统计学知识点总结
高中统计知识点总结

高中统计知识点总结统计学是一门研究数据收集、整理、分析和解释的学科。
在高中数学课程中,统计学是一个重要的分支,它提供了丰富的工具和方法来帮助我们理解和利用数据。
以下是我对高中统计学知识点的总结。
1. 数据的收集与整理统计学的第一步是收集数据。
数据可以通过调查问卷、实验、观察等方式获取。
在收集数据之后,我们需要对其进行整理和处理,以便更好地进行分析。
常用的整理数据的方式有列频数表和绘制条形图。
2. 描述性统计描述性统计是一种用来描述数据集合的方法。
其中最常用的是平均数、中位数和众数。
平均数是将所有数据相加然后除以数据的数量,它能够反映数据的集中趋势。
中位数是将数据按照大小排序,找出中间位置的数值,它不受异常值的影响。
众数是出现频率最高的数值,可以用来描述数据的局部集中趋势。
3. 数据的可视化可视化是一种将数据转化为图形的方法,它能够直观地展现数据的分布和变化趋势。
常用的数据可视化方法有直方图、折线图和散点图。
直方图用来展示数据的分布情况,折线图可以表示数据的变化趋势,散点图则可以展示变量之间的关系。
4. 概率与统计概率和统计是统计学的重要组成部分。
概率是用来描述事件发生的可能性的数值。
统计学则是通过样本数据来推断总体特征的学科。
概率与统计之间紧密相关,经常被用于研究和预测未来事件。
5. 抽样方法在进行统计研究时,我们经常无法对整个总体进行调查,而是通过抽取样本来代表总体。
抽样方法是指从总体中选择样本的方法。
常用的抽样方法有随机抽样、系统抽样和分层抽样等。
6. 统计推断统计推断是指通过样本数据来推断总体特征的方法。
在统计推断中,我们需要进行假设检验和置信区间估计。
假设检验是通过对样本数据进行统计推断来验证研究假设的方法。
置信区间估计是对总体参数进行范围估计的方法。
7. 回归与相关回归分析是一种用来研究变量之间关系的方法。
在回归分析中,我们可以使用直线或者曲线来拟合样本数据,从而了解变量之间的关系。
相关分析则是用来研究变量之间相关程度的方法。
应用统计学必备知识点总结

应用统计学必备知识点总结1. 总体与样本在统计学中,总体是指研究者希望得到信息的全部对象的集合,而样本是从总体中抽取出来的一部分对象的集合。
在应用统计学中,我们需要了解如何进行总体和样本的描述以及如何通过样本推断总体的特征。
了解这些知识点可以帮助我们更好地设计调查问卷、确定样本量以及进行统计推断。
2. 数据的收集与整理数据的收集是应用统计学中非常重要的一步。
在数据收集过程中,我们需要关注如何设计合理的调查问卷、如何进行实地观察以及如何获取可靠的次生数据。
同时,对于已经收集到的数据,我们还需要了解如何进行数据清洗、数据转换、变量选择等工作,以确保数据的质量。
3. 描述统计描述统计是应用统计学中最为基础的方法之一。
它涉及到对数据的基本特征进行汇总和展示,包括中心趋势、离散程度等。
在描述统计中,我们需要了解如何计算各种统计指标(均值、中位数、众数、标准差等)、如何绘制各种统计图表(直方图、饼图、箱线图等)以及如何进行数据的描述性解释和比较。
4. 概率与概率分布概率是统计学中的核心概念,而概率分布则是对随机变量在各个取值上的概率进行描述的方法。
在应用统计学中,我们需要了解如何计算概率、如何根据样本估计总体的概率、以及如何利用概率分布进行统计推断和模型拟合。
5. 统计推断统计推断是应用统计学中的另一个重要内容。
它涉及到如何通过样本对总体特征进行推断。
在统计推断中,我们需要了解参数估计的方法(最大似然估计、贝叶斯估计等)、假设检验的原理和方法以及置信区间的构建和解释。
6. 相关分析与回归分析相关分析和回归分析是应用统计学中常用的数据分析方法。
相关分析主要用于研究变量之间的关系,而回归分析则用于探究自变量与因变量之间的关系。
在相关分析和回归分析中,我们需要了解如何计算相关系数、如何进行相关性检验、以及如何建立回归模型和进行回归诊断。
7. 多元统计分析在实际问题中,往往会有多个变量同时影响一个结果变量。
多元统计分析则是用于解决这种情况的一种分析方法。
统计学知识点

第一章思考题1.1统计学是关于数据的一门学科,它收集,处理,分析,解释来自各个领域的数据并从中得出结论。
1.2描述统计:它研究的是数据收集,处理,汇总,图表描述,概括与分析等统计方法。
推断统计:它是研究如何利用样本数据来推断总体特征的统计方法。
1.3统计学的类型和不同类型的特点统计数据:按所采用的计量尺度不同分;〔定性数据〕分类数据:只能归于*一类别的非数字型数据,它是对事物进展分类的结果,数据表现为类别,用文字来表述;〔定性数据〕顺序数据:只能归于*一有序类别的非数字型数据。
它也是有类别的,但这些类别是有序的。
〔定量数据〕数值型数据:按数字尺度测量的观察值,其结果表现为具体的数值。
统计数据;按统计数据都收集方法分;观测数据:是通过调查或观测而收集到的数据,这类数据是在没有对事物人为控制的条件下得到的。
实验数据:在实验中控制实验对象而收集到的数据。
统计数据;按被描述的现象与实践的关系分;截面数据:在一样或相似的时间点收集到的数据,也叫静态数据。
时间序列数据:按时间顺序收集到的,用于描述现象随时间变化的情况,也叫动态数据。
1.4解释分类数据,顺序数据和数值型数据答案同1.31.5对一千灯泡进展寿命测试,则这千个灯泡就是总体,从中抽取一百个进展检测,这一百个灯泡的集合就是样本,这一千个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是参数,这一百个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是统计量,变量就是说明现象*种特征的概念,比方说灯泡的寿命。
1.6变量可以分为分类变量,顺序变量,数值型变量。
变量也可以分为随机变量和非随机变量。
经历变量和理论变量。
1.7离散型变量,只能取有限个值,取值以整数位断开,比方"企业数〞连续型变量,取之连续不断,不能一一列举,比方"温度〞。
1.8统计应用实例:人口普查,商场的名意调查等。
1.9统计应用的领域:经济分析和政府分析还有物理,生物等等各个领域。
数学必修统计知识点总结

数学必修统计知识点总结一、数据的收集和整理1. 数据的收集在统计学中,数据是研究的对象,它可以是数值型的,也可以是非数值型的。
数据的收集是统计研究的第一步,它需要采取适当的方法和工具进行。
常用的数据收集方法包括问卷调查、观察、实验等。
2. 数据的整理在收集到数据后,我们需要对数据进行整理,以便后续的分析和解释。
数据的整理包括数据的分类、整理和汇总等工作。
常用的数据整理方法包括制表、绘图、计算等。
二、数据的描述和分析1. 数据的描述在统计学中,我们经常需要对数据进行描述,以便了解数据的特征和规律。
数据的描述包括中心位置的度量(均值、中位数、众数)、离散程度的度量(极差、方差、标准差)等。
2. 数据的分析数据的分析是统计研究的重要内容,它可以帮助我们理解数据的规律和趋势。
常用的数据分析方法包括频数分布、频率分布、累积频数分布、直方图、折线图等。
三、概率1. 概率的基本概念概率是统计学中的重要概念,它研究随机事件发生的可能性。
概率的基本概念包括样本空间、随机事件、事件的概率、事件的互斥和独立等。
2. 概率的计算在概率的计算中,我们需要掌握一些基本的规则和方法。
常用的概率计算方法包括古典概型、几何概型、条件概率、贝叶斯定理等。
四、统计推断1. 参数估计在统计推断中,我们需要对总体参数进行估计。
参数估计的目标是找到一个合适的估计量,以便对总体参数进行估计。
2. 假设检验假设检验是统计推断的重要内容,它研究如何对总体参数进行假设检验。
常用的假设检验方法包括单样本假设检验、双样本假设检验、方差分析等。
五、回归分析1. 线性回归分析线性回归分析是统计学中的一个重要方法,它研究自变量与因变量之间的线性关系。
在线性回归分析中,我们需要对回归方程、拟合优度等进行分析。
2. 多元回归分析多元回归分析是线性回归分析的扩展,它研究多个自变量与因变量之间的关系。
在多元回归分析中,我们需要对多元回归方程、多重共线性等进行分析。
高一统计的知识点汇总总结

高一统计的知识点汇总总结高一统计学的知识点汇总总结统计学是一门研究收集、分析、解释和展示数据的学科。
它在日常生活中无处不在,无论是商业领域的市场调研,还是科学研究中的数据分析,都离不开统计学的应用。
在高一阶段的学习中,了解统计学的基本概念和方法对培养学生的科学思维具有重要意义。
本文将对高一统计学的主要知识点进行汇总总结,以供学生们参考。
一、数据的收集和整理统计学的基础是数据收集和整理。
收集数据是为了描述和解释事物,而整理数据则是为了更好地分析和应用数据。
在数据收集和整理过程中,需要注意的几个重要概念和方法包括:1.1 总体和样本:总体是指我们要研究的所有对象或个体的集合,而样本是从总体中选取的一部分对象或个体。
通过对样本的研究,我们可以得出对总体的推断和结论。
1.2 调查方法:调查是数据收集的主要手段之一。
常用的调查方法包括问卷调查、面访调查和电话调查等。
在设计和实施调查过程中,需要注意样本的选择、调查问题的制定和数据的准确性等问题。
1.3 数据整理与描述:数据整理是将原始数据进行分类、排序和汇总的过程。
通过数据描述,我们可以了解数据的分布、中心和变异程度等特征。
描述数据的方法包括用表格和图表展示数据、计算平均数和标准差等。
二、统计推断和假设检验统计推断是通过对样本数据的分析,对总体的特征和关系进行推断和判断。
假设检验是一种常用的统计推断方法,用于验证关于总体的某个特征或假设的真实性。
在进行统计推断和假设检验时,需要注意以下几个关键概念和方法:2.1 参数与统计量:参数是总体的特征的数值度量,如平均数和比例等。
统计量是样本数据的特征的数值度量,如样本均值和样本比例等。
通过从样本中计算统计量,可以对总体的参数进行估计和推断。
2.2 抽样分布:抽样分布是统计量在重复抽样下的理论分布。
常见的抽样分布有正态分布、t分布和F分布等。
通过了解抽样分布的特征,我们可以进行假设检验和参数估计等统计推断。
2.3 假设检验:假设检验是用于验证关于总体的某个特征或假设的真实性的方法。
统计学基础知识点总结

统计学基础知识点总结统计学是研究数据收集、分析和解释的科学。
它提供了一种用来了解和解释各种数据的方法和工具。
统计学的基础知识点是学习统计学的基础,下面是一些重要的基础知识点总结:1. 数据类型:统计学中的数据可以分为两类:定量数据和定性数据。
定量数据是可以量化的,例如身高、温度等,而定性数据是描述性质和特征的,例如性别、颜色等。
2. 数据收集:数据收集是统计学的基础,它包括设计问卷、调查、实验等方法来收集数据。
收集数据时需要注意样本的代表性,并尽量避免抽样偏差。
3. 描述性统计:描述性统计是用来总结和描述数据的方法。
常用的描述性统计包括计算平均数、中位数、范围和标准差等指标来衡量数据的集中趋势和离散程度。
4. 概率:概率是研究随机事件发生可能性的数学工具。
它可以用来计算事件发生的概率,从而预测未来事件的可能性。
概率可以分为古典概率和条件概率等不同类型。
5. 概率分布:概率分布是描述随机变量的分布规律的数学模型。
常见的概率分布包括均匀分布、正态分布和泊松分布等。
概率分布可以用来计算随机变量的期望、方差等统计指标。
6. 假设检验:假设检验是统计学中用来验证关于总体参数的假设的方法。
通过对样本数据进行统计分析,可以得出关于总体参数是否符合假设的结论。
假设检验包括设定假设、选择检验统计量、计算显著性水平和做出决策等步骤。
7. 相关分析:相关分析是用来研究两个变量之间关系的方法。
它可以通过计算相关系数来衡量两个变量之间的相关性,并判断相关性是否显著。
常用的相关系数有皮尔逊相关系数和斯皮尔曼相关系数。
8. 回归分析:回归分析是研究因果关系的统计方法。
它通过建立数学模型来描述自变量和因变量之间的关系,并可以用来预测因变量的取值。
常见的回归分析包括线性回归和多元回归等。
9. 抽样分布:抽样分布是指统计量在不同样本中的分布情况。
它可以用来计算统计量的置信区间和显著性水平等,从而对总体参数进行推断。
10. 统计软件:统计软件是进行统计分析的工具。
统计学知识点梳理
统计学第一章导论1.1.1 什么是统计学统计学是收集、处理、分析、解释数据并从数据中得出结论的科学。
数据分析所用的方法分为描述统计方法和推断统计方法。
1.2 统计数据的类型1.2.1 分类数据、顺序数据、数值型数据按照所采用的计算尺度不同,可以将统计数据分为分类数据、顺序数据、数值型数据。
分类数据:只能归于某一类别的非数字型数据,它是对事物进行分类的结果,数据表现为类别,是用文字来表示。
例如:支付方式、性别、企业类型等。
顺序数据:只能归于某一有序类别的非数字型数据。
例如:员工对改革措施的态度、产品等级、受教育程度等。
数值型数据:按数字尺度测量的观测值,其结果表现为具体的数值。
例如:年龄、工资、产量等。
统计数据大体上可分为品质数据(定性数据)和数量数据(定量数据、数值型数据)。
1.2.2 观测数据和实验数据按照统计数据的收集方法,可以分为观测数据和实验数据。
观测数据:通过调查或观测而收集的数据。
例如:降雨量、GDP、家庭收入等。
实验数据:在实验中控制实验对象而收集到的数据。
例如:医药实验数据、化学实验数据等。
1.2.3 截面数据和时间序列数据按照被描述的现象与时间的关系,可分类截面数据和时间序列数据。
截面数据:在相同或近似相同的时间点上收集的数据。
例如:2012年我国各省市的GDP。
时间序列数据:同一现象在不同的时间收集的数据。
例如:2000-2012年湖北省的GDP。
1.3.1 总体和样本总体:包含所研究的全部个体(数据)的集合。
样本:从总体中抽取的一部分元素的集合。
1.3.2 参数和统计量参数:用来描述总体特征的概括性数字度量。
统计量:用类描述样本特征的概括性数字度量。
例如:某研究机构准备从某乡镇5万个家庭中抽取1000个家庭用于推断该乡镇所有农村居民家庭的年人均纯收入。
这项研究的总体是5万个家庭;样本是1000个家庭;参数是5万个家庭的人均纯收入;统计量是1000个家庭的人均纯收入。
第二章数据的搜集2.1 数据的来源2.1.1 数据的间接来源间接来源的数据:如果与研究内容有关的原信息已经存在,我们只是对这些原信息重新加工、整理,使之成为我们进行统计分析可以使用的数据。
统计学期末知识点总结
1.多重共线性:当回归模型中存在两个或两个以上的自变量彼此相关时,则称回归模型中存在多重共线性。
2.相关关系:变量之间存在的不确定的数量关系,称为相关关系。
3.五个相关关系:正线性相关,负线性相关,完全正线性相关,完全负线性相关,非线性相关,不相关。
若 0<r≤1,表明 x 与 y 之间存在正线性相关关系;若-1≤r <0,表明 x 与 y 之间存在负线性相关关系;若 r=+1,表明 x 与 y 之间为完全正线性相关关系;若 r=-1,表明 x 与 y 之间为完全负线性相关关系。
|r|→1 说明两个变量之间的线性关系越强;|r|→0 说明两个变量之间的线性关系越弱。
4.回归直线的拟合优度:回归直线与各观测点的接近程度称为回归直线对数据的拟合优度。
判定系数 R2测度了回归直线对观测数据的拟合程度。
5.最小二乘估计法:通过使因变量的观测值 yi 与估计值yi ∧之间的离差平方和,即残差平方和,达到最小来估计β0和β1的方法。
6. F 检验和 t 检验各有什么作用:F 检验是检验自变量 x 和因变量 y 之间的线性关系是否显著;t 检验是检验自变量对因变量的影响是否显著,也就是回归系数的检验。
7.8.正态分布—Z分布:大样本或小样本总体标准差σ已知。
9.N-1的T分布:小样本σ未知。
10.参数估计:点估计与区间估计11.置信区间:由样本统计量所构造的总体参数的估计区间。
12.置信水平:置信区间中包含总体参数真值的次数所占的比例。
置信水平越大,所需的样本量也就越大,置信区间越宽。
13.评价估计量的标准:无偏性:是指估计量抽样分布的数学期望等于被估计的总体参数有效性:是指对同一参数的两个无偏估计量,有更小方差的估计量越有效。
一致性:是指随着样本量n的增大,估计量的值越来越接近总体参数的真值。
14.样本量越大,样本均值的抽样标准差就越小。
15.总体数据的方差越大,估计时所需的样本量越大。
16.数据概括性度量:(数据分布特征的测量)集中趋势,离散程度,分布形态(偏态与峰态)17.三个分布:对称分布—众数=中位数=平均数左偏分布—平均数<中位数<众数右偏分布—众数<中位数<平均数18.标准分数的用途:①变量值与其平均数的离差除以标准差后的值称为标准分数,用Z表示。
高一关于统计的知识点总结
高一关于统计的知识点总结统计学是一门研究收集、整理、分析和解释数据的学科,它在我们的日常生活和各个领域中都具有重要的应用价值。
在高一阶段,我们开始接触基本的统计知识和方法。
本文将对高一阶段关于统计的知识点进行总结,并介绍其应用。
一、数据的收集数据的收集是进行统计分析的第一步。
常见的数据收集方法包括问卷调查、实验观察和抽样调查等。
在收集数据时,需要注意数据的来源和采样的合理性,以确保数据的准确性和代表性。
二、数据的整理与分类在进行统计分析之前,我们需要对收集到的数据进行整理和分类。
常用的数据整理方法包括制表、制图和计算统计量等。
通过制表和制图,我们可以清晰地展示数据的分布规律和变化趋势,便于进一步分析和比较。
三、描述统计量描述统计量是对数据进行概括和描述的指标,它可以帮助我们了解数据的集中趋势和离散程度。
常见的描述统计量包括均值、中位数、众数、方差和标准差等。
通过计算和比较这些统计量,我们可以初步了解数据的特征,并对数据进行比较和分析。
四、概率与统计推断概率与统计推断是统计学的重要分支,它涉及到数据的抽样和推理。
通过概率模型和统计推断方法,我们可以从样本数据中推断总体的特征和规律,进而作出科学合理的决策。
五、统计图表的应用统计图表是将数据转化为图形形式进行展示和分析的工具。
常见的统计图表包括柱状图、折线图、饼图和散点图等。
通过绘制和解读统计图表,我们可以更直观地理解数据的特征和变化趋势,并进行比较和分析。
六、相关性与回归分析相关性和回归分析是统计学在实际问题中常用的方法。
相关性分析可以帮助我们确定变量之间的相关程度,而回归分析则可以用来建立变量之间的关系模型,从而预测和解释数据的变化。
七、统计学在科学研究中的应用统计学在科学研究中起着重要的作用。
在各个学科领域中,研究者们通过采用统计学的方法对数据进行分析和解释,从而得出科学结论。
统计学可以帮助我们验证假设、发现规律、预测趋势,并为决策提供科学依据。
《统计学原理》知识点概括总结
《统计学原理》知识点概括总结第一部分:概率论基础《统计学原理》的第一部分主要介绍了概率论的基本概念和原理。
概率论是统计学的基础,它研究的是事件发生的可能性。
本部分包括事件与概率、条件概率与独立性、贝叶斯定理等内容。
概率的性质、计算方法和基本公式也是本部分的重点。
第二部分:随机变量和概率分布第二部分以随机变量和概率分布为核心,介绍了离散型和连续型随机变量的定义和性质。
离散型随机变量的概率质量函数和分布函数、连续型随机变量的概率密度函数和分布函数都在本部分进行了详细讨论。
同时,本部分还介绍了常见的离散型分布(如伯努利分布、二项分布、泊松分布)和连续型分布(如均匀分布、正态分布)。
第三部分:多维随机变量及其分布第三部分讨论了多维随机变量和其分布。
多维随机变量是指由多个随机变量组成的向量,它的概率分布可以通过联合分布、边缘分布和条件分布来描述。
本部分介绍了多维随机变量的分布函数和密度函数,并给出了常见的两个随机变量的联合分布和边缘分布。
此外,还介绍了常见的多维分布,如多项分布和多元正态分布。
第四部分:参数估计参数估计是统计学中重要的一环,它研究如何从样本中推断总体的未知参数。
本部分介绍了点估计和区间估计两种常见的参数估计方法。
点估计方法根据样本数据直接估计出总体参数的值,例如最大似然估计和矩估计。
区间估计是通过样本数据得到参数的一个范围估计,例如置信区间的构造和解释。
第五部分:假设检验假设检验是统计学中用于验证关于总体的其中一种假设的方法。
本部分详细介绍了假设检验的基本思想和步骤,包括建立原假设和备择假设、选择合适的检验统计量和确定显著性水平等。
此外,还介绍了单总体、两总体和多总体的假设检验方法,并给出了具体的应用实例。
通过对《统计学原理》的知识点进行总结,我们可以发现统计学是一门基于概率论的科学,它研究数据的收集、整理、分析和解释的方法。
本书详细介绍了统计学的基本原理和方法,涵盖了概率论、概率分布、参数估计和假设检验等内容。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、统计的含义(1)统计工作:即统计实践,是指很据科学的方法从事统计设计、收集、整理、分析研究和提供各种统计资料和统计咨询意见的活动的总称。
其成果是统计资料(原始调查资料和加工处理后的系统资料);(2)统计资料:即统计工作过程中所获得的各种有关数字资料以及与之相关的其他资料的总称。
通常以统计表、统计图和统计报告的形式变现,用以反映社会经济现象的规模、水平、速度、结构和比例关系等信息的数字和文字资料;(3)统计科学:即统计理论,是指统计工作实践的理论概括和科学总结.2、统计学统计学:是一门搜集、整理、分析数据方法的科学,其目的是探索数据的内在数量规律性,以达到对客观事物的科学认识。
3、统计学的研究对象统计学研究的对象是:社会经济现象总体的数量特征和数量关系.其根本特征:在质与量的辩证统一中,研究大量社会经济现象总体的数量方面,反映社会现象发展变化的规律性在具体时间、地点和条件下的数量表现,揭示事物的本质、相互联系、变动规律和发展趋势。
4、统计学研究特点数量性、总体性、具体性、社会性5、统计工作的过程及基本职能统计工作的过程:统计设计、统计调查、统计整理、统计分析(定性—定量—定性:循环往复)统计设计:指根据统计研究对象的特点和研究的目的、任务,对统计工作的各个方面和各个环节的通盘考虑和安排,是统计认识过程的第一个阶段,即定性认识的阶段;统计调查:指根据统计研究对象和目的要求,依据统计设计的内容、指标和指标体系的要求,有计划、有目的、有组织的收集原始资料的工作过程,即由定性到定量认识的阶段;统计整理:指根据统计研究的目的,将统计调查得到的原始资料和通过各种方法得到的次级资料进行科学的分类和汇总,使其条理化、系统化的工作过程,即为统计分析准备在一定程度上可以反映总体特征的统计资料;统计分析:指在统计整理的基础上,根据研究的目的和任务,应用各种科学的统计方法,从静态和动态两个方面对研究对象的数量方面进行计算、分析研究,认识和揭示所研究对象的本质和规律性,做出科学的结论,进而提出建议和可预测性的意见的工作过程,即从定量到定性深入认识的阶段。
统计工作的基本职能:信息、咨询、监督6、统计学研究的基本方法大量观察法、统计分组法、综合指标法、时间数列分析法、指数法、抽样推断法、相关分析法.7、统计学的基本概念(1)总体:指客观存在的,有性质相同的许多个别事物组成的整体;(2)总体单位:指组成总体的许多性质相同的个别事物,简称单位/个体;(3)标志:用于说明总体单位特征的名称或概念,有数量标志和品质标志之分;(4)标志表现:标志特征在各单位的具体体现,数量标志表现为具体的数值,品质标志表现为对特征加以描述的文字;(5)统计指标:用于说明总体数量特征的名称或概念及数值:一个完整的统计指标包括指标名称、指标数值、指标计量单位、计算方法、指标所属的时间和空间等因素;(6)统计总体的特征:同质性、大量性、差异性(7)统计指标的特点:数量性、综合性、具体性(8)统计总体与总体单位关系:不是固定不变的,而是相对的概念,根据研究的目的和研究对象的变化而变化的:即总体可能为单位,单位也可能为总体(9)指标和标志关系:指标和标志是一对相对的概念,分别对应与统计总体和统计总体单位,用于反映各自的数量特征,二者既有区别,又有联系。
区别:指标用于反映总体数量特征,是具体的量,不论数量指标还是质量指标,其具体表现都是数值;标志用于反映总体单位特征,数量标志以数值表示为一定的量,但品质标志只能用适当的文字来表达。
联系:统计指标是建立在标志表象的基础上,它是由各个总体单位的标志表现加总而来,没有总体单位的标志表现,就不可能有总体的指标值。
(10)指标的分类指标的表现形式:总量指标、相对指标、平均指标总体现象的内容:数量指标、质量指标现象的时间状况:静态指标、动态指标数据的取值依据:客观指标、主观指标(11)数量指标:指反映社会经济现象的规模大小或数量多少的统计指标,一般表现为:总量指标、绝对数(12)质量指标:表明总体内部构成、比例、发展速度和一般水平等的指标,一般表现为相对指标和平均指标,其数值表现为相对数和平均数.(13)统计变异:指统计总体中各单位之间存在的差异和同一总体在不同时间上的差异(14)统计变量:现象本身所固有的随条件变化而变化的量,变量值是变量的具体数值表现;(15)连续变量与离散变量:依据变量值是否连续来划分,相邻两个变量值之间是否可以连续分割得到新的变量值8、统计调查的类型调查对象包含的范围:全面调查(统计报表和普查)、非全面调查调查登记的时间是否连续:经常性调查、一次性调查调查的组织形式:一般调查(统计报表制度)、专门调查9、调查对象:指要对其进行调查研究的现象的总体,由许多性质相同的个别单位组成10、调查单位:构成调查对象的总体单位,在某项调查中登记其具体特征的单位,即调查项目的直接承担者11、调查项目:即调查内容,确定登记调查单位的特征(标志)12、报告单位:即填报单位,向上报告调查内容,提交调查资料的单位13、调查时间:调查资料所属的时间,时期现象(起讫时间)、时点现象(统一标准时间);调查期限:调查工作的时限,从调查准备开始到收集递交资料直至报告完毕的整个调查过程所需时间.14、统计调查方案的设计过程(1)确定调查目的和任务(2)确定调查对象和调查单位(3)确定调查项目(4)确定调查时间、调查期限、调查空间、调查方法(5)调查的组织工作15、统计调查收集资料的方式(1)统计报表:指依照国家有关法律规定,自上而下的统一布置,自下而上的逐级定期提供基本资料的一种统计报告制度.a)特点:保证统计资料的统一性和时效性;统计指标比较系统,所得到的资料较为全面,真实可靠;具有周期性,相对稳定b)作用:用于研究现象发展变化的趋势和规律性;逐级汇总递交可以满足各级部门对统计资料的需要c)局限性:受主观影响大,由于虚报瞒报而影响报表资料的质量;周期过于频繁会加重基层负担(2)普查:指专门组织的一次性全面调查,用于调查在一定时点上社会经济现象的总量。
a)特点:全面性、专门性、一次性b)作用:用于掌握某些关系国情国力的重大事件的准确而全面的数据,并为抽样调查提供抽样框,搜集更多更全面的信息c)局限性:由于耗费人力、物力、财力过大,不易进行经常性调查的实施(3)抽样调查:指按照随即原则从总体中选取一部分单位作为样本进行观察,然后根据所获得的样本数据,对调查对象总体的特征值作出具有一定可靠程度的估计和推算。
(抽样估计、抽样推断)a)特点:依据随机性原则从总体中抽取样本单位;依据部分调查资料对总体的数量特征进行估计;抽样误差可以事先计算并加以控制.(耗费少、准确度高、干扰少)b)作用:用样本来推断总体数量特征c)局限性:调查对象总体范围大,单位数目多时;不必要进行全面调查时;具有破坏性的调查;用于检查和修正全面调查资料时(4)重点调查:指在调查对象中选择一部分重点单位作为代表进行的非全面调查a)特点:耗费少,调查单位少,可以快速取得总体情况,调查资料的收集灵活详细b)作用:用于了解总体的基本情况c)局限性:不需要了解总体的全面情况,仅了解总体基本情况;总体中存在重点单位,即标志值总量在全部单位标志总量中占据重大比例的单位(5)典型调查:指在对多研究的现象进行分析的基础上,有意识的选择若干个具有代表性的典型单位而进行的深入细致的调查a)特点:选择有目的,有意识性,调查单位少,便于做深入细致的研究,资料细致全面,但主观性大b)作用:用于研究新生事物,探索其发展方向,形成预见,并加以推广;研究同类事物发展变化的一般规律和趋势;总结经验教训;补充全面调查的不足,估计总体数量特征,验证全面调查的真实性c)局限性:不能确定推断的把握程度,估计误差无法衡量;典型单位的选取必须对总体具有充分的代表性,同时要根据研究的目的和调查对象的不同特点来选取调查类型16、统计调查的误差:指统计调查所得到的统计数据与统计总体的实际数量之间的差别.包括登记性误差和代表性误差。
登记性误差:调查误差,记录错误、计算错误、汇总错误及调查者虚报等;代表性误差(仅存在于非全面调查中):系统性误差(未遵循随即原则导致的偏差)和抽样误差(由于抽样的随机性导致的误差)17、统计分组:指根据统计研究的目的和社会经济现象的特点,按照一个或几个标志将统计总体区分为性质不同的若干个组成部分的一种统计方法18、统计分组的基本原则:穷尽性原则和互斥性原则19、统计分组的作用区分社会经济现象的性质和不同类型;反映现象总体的内部结构;分析现象之间的依存关系20、统计分组的种类品质标志分组和数量标志分组(分组标志性质);简单分组和复合分组(一个/多个)复合标志更能深入反映总体的内部结构,有利于更细致的分析问题21、分组标志选择的依据(1)依据研究问题的目的和任务(2)在若干同类标志中,选择最能反映问题本质的标志进行分组(3)结合研究对象所处的具体历史经济条件,采用具体问题具体分析的方法选择分组标志22、统计分组的关键:选择分组标志和正确的划分各组之间的界限23、分配数列:指在统计分组的基础上,将总体的所有单位按组分类整理,计算各组的的单位数,并按照组顺序加以排列所形成的反映总体单位总数在各组分配情况的次数分布.(次数分配、分布数列)24、统计表的表式结构:总标题、横行标题、纵栏标题、指标数值25、总量指标:指反映现象在一定时间、地点和条件下总规模、总水平和工作总量的一种统计指标,即绝对数指标。
(总量、增减量)26、总量指标的种类按其反应总体总量的内容:总体单位总量(唯一性)、总体标志总量(多个)按反应现象的时间状况:时期指标、时点指标(各期数值可否直接加总、指标值的大小与时期长短直接相关与否、是否连续登记取得指标值)按计量单位:实物量指标、价值量指标27、总量指标的作用(1)总量指标是认识现象总体特征的起点(2)总量指标是实行各项管理工作的基本依据(3)总量指标是计算相对数和平均数的基础(4)总量指标属于绝对数指标数值,其大小随着总体范围的大小和观察时期的长短而发生增减变化,不能深入反映现象发展变化的程度与差别28、相对指标:指两个有联系的现象的数值对比的结果,用于反映事物间在数量上相互联系的形式和程度,又称为相对数。
(同一总体或不同总体)29、相对指标的作用(1)相对指标可以反映现象的发展程度、密度、结构、强度、普遍程度或比例关系,为人们认识事物发展的质量与现状提供依据(2)相对指标可以使某些不能直接对比的现象找到可比的基础,从而准确的现象之间的差异程度30、相对指标的类型及各自的作用(1)比重相对数:结构相对指标,即利用分组的方法,将同一总体区分为性质不同的若干部分,以部分数值与总体数值对比而得的比重或比率。