机械原理课程设计+牛头刨床

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录

1.设计题目 (3)

2. 牛头刨床机构简介 (3)

3.机构简介与设计数据 (4)

4. 设计内容 (5)

5. 体会心得 (15)

6. 参考资料 (16)

附图1:导杆机构的运动分析与动态静力分析

附图2:摆动从计动件凸轮机构的设计

附图3:牛头刨床飞轮转动惯量的确定

1设计题目:牛头刨床

1.)为了提高工作效率,在空回程时刨刀快速退回,即要有急会运动,行程速比系数在1.4左右。

2.)为了提高刨刀的使用寿命和工件的表面加工质量,在工作行程时,刨刀要速度平稳,切削阶段刨刀应近似匀速运动。

3.)曲柄转速在60r/min,刨刀的行程H在300mm左右为好,切削阻力约为7000N,其变化规律如图所示。

2、牛头刨床机构简介

牛头刨床是一种用于平面切削加工的机床,如图4-1。电动机经皮带和齿轮传动,带动曲柄2和固结在其上的凸轮8。刨床工作时,由导杆机构2-3-4-5-6带动刨头6和刨刀7作往复运动。刨头右行时,刨刀进行切削,称工作行程,此时要求速度较低并且均匀,以减少电动机容量和提高切削质量,刨头左行时,刨刀不切削,称空回行程,此时要求速度较高,以提高生产率。为此刨床采用有急回作用的导杆机构。刨刀每切削完一次,利用空回行程的时间,凸轮8通过四杆机构1-9-10-11与棘轮带动螺旋机构(图中未画),使工作台连同工件作一次进给运动,以便刨刀继续切削。刨头在工作行程中,受到很大的切削阻力(在切削的前后各有一段约5H的空刀距离,见图4-1,b),而空回行程中则没有切削阻力。因此刨头在整个运动循环中,受力变化是很大的,这就影响了主轴的匀速运转,故需安装飞轮来减小主轴的速度波动,以提高切削质量和减小电动机容量。

3、机构简介与设计数据

3.1.机构简介

牛头刨床是一种用于平面切削加工的机床。电动机经皮带和齿轮传动,带动曲柄2和固结在其上的凸轮8。刨床工作时,由导杆机构2-3-4-5-6带动刨头6和刨刀7作往复运动。刨头右行时,刨刀进行切削,称工作切削。此时要求速度较低且均匀,以减少电动机容量和提高切削质量;刨头左行时,刨刀不切削,称空回行程,此时要求速度较高,以提高生产效率。为此刨床采用急回作用得导杆机构。刨刀每切削完一次,利用空回行程的时间,凸轮8通过四杆机构1-9-10-11与棘轮机构带动螺旋机构,使工作台连同工件作

一次进给运动,以便刨刀继续切削。刨头在工作行程中,受到很大的切削阻力,而空回行程中则没有切削阻力。因此刨头在整个运动循环中,受力变化是很大的,这就影响了主轴的匀速运转,故需装飞轮来减小株洲的速度波动,以减少切削质量和电动机容量。3.2设计数据

设计数据设计数据

4、设计内容

4.1. 导杆机构的运动分析(见图例1)

已知 曲柄每分钟转数n 2,各构件尺寸及重心位置,且刨头导路x-x 位于导杆端点B 所作的圆弧高的平分线上。

要求 做机构的运动简图,并作机构两位置的速度、加速度多边形以及刨头的运动线图。以上内容与后面的动静力分析一起画在1号图纸上。

曲柄位置图的作法为取1和89为工作形成起点和终点对应的曲柄位置,19和79为切削起点和终点所对应的位置,其余2,3…12等,是由位置1起顺ϖ2方向将曲柄圆周作12等分的位置。

步骤:

1)设计导杆机构。 按已知条件确定导杆机构的未知参数。其中滑块6的导路x-x 的位置可根据连杆5传力给滑块6的最有利条件来确定,即x-x 应位于B 点所画圆弧高的平分线上(见图例1)。

2)作机构运动简图。选取比例尺l μ按表4-2所分配的两个曲柄位置作出机构的运动简图,其中一个位置用粗线画出。曲柄位置的做法如图4-2;取滑块6在上极限时所对应的曲柄位置为起始位置1,按转向将曲柄圆周十二等分,得十二个曲柄位置,显然位置8对应于滑块6处于下极限的位置。再作出开始切削和中止切削所对应的1’和8’两位置。共计14个机构位置。

3)作速度,加速度多边形。选取速度比例尺v μ=0.0168(

mm

s

m /)和加速度比例尺a μ=0.0168(

mm

s m 2/),用相对运动图解法作该两个位置的速度多边形和加速度多边形,并将起结果列入表。

4)作滑块的运动线图。根据机构的各个位置,找出滑块6上C 点的各对应位置,以位置1为起始点,量取滑块的相应位移,取位移比例尺s μ=0.0109(

mm

m

),作c s (t )线图。为了能直接从机构运动简图上量取滑块位移。然后根据c s (t )线图用图解微风法(弦线法)作出滑块的速度c v (t )线图,并将结果与其相对运动图解法的结果比较。 5)绘制滑块的加速度线图(见图1)

.导杆机构的运动分析

1).选取长度比例尺µl ,作出机构在位置4 的运动简图。

如一号图纸所示,选取µl =l A O 2/O 2A (m/mm)进行作图,l A O 2表示构件的实际长度,O 2A 表示构件在图样上的尺寸。作图时,必须注意µl 的大小应选得适当,以保证对机构运动完整、准确、清楚的表达,另外应在图面上留下速度多边形、加速度多边形等其他相关分析图形的位置。

2.)求原动件上运动副中心A 的v A '和a A

v 2A =ω1 l A O 2 =0.829m/s

式中v 2A ——B 点速度(m/s ) 方向丄AO 2

a A =ω

1

2 l A O 2=6.247m/s 2

式中a A ——A 点加速度(m/s 2

),方向A →O 2

3.解待求点的速度及其相关构件的角速度

由原动件出发向远离原动件方向依次取各构件为分离体,利用绝对运动与牵连运动和相对运动关系矢量方程式,作图求解。

(1)列出OB 杆A 点的速度矢量方程 根据平面运动的构件两点间速度的关系

绝对速度=牵连速度+相对速度

先列出构件2、4上瞬时重合点A(A2,A4)的方程,未知数为两个,其速度方程:

V4A =

v 2A + v 24A A

方向:丄AO4 丄AO 2 ∥AO4 大小: ? ω1 l A O 2 ?

(2)定出速度比例尺 在图纸中,取p 为速度极点,取矢量pa 代表v 2A ,则速度比例尺µv (m • s

1

-/mm )

µv =

pa

v 2A =0.002 m •s

1

-/mm

(3)作速度多边形,求出ω2、ω4根据矢量方程式作出速度多边形的pd 1部分,则v 2A (m/s)为

v 2A =µv pa=0.829m/s ω4= v 2A / l 4AO =1.3rad/s

其转向为顺时针方向。

V4B =ω4l 4bO =0.612 m/s

相关文档
最新文档