有2个红球互斥,除此还有3个都是红球的情况,因此它们不对立,D符合题意.故选:CD小提示:本题主要考查了互斥与对立事件的辨析,属于基础题型.填空题12、有甲、乙两批种子,发芽率分别为0.8和0.9,在两批种子中各取一粒,则恰有一粒种子能发芽的概率是___________.答案:0.26分析:利用互斥事件及独立事件概率公式即得.由题意得:甲批种子发芽同时乙批不发芽或甲批种子不发芽同时乙批种子发芽,则所求概率P=0.8×(1−0.9)+(1−0.8)×0.9=0.26.所以答案是:0.26.。
数学必修二知识点归纳

高中数学必修2知识点总结立体几何初步特殊几何体表面积公式(c 为底面周长,h 为高,'h 为斜高,l 为母线)柱体、锥体、台体的体积公式(4)球体的表面积和体积公式:V 球=343R π ; S 球面=24R π第二章 直线与平面的位置关系2.1空间点、直线、平面之间的位置关系 12 三个公理:(1符号表示为 A ∈LB ∈L => L α A ∈α B ∈α公理1作用:判断直线是否在平面内.(2符号表示为:A 、B 、C 三点不共线 => 有且只有一个平面α, 使A ∈α、B ∈α、C ∈α。
公理2作用:确定一个平面的依据。
(3公理1 异面直线: 不同在任何一个平面内,没有公共点。
符号表示为:设a 、b 、c 是三条直线a ∥bc ∥b强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用。
公理4作用:判断空间两条直线平行的依据。
4 注意点:① a'与b'所成的角的大小只由a 、b 的相互位置来确定,与O 的选择无关,为了简便,点O 一般取在两直线中的一条上;② 两条异面直线所成的角θ∈(0, );③ 当两条异面直线所成的角是直角时,我们就说这两条异面直线互相垂直,记作a ⊥b ; ④ 两条直线互相垂直,有共面垂直与异面垂直两种情形;⑤ 计算中,通常把两条异面直线所成的角转化为两条相交直线所成的角。
LA ·αC ·B· A · α 共=>a ∥c2π2.1.3 — 2.1.4 空间中直线与平面、平面与平面之间的位置关系1、直线与平面有三种位置关系:(1)直线在平面内——有无数个公共点(2)直线与平面相交——有且只有一个公共点(3)直线在平面平行——没有公共点指出:直线与平面相交或平行的情况统称为直线在平面外,可用a α来表示a α a∩α=A a∥α2.2.直线、平面平行的判定及其性质2.2.1 直线与平面平行的判定1简记为:线线平行,则线面平行。
高二数学重要知识点归纳

高二数学重要知识点归纳高二数学重要知识点归纳一、直线与圆:1、直线的倾斜角的范围是在平面直角坐标系中,对于一条与轴相交的.直线,如果把轴绕着交点按逆时针方向转到和直线重合时所转的最小正角记为,就叫做直线的倾斜角。
当直线与轴重合或平行时,规定倾斜角为0;2、斜率:已知直线的倾斜角为α,且α≠90°,则斜率k=tanα.过两点(_1,y1),(_2,y2)的直线的斜率k=(y2-y1)/(_2-_1),另外切线的斜率用求导的方法。
3、直线方程:⑴点斜式:直线过点斜率为,则直线方程为,⑵斜截式:直线在轴上的截距为和斜率,则直线方程为4、直线与直线的位置关系:(1)平行A1/A2=B1/B2注意检验(2)垂直A1A2+B1B2=05、点到直线的距离公式;两条平行线与的距离是6、圆的标准方程:.⑵圆的一般方程:注意能将标准方程化为一般方程7、过圆外一点作圆的切线,一定有两条,如果只求出了一条,那么另外一条就是与轴垂直的直线.8、直线与圆的位置关系,通常转化为圆心距与半径的关系,或者利用垂径定理,构造直角三角形解决弦长问题.①相离②相切③相交9、解决直线与圆的关系问题时,要充分发挥圆的平面几何性质的作用(如半径、半弦长、弦心距构成直角三角形)直线与圆相交所得弦长二、圆锥曲线方程:1、椭圆:①方程(a>b>0)注意还有一个;②定义:|PF1|+|PF2|=2a>2c;③e=④长轴长为2a,短轴长为2b,焦距为2c;a2=b2+c2;2、双曲线:①方程(a,b>0)注意还有一个;②定义:||PF1|-|PF2||=2a<2c;③e=;④实轴长为2a,虚轴长为2b,焦距为2c;渐进线或c2=a2+b23、抛物线:①方程y2=2p_注意还有三个,能区别开口方向;②定义:|PF|=d焦点F(,0),准线_=-;③焦半径;焦点弦=_1+_2+p;4、直线被圆锥曲线截得的弦长公式:三、直线、平面、简单几何体:1、学会三视图的分析:2、斜二测画法应注意的地方:(1)在已知图形中取互相垂直的轴O_、Oy。
高一数学必修二知识点归纳
高一数学必修二知识点归纳〔1〕棱柱:几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。
〔2〕棱锥几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相像,其相像比等于顶点到截面距离与高的比的平方。
〔3〕棱台:几何特征:上下底面是相像的平行多边形侧面是梯形侧棱交于原棱锥的顶点〔4〕圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成几何特征:底面是全等的圆;母线与轴平行;轴与底面圆的半径垂直;侧面绽开图是一个矩形。
〔5〕圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成几何特征:底面是一个圆;母线交于圆锥的顶点;侧面绽开图是一个扇形。
〔6〕圆台:定义:以直角梯形的垂直与底边的腰为旋转轴,旋转一周所成几何特征:上下底面是两个圆;侧面母线交于原圆锥的顶点;侧面绽开图是一个弓形。
〔7〕球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体几何特征:球的截面是圆;球面上任意一点到球心的距离等于半径。
2、空间几何体的三视图定义三视图:正视图〔光线从几何体的前面对后面正投影〕;侧视图〔从左向右〕、俯视图〔从上向下〕注:正视图反映了物体的高度和长度;俯视图反映了物体的长度和宽度;侧视图反映了物体的高度和宽度。
3、空间几何体的直观图——斜二测画法斜二测画法特点:原来与x轴平行的线段仍旧与x平行且长度不变;原来与y轴平行的线段仍旧与y平行,长度为原来的一半。
4、柱体、锥体、台体的外表积与体积〔1〕几何体的外表积为几何体各个面的面积的和。
〔2〕特别几何体外表积公式〔c为底面周长,h为高,为斜高,l为母线〕〔3〕柱体、锥体、台体的体积公式高中数学必修二学问点总结:直线与方程〔1〕直线的倾斜角定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。
特殊地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。
因此,倾斜角的取值范围是0°≤α<180°〔2〕直线的斜率定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。
高二下册必修二数学知识点
高二下册必修二数学知识点高二下册必修二数学是学习高中数学的重要一环,主要涉及到以下几个知识点:
一、函数与方程
1. 二次函数:二次函数的定义、图像的性质、顶点、轴、对称轴、最值等;
2. 一元二次方程:求解一元二次方程的方法,包括公式法、配方法、因式分解法等;
3. 二次函数与一元二次方程的关系:通过一元二次方程求解二次函数的问题。
二、三角函数
1. 弧度制与角度制:弧度制与角度制的转换,弧度、角度的概念;
2. 正弦、余弦、正切函数:三角函数的定义、图像、周期性、对称性;
3. 三角函数的恒等变换:三角函数的诱导公式、降幂公式、和差化积、积化和差等;
4. 解三角形:利用正弦、余弦、正切函数解三角形的问题。
三、数列与数学归纳法
1. 数列与常数:数列的定义、通项公式、递推公式、前n项和等;
2. 等差数列:等差数列的概念、通项公式、前n项和等;
3. 等比数列:等比数列的概念、通项公式、前n项和等;
4. 数列的应用:数列在数学和实际问题中的应用,如求和、求
极限等。
四、概率与统计
1. 随机事件与概率:随机事件的定义、样本空间、概率的性质;
2. 条件概率:条件概率的定义、乘法原理、全概率公式、贝叶
斯公式等;
3. 排列与组合:排列与组合的概念、计算方法、应用等;
4. 统计与抽样调查:统计的基本概念、样本调查的过程、数据
的收集和整理等。
以上是高二下册必修二数学的一些重要知识点,掌握了这些内容,可以在高中数学学习中打下坚实的基础。
希望本文对您有所帮助。
高一知识点归纳数学必修二
高一知识点归纳数学必修二高一知识点归纳:数学必修二在高中数学课程中,数学必修二是高一学生必须学习的一门课程。
这门课程主要包含了一些高中数学的基础知识和方法。
下面我将简要概述一些数学必修二的重要知识点。
一、函数与方程1. 基本概念:定义域、值域、函数的图像等。
2. 函数的性质:奇函数、偶函数、单调性、最大值与最小值。
3. 一次函数和二次函数:函数的表达式、图像、性质及应用。
4. 指数函数、对数函数与幂函数:函数的定义、性质及应用。
二、三角函数1. 基本概念:正弦函数、余弦函数、正切函数等。
2. 周期性与奇偶性:周期函数、奇函数和偶函数的特点。
3. 三角函数的性质:诱导公式、和差化积公式、倍角公式等。
三、数列与数学归纳法1. 数列的概念:等差数列、等比数列、通项公式等。
2. 数列的求和与求极限:数列的部分和与无穷和、数列的极限性质等。
3. 数学归纳法:数学归纳法的基本思想和具体应用。
四、概率与统计1. 概率的基本概念:样本空间、事件、频率与概率等。
2. 概率的运算:加法定理、乘法定理、全概率公式、贝叶斯公式等。
3. 统计:调查与统计方法,频数分布表、频数分布图等。
五、平面向量1. 平面向量的概念:向量的表示、向量的共线性、向量的线性运算等。
2. 向量的点积和夹角:向量的点积、向量的夹角和垂直性等。
3. 向量的应用:平面向量在几何和物理上的应用。
六、解析几何1. 坐标系与直线:直线的斜率、点斜式和一般式、判定直线的位置关系等。
2. 直线与圆的方程:直线与圆的位置关系及其方程。
3. 平面与直线的交点:平面与直线的位置关系及其方程。
以上仅是数学必修二的部分内容,通过这些知识的学习,高一的学生可以打好数学的基础,为以后的学习打下坚实的基础。
此外,数学的学习不仅需要掌握知识点,还需要培养良好的数学思维和解题能力。
在解题过程中,我们可以运用归纳法、演绎法、逆向思维等不同的思维方式来解决问题。
同时,我们还需要学会运用数学工具,如计算器、几何工具等,来辅助解题。
高一数学必修二知识点总结
高一数学必修二知识点总结高中数学是我们学习过程中不可或缺的一门学科,而高一数学必修二更是数学学科中的重要部分。
本文将为大家总结高一数学必修二的主要知识点,帮助大家对该学科做一个全面的了解。
一、函数与导数1. 函数的概念:函数是一个或一对输入与输出之间的对应关系。
2. 幂函数:幂函数是指以自变量的某个非负整数次幂为指数的函数。
3. 指数函数:指数函数是指以某个正实数为底数,以自变量为指数的函数。
4. 对数函数:对数函数是指以某个正实数为底数,使对数等于自变量的函数。
5. 导数的概念:导数是函数变化速率的一种衡量方式。
6. 导数的基本运算法则:包括和差法则、积法则、商法则等。
7. 高中数学的导数应用:求导数、求极值等。
二、三角函数1. 弧度制与角度制:弧度制是数学上常用的一种角度表示方法。
2. 三角函数的定义:包括正弦、余弦、正切等。
3. 三角函数之间的关系:包括诱导公式、余角公式等。
4. 三角函数的图像与性质:根据定义域与值域的不同,绘制出不同的图像。
三、数列与数学归纳法1. 数列的概念:数列是按照一定规律排列的一系列数。
2. 等差数列:等差数列是指数列中相邻两项之差固定的数列。
3. 等比数列:等比数列是指数列中相邻两项之比固定的数列。
4. 通项公式与前n项和公式:通过观察数列的规律,找到数列的公式表达方法。
5. 数学归纳法:数学归纳法是数学证明中常用的一种方法。
四、平面向量1. 平面向量的概念:平面向量是具有大小和方向的量。
2. 平面向量的表示与运算:包括向量的加法、减法、数乘等运算。
3. 向量的模和方向角:向量的模表示大小,方向角表示方向。
4. 平面向量的坐标表示:平面向量可以用坐标形式表示。
5. 向量的数量积与向量积:向量的数量积与向量积是向量运算中的两种常见形式。
6. 平面向量与立体几何的应用:用平面向量解决立体几何题目。
五、概率与统计1. 概率的基本概念与性质:包括样本空间、事件、概率的计算等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学必修2知识点一、直线与方程 (1)直线的倾斜角定义:x 轴正向与直线向上方向之间所成的角叫直线的倾斜角。
特别地,当直线与x 轴平行或重合时,我们规定它的倾斜角为0度。
因此,倾斜角的取值范围是 0°≤α<180° (2)直线的斜率①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。
直线的斜率常用k 表示。
即tan k α=。
斜率反映直线与轴的倾斜程度。
当[) 90,0∈α时,0≥k ; 当() 180,90∈α时,0<k ; 当 90=α时,k 不存在。
②过两点的直线的斜率公式:)(211212x x x x y y k ≠--=注意下面四点:(1)当21x x =时,公式右边无意义,直线的斜率不存在,倾斜角为90°;(2)k 与P 1、P 2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。
(3)直线方程①点斜式:)(11x x k y y -=-直线斜率k ,且过点()11,y x注意:当直线的斜率为0°时,k=0,直线的方程是y =y 1。
当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l 上每一点的横坐标都等于x 1,所以它的方程是x =x 1。
②斜截式:b kx y +=,直线斜率为k ,直线在y 轴上的截距为b ③两点式:112121y y x x y y x x --=--(1212,x x y y ≠≠)直线两点()11,y x ,()22,y x ④截矩式:1x y a b+= 其中直线l 与x 轴交于点(,0)a ,与y 轴交于点(0,)b ,即l 与x 轴、y 轴的截距分别为,a b 。
⑤一般式:0=++C By Ax (A ,B 不全为0) 注意:○1各式的适用范围 ○2特殊的方程如:平行于x 轴的直线:b y =(b 为常数); 平行于y 轴的直线:a x =(a 为常数); (5)直线系方程:即具有某一共同性质的直线(一)平行直线系平行于已知直线0000=++C y B x A (00,B A 是不全为0的常数)的直线系:000=++C y B x A (C 为常数)(二)过定点的直线系(ⅰ)斜率为k 的直线系:()00x x k y y -=-,直线过定点()00,y x ;(ⅱ)过两条直线0:1111=++C y B x A l ,0:2222=++C y B x A l 的交点的直线系方程为()()0222111=+++++C y B x A C y B x A λ(λ为参数),其中直线2l 不在直线系中。
(6)两直线平行与垂直当111:b x k y l +=,222:b x k y l +=时,212121,//b b k k l l ≠=⇔ 12121-=⇔⊥k k l l 当0:1111=++C y B x A l ,0:2222=++C y B x A l 时CC B B A A l l 21212121//≠=⇔0212121=+⇔⊥BB A A ll注意:利用斜率判断直线的平行与垂直时,要注意斜率的存在与否。
(7)两条直线的交点0:1111=++C y B x A l 0:2222=++C y B x A l 相交交点坐标即方程组⎩⎨⎧=++=++0222111C y B x A C y B x A 的一组解。
方程组无解21//l l ⇔ ; 方程组有无数解⇔1l 与2l 重合 (822(,),A x y B x y ,()是平面直角坐标系中的两个点,(9)()00,y x P 到直线0:1=++C By Ax l 的距离2200BA CBy Ax d +++=(10)两平行直线距离公式在任一直线上任取一点,再转化为点到直线的距离进行求解。
二、圆的方程1、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径。
2、圆的方程(1)标准方程()()222r b y a x =-+-,圆心()b a ,,半径为r ;(2)一般方程022=++++F Ey Dx y x当0422>-+F E D 时,方程表示圆,此时圆心为⎪⎭⎫⎝⎛--2,2E D ,半径为F E D r 42122-+=当0422=-+F E D 时,表示一个点; 当0422<-+F E D 时,方程不表示任何图形。
(3)求圆方程的方法:一般都采用待定系数法:先设后求。
确定一个圆需要三个独立条件,若利用圆的标准方程,需求出a ,b ,r ;若利用一般方程,需要求出D ,E ,F ;另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置。
3、直线与圆的位置关系:直线与圆的位置关系有相离,相切,相交三种情况,基本上由下列两种方法判断: (1)设直线0:=++C By Ax l ,圆()()222:r b y a x C =-+-,圆心()b a C ,到l 的距离为22BA C Bb Aa d +++=,则有相离与C l r d ⇔>;相切与C l r d ⇔=;相交与C l r d ⇔<(2)设直线0:=++C By Ax l ,圆()()222:r b y a x C =-+-,先将方程联立消元,得到一个一元二次方程之后,令其中的判别式为∆,则有 相离与C l ⇔<∆0;相切与C l ⇔=∆0;相交与C l ⇔>∆0注:如果圆心的位置在原点,可使用公式200r yy xx =+去解直线与圆相切的问题,其中()00,y x 表示切点坐标,r 表示半径。
(3)过圆上一点的切线方程:①圆x 2+y 2=r 2,圆上一点为(x 0,y 0),则过此点的切线方程为200r yy xx =+ (课 本命题).②圆(x-a)2+(y-b)2=r 2,圆上一点为(x 0,y 0),则过此点的切线方程为(x 0-a)(x-a)+(y 0-b)(y-b)= r 2 (课本命题的推广). 4、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d )之间的大小比较来确定。
设圆()()221211:r b y a x C =-+-,()()222222:R b y a x C =-+- 两圆的位置关系常通过两圆半径的和(差),与圆心距(d )之间的大小比较来确定。
当r R d +>时两圆外离,此时有公切线四条;当r R d +=时两圆外切,连心线过切点,有外公切线两条,内公切线一条; 当r R d r R +<<-时两圆相交,连心线垂直平分公共弦,有两条外公切线; 当r R d -=时,两圆内切,连心线经过切点,只有一条公切线; 当r R d -<时,两圆内含; 当0=d 时,为同心圆。
三、立体几何初步1、柱、锥、台、球的结构特征(1)棱柱:定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。
分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。
表示:用各顶点字母,如五棱柱'''''EAABCDE-或用对角线的端点字母,CBD如五棱柱'AD几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。
(2)棱锥定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等表示:用各顶点字母,如五棱锥'''''EP-ABCD几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。
(3)棱台:定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分分类:以底面多边形的边数作为分类的标准分为三棱台、四棱台、五棱台等表示:用各顶点字母,如五棱台'''''EP-ADBC几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点(4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。
(5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。
(6)圆台:定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。
(7)球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。
2、空间几何体的三视图定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、俯视图(从上向下)注:正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度; 俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度;侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度。
3、空间几何体的直观图——斜二测画法斜二测画法特点:①原来与x 轴平行的线段仍然与x 平行且长度不变;②原来与y 轴平行的线段仍然与y 平行,长度为原来的一半。
4、柱体、锥体、台体的表面积与体积(1)几何体的表面积为几何体各个面的面积的和。
(2)特殊几何体表面积公式(c 为底面周长,h 为高,'h 为斜高,l 为母线)ch S =直棱柱侧面积 rh S π2=圆柱侧 '21ch S =正棱锥侧面积rl S π=圆锥侧面积')(2121h c c S +=正棱台侧面积 l R r S π)(+=圆台侧面积 ()l r r S +=π2圆柱表 ()l r r S +=π圆锥表 ()22R Rl rl r S +++=π圆台表 (3)柱体、锥体、台体的体积公式V Sh =柱 2V Sh r h π==圆柱 13V Sh =锥 h r V 231π=圆锥''1()3V S S S S h =台 ''2211()()33V S S S S h r rR R h π==++圆台(4)球体的表面积和体积公式:V 球=343R π ; S 球面=24R π4、空间点、直线、平面的位置关系(1)平面① 平面的概念: A.描述性说明; B.平面是无限伸展的; ② 平面的表示:通常用希腊字母α、β、γ表示,如平面α(通常写在一个锐角内);也可以用两个相对顶点的字母来表示,如平面BC 。