北京市通州区2018年中考数学三模试题含答案

合集下载

2018通州上学期初3期末考试题

2018通州上学期初3期末考试题

A B 北京市通州区2017-2018学年度第一学期期末检测九年级数学试卷2018.1(时间:90分钟满分:100分)一、 选择题(共8小题,每小题3分,共24分)1. 若反比例函数的图象经过点()2,3-,则该反比例函数的表达式为( )A. x y 6=B. x y 6-=C. x y 3=D. xy 3-= 2.已知一个扇形的半径是1,圆心角是120°,则这个扇形的弧长是( )A .6πB .πC .3π D . 32π 3. 如图,为了测量某棵树的高度,小刚用长为2m 的竹竿做测量工具,移动竹竿,使竹竿、树的顶端的影子恰好落在地面的同一点. 此时,竹竿与这一点距离相距6m ,与树相距15m ,那么这棵树的高度为( ).A .m 5B .m 7C .m 5.7 D.m 214.如图,AB 是⊙O 的直径,点C ,D 在⊙O 上.若︒=∠55ABD ,则BC D ∠的度数为( )A .︒25B .︒30C .︒35D .︒405. 二次函数()02≠++=a c bx ax y 的图象如图所示,ac b 42-=∆,则下列四个选项正确的是( )A .0<b ,0<c ,0>∆B .0>b ,0<c ,0>∆C .0>b ,0<c ,0>∆D .0<b ,0>c ,0<∆6. 如图,⊙O 的半径为4.将⊙O 的一部分沿着弦AB 翻折,劣弧恰好经过圆心O .则折痕AB 的长为( )A. 3B. 32C. 6D. 347. 如图,在由边长为1的小正方形组成的网格中,点A ,B ,C 都在小正方形的顶点上.则A ∠cos 的值为( )A. 552B. 2C. 55 D. 218. 如图,在ABC Rt △中,︒=∠90A ,4==AC AB .点E 为ABC Rt △边上一点,以每秒1单位的速度从点C 出发,沿着B A C →→的路径运动到点B 为止.连接CE ,以点C 为圆心,CE 长为半径作⊙C ,⊙C 与线段BC 交于点D .设扇形DCE 面积为S ,点E 的运动时间为t .则在以下四个函数图象中,最符合扇形面积S 关于运动时间t 的变化趋势的是( )A. B. C. D.二、填空题(共8小题,每小题3分,共24分)9.请你写出一个顶点在x 轴上的二次函数表达式 .10. 已知点()11,y x ,()22,y x 在反比例函数xy 2=上,当021<<y y 时,1x ,2x 的大小关系是____________.11. 如图,角α的一边在x 轴上,另一边为射线OP .则._______tan =α12. 如图,点D 为ABC △的AB 边上一点,2=AD ,3=DB .若ACD B ∠=∠,则.____________=AC13.如图,AD ,AE 是正六边形的两条对角线.在不添加任何其他线段的情况下,请写出两个关于图中角度的正确结论:(1)__________________________;(2)______________________.14. 二次函数c bx x y ++-=2的部分图象如图所示,由图象可知,不等式02<++-c bx x 的解集为___________________.y x15. ⊙O 的半径为1,其内接ABC △的边2=AB ,则C ∠的度数为______________.16. 阅读下面材料:在数学课上,老师提出如下问题:小霞的作法如下: 老师说:“小霞的作法正确.”请回答:小霞的作图依据是 .求作: BAC ∠的角平分线AP . (1) 如图,在平面内任取一点O (2)以点O 为圆心,AO 为半径作圆,交射线(3)连接DE ,过点O 作射线所以射线AP 为所求.三、解答题(共9小题,17-22题每小题5分,23,24题每小题7分,25题8分,共52分)17.计算:︒+︒-︒⋅︒453046030tan sin tan cos .18.如图,在平面直角坐标系xOy 中,一次函数()0≠+=k b kx y 与反比例函数()0≠=m x m y 交于点⎪⎭⎫ ⎝⎛--2,23A ,()a B ,1. (1)分别求出反比例函数和一次函数的表达式; (2)根据函数图象,直接写出不等式的解集.19.如图,ABC △内接于⊙O .若⊙O 的半径为6,︒=∠60B ,求AC 的长.x m b kx >+20. 如图,建筑物的高CD 为17. 32米.在其楼顶C ,测得旗杆底部B 的俯角α为︒60,旗杆顶部A 的仰角β为︒20,请你计算旗杆的高度.(342.020≈︒sin ,364.020≈︒tan ,940.020≈︒cos ,732.13≈,结果精确到0.1米)21. 如图,李师傅想用长为80米的栅栏,再借助教学楼的外墙围成一个矩形的活动区ABCD . 已知教学楼外墙长50米,设矩形ABCD 的边x AB =米,面积为S 平方米.(1)请写出活动区面积S 与x 之间的关系式,并指出x 的取值范围;(2)当AB 为多少米时,活动区的面积最大?最大面积是多少?22. 如图,ABC △是等腰三角形,AC AB =,以AC 为直径的⊙O 与BC 交于点D ,DE AB ⊥,垂足为E ,ED 的延长线与AC 的延长线交于点F .(1)求证:DE 是⊙O 的切线;(2)若⊙O 的半径为2,1BE =,求cos A 的值.23. 如图1,在矩形ABCD 中,点E 为AD 边中点,点F 为BC 边中点;点G ,H 为AB 边三等分点,I ,J 为CD 边三等分点.小瑞分别用不同的方式连接矩形对边上的点,如图2,图3所示.那么,图2中四边形GKLH 的面积与图3中四边形KPOL 的面积相等吗?(1)小瑞的探究过程如下图1 图2 图3 在图2中,小瑞发现, ABCD GKLH S S _______=; 在图3中,小瑞对四边形KPOL 面积的探究如下. 请你将小瑞的思路填写完整: 设a S DEP =△,b S AKG =△∵AF EC ∥∴DAK DEP ∽△△,且相似比为2:1,得到a S DAK 4=△∵BI GD ∥∴ABM AGK ∽△△,且相似比为3:1,得到b S ABM 9=△又∵ABCD DAG S b a S 614=+=△,ABCD ABF S a b S 419=+=△ ∴a b b a S ABCD 436624+=+=∴b a ____=,b S ABCD _____=,b S KPOL _____=∴ABCD KPO L S S _____=,则G KLH KPO L S S ____(填写“>”,“<”或“=”)(2)小瑞又按照图4的方式连接矩形ABCD 对边上的点.则ABCD ANML S S _____=.图424. 在平面直角坐标系xOy 中,二次函数()0122>+-=a ax ax y 的对称轴为b x =.点()m A ,2-在直线3+-=x y 上.(1)求m ,b 的值;(2)若点()23,D 在二次函数()0122>+-=a ax ax y 上,求a 的值;(3)当二次函数()0122>+-=a ax ax y 与直线3+-=x y 相交于两点时,设左侧的交点为()11,y x P ,若131-<<-x ,求a 的取值范围.25.点P 的“d 值”定义如下:若点Q 为圆上任意一点,线段PQ 长度的最大值与最小值之差即为点P 的“d 值”,记为P d .特别的,当点P ,Q 重合时,线段PQ 的长度为0. 当⊙O 的半径为2时:(1)若点⎪⎭⎫ ⎝⎛-0,21C ,()4,3D ,则=C d _________,=D d _________; (2)若在直线22+=x y 上存在点P ,使得2=P d ,求出点P 的横坐标;(3)直线()033>+-=b b x y 与x 轴,y 轴分别交于点A ,B .若线段AB 上存在点P ,使得32<≤P d ,请你直接写出b 的取值范围.备用图 备用图2017-2018学年北京市通州区九年级(上)期末数学试卷参考答案与试题解析一、选择题(每题3分,共24分)1-5BDBCA6-8DCA二、填空题(共8小题,每小题3分,满分24分)9 y=2(x+1)2(答案不唯一).10.x1>x2.11.12..13.(1)∠BAC=∠BCA;(2)∠DAF=∠ADE.14.x<﹣1或x>5.15.45°或135°.16.(1)垂直于弦的直径平分弦,并且平分弦所对的两条弧;(2)同弧或等弧所对的圆周角相等;(3)角平分线的定义.三、解答题(共9小题,满分52分)17.(5分)解:原式=×﹣4×+1=﹣2+1=.18.(5分)【解答】解:(1)∵点A(﹣,﹣2)在函数y=上,∴m=﹣×(﹣2)=3,∴y=,∵点B(1,a)在y=上,∴a=3,∵直线y=kx+b经过A(﹣,﹣2),B(1,3),∴,解得,∴直线解析式为y=2x+1.(2)观察图象可知,不等式kx+b>的解集为:﹣<x<0或x>1.19.(5分)【解答】解:如图,作直径AD,连接CD.∴∠ACD=90°.∵∠B=60°,∴∠D=∠B=60°.∵⊙O的半径为6,∴AD=12.在Rt△ACD中,∠CAD=30°,∴CD=6.∴AC=6.【点评】本题考查了圆周角定理.注意题中辅助线的作法.20.(5分)【解答】解:根据题意,再Rt△BCE中,∠BEC=90°,tanα=,∴CE=≈=10米,再Rt△ACE中,∠AEC=90°,tanβ=,∴AE=CE•tan20°≈10×0.364=3.64米,∴AB=AE+BE=17.32+3.64=20.96≈21.0米,答:旗杆的高约为21.0米.【点评】本题考查俯角、仰角的定义,要求学生能借助俯角、仰角构造直角三角形并结合图形利用三角函数解直角三角形.21.(5分)【解答】解:(1)根据题意知AB=x,BC=80﹣2x,∴S=x(80﹣2x)=﹣2x2+80x,又∵x>0,0<80﹣2x≤50,解得15≤x<40,∴S=﹣2x2+80x (15≤x<40);(2)∵S=﹣2x2+80x=﹣2(x﹣20)2+800,∴当x=20时,S最大值为800,答:当AB为20米时,活动区的面积最大,最大面积是800平方米.【点评】本题考查二次函数的应用,解题的关键是学会构建二次函数,学会利用二次函数的性质解决问题.22.(5分)【解答】(1)证明:连接OD,AD,∵AC为圆的直径,∴∠ADC=90°,AD⊥BC,∵AB=AC,∴点D为BC的中点,∵点O为AC的中点,∴OD∥AB,∵DE⊥AB,∠AED=90°,∴∠ODE=90°,∴OD⊥DE,则DE为圆O的切线;(2)解:∵r=2,∴AB=AC=2r=4,∵BE=1,∴AE=AB﹣BE=3,∵OD∥AB,∴△FOD∽△FAE,∴==,设CF=x,则有OF=x+2,AF=x+4,∴=,解得:x=2,∴AF=6,在Rt△AEF中,∠AEF=90°,则cosA==.【点评】此题考查了相似三角形的判定与性质,等腰三角形的性质,圆周角定理,以及解直角三角形,熟练掌握相似三角形的判定与性质是解本题的关键.23.(7分)【解答】解:(1)∵二次函数y=ax2﹣2ax+1(a>0)的对称轴为x=b,∴b==1.∵点A(﹣2,m)在直线y=﹣x+3上,∴m=2+3=5;(2)∵点D(3,2)在二次函数y=ax2﹣2ax+1(a>0)上,∴2=a×32﹣2a×3+1,∴a=;(3)∵当x=﹣3时,y=﹣x+3=6,∴当(﹣3,6)在y=ax2﹣2ax+1(a>0)上时,6=a×(﹣3)2﹣2a×(﹣3)+1,∴a=.又∵当x=﹣1时,y=﹣x+3=4,∴当(﹣1,4)在y=ax2﹣2ax+1(a>0)上时,4=a×(﹣1)2﹣2a×(﹣1)+1,∴a=1.∴<a<1.【点评】本题考查了二次函数、一次函数的性质,函数图象上点的坐标特征,掌握点在直线上,则点的坐标满足函数的解析式是解题的关键.24.(7分)=S四边【解答】解:(1)小瑞的探究过程如下:在图2中,小瑞发现,S四边形GKLH;形ABCD在图3中,小瑞对四边形KPOL面积的探究如下,请你将小瑞的思路填写完整;=a,S△AKG=b.设S△DEP∵EC∥AF.=4a.∴△DEP∽△DAK,且相似比为1:2,得到S△DAK∵GD∥BI,=9b∴△AGK∽△ABM,且相似比为1:3,得到S△ABM=4a+b=S四边形ABCD,S△ABF=9b+a=S 四边形ABCD.又∵S△DAG=24a+6b=36b+4a.∴S四边形ABCD=42b,四边形KPOL=6b.∴a=b,S四边形ABCD=S四边形ABCD,则S四边形KPOL<S四边形GKLH.∴S四边形KPOL故答案为,,42,6,,<.=a,S△AEN=b.(2)如图4中,延长CE交BA的延长线于T,连接DN,设S△AGL∵GL∥PH,=4a,∴△△AGL∽△AHP,相似比为1:2,得到S△AHP∵AT∥CD,∴∠T=∠ECD,∵∠AET=∠CED,AE=ED,∴△AET≌△DEC,∴AT=CD,∵AT∥CJ,∴==,∴=,=b,可得S△DNJ=4a+b=S四边形ABCD,S△ADJ=b=S四边形ABCD,∴S△ABF∴16a+b=20b,∴a=b,=(20b﹣8a﹣b)=4b,∴S四边形ANML=20b,∴S四边形ABCD=S四边形ABCD.∴S四边形ANML故答案为.【点评】本题考查相似形综合题、矩形的性质、平行线的性质、相似三角形的判定和性质、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形或相似三角形解决问题,属于中考压轴题.25.(8分)【解答】解:(1)根据题意可得圆内的点的d值=这个点到圆心距离的2倍,圆上或圆外的点的d值=圆的直径,所以d c=1,d p=4;故答案为1,4;(2)根据题意,满足d p=2的点位于⊙O内部,且在以O为圆心半径为1的圆上,∵点P在直线y=2x+2上,∴可以假设P(a,2a+2),∵PO=1,∴a2+(2a+2)2=1,解得a=﹣1或﹣,∴满足条件的点P的横坐标为﹣1或﹣.(3)根据题意,满足2≤d P<3的点位于点O为圆心外径为,内径为1的圆环内,当线段与外环相切时,可得b=,当线段于内环相切时,可得b=,所以满足条件的b的值:≤b<.【点评】本题考查一次函数、圆、点P的“d值”定义等知识,解题的关键是理解题意,灵活运用所学知识解决问题,学会利用此时解决问题,学会利用特殊位置、寻找特殊点解决问题,所以中考压轴题.。

2018年北京通州区初三一模数学试卷

2018年北京通州区初三一模数学试卷

、点
,此时点 与点 之间的“直距”

( 1 ) 回答下列问题:
1 已知 为坐标原点,点

,则

2 点 在直线
上,请你求出 的最小值.
( 2 ) 点 是以原点 为圆心, 为半径的圆上的一个动点,点 是直线
请你直接写出点 与点 之间“直距” 的最小值.
. 上一动点.
/
得出结论:
1 估计该校九年级女生在中考体育测试中 分钟“仰卧起坐”项目可以得到满分的人数


2 该中学所在区县的九年级女生的 分钟“仰卧起坐”总体测试成绩如下:
平均数 中位数 满分率
请你结合该校样本测试成绩和该区县的总体测试成绩,为该校九年级女生的 分钟“仰 卧起坐”达标情况做一下评估,并提出相应建议.
24. 如图,已知 为圆 的直径, 是圆 的弦, 是弧 交 , 的延⻓线于点 和点 ,连接 , .
的中点,过点 作⊙ 的切线,分别
( 1 ) 求证:
( 2 )若

. ,求
的⻓.
25. 如图, 为半圆 的直径,半径的⻓为 ,点 为半圆上一动点,过点 作
为点 ,点 为弧 的中点,连接 ,如果
,求线段 的⻓.
条直线上,则 的度数为

⻆的三⻆板一条直⻆边在同一
14. 已知
,则代数式
的值为

15. 完全相同的 个小球上面分别标有数 , , ,将其放入一个不透明的盒子中后摇匀,再从中
随机摸球两次(第一次摸出球后放回摇匀),两次摸到的球上数之和是负数的概率是

16. 尺规作图:过直线外一点作已知直线的平行线. 已知:如图,直线 与直线 外一点. 求作:过点 与直线 平行的直线.

北京通州区第三中学2018年高三数学文联考试题含解析

北京通州区第三中学2018年高三数学文联考试题含解析

北京通州区第三中学2018年高三数学文联考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 如图,等边△ABC的边长为2,△ADE也是等边三角形且边长为1,M为DE的中心,在△ABC所在平面内,△ADE绕A逆时针旋转一周, ?的最大值为()A.B. +C.D. +2参考答案:B【考点】平面向量数量积的运算.【专题】计算题;转化思想;向量法;平面向量及应用.【分析】设∠BAD=θ,(0≤θ≤2π),则∠CAE=θ,把?转化为含有θ的三角函数,利用辅助角公式化积后得答案.【解答】解:设∠BAD=θ,(0≤θ≤2π),则∠CAE=θ,则?=()?()===﹣cosθ﹣cosθcos+sinθsin=﹣=.∴当时, ?的最大值为.故选:B.【点评】本题考查平面向量的数量积的定义,考查三角函数的化简和求最值,考查运算能力,属于中档题.2. 过双曲线的焦点作渐近线的垂线,则直线与圆的位置关系是()A.相交 B.相离 C.相切 D.无法确定参考答案:C3. 设全集,,,则图中阴影部分表示的集合为()A. B. C. D.参考答案:B略4. 已知A,B为抛物线C:y2=2px(p>0)上的两点,OA⊥OB(O为坐标原点),若AB所在直线的斜率为,且与x轴交于(4,0)点,则抛物线C的方程为( )A.y2=2xB.y2=4xC.y2=8xD.y2=12x参考答案:B5. 已知p,q是两个命题,那么“是真命题”是“是假命题”的()A. 既不充分也不要必要条件B. 充分必要条件C. 充分不必要条件D. 必要不充分条件参考答案:C【分析】由充分必要条件及命题的真假可得:“p∧q是真命题”是“¬p是假命题”的充分不必要条件,得解【详解】因为“p∧q是真命题”则命题p,q均为真命题,所以¬p是假命题,由“¬p是假命题”,可得p为真命题,但不能推出“p∧q是真命题”,即“p∧q是真命题”是“¬p是假命题”的充分不必要条件,故选:C.【点睛】本题考查了充分必要条件及命题的真假,属简单题.6. 已知一个几何体的正视图、侧视图、俯视图如图所示,则该几何体的体积是()A.34 B.22 C.12 D.30参考答案:B由该几何体的三视图可知,该几何体是一个三棱锥,如图所示:其中,正方体是棱长为,,,∴∴故选B.7. 已知实数、满足,则的最大值为A. B. C. D.参考答案:C8. 设不等式的解集为M,函数的定义域为N,则为()A. [0,1) B.(0,1) C.[0,1] D.(-1,0]参考答案:A略9. 已知A、B为双曲线E的左右顶点,点M在E上,AB=BM,三角形ABM有一个角为120°,则E的离心率为()A.B.C.D.2参考答案:B【考点】双曲线的简单性质.【专题】计算题;方程思想;数形结合法;圆锥曲线的定义、性质与方程.【分析】由题意画出图形,过点M作MN⊥x轴,得到Rt△BNM,通过求解直角三角形得到M坐标,代入双曲线方程可得a与b的关系,结合隐含条件求得双曲线的离心率.【解答】解:设双曲线方程为(a>0,b>0),如图所示,|AB|=|BM|,∠AMB=120°,过点M作MN⊥x轴,垂足为N,则∠MBN=60°,在Rt△BMN中,∵BM=AB=2a,∠MBN=60°,∴|BN|=a,,故点M的坐标为M(2a,),代入双曲线方程得a2=b2,即c2=2a2,∴.故选:B.【点评】本题考查双曲线的简单性质,考查数形结合的解题思想方法,是中档题.10. 的展开式中的系数是()A.1 B.2 C.3 D.12参考答案:C二、填空题:本大题共7小题,每小题4分,共28分11. 若动直线过点,以坐标原点O为圆心,OA为半径作圆,则其中最小圆的面积为.参考答案:12. 如图,在Rt△ADE中,是斜边AE的中点,以为直径的圆O与边DE相切于点C,若AB=3,则线段CD的长为.参考答案:13. 对于一切实数x,令[x]表示不大于x的最大整数,记f(x)= [x],若a n=f()(n∈N+),S n为数列{a n}的前n项和,则S4n= .参考答案:2n2-n略14. 数列中,,则的通项参考答案:15. 设函数f(x)=,则f(f(﹣2))的值为.参考答案:﹣4【考点】函数的值.【分析】由已知先求出f(﹣2)=4﹣2=,从而f(f(﹣2))=f(),由此能求出结果.【解答】解:∵函数f(x)=,∴f(﹣2)=4﹣2=,f(f(﹣2))=f()==﹣4.故答案为:﹣4.16. 在锐角中,,,则的值等于;的取值范围为.参考答案:;.略17. 如果实数满足条件,则的最大值为_________.参考答案:考点:简单线性规划.三、解答题:本大题共5小题,共72分。

【名师精选】北京市通州区2018届九年级上期末考试数学试题有答案

【名师精选】北京市通州区2018届九年级上期末考试数学试题有答案

通州区2017—2018学年第一学期期末初三数学统一检测试题2018.1一、 选择题(共8小题,每小题3分,共24分)1. 若反比例函数的图象经过点()2,3-,则该反比例函数的表达式为( ) A. x y 6=B. x y 6-=C. xy 3= D. xy 3-= 2.已知一个扇形的半径是1,圆心角是120°,则这个扇形的弧长是( ) A .6π B .π C .3π D . 32π3. 如图,为了测量某棵树的高度,小刚用长为2m 的竹竿做测量工具,移动竹竿,使竹竿、树的顶端的影子恰好落在地面的同一点. 此时,竹竿与这一点距离相距6m ,与树相距15m ,那么这棵树的高度为( ).A .m 5B .m 7C .m 5.7D .m 214.如图,AB 是⊙O 的直径,点C ,D 在⊙O 上.若︒=∠55ABD ,则BCD ∠的度数为( )ABA .︒25B .︒30C .︒35D .︒405. 二次函数()02≠++=a c bx ax y 的图象如图所示,ac b 42-=∆,则下列四个选项正确的是( )A .0<b ,0<c ,0>∆B .0>b ,0<c ,0>∆C .0>b ,0<c ,0>∆D .0<b ,0>c ,0<∆6. 如图,⊙O 的半径为4.将⊙O 的一部分沿着弦AB 翻折,劣弧恰好经过圆心O .则折痕AB 的长为( )A. 3B. 32C. 6D. 347. 如图,在由边长为1的小正方形组成的网格中,点A ,B ,C 都在小正方形的顶点上.则A ∠cos 的值为( )A.552 B. 2 C. 55 D. 218. 如图,在ABC Rt △中,︒=∠90A ,4==AC AB .点E 为ABC Rt △边上一点,以每秒1单位的速度从点C 出发,沿着B A C →→的路径运动到点B 为止.连接CE ,以点C 为圆心,CE 长为半径作⊙C ,⊙C 与线段BC 交于点D .设扇形DCE 面积为S ,点E 的运动时间为.则在以下四个函数图象中,最符合扇形面积S 关于运动时间的变化趋势的是( )二、填空题(共8小题,每小题3分,共24分)9.请你写出一个顶点在x 轴上的二次函数表达式 . 10. 已知点()11,y x ,()22,y x 在反比例函数xy 2=上,当021<<y y 时,1x ,2x 的大小关系是____________.11. 如图,角α的一边在x 轴上,另一边为射线OP .则._______tan =α12. 如图,点D 为ABC △的AB 边上一点,2=AD ,3=DB .若ACD B ∠=∠,则.____________=AC13.如图,AD ,AE 是正六边形的两条对角线.在不添加任何其他线段的情况下,请写出两个关于图中角度的正确结论:(1)__________________________;(2)______________________.14. 二次函数c bx x y ++-=2的部分图象如图所示,由图象可知,不等式02<++-c bx x 的解集为___________________.15. ⊙O 的半径为1,其内接ABC △的边2=AB ,则C ∠的度数为______________.y16. 阅读下面材料:在数学课上,老师提出如下问题:小霞的作法如下:求作: BAC ∠的角平分线AP .(1) 如图,在平面内任取一点O (4)连接AP .所以射线AP 为所求.老师说:“小霞的作法正确.”请回答:小霞的作图依据是 .三、解答题(共9小题,17-22题每小题5分,23,24题每小题7分,25题8分,共52分) 17.计算:︒+︒-︒⋅︒453046030tan sin tan cos .18.如图,在平面直角坐标系xOy 中,一次函数()0≠+=k b kx y 与反比例函数()0≠=m xmy 交于点⎪⎭⎫⎝⎛--2,23A ,()a B ,1. (1)分别求出反比例函数和一次函数的表达式; (2)根据函数图象,直接写出不等式xmb kx >+的解集.19.如图,ABC △内接于⊙O .若⊙O 的半径为6,︒=∠60B ,求AC 的长.20. 如图,建筑物的高CD 为17. 32米.在其楼顶C ,测得旗杆底部B 的俯角α为︒60,旗杆顶部A 的仰角β为︒20,请你计算旗杆的高度.(342.020≈︒sin ,364.020≈︒tan ,940.020≈︒cos ,732.13≈,结果精确到0.1米)21. 如图,李师傅想用长为80米的栅栏,再借助教学楼的外墙围成一个矩形的活动区ABCD . 已知教学楼外墙长50米,设矩形ABCD 的边x AB =米,面积为S 平方米. (1)请写出活动区面积S 与x 之间的关系式,并指出x 的取值范围; (2)当AB 为多少米时,活动区的面积最大?最大面积是多少?22. 如图,ABC △是等腰三角形,AC AB =,以AC 为直径的⊙O 与BC 交于点D ,DE AB ⊥,垂足为E ,ED 的延长线与AC 的延长线交于点F . (1)求证:DE 是⊙O 的切线;(2)若⊙O 的半径为2,1BE =,求cos A 的值.23. 如图1,在矩形ABCD 中,点E 为AD 边中点,点F 为BC 边中点;点G ,H 为AB 边三等分点,I ,J 为CD 边三等分点.小瑞分别用不同的方式连接矩形对边上的点,如图2,图3所示.那么,图2中四边形GKLH 的面积与图3中四边形KPOL 的面积相等吗? (1)小瑞的探究过程如下在图2中,小瑞发现, ABCD GKLH S S _______=;在图3中,小瑞对四边形KPOL 面积的探究如下. 请你将小瑞的思路填写完整: 设a S DEP =△,b S AKG =△ ∵AF EC ∥∴DAK DEP ∽△△,且相似比为2:1,得到a S DAK 4=△ ∵BI GD ∥∴ABM AGK ∽△△,且相似比为3:1,得到b S ABM 9=△又∵ABCD DAG S b a S 614=+=△,ABCD ABF S a b S 419=+=△∴a b b a S ABCD 436624+=+=∴b a ____=,b S ABCD _____=,b S KPOL _____=∴ABCD KPOL S S _____=,则GKLH KPOL S S ____(填写“>”,“<”或“”)(2)小瑞又按照图4的方式连接矩形ABCD 对边上的点.则ABCD ANML S S _____=.24. 在平面直角坐标系xOy 中,二次函数()0122>+-=a ax ax y 的对称轴为b x =.点()m A ,2-在直线3+-=x y 上. (1)求m ,b 的值;(2)若点()23,D 在二次函数()0122>+-=a ax ax y 上,求a 的值; (3)当二次函数()0122>+-=a ax ax y 与直线3+-=x y 相交于两点时,设左侧的交点为()11,y x P ,若131-<<-x ,求a 的取值范围.25.点P 的“d 值”定义如下:若点Q 为圆上任意一点,线段PQ 长度的最大值与最小值之差即为点P 的“d 值”,记为P d .特别的,当点P ,Q 重合时,线段PQ 的长度为0. 当⊙O 的半径为2时: (1)若点⎪⎭⎫⎝⎛-0,21C ,()4,3D ,则=C d _________,=D d _________; (2)若在直线22+=x y 上存在点P ,使得2=P d ,求出点P 的横坐标; (3)直线()033>+-=b b x y 与x 轴,y 轴分别交于点A ,B .若线段AB 上存在点P ,使得32<≤P d ,请你直接写出b 的取值范围.。

2024年北京市人大附中朝阳学校中考数学三模试卷(含答案)

2024年北京市人大附中朝阳学校中考数学三模试卷(含答案)

2024年北京市人大附中朝阳学校中考数学三模试卷一、选择题:本题共8小题,每小题2分,共16分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.下面几何体中,是三棱锥的是( )A. B. C. D.2.2024年5月3日,我国嫦娥六号顺利发射飞向太空,随后历时五天抵达第四阶段,进行环月飞行任务.6月2号早上嫦娥六号在月球背面的南极−艾特肯盆地成功落月,月球距离地球约384000000千米,将384000000用科学记数法表示为( )A. 38.4×107B. 3.84×108C. 3.84×109D. 0.384×1093.如图,点O在直线AB上,OC⊥OD.若∠AOC=120°,则∠BOD的大小为 ( )A. 30°B. 40°C. 50°D. 60°4.已知x−1>0,则下列结论正确的是( )A. −x<−1<1<xB. x<−1<−x<1C. −x<−1<x<1D. −1<−x<1<x5.不透明的袋子中装有红、绿小球各一个,除颜色外两个小球无其他差别,从中随机摸出一个小球,放回并摇匀,再从中随机摸出一个小球,那么两次摸球摸到一个红球一个绿球的概率是( )A. 34B. 13C. 12D. 146.若关于x的一元二次方程x2+x+m=0有两个相等的实数根,则实数m的值为( )A. −4B. −14C. 14D. 47.已知432=1849,442=1936,452=2025,462=2116.若n为整数,且n<2024<n+1,则n的值为( )A. 43B. 44C. 45D. 468.下面的三个问题中都有两个变量:①汽车从A地匀速行驶到B地,汽车的剩余路程y与行驶时间x;②将水箱中的水匀速放出,直至放完,水箱中的剩余水量y与放水时间x;③用长度一定的绳子围成一个矩形,矩形的面积y与一边长x.其中,变量y与变量x之间的函数关系可以用如图所示的图象表示的是( )A. ①②B. ①③C. ②③D. ①②③二、填空题:本题共8小题,每小题2分,共16分。

中考数学试题-2018通州数学一模答案 最新

中考数学试题-2018通州数学一模答案 最新

2018年初三数学中考模拟试卷答案2018.5一、选择题:(每题4分,共32分)1.C.2.D.3. A.4. B.5. D.6. C.7. D.8. B. 二、填空题:(每题4分,共16分)9.0<x10.OA=OB,AD=DB;C BOD AOD BDO ADO OBD OAD ∠=∠=∠∠=∠∠=∠,, 11.说明乙组数据平均值高且比较稳定,偏离平均值的幅度小. 12.3421 三、解答题:(每题4分,4道小题,共16分)13.解:2730cos 6)45sin 1(30+︒-︒-+-π原式=3323613+⨯-+-π ..... .........................................................(4分) =33332+--π=2-π ......................................................................(5分) 14. 解: 252=+y x ,∴y xy x5522++=y y x x 5)52(++ .............................................................................(3分) =y x 52+ ...............................................................................(4分) =2 ...............................................................................(5分)15. 解: 11112=+-⎪⎭⎫⎝⎛+x x x 在方程两边同时乘以2)1(+x 得:22)1()1(+=+-x x x ...............................................................................(1分)12122++=--x x x x ..........................................................................(2分) 23-=x32-=x ...............................................................................(3分) 检验:把32-=x 代入2)1(+x ,2)1(+x 0≠ ...............................................................................(4分)∴原方程的解是32-=x ...............................................................................(5分)16.证明:E 是CD 中点,∴EC DE = ............................. .................................(1分))AD ∥BC ,BE 的延长线与AD 的延长线相交于点M∴M ∠=∠2.......................... ............................................(2分)在BCE ∆和MDE ∆中⎪⎩⎪⎨⎧=∠=∠∠=∠DE CE M 342 ............... ........................................(3分) ∴BCE ∆≌MDE ∆(AAS ) ............... ........................................(4分) ∴EM BE = ................................. .....................................(5分)四、解答题:(每题5分,2道小题,共10分)17.解:根据题意可知:0)1(4)2(2=---=∆b b .....................(2分)解之得:0=b 或1-=b ......................(3分)抛物线的对称轴在轴的左侧,∴1-=b ...................(4分) ∴此二次函数的解析式为:122---=x x y ....................(5分)B18.解:(1) 30=a 元/台 ..................(2分)解:(2) y 与x 的一次函数解析式为:b kx y +=依据表中数据可得:⎩⎨⎧=+=+1250,4240b k b k ..........................................................(3分)解之得:162,3=-=b k∴一次函数解析式为:1623+-=x y ...........................................................(4分)解:(3)4540<<x ..........................................................(5分)19.解:过点B 作BM ⊥AH , 交AH 于点M ,根据题意可知,2.1=DH 米 1=BC 米 ∴DM =0.2米∴2.1=AM 米......................(1分)在ABM Rt ∆中 BAM ABAM∠=cos ...................................................(2分) ∴340.02.1cos ==∠=BAM AM AB 米, ..................................................(3分)l = AD + AB + BC = 5米 .................................................(4分)答:至少要用不锈钢材料的总长5米. .......... .......................................(5分)M20.解:............................................................................................(3分)样本中全市中考体育成绩的合格率为:%4.97%1001000903555000=⨯--- ...........................................................................(4分)今年该市中考体育成绩合格人数大约为:7800075972%4.97=⨯人...........................................................................(5分)21.解:.........................................................(1分)BEF ∆由ABC ∆绕着点B 逆时针旋转︒36得到且︒=∠36ABC∴点F B 、、A 在一条直线上,且BC BF =,EF BE AC AB ===︒=∠=∠=∠=∠36EFB ACB EBF ABC∴BC EF // ......................................................(2分)BC BF =,︒=∠=∠36ACB ABC∴︒=∠=∠72FCB BFC ,︒=∠108BAC ∴︒=∠72FAC ∴CF AC =∴CF BE = .F E CB A9035550043515012601055645400225200∴四边形EBCF 是等腰梯形. ................................................(3分)证明:(2)由(1)证明知CFA ∆∽BCF ∆BFCFCF AF = 即,AFAB ABAB AF += ............................................(4分) 解之得AB AF 251±-=(舍去负值) AB AF 251+-=. ............................................................(5分)22.由图(2)知,M 点的坐标是(2,8)∴由此判断:4,2==OA AB ; ......................................................(1分)N 点的横坐标是4,NQ 是平行于x 轴的射线,∴4=CO ......................................................(2分) ∴直角梯形OABC 的面积为:124)42(21)(21=⨯+=⋅+OA OC AB ..... (3分)(2)当42<<t 时,阴影部分的面积=直角梯形OABC 的面积-三角形ODE 的面积 ∴OE OD S ⋅-=211221=OE OD ,,4t OD -=∴)4(2t OE -=. ......................................................(4分) ∴2)4(12)4()4(22112t t t S --=-⋅-⨯-=482-+-=t t S . .........................................................(5分)23.结论:GD 与⊙O 相切........................................................................(1分) 证明:连接AG点G 、E 在圆上,∴AE AG =四边形ABCD 是平行四边形, ∴BC AD // ∴32,1∠=∠∠=∠BAG AB =∴3∠=∠B∴21∠=∠ ........................................................................(2分)在AED ∆和AGD ∆⎪⎩⎪⎨⎧=∠=∠=.,21AD AD AGAE ∴AED ∆≌AGD ∆∴AGD AED ∠=∠ ........................................................................(3分)ED 与⊙A 相切∴︒=∠90AED ∴︒=∠90AGD∴DG AG ⊥∴GD 与⊙A 相切 ........................................................................(4分)(2)GC =CD = 5,四边形ABCD 是平行四边形∴ AB=DC ,54∠=∠,5==AG AB ..................................................(5分) BC AD //∴64∠=∠D∴B ∠=∠=∠2165∴622∠=∠∴︒=∠306∴10=AD ......................................................................(6分)24.(1)结论:则线段BF 于线段AC 的数量关系是:相等;直线BF 于直线AC 的位置关系是:互相垂直; .......................................................................(1分)证明: ABC ∆、BDE ∆是等腰直角三角形 ∴︒=∠=∠=∠45BDE BAC ABC ,BC AD ⊥∴︒=∠45CFD∴CF CD = ............................................................(2分)BC FG //︒=∠=∠45ABC AGF∴AF FG =FC AF AD +=∴DC FG AD += ............................................................(3分)(2)FG 、DC 、AD 之间满足的数量关系式是DC AD FG +=;..........(4分) (3)过点B 作FG BH ⊥垂足为H ,过点P 作AG PK ⊥垂足为K ......(5分)G F ED BABC FG //,C 、D 、B 在一条直线上, 可证AFG ∆、DCF ∆是等腰直角三角形, 5,27==CD AG∴根据勾股定理得:25,7===FD FG AF∴2==BC AC ∴3=BDFG BH ⊥,∴CF BH //,︒=∠90BHFBC FG //∴四边形CFHB 是矩形 ∴2,5==FH BH,BC FG //∴︒=∠45G5==∴BH HG ,25=BGAG PK ⊥,2=PG∴2==KG PK24225=-=∴BK︒=∠︒=∠45,45HGB PBQ∴︒=∠45GBH21∠=∠∴AG PK ⊥,FG BH ⊥︒=∠=∠∴90BKP BHQ BQH ∆∴∽BPK ∆BHBKQH PK =∴∴=QH 45 ............................................................(6分)43=∴FQ BC FG //∴FQM DBM MFQ D ∠=∠∠=∠, ∴FQM ∆∽DBM ∆24=DM ............................................................(7分)FNP DNB MFQ D ∠=∠∠=∠,∴BDN ∆∽PFN ∆∴PFBDFNDN= ∴8215=DN∴8217821524=-=MN ............................................................(8分) 25.解:(1))4,1(),3,0(),0,1(),0,3(----D C B A .....................................................(2分) (2))3,2(--F ...........................................................(3分) (3)过点P 作y 轴的平行线与BF 交于点M ,,与x 轴交于点H 易得F (-2,-3),直线BF 解析式为1-=x y .设P (x ,322-+x x ),则M (x ,x -1), .......................................(4分)∴PM 22+--=x xPM 的最大值是49. ..........................................................(5分)当PM 取最大值时PBF ∆的面积最大34921⨯⨯=+=∆∆∆PBM PFM PBF S S S△PFB 的面积827的最大值为 ............................................................(6分)(4)如图,①当直线GH 在x 轴上方时,设圆的半径为R (R>0),则H (R-1,R ), 代入抛物线的表达式,解得2171+=R ......................................................(7分) ②当直线GH 在x 轴下方时,设圆的半径为r (r>0), 则H (r-1,-r ), 代入抛物线的表达式,解得2171+-=r ∴圆的半径为2171+或2171+-. .......................................................(8分)。

2019-2020年北京市中考数学各地区模拟试题分类(北京专版)(一)——二次函数(含解析)

2019-2020年北京市中考数学各地区模拟试题分类(北京专版)(一)——二次函数一.选择题1.(2020•海淀区一模)将抛物线y=2x2向下平移3个单位长度所得到的抛物线是()A.y=2x2+3 B.y=2x2﹣3 C.y=2(x﹣3)2D.y=2(x+3)2 2.(2019•房山区二模)如图,以40m/s的速度将小球沿与地面成30°角的方向击出时,小球的飞行路线将是一条抛物线.如果不考虑空气阻力,小球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有函数关系h=20t﹣5t2.下列叙述正确的是()A.小球的飞行高度不能达到15mB.小球的飞行高度可以达到25mC.小球从飞出到落地要用时4sD.小球飞出1s时的飞行高度为10m3.(2019•通州区三模)四位同学在研究二次函数y=ax2+bx+3(a≠0)时,甲同学发现函数图象的对称轴是直线x=1;乙同学发现3是一元二次方程ax2+bx+3=0(a≠0)的一个根;丙同学发现函数的最大值为4;丁同学发现当x=2时,y=5,已知这四位同学中只有一位同学发现的结论是错误的,则该同学是()A.甲B.乙C.丙D.丁4.(2019•怀柔区二模)在平面直角坐标系xOy中,四条抛物线如图所示,其表达式中的二次项系数绝对值最小的是()A.y1B.y2C.y3D.y4 5.(2019•道外区二模)将抛物线y=x2沿着x轴向左平移1个单位,再沿y轴向下平移1个单位,则得到的抛物线解析式为()A.y=(x﹣1)2﹣1 B.y=(x﹣1)2+1 C.y=(x+1)2+1 D.y=(x+1)2﹣1 6.(2019•大兴区一模)在平面直角坐标系xOy中,抛物线y=ax2+bx+c经过点(1,2),(5,3),则下列说法正确的是()①抛物线与y轴有交点②若抛物线经过点(2,2),则抛物线的开口向上③抛物线的对称轴不可能是x=3④若抛物线的对称轴是x=4,则抛物线与x轴有交点A.①②③④B.①②③C.①③④D.②④7.(2019•丰台区模拟)如图,排球运动员站在点O处练习发球,将球从O点正上方2m 的A处发出,把球看成点,其运行的高度y(m)与运行的水平距离x(m)满足关系式y=a(x﹣k)2+h.已知球与O点的水平距离为6m时,达到最高2.6m,球网与O点的水平距离为9m.高度为2.43m,球场的边界距O点的水平距离为18m,则下列判断正确的是()A.球不会过网B.球会过球网但不会出界C.球会过球网并会出界D.无法确定二.填空题8.(2020•朝阳区校级模拟)如图,在平面直角坐标系xOy中,点A(﹣2,﹣2),B(0,3),C(3,3),D(4,﹣2),y是关于x的二次函数,抛物线y1经过点A、B、C,抛物线y2经过点B、C、D,抛物线y3经过点A、B、D,抛物线y4经过点A、C、D.下列判断:①四条抛物线的开口方向均向下;②当x<0时,至少有一条抛物线表达式中的y均随x的增大而减小;③抛物线y1的顶点在抛物线y2顶点的上方;④抛物线y4与y轴的交点在点B的上方.所有正确结论的序号为.9.(2020•朝阳区校级模拟)已知:如图,在平面直角坐标系xOy中,点A在抛物线y=x2﹣4x+6上运动,过点A作AC⊥x轴于点C,以AC为对角线作正方形ABCD.则正方形的边长AB的最小值是.10.(2020•西城区校级模拟)已知在同一坐标系中,抛物线y1=ax2的开口向上,且它的开口比抛物线y2=3x2+2的开口小,请你写出一个满足条件的a值:.11.(2020•海淀区校级一模)计算机可以帮助我们又快又准地画出函数的图象.用“几何画板”软件画出的函数y=x2(x﹣3)和y=x﹣3的图象如图所示.根据图象可知方程x2(x﹣3)=x﹣3的解的个数为;若m,n分别为方程x2(x﹣3)=1和x﹣3=1的解,则m,n的大小关系是.12.(2020•西城区校级模拟)如图,双曲线y=与抛物线y=ax2+bx+c交于点A(x1,y1),B(x2,y2),C(x3,y3),由图象可得不等式组0<+bx+c的解集为.13.(2019•朝阳区模拟)在平面直角坐标系中xOy中,横、纵坐标都是整数的点叫做整点,记函数y=﹣x2+a(a>0)的图象在x轴上方的部分与x轴围成的区域(不含边界)为W.当a=2时,区域W内的整点个数为,若区域W内恰有7个整点,则a 的取值范围是.14.(2019•大兴区一模)已知二次函数y=x2﹣2x+3,当自变量x满足﹣1≤x≤2时,函数y的最大值是.15.(2019•朝阳区模拟)二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,对称轴为直线x=﹣1,则关于x的方程ax2+bx+c=0(a≠0)的解为.16.(2019•朝阳区模拟)请写出一个开口向下,并且与y轴交于点(0,2)的抛物线的解析式,y=.17.(2019•石景山区二模)如图,在喷水池的中心A处竖直安装一个水管AB,水管的顶端安有一个喷水池,使喷出的抛物线形水柱在与池中心A的水平距离为1m处达到最高点C,高度为3m,水柱落地点D离池中心A处3m,以水平方向为x轴,建立平面直角坐标系,若选取A点为坐标原点时的抛物线的表达式为y=﹣,则选取点D为坐标原点时的抛物线表达式为,水管AB的长为m.三.解答题18.(2020•北京二模)在平面直角坐标系xOy中,抛物线y=ax2﹣4ax(a≠0)与x轴交于点A,B(A在B的左侧).(1)求点A,B的坐标及抛物线的对称轴;(2)已知点P(2,2),Q(2+2a,5a),若抛物线与线段PQ有公共点,请结合函数图象,求a的取值范围.19.(2020•东城区二模)在平面直角坐标系xOy中,点A的坐标为(0,4),点B的坐标为(6,4).抛物线y=x2﹣5x+a﹣2的顶点为C.(1)若抛物线经过点B时,求顶点C的坐标;(2)若抛物线与线段AB恰有一个公共点,结合函数图象,求a的取值范围;(3)若满足不等式x2﹣5x+a﹣2≤0的x的最大值为3.直接写出实数a的值.20.(2020•海淀区二模)在平面直角坐标系xOy中,已知二次函数y=mx2+2mx+3的图象与x轴交于点A(﹣3,0),与y轴交于点B,将其图象在点A,B之间的部分(含A,B两点)记为F.(1)求点B的坐标及该函数的表达式;(2)若二次函数y=x2+2x+a的图象与F只有一个公共点,结合函数图象,求a的取值范围.21.(2020•门头沟区一模)在平面直角坐标系xOy中,一次函数y=﹣ax+3的图象与y 轴交于点A,与抛物线y=ax2﹣2ax﹣3a(a≠0)的对称轴交于点B,将点A向右平移5个单位得到点C,连接AB,AC得到的折线段记为图形G.(1)求出抛物线的对称轴和点C坐标;(2)①当a=﹣1时,直接写出抛物线y=ax2﹣2ax﹣3a与图形G的公共点个数.②如果抛物线y=ax2﹣2ax﹣3a与图形G有且只有一个公共点,求出a的取值范围.22.(2020•丰台区一模)已知二次函数y=ax2﹣2ax.(1)二次函数图象的对称轴是直线x=;(2)当0≤x≤3时,y的最大值与最小值的差为4,求该二次函数的表达式;(3)若a<0,对于二次函数图象上的两点P(x1,y1),Q(x2,y2),当t≤x1≤t+1,x2≥3时,均满足y1≥y2,请结合函数图象,直接写出t的取值范围.23.(2020•大兴区一模)在平面直角坐标系xOy中,抛物线y=x2﹣2mx+m﹣4与x轴交于点A,B(点A在点B的左侧),与y轴交于点C(0,﹣3).(1)求m的值;(2)若一次函数y=kx+5(k≠0)的图象经过点A,求k的值;(3)将二次函数的图象在点B,C间的部分(含点B和点C)向左平移n(n>0)个单位后得到的图象记为G,同时将(2)中得到的直线y=kx+5(k≠0)向上平移n个单位,当平移后的直线与图象G有公共点时,请结合图象直接写出n的取值范围.24.(2020•朝阳区一模)在平面直角坐标系xOy中,抛物线y=ax2﹣3ax+a+1与y轴交于点A.(1)求点A的坐标(用含a的式子表示);(2)求抛物线的对称轴;(3)已知点M(﹣2,﹣a﹣2),N(0,a).若抛物线与线段MN恰有一个公共点,结合函数图象,求a的取值范围.25.(2020•西城区校级模拟)定义:点Q到图形W上每一个点的距离的最小值称为点Q 到图形W的距离.例如,如图,正方形ABCD满足A(1,0),B(2,0),C(2,1),D(1,1),那么点O(0,0)到正方形ABCD的距离为1.(1)如果点G(0,b)(b<0)到抛物线y=x2的距离为3,请直接写出b的值.(2)求点M(3,0)到直线y=x+3的距离.(3)如果点N在直线x=2上运动,并且到直线y=x+4的距离为4,求N的坐标.参考答案一.选择题1.解:依题意,得平移后抛物线顶点坐标为(0,﹣3),由平移不改变二次项系数,故得到的抛物线解析式为:y=2x2﹣3.故选:B.2.解:A、当h=15时,15=20t﹣5t2,解得:t1=1,t2=3,故小球的飞行高度能达到15m,故此选项错误;B、h=20t﹣5t2=﹣5(t﹣2)2+20,故t=2时,小球的飞行高度最大为:20m,故此选项错误;C、∵h=0时,0=20t﹣5t2,解得:t1=0,t2=4,∴小球从飞出到落地要用时4s,故此选项正确;D、当t=1时,h=15,故小球飞出1s时的飞行高度为15m,故此选项错误;故选:C.3.解:对称轴是直线x=1时,b=﹣2a①;3是一元二次方程ax2+bx+3=0(a≠0)的一个根时,3a+b+1=0 ②;函数的最大值为4时,b2=﹣4a③;当x=2时,y=5时,2a+b﹣1=0 ④;当甲不对时,由②和④联立a=﹣2,b=5,不满足③,故不成立;当乙不对时,由①和③联立a=﹣1,b=2,不满足④,故不成立;当丙不对时,由②和④联立a=﹣2,b=5,不满足①,故不成立;当丁不对时,由①和③联立a=﹣1,b=2,成立;故选:D.4.解:由图象可知:抛物线y1的顶点为(1,0),与y轴的交点为(0,4),根据待定系数法求得y1=2(x ﹣1)2;抛物线y2的顶点为(1,0),与y轴的一个交点为(0,2),根据待定系数法求得y2=(x﹣1)2;抛物线y3的顶点为(1,0),与y轴的交点为(0,1),根据待定系数法求得y3=(x ﹣1)2;抛物线y4的顶点为(1,0),与y轴的交点为(0,﹣b)且﹣b<﹣4,根据待定系数法求得y4=﹣(x﹣1)2;综上,二次项系数绝对值最小的是y3故选:C.5.解:抛物线y=x2沿着x轴向左平移1个单位,再沿y轴向下平移1个单位,那么所得新抛物线的表达式是y=(x+1)2﹣1.故选:D.6.解:①当x=0时,y=c,∴与y轴有交点;①正确;②抛物线经过(1,2),(2,2),(5,3),∴,∴a=,∴抛物线开口向上;∴②正确;③如果抛物线的对称轴x=3,(1,2)关于对称轴对称的点为(5,2),与经过点(5,3)矛盾,∴对称轴不能是x=3,∴③正确;④对称轴是x=4,∴﹣=4,∴b=﹣8a,将点(1,2),(5,3)代入得,,∴24a+4b=1,∴﹣8a=1,∴a=﹣,∴b=1,c=△=b2﹣4ac=64a2﹣4ac>0,∴抛物线与x轴有交点,∴④正确;故选:A.7.解:∵球与O点的水平距离为6m时,达到最高2.6m,∴抛物线为y=a(x﹣6)2+2.6过点,∵抛物线y=a(x﹣6)2+2.6过点(0,2),∴2=a(0﹣6)2+2.6,解得:a=﹣,故y与x的关系式为:y=﹣(x﹣6)2+2.6,当x=9时,y=﹣(x﹣6)2+2.6=2.45>2.43,所以球能过球网;当y=0时,﹣(x﹣6)2+2.6=0,解得:x1=6+2>18,x2=6﹣2(舍去)故会出界.故选:C.二.填空题(共10小题)8.解:将点A、B、C的坐标代入抛物线表达式得:,解得:,故抛物线y1的表达式为:y1=﹣x2+x+3,顶点(,);同理可得:y2=﹣x2+x+3,顶点坐标为:(,);y3=﹣x2+x+3,顶点坐标为(1,);y4=﹣x2+2x+6,与y轴的交点为:(0,6);①由函数表达式知,四条抛物线的开口方向均向下,故正确,符合题意;②当x<0时,y3随x的增大而增大,故错误,不符合题意;③由顶点坐标知,抛物线y1的顶点在抛物线y2顶点的下方,错误,不符合题意;④抛物线y4与y轴的交点(0,6)在B的上方,正确,符合题意.故答案为:①④.9.解:∵四边形ABCD是正方形,∴AB=AC,∵y=x2﹣4x+6=(x﹣2)2+2,∴当x=2时,AC有最小值2,即正方形的边长AB的最小值是.故答案为:.10.解:∵抛物线y1=ax2的开口向上,∴a>0,又∵它的开口比抛物线y2=3x2+2的开口小,∴|a|>3,∴a>3,取a=4即符合题意,故答案为:4(答案不唯一).11.解:函数y=x2(x﹣3)的图象与函数y=x﹣3的图象有3个交点,则方程x2(x﹣3)=x﹣3的解有3个;方程x2(x﹣3)=1的解为函数图象与直线y=1的交点的横坐标,x﹣3=1的解为一次函数y=x﹣3与直线y=1的交点的横坐标,如图,由图象得m<n.故答案为3,m<n.12.解:由图可知,x2<x<x3时,0<<ax2+bx+c,所以,不等式组0<<ax2+bx+c的解集是x2<x<x3.故答案为:x2<x<x3.13.解:(1)当a=2时,函数y=﹣x2+2,函数与坐标轴的交点坐标分别为(0,2),(﹣,0),(,0),函数y=﹣x2+2的图象在x轴上方的部分与x轴围成的区域中,整数点有(﹣1,1),(1,1),(0,2)在边界上,不符合题意,点(0,1)在W区域内.所以此时在区域W内的整数点有1个.(2)由(1)发现,当(0,2)是顶点时,在W区域内只有1个整数点,边界上有3个整数点;当a=3时,在W区域内有4个整数点(﹣1,1),(1,1),(0,2),(0,1),边界上有3个整数点(0,3),(﹣1,2),(1,2);当a=4时,在W区域内有7个整数点(﹣1,1),(1,1),(0,2),(0,1),(0,3),(﹣1,2),(1,2);所以区域W内恰有7个整点,3<a≤4.故本题答案是1;3<a≤4.14.解:∵二次函数y=x2﹣2x+3=(x﹣1)2+2,∴该抛物线的对称轴为x=1,且a=1>0,∴当x=1时,函数有最小值2,当x=﹣1时,二次函数有最大值为:(﹣1﹣1)2+2=6,故答案为6.15.解:抛物线的对称轴为直线x=﹣1,抛物线与x轴的一个交点坐标为(1,0),所以抛物线与x轴的一个交点坐标为(﹣3,0),即x=1或﹣3时,函数值y=0,所以关于x的方程ax2+bx+c=0(a≠0)的解为x1=﹣3,x2=1.故答案为x1=﹣3,x2=1.16.解:函数解析式为y=﹣x2+2(答案不唯一).故答案为:﹣x2+2(答案不唯一).17.解:以池中心A为原点,竖直安装的水管为y轴,与水管垂直的为x轴建立直角坐标系.抛物线的解析式为:y=﹣(x﹣1)2+3,当选取点D为坐标原点时,相当于将原图象向左平移3个单位,故平移后的抛物线表达式为:y=﹣(x+2)2+3(﹣3≤x≤0);令x=﹣3,则y=﹣+3=2.25.故水管AB的长为2.25m.故答案为:y=﹣(x+2)2+3(﹣3≤x≤0);2.25.三.解答题(共8小题)18.解:(1)∵y=ax2﹣4ax=ax(x﹣4),∴y=0时,ax(x﹣4)=0,∴x=0或x=4,∴抛物线与x轴交于点A(0,0),B(4,0).∴抛物线y=ax2﹣4ax的对称轴为直线:.(2)y=ax2﹣4ax=a(x2﹣4x)=a(x﹣2)2﹣4a,∴抛物线的顶点坐标为(2,﹣4a).令y=5a,得ax2﹣4ax=5a,a(x﹣5)(x+1)=0,解得x=﹣1或x=5,∴当y=5a时,抛物线上两点M(﹣1,5a),N(5,5a).①当a>0时,抛物线开口向上,顶点位于x轴下方,且Q(2+2a,5a)位于点P的右侧,如图1,当点N位于点Q左侧时,抛物线与线段PQ有公共点,此时2+2a≥5,解得a.②当a<0时,抛物线开口向下,顶点位于x轴上方,点Q(2+2a,5a)位于点P的左侧,(ⅰ)如图2,当顶点位于点P下方时,抛物线与线段PQ有公共点,此时﹣4a≤2,解得a.(ⅱ)如图3,当顶点位于点P上方,点M位于点Q右侧时,抛物线与线段PQ有公共点,此时2+2a≤﹣1,解得a.综上,a的取值范围是a≥或﹣a<0或a.19.解:(1)由题意可得:4=36﹣5×6+a﹣2,∴a=0,∴抛物线的解析式为:y=x2﹣5x﹣2,∴顶点C坐标为(,﹣),(2)如图,当顶点C在线段AB下方时,由题意可得:,解得:0≤a<6;当顶点C在AB时,当x=时,y=4,∴,∴a=,综上所述:当0≤a<6或时,抛物线与线段AB恰有一个公共点;(3)由题意可得当x=3时,y=0,即9﹣15+a﹣2=0,∴a=8.20.解:(1)∵二次函数y=mx2+2mx+3的图象与x轴交于点A(﹣3,0),与y轴交于点B,∴令x=0,则y=3,∴B(0,3),把A(﹣3,0)代入y=mx2+2mx+3,求得m=﹣1,∴函数的表达式为y=﹣x2﹣2x+3;(2)画出函数y=﹣x2﹣2x+3的图象如图所示:把A(﹣3,0)代入y=x2+2x+a得0=9﹣6+a,解得a=﹣3,二次函数y=x2+2x+a的的顶点与图象F的顶点(﹣1,4)重合时,则4=1﹣2+a,解得a=5,由图象可知,二次函数y=x2+2x+a的图象与F只有一个公共点,a的取值范围为﹣3≤a<3或a=5.21.解:(1)∵抛物线y=ax2﹣2ax﹣3a(a≠0),∴对称轴x=﹣=1,∵一次函数y=﹣ax+3的图象与y轴交于点A,∴A(0,3),∵点A向右平移5个单位得到点C,∴C(5,3).(2)①如图1中,观察图象可知,抛物线与图象G的交点有3个,②∵抛物线的顶点(1,﹣4a),当a<0时,由①可知,a=﹣1时,抛物线经过A,B,∴当a<﹣1时,抛物线与图象G有且只有一个公共点,当抛物线的顶点在线段AC上时,如图2中,也满足条件,∴﹣4a=3,∴a=﹣,当a>0时,如图3中,抛物线经过点C时,25a﹣10a﹣3a=3,解得a=,抛物线经过点B时,﹣4a=﹣a+3,解得a=﹣(舍弃)不符合题意.观察图象可知a≥时,满足条件,综上所述,满足条件的a的取值范围:a<﹣1或a≥或a=﹣.22.解:(1)由题意可得:对称轴是直线x==1,故答案为:1;(2)当a>0时,∵对称轴为x=1,当x=1时,y有最小值为﹣a,当x=3时,y有最大值为3a,∴3a﹣(﹣a)=4.∴a=1,∴二次函数的表达式为:y=x2﹣2x;当a<0时,同理可得y有最大值为﹣a;y有最小值为3a,∴﹣a﹣3a=4,∴a=﹣1,∴二次函数的表达式为:y=﹣x2+2x;综上所述,二次函数的表达式为y=x2﹣2x或y=﹣x2+2x;(3)∵a<0,对称轴为x=1,∴x≤1时,y随x的增大而增大,x>1时,y随x的增大而减小,x=﹣1和x=3时的函数值相等,∵t≤x1≤t+1,x2≥3时,均满足y1≥y2,∴t≥﹣1,t+1≤3,∴﹣1≤t≤2.23.解:(1)∵抛物线y=x2﹣2mx+m﹣4与y轴交于点C(0,﹣3),∴m﹣4=﹣3,∴m=1.(2)∵抛物线的解析式为y=x2﹣2x﹣3,令y=0,得到x2﹣2x﹣3=0,解得x=﹣1或3,∵抛物线y=x2﹣2mx+m﹣4与x轴交于点A,B(点A在点B的左侧),∴A(﹣1,0),B(3,0),∵一次函数y=kx+5(k≠0)的图象经过点A,∴﹣k+5=0,∴k=5.(3)如图,设平移后的直线的解析式为y=5x+5+n,点C平移后的坐标为(﹣n,﹣3),点B平移后的坐标为(3﹣n,0),当点C落在直线y=5x+5+n上时,﹣3=﹣5n+5+n,解得n=2,当点B落在直线y=5x+5+n上时,0=5(3﹣n)+5+n解得n=5,观察图象可知,满足条件的n的取值范围为2≤n≤5.24.解:(1)∵抛物线y=ax2﹣3ax+a+1与y轴交于A,令x=0,得到y=a+1,∴A(0,a+1).(2)由抛物线y=ax2﹣3ax+a+1,可知x=﹣=,∴抛物线的对称轴x=.(3)对于任意实数a,都有a+1>a,可知点A在点N的上方,令抛物线上的点C(﹣2,y),∴y c=11a+1,①如图1中,当a>0时,y c>﹣a﹣2,∴点C在点M的上方,结合图象可知抛物线与线段MN没有公共点.②当a<0时,(a)如图2中,当抛物线经过点M时,y c=﹣a﹣2,∴a=﹣,结合图象可知抛物线与线段MN巧有一个公共点M.(b)当﹣<a<0时,观察图象可知抛物线与线段MN没有公共点.(c)如图3中,当a<﹣时,y c<﹣a﹣2,∴点C在点M的下方,结合图象可知抛物线与线段MN恰好有一个公共点,综上所述,满足条件的a的取值范围是a≤﹣.25.解:(1)①当G在原点下方时,b=﹣3,②当G在原点上方时,=3,整理得:x4+(1﹣2b)x2+b2﹣9=0,△=(1﹣2b)2﹣4(b2﹣9)=0,解得:b=(舍去),故答案为:﹣3;(2)如图1,作直线y=x+3与x轴交于点B(﹣3,0),过点M作MN⊥BN交于点N,则MN的长度为所求值,则△BMN为等腰直角三角形,故MN=BM=3,故点M(3,0)到直线y=x+3的距离为3;(3)①当点N在直线BH和x=2的交点下方时,如图2,作直线y=x+4交x轴于点B,过点N作NH⊥BH于点H,过点N作MN∥x轴交直线BH于点M,则HN=4,由(2)同理可知,△HMN为等腰直角三角形,MN =HN=4,故x M=2﹣4,y M=x M+4=6﹣4=y N,故点N的坐标为:(2,6﹣4);②当点N在直线BH和x=2的交点上方时,同理可得:点N的坐标为:(2,6+4);综上,点N的坐标为:(2,6﹣4)或(2,6+4).。

北京市通州区2018届高考数学一模考试试题(文)含答案

通州区20172017——2018学年度高三一模考试学年度高三一模考试数学(文)试卷数学(文)试卷2018年4月本试卷分第一部分和第二部分两部分,共150分.考试时间长120分钟.考生务必将答案答在答题卡上,在试卷上作答无效.考试结束后,将本试卷和答题卡一并交回案答在答题卡上,在试卷上作答无效.考试结束后,将本试卷和答题卡一并交回. .第一部分第一部分 (选择题(选择题(选择题 共40分) 一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项合题目要求的一项. .1.已知全集U =R ,集合{}|10A x x =-<,{}0,1,2B =,那么()U A B ð等于等于A .{}0,10,1,2,2B .{}1,2C .{}0,1D .{}2 2.双曲线2214y x -=的渐近线方程是的渐近线方程是A.55y x =± B. 5y x =± C. 12y x =± D.2y x =± 3.已知x ,y 满足0,1,2,x y x x y +³ìï£íï-³-î那么2z x y =+的最小值是的最小值是A. 1-B.0 C.1 D. 24.执行如右图所示的程序框图,若输出m 的值是25, 则输入k 的值可以是的值可以是A .4B .6C .8D .105.已知131log 6a =,31log 2b =, 123c -=,那么,那么 A .c b a >> B .c a b >> C .a b c >> D .a c b >>6.“.“x "ÎR ,210x bx -+>成立”是“[]0,1b Δ的”的输入k是开始开始 输出m结束结束否n k >2n n =+ 1,1n m ==m m n =+A .充分而不必要条件.充分而不必要条件B B .必要而不充分条件.必要而不充分条件C .充分必要条件.充分必要条件D .既不充分也不必要条件.既不充分也不必要条件7.已知四棱锥P ABCD -的底面ABCD 是边长为2的正方形,且它的正视图如图所示,的正方形,且它的正视图如图所示, 则该四棱锥侧视图的面积是则该四棱锥侧视图的面积是A .42B .4C . 22 D. 2 8.描金又称泥金画漆,是一种传统工艺美术技艺.描金又称泥金画漆,是一种传统工艺美术技艺. .起源于战国时期,在漆器表面,用金色描绘花纹的装饰方法,常以黑漆作底,也有少数以朱漆为底描绘花纹的装饰方法,常以黑漆作底,也有少数以朱漆为底. .描金工作分为两道工序,第一道工序是上漆,第二道工序是描绘花纹第一道工序是上漆,第二道工序是描绘花纹. .现甲、乙两位工匠要完成A ,B ,C 三件原料的描金工作,每件原料先由甲上漆,再由乙描绘花纹原料的描金工作,每件原料先由甲上漆,再由乙描绘花纹. . 每道工序所需的时间(单位:小时)如下:小时)如下:原料原料 时间时间 工序工序原料A原料B原料C上漆上漆916 10 描绘花纹描绘花纹15814则完成这三件原料的描金工作最少需要则完成这三件原料的描金工作最少需要A .43小时小时B B .46小时小时C C .47小时小时D D .49小时小时第二部分第二部分 (非选择题(非选择题(非选择题 共110分)分)二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上.把答案填在答题卡上.9.某校高三(.某校高三(11)班有学生40人,高三(人,高三(22)班有学生32人,现在要用分层抽样的方法从两个班抽出9人参加某项调查,则高三(人参加某项调查,则高三(11)班被抽出的人数是)班被抽出的人数是_______. _______. 1010.已知复数.已知复数()()1i 1i a -+是纯虚数,那么实数a =_______.1111.已知.已知0x >,0y >,且22x y +=,那么xy 的最大值是的最大值是_______. _______.1212.已知抛物线.已知抛物线28y x =的准线与圆心为C 的圆22280x y x ++-=交于A ,B 两点,那么CA CB -=_______.1313.已知函数.已知函数()()2232,()12.x x x f x x x ì--£ï=í-+>ïî当()0f a <时,实数a 的取值范围是的取值范围是__________________;;222若函数()()g x f x b =-恰有一个零点,则实数b 的取值范围是的取值范围是_______. _______.1414.在△.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知60B =°,4b =, 下列判断:下列判断:①若3c =,则角C 有两个解;有两个解; ②若6BC BA ×=,则AC 边上的高为332; ③a c +不可能是9. 其中正确判断的序号是其中正确判断的序号是_______. _______.三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程解答应写出文字说明,演算步骤或证明过程. . 1515..(本题满分13分)分)已知函数()2sin cos 3cos 222x x x f x p æö=-+ç÷èø.(Ⅰ)求()f x 的最小正周期;的最小正周期;(Ⅱ)求()f x 在区间[],0p -上的最大值和最小值.上的最大值和最小值.1616..(本题满分13分)分)已知数列{}n a 是等比数列,前4项和为154,且22a ,352a ,34a 成等差数列.成等差数列.(Ⅰ)求{}n a 的通项公式;的通项公式;(Ⅱ)设数列{}n b 是首项为2,公差为313a -的等差数列,其前n 项和为n S ,求满足10n S +>的最大正整数n .1717..(本题满分13分)分)作为北京副中心,通州区的建设不仅成为京津冀协同发展战略的关键节点,也肩负着医治北京市“大城市病”的历史重任,因此,通州区的发展备受瞩目医治北京市“大城市病”的历史重任,因此,通州区的发展备受瞩目. 2017. 2017年12月25日发布的《北京市通州区统计年鉴(日发布的《北京市通州区统计年鉴(201720172017))》显示:》显示:20162016年通州区全区完成全社会固定资产投资939.9 亿元,比上年增长17.417.4%,下面给出的是通州区%,下面给出的是通州区2011-2016年全社会固定资产投资及增长率,如图一资产投资及增长率,如图一. .又根据通州区统计局2018年1月25日发布:日发布:20172017年通州区全区完成全社会固定资产投资1054.5亿元,比上年增长12.212.2%%.(Ⅰ)在图二中画出2017年通州区全区完成全社会固定资产投资(柱状图),标出增长率并补全折线图;率并补全折线图;(Ⅱ)从2011-2017这7年中随机选取连续的2年份,求后一年份增长率高于前一年份增长率的概率;增长率的概率;(Ⅲ)设2011-2017这7年全社会固定资产投资总额的中位数为0x ,平均数为x ,比较0x 与x 的大小(写出结论即可)的大小(写出结论即可). .1818..(本题满分14分)分)如图所示的几何体中,平面PAD ^平面A B C D ,PAD △为直角三角形,90APD Ð=,四边形ABCD 为直角梯形,//AB DC ,AB AD ^,//PQ DC ,1PQ DC PD ===,2PA AB ==.图二(%)201725.020.015.010.05.00.0110017.416.416.416.721.720.0939.9800.8687.7590.8506.1415.8增长率全社会固定资产投资(亿元)2011-2017年全社会固定资产投资及增长率10009008007006005004003002001000201620152014201320122011图一17.416.416.416.721.720.0939.9800.8687.7590.8506.1415.8增长率全社会固定资产投资(亿元)(%)25.020.015.010.05.00.02011-2016年全社会固定资产投资及增长率10009008007006005004003002001000201620152014201320122011QBCD AP(Ⅰ)求证://PD 平面QBC ; (Ⅱ)求证:QC ^平面PABQ ; (Ⅲ)在线段QB 上是否存在点M ,使得,使得AM ^BC ,若存在,求QM 的值;若不存在,请说明理由的值;若不存在,请说明理由. .1919..(本题满分13分)分)已知椭圆()22122:10x y C a b a b +=>>过点()0,1A -,离心率为32.(Ⅰ)求椭圆1C 的方程;的方程; (Ⅱ)设椭圆22222:144x y C a b+=,直线l 交椭圆1C 于P ,Q 两点,交椭圆2C 于M ,N两点,O 为坐标原点为坐标原点. .(i )当直线l 经过原点时,求||||ON OP 的值;的值; (ⅱ)当直线l 经过A 点时,若7MN PQ =,求直线l 的方程的方程. .2020..(本题满分14分)分)已知函数1ln )(+-=x x x x f ,ax e x g x -=)(,a ÎR . (Ⅰ)求)(x f 的最小值;的最小值;(Ⅱ)若1)(³x g 在R 上恒成立,求a 的值;的值;(Ⅲ)求证:123111n n n n n n n n n e -æöæöæöæö++++<ç÷ç÷ç÷ç÷-èøèøèøèø对一切大于2的正整数n 都成立.高三数学(文科)一模考试参考答案高三数学(文科)一模考试参考答案2018.4一、选择题一、选择题题号题号 123 4 5 6 7 8 答案答案B DACDBCB二、填空题二、填空题9.5 10.1- 11. 12 12. 42 13.()1-+¥,;()[),41,-¥--+¥ 14.②③②③三、解答题三、解答题 15. 解:(Ⅰ)因为()2sin cos3cos 222x x x f x p æö=-+ç÷èø 2sin cos 223cos 2x x x+=33cos 21si 2n 2x x =++3sin ++32x p æö=ç÷èø. ………………………………………… 4 4分所以()f x 的最小正周期2T p = ………………………………………… 6 6分(Ⅱ)因为[],0x p Î-,所以2+,333x p p p éùÎ-êúëû. 所以当33x pp+=,即0x =时,函数)(x f 取得最大值3sin + 3.32p=当32x pp+=-,即56x p=-时,函数)(x f 取得最小值31+.2- 所以()f x 在区间[],0p -上的最大值和最小值分别为3和31+.2-……………………………… 13 13分16. 解:(Ⅰ)设等比数列{}n a 的公比为.q 因为22a ,352a ,34a 成等差数列,成等差数列,所以32352=24.2a a a ´+ 所以232.a a =所以 2.q = ………………………… 3 3分 因为等比数列{}n a 前4项和4154S =,所以()411215.124a -=-所以11.4a =……………… 6 6分 所以13122.4n n n a --=´=………… 7 7分 (Ⅱ)因为数列{}n b 是首项为2,公差为313a -的等差数列,的等差数列,又311=33a --, 所以()211132.236nn n n n S n --+æö=+-=ç÷èø所以10n S +>,即()()211310.6n n -+++>…………………… 11 11分 所以()()211310.n n +-+< 所以112.n -<< 因为n 为最大正整数,为最大正整数, 所以11.n =……………………………… 13 13分17. 解:(Ⅰ)………………………… 4 4分 12.21054.5图二(%)201725.020.015.010.05.00.0110017.416.416.416.721.720.0939.9800.8687.7590.8506.1415.8增长率全社会固定资产投资(亿元)2011-2017年全社会固定资产投资及增长率10009008007006005004003002001000201620152014201320122011(Ⅱ)从2011-2017这7年中随机选取连续的2年份,有()20112011,2012,2012,()2012,2013,()2013,2014,()2014,2015,()2015,2016,()2016,2017共6组,组, ………………………………………… 6 6分 设“选取连续的2年,后一年份增长率高于前一年份增长率”为事件A ,则事件A 包含有()20112011,2012,2012,()2015,2016共2组. 所以()1.3P A =…………………… 10 10分 所以7年中随机选取连续的2年,后一年增长率高于前一年增长率的概率是1.3(Ⅲ)0x <x . …………………………………… 13 13分18. 解:(Ⅰ)因为//PQ CD ,PQ CD =, 所以四边形PQCD 是平行四边形是平行四边形. . 所以//.PD QC 因为PD Ë平面QBC ,QC Ì平面QBC , 所以//PD 平面.QBC…………………………………… 4 4分 (Ⅱ)因为平面PAD ^平面ABCD ,AB AD ^,AB Ì平面PABQ , 所以AB ^平面.PAD因为PD Ì平面PAD ,所以.PD AB ^ 因为PA PD ^,PAAB A =,PA Ì平面PABQ ,AB Ì平面PABQ ,所以PD ^平面.PABQ 因为//PD QC ,所以QC ^平面.PABQ ………………………… 9 9分 (Ⅲ)假设存在,过点A 作AM QB ^, 交QB 于M , 由(Ⅱ)可知QC ^平面PABQ ,又因为AM Ì平面PABQ , 所以.QC AM ^ 又因为AM QB ^,QB QC Q =,所以AM ^平面.QBC因为BC Ì平面QBC ,所以AM ^BC . ……………………………… 12 12分 连接AQ ,因为1PQ PD DC ===,2PA AB ==, 所以△QAB 的面积是2. 所以115 2.22QB AM AM ××=´×= 所以45.5AM =所以3 5.5QM =……………………………… 14 14分19. 解:(Ⅰ)因为椭圆的焦点在x 轴上,且过点()0,1-,离心率32e =,所以1b =,3.2c a = 所以由所以由222a b c =+,得2 4.a =所以椭圆1C 的标准方程是221.4x y += ……………………………… 3 3分 (Ⅱ)(i )因为直线l 经过原点O ,所以由椭圆的对称性,不妨设点P ,N 在点O 的同侧的同侧. . 设点()00,P x y ,ON OPl =,所以220014x y +=,()00,.N x y l l因为点N 在椭圆2C 上,上,所以()()221164x y l l +=,即2221.44x y l æö+=ç÷èø所以2l =(负值舍去),即 2.ON OP=……………………………… 7 7分 (ⅱ)因为直线l 经过A 点,点,①当直线l 的斜率不存在时,2MN PQ =,不符合题意,不符合题意. . ……………………………… 8 8分 ②当直线l 的斜率存在时,设为k , 所以直线l 的方程为 1.y kx =-联立方程组221,1,4y kx x y =-ìïí+=ïî 消去y ,得()221480.k x kx +-= 所以122814kx x k +=+,120.x x ×=所以2281.14k PQ k k =+×+………………………………………… 10 10分 联立方程组221,1,164y kx x y =-ìïí+=ïî 消去y ,得()22148120.k x kx +--=所以122814k x x k +=+,12212.14x x k -×=+所以2222812141414k MN k k k -æö=+×-×ç÷++èø22241631.14k k k +=+×+……………………………………1212分 因为7MN PQ =, 所以216327.k k +=所以12k =,或12k =-. 所以直线l 的方程是112y x =-,或11.2y x =--……………………………………1313分20.解:(Ⅰ)因为函数1ln )(+-=x x x x f ,(0,)x Î+¥, 所以x x f ln )('=.所以当)10(,Îx 时,0)('<x f ;当)1(¥+Î,x 时,0)('>x f . 所以函数)(x f 在)10(,上单调递减,在)1(¥+,上单调递增上单调递增.. 所以当1=x 时,)(x f 取得最小值0)1(=f . ………………………………33分 (Ⅱ)设()()11xh x g x e ax =-=--,所以a e x h x-=)('.①当0£a 时,0)('>x h 恒成立,函数)(x h 在R 上是增函数,且0)0(=h , 所以当0<x 时,0)(<x h . 所以所以0£a 不满足条件不满足条件. . ②当0>a 时,令'()0h x >,即0xe a ->,解得ln x a >;令'()0h x <,即0x e a -<,解得ln .x a <所以()h x 在(),ln a -¥上单调递减,在()ln ,a +¥上单调递增上单调递增. .所以当a x ln =时,)(x h 取得最小值,1ln )(ln --=a a a a h .要使()()10h x g x =-³在R 上恒成立,则需满足(ln )0h a ³.由(Ⅰ)可知当0>a 时,ln 10a a a -+³,所以ln 10.a a a --£所以01ln =--a a a .所以1=a . …………………………………… 9 9分 (Ⅲ)由(Ⅱ)可知01³--x e x 恒成立,即xe x £+1. 对任意的正整数n ,令n ix -=,1,2,1-=n i ,则n i e n i-£-1,1,2,, 1.i n =- 所以i n e n i -£-)1(,即i n e n i n -£-)( , 1,2,, 1.i n =- 所以)1(21)1()2()1(----+++£++-+-n n n n e e e nn n n n 111111[1()]1.111n e e e e e e -------=<=--- 所以12311.1n n n n n n n n n e -æöæöæöæö++++<ç÷ç÷ç÷ç÷-èøèøèøèø ……………………………… 14 14分。

中考数学模试试题(5)含答案解析

中考数学模试卷一、选择题(每小题4分,共48分)1.(4分)计算正确的是()A.(﹣5)0=0 B.x3+x4=x7C.(﹣a2b3)2=﹣a4b6D.2a2•a﹣1=2a2.(4分)如图,直线l1∥l2,且分别与△ABC的两边AB、AC相交,若∠A=45°,∠1=65°,则∠2的度数为()A.45°B.65°C.70°D.110°3.(4分)实数a,b在数轴上的对应点的位置如图所示,则正确的结论是()A.a>﹣1 B.a•b>0 C.﹣b<0<﹣a D.|a|>|b|4.(4分)如图,下列水平放置的几何体中,左视图不是矩形的是()A. B.C.D.5.(4分)在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其他完全相同.小张通过多次摸球试验后发现,其中摸到红色、黑色球的频率稳定在15%和45%,则口袋中白色球的个数很可能是()A.6 B.16 C.18 D.246.(4分)如图,是在直角坐标系中围棋子摆出的图案,若再摆放一黑一白两枚棋子,使9枚棋子组成的图案既是轴对称图形又是中心对称图形,则这两枚棋子的坐标是()A.黑(3,3),白(3,1) B.黑(3,1),白(3,3) C.黑(1,5),白(5,5) D.黑(3,2),白(3,3)7.(4分)一次函数y=kx﹣k与反比例函数y=在同一直角坐标系内的图象大致是()A.B.C.D.8.(4分)已知关于x,y的二元一次方程组,若x+y>3,则m的取值范围是()A.m>1 B.m<2 C.m>3 D.m>59.(4分)如图,在矩形ABCD中,对角线AC,BD相交于点O,AE⊥BD,垂足为E,AE=3,ED=3BE,则AB的值为()A.6 B.5 C.2 D.310.(4分)以来,把扶贫开发工作纳入“四个全面”并着力持续推进,据统计的某省贫困人口约484万,截止底,全省贫困人口约210万,设这两年全省贫困人口的年平均下降率为x,则下列方程正确的是()A.484(1﹣2x)=210 B.484x2=210C.484(1﹣x)2=210 D.484(1﹣x)+484(1﹣x)2=21011.(4分)一块等边三角形的木板,边长为1,现将木板沿水平线翻滚(如图),那么B点从开始至结束所走过的路径长度为()A. B. C.4 D.2+12.(4分)如图所示,△ABC为等腰直角三角形,∠ACB=90°,AC=BC=2,正方形DEFG边长也为2,且AC与DE在同一直线上,△ABC从C点与D点重合开始,沿直线DE向右平移,直到点A与点E重合为止,设CD的长为x,△ABC与正方形DEFG重合部分(图中阴影部分)的面积为y,则y与x之间的函数关系的图象大致是()A.B.C.D.二、填空题(每小题4分,共24分)13.(4分)x2+kx+9是完全平方式,则k=.14.(4分)关于x的一元二次方程kx2+2x﹣1=0有两个不相等的实数根,则k的取值范围是.15.(4分)一个不透明的口袋里有4张形状完全相同的卡片,分别写有数字1、2、3、4,口袋外有两张卡片,分别写有数字2、3,现随机从口袋里取出一张卡片,则这张卡片与口袋外的卡片上的数字能构成三角形的概率是.16.(4分)如图,抛物线y=ax2+1与y轴交于点A,过点A与x轴平行的直线交抛物线y=4x2于点B、C,则线段BC的长为.17.(4分)如图,△ABC内接于⊙O,AB=BC,直径MN⊥BC于点D,与AC边相交于点E,若⊙O的半径为2,OE=2,则OD的长为.18.(4分)如图,在菱形ABCD中,AB=BD,点E、F分别在BC、CD上,且BE=CF,连接BF、DE交于点M,延长ED到H使DH=BM,连接AM,AH,则以下四个结论:①△BDF≌△DCE;②∠BMD=120°;③△AMH是等边三角形④S四边形ABMD=AM2.其中正确结论的是.三、解答题(7小题,共78分)19.(8分)先化简,再求值:,其中x是满足不等式﹣(x ﹣1)≥的非负整数解.20.(10分)在初三综合素质评定结束后,为了了解年级的评定情况,现对初三某班的学生进行了评定等级的调查,绘制了如下男女生等级情况折线统计图和全班等级情况扇形统计图.(1)调查发现评定等级为合格的男生有2人,女生有1人,则全班共有 名学生.(2)补全女生等级评定的折线统计图.(3)根据调查情况,该班班主任从评定等级为合格和A 的学生中各选1名学生进行交流,请用树形图或表格求出刚好选中一名男生和一名女生的概率.21.(10分)在Rt △ABC 中,∠ACB=90°,BE 平分∠ABC ,D 是边AB 上一点,以BD 为直径的⊙O 经过点E ,且交BC 于点F .(1)求证:AC 是⊙O 的切线;(2)若BF=6,⊙O 的半径为5,求CE 的长.22.(12分)如图所示,二次函数y=﹣2x 2+4x +m 的图象与x 轴的一个交点为A (3,0),另一个交点为B .且与y 轴交于点C .(1)求m 的值及点B 的坐标;(2)求△ABC 的面积;(3)该二次函数图象上有一点D (x ,y ),使S △ABD =S △ABC ,请求出D 点的坐标.23.(12分)浩然文具店新到一种计算器,进价为25元,营销时发现:当销售单价定为30元时,每天的销售量为150件,若销售单价每上涨1元,每天的销售量就会减少10件.(1)写出商店销售这种计算器,每天所得的销售利润w(元)与销售单价x(元)之间的函数关系式;(2)求销售单价定为多少元时,每天的销售利润最大?最大值是多少?(3)商店的营销部结合上述情况,提出了A、B两种营销方案:方案A:为了让利学生,该计算器的销售利润不超过进价的24%;方案B:为了满足市场需要,每天的销售量不少于120件.请比较哪种方案的最大利润更高,并说明理由.24.(12分)如图,在平面直角坐标系中,O为坐标原点,△ABO的边AB垂直于x轴,垂足为点B,反比例函数y=(x>0)的图象经过AO的中点C,交AB 于点D,且AD=3.(1)设点A的坐标为(4,4)则点C的坐标为;(2)若点D的坐标为(4,n).①求反比函数y=的表达式;②求经过C,D两点的直线所对应的函数解析式;(3)在(2)的条件下,设点E是线段CD上的动点(不与点C,D重合),过点E且平行y轴的直线l与反比例函数的图象交于点F,求△OEF面积的最大值.25.(14分)在正方形ABCD中,动点E,F分别从D,C两点同时出发,以相同的速度在直线DC,CB上移动.(1)如图1,当点E在边DC上自D向C移动,同时点F在边CB上自C向B移动时,连接AE和DF交于点P,请你写出AE与DF的数量关系和位置关系,并说明理由;(2)如图2,当E,F分别在边CD,BC的延长线上移动时,连接AE,DF,(1)中的结论还成立吗?(请你直接回答“是”或“否”,不需证明);连接AC,请你直接写出△ACE为等腰三角形时CE:CD的值;(3)如图3,当E,F分别在直线DC,CB上移动时,连接AE和DF交于点P,由于点E,F的移动,使得点P也随之运动,请你画出点P运动路径的草图.若AD=2,试求出线段CP的最大值.参考答案与试题解析一、选择题(每小题4分,共48分)1.【考点】49:单项式乘单项式;47:幂的乘方与积的乘方;6E:零指数幂;6F:负整数指数幂.【分析】根据整式乘法运算法则以及实数运算法则即可求出答案.【解答】解:(A)原式=1,故A错误;(B)x3与x4不是同类项,不能进行合并,故B错误;(C)原式=a4b6,故C错误;故选:D.【点评】本题考查学生的计算能力,解题的关键是熟练运用整式的运算法则,本题属于基础题型.2.【考点】JA:平行线的性质.【分析】根据平行线的性质求出∠AEF,根据三角形内角和定理求出∠AFE,即可得出答案.【解答】解:如图,∵直线l1∥l2,∠1=65°,∴∠AEF=∠1=65°,∵∠A=45°,∴∠2=∠AFE=180°﹣∠A﹣∠AEF=70°,故选:C.【点评】本题考查了平行线的性质,三角形的内角和定理,对顶角相等的应用,解此题的关键是求出∠AEF的度数,注意:两直线平行,同位角相等.3.【考点】29:实数与数轴;15:绝对值.【分析】直接利用a,b在数轴上的位置,进而分别分析得出答案.【解答】解:由a,b在数轴上的位置可得:A、a<﹣1,故此选项错误;B、ab<0,故此选项错误;C、﹣b<0<﹣a,正确;D、|a|<|b|,故此选项错误;故选:C.【点评】此题主要考查了实数与数轴,正确利用a,b的位置分析是解题关键.4.【考点】U1:简单几何体的三视图.【分析】根据左视图是从左面看到的视图,对各选项分析判断后利用排除法求解.【解答】解:A、圆柱的左视图是矩形,故本选项错误;B、圆锥的左视图是等腰三角形,故本选项正确;C、三棱柱的左视图是矩形,故本选项错误;D、长方体的左视图是矩形,故本选项错误.故选:B.【点评】本题考查了简单几何体的三视图,熟练掌握常见几何体的三视图是解题的关键.5.【考点】X8:利用频率估计概率.【分析】先由频率之和为1计算出白球的频率,再由数据总数×频率=频数计算白球的个数,即可求出答案.【解答】解:∵摸到红色球、黑色球的频率稳定在15%和45%,∴摸到白球的频率为1﹣15%﹣45%=40%,故口袋中白色球的个数可能是40×40%=16个.故选:B.【点评】此题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.6.【考点】R5:中心对称图形;D3:坐标确定位置;P3:轴对称图形.【分析】首先根据各选项棋子的位置,进而结合轴对称图形和中心对称图形的性质判断得出即可.【解答】解:A、当摆放黑(3,3),白(3,1)时,此时是轴对称图形,也是中心对称图形,故此选项正确;B、当摆放黑(3,1),白(3,3)时,此时是轴对称图形,不是中心对称图形,故此选项错误;C、当摆放黑(1,5),白(5,5)时,此时不是轴对称图形也不是中心对称图形,故此选项错误;D、当摆放黑(3,2),白(3,3)时,此时是轴对称图形不是中心对称图形,故此选项错误.故选:A.【点评】此题主要考查了坐标确定位置以及轴对称图形与中心对称图形的性质,利用已知确定各点位置是解题关键.7.【考点】G2:反比例函数的图象;F3:一次函数的图象.【分析】分别根据反比例函数及一次函数图象的特点对四个选项进行逐一分析即可.【解答】解:A、∵由反比例函数的图象在一、三象限可知,k>0,∴﹣k<0,∴一次函数y=kx﹣k的图象经过一、三、四象限,故本选项错误;B、∵由反比例函数的图象在二、四象限可知,k<0,∴﹣k>0,∴一次函数y=kx﹣k的图象经过一、二、四象限,故本选项错误;C、∵由反比例函数的图象在二、四象限可知,k<0,∴﹣k>0,∴一次函数y=kx ﹣k的图象经过一、二、四象限,故本选项正确;D、∵由反比例函数的图象在二、四象限可知,k<0,∴﹣k>0,∴一次函数y=kx ﹣k的图象经过一、二、四象限,故本选项错误.故选:C.【点评】本题考查的是反比例函数及一次函数图象,解答此题的关键是先根据反比例函数所在的象限判断出k的符号,再根据一次函数的性质进行解答.8.【考点】97:二元一次方程组的解;C6:解一元一次不等式.【分析】将m看做已知数表示出x与y,代入x+y>3计算即可求出m的范围.【解答】解:,①+②得:4x=4m﹣6,即x=,①﹣②×3得:4y=﹣2,即y=﹣,根据x+y>3得:﹣>3,去分母得:2m﹣3﹣1>6,解得:m>5.故选:D.【点评】此题考查了二元一次方程组的解,以及解一元一次不等式,熟练掌握运算法则是解本题的关键.9.【考点】LB:矩形的性质.【分析】由在矩形ABCD中,AE⊥BD于E,BE:ED=1:3,易证得△OAB是等边三角形,继而求得∠BAE的度数,由△OAB是等边三角形,求出∠ADE的度数,又由AE=3,即可求得AB的长.【解答】解:∵四边形ABCD是矩形,∴OB=OD,OA=OC,AC=BD,∴OA=OB,∵BE:ED=1:3,∴BE:OB=1:2,∵AE⊥BD,∴AB=OA,∴OA=AB=OB,即△OAB是等边三角形,∴∠ABD=60°,∵AE⊥BD,AE=3,∴AB==2,故选:C.【点评】此题考查了矩形的性质、等边三角形的判定与性质以及含30°角的直角三角形的性质,结合已知条件和等边三角形的判定方法证明△OAB是等边三角形是解题关键.10.【考点】AC:由实际问题抽象出一元二次方程.【分析】等量关系为:贫困人口×(1﹣下降率)2=贫困人口,把相关数值代入计算即可.【解答】解:设这两年全省贫困人口的年平均下降率为x,根据题意得:484(1﹣x)2=210,故选:C.【点评】本题考查由实际问题抽象出一元二次方程;得到2年内变化情况的等量关系是解决本题的关键11.【考点】MN:弧长的计算.【分析】根据题目的条件和图形可以判断点B分别以C和A为圆心CB和AB为半径旋转120°,并且所走过的两路径相等,求出一个乘以2即可得到.【解答】解:如图:BC=AB=AC=1,∠BCB′=120°,∴B点从开始至结束所走过的路径长度为2×弧BB′=2×=,故选:B.【点评】本题考查了弧长的计算方法,求弧长时首先要确定弧所对的圆心角和半径,利用公式求得即可.12.【考点】E7:动点问题的函数图象.【分析】此题可分为两段求解,即C从D点运动到E点和A从D点运动到E点,列出面积随动点变化的函数关系式即可.【解答】解:设CD的长为x,△ABC与正方形DEFG重合部分(图中阴影部分)的面积为y∴当C从D点运动到E点时,即0≤x≤2时,y=×2×2﹣(2﹣x)×(2﹣x)=﹣x2+2x.当A从D点运动到E点时,即2<x≤4时,y=×[2﹣(x﹣2)]×[2﹣(x﹣2)]=x2﹣4x+8,∴y与x之间的函数关系由函数关系式可看出A中的函数图象与所求的分段函数对应.故选:A.【点评】本题考查的动点变化过程中面积的变化关系,重点是列出函数关系式,但需注意自变量的取值范围.二、填空题(每小题4分,共24分)13.【考点】4E:完全平方式.【分析】这里首末两项是x和3这两个数的平方,那么中间一项为加上或减去x 和3的积的2倍,故k=±6.【解答】解:中间一项为加上或减去x和3的积的2倍,故k=±6.【点评】本题是完全平方公式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.14.【考点】AA:根的判别式.【分析】由方程有两个不等实数根可得出关于k的一元一次不等式组,解不等式组即可得出结论.【解答】解:由已知得:,即,解得:k>﹣1且k≠0.故答案为:k>﹣1且k≠0.【点评】本题考查了根的判别式以及解一元一次不等式组,解题的关键是得出关于k的一元一次不等式组.本题属于基础题,难度不大,解决该题型题目时,根据根的个数结合根的判别式得出不等式(或不等式组)是关键.15.【考点】X4:概率公式;K6:三角形三边关系.【分析】由一个不透明的口袋里有4张形状完全相同的卡片,分别写有数字1,2,3,4,可得共有4种等可能的结果,又由这张卡片与口袋外的两张卡片上的数作为三角形三边的长,能构成三角形的有:2,2,3;3,2,3;4,2,3;共3种情况,然后利用概率公式求解即可求得答案.【解答】解:∵一个不透明的口袋里有4张形状完全相同的卡片,分别写有数字1,2,3,4,∴共有4种等可能的结果,∵这张卡片与口袋外的两张卡片上的数作为三角形三边的长,能构成三角形的有:2,2,3;3,2,3;4,2,3;共3种情况,∴能构成三角形的概率是:.故答案为:.【点评】此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.16.【考点】H3:二次函数的性质.【分析】先由y轴上点的横坐标为0求出A点坐标为(0,1),再将y=1代入y=4x2,求出x的值,得出B、C两点的坐标,进而求出BC的长度.【解答】解:∵抛物线y=ax2+1与y轴交于点A,∴A点坐标为(0,1).当y=1时,4x2=1,解得x=±,∴B点坐标为(﹣,1),C点坐标为(,1),∴BC=﹣(﹣)=1,故答案为:1.【点评】本题考查了二次函数的性质,两函数交点坐标的求法以及平行于x轴上的两点之间的距离的知识,解答本题的关键是求出点A的坐标,此题难度不大.17.【考点】MA:三角形的外接圆与外心;M2:垂径定理.【分析】连接BO并延长交AC于F,如图,先利用垂径定理得到BF⊥AC,BD=CD,再证明Rt△BOD∽Rt△EOF得到==,则设OF=x,则OD=x,接着证明Rt△DBO∽Rt△DEC,利用相似比得到=,所以DB2=3x2+2x,然后利用勾股定理得到关于x的方程,最后解方程求出x后,计算x即可.【解答】解:连接BO并延长交AC于F,如图,∵BA=BC,∴=,∴BF⊥AC,∵直径MN⊥BC,∴BD=CD,∵∠BOD=∠EOF,∴Rt△BOD∽Rt△EOF,∴===,设OF=x,则OD=x,∵∠DBO=∠DEC,∴Rt△DBO∽Rt△DEC,∴=,即=,而BD=CD,∴DB2=x(x+2)=3x2+2x,在Rt△OBD中,3x2+2x+3x2=(2)2,解得x1=,x2=﹣(舍去),∴OD=x=2.故答案为2.【点评】本题考查了三角形外接圆与外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.也考查了垂径定理.熟练应用相似比是解决问题的关键.18.【考点】LO:四边形综合题.【分析】先证明△ABD是等边三角形,再根据菱形的性质可得∠BDF=∠C=60°,再求出DF=CE,然后利用“边角边”即可证明△BDF≌△DCE,从而判定①正确;根据全等三角形对应角相等可得∠DBF=∠EDC,由三角形的外角性质求出∠DMF=∠BDC=60°,再求出∠BMD=120°,从而判定②正确;根据三角形的外角性质和平行线的性质求出∠ABM=∠ADH,由SAS证明△ABM ≌△ADH,根据全等三角形的性质得出AH=AM,∠BAM=∠DAH,然后求出∠MAH=∠BAD=60°,从而判定出△AMH是等边三角形,得出③正确;根据全等三角形的面积相等可得△AMH的面积等于四边形ABMD的面积,然后判定出④正确.【解答】解:在菱形ABCD中,∵AB=BD,∴AB=BD=AD,∴△ABD是等边三角形,∴根据菱形的性质可得∠BDF=∠C=60°,∵BE=CF,∴BC﹣BE=CD﹣CF,即CE=DF,在△BDF和△DCE中,,∴△BDF≌△DCE(SAS),故①正确;∴∠DBF=∠EDC,∵∠DMF=∠DBF+∠BDE=∠EDC+∠BDE=∠BDC=60°,∴∠BMD=180°﹣∠DMF=180°﹣60°=120°,故②正确;∵∠DEB=∠EDC+∠C=∠EDC+60°,∠ABM=∠ABD+∠DBF=∠DBF+60°,∴∠DEB=∠ABM,又∵AD∥BC,∴∠ADH=∠DEB,∴∠ADH=∠ABM,在△ABM和△ADH中,,∴△ABM≌△ADH(SAS),∴AH=AM,∠BAM=∠DAH,∴∠MAH=∠MAD+∠DAH=∠MAD+∠BAM=∠BAD=60°,∴△AMH是等边三角形,故③正确;∵△ABM≌△ADH,∴△AMH的面积等于四边形ABMD的面积,又∵△AMH的面积=AM•AM=AM2,=AM2,故④正确,∴S四边形ABMD综上所述,正确的是①②③④.故答案为:①②③④.【点评】本题是四边形综合题目,考查了菱形的性质,全等三角形的判定与性质,等边三角形的判定与性质,题目较为复杂,特别是图形的识别有难度,从图形中准确确定出全等三角形并找出全等的条件是解题的关键.三、解答题(7小题,共78分)19.【考点】6D:分式的化简求值;C7:一元一次不等式的整数解.【分析】根据分式的运算法则即可求出答案.【解答】解:∵﹣(x﹣1)≥,∴x﹣1≤﹣1∴x≤0,非负整数解为0∴x=0原式=÷(﹣)=×==【点评】本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.20.【考点】VD:折线统计图;VB:扇形统计图;X6:列表法与树状图法.【分析】(1)根据合格的男生有2人,女生有1人,得出合格的总人数,再根据评级合格的学生占6%,即可得出全班的人数;(2)根据折线统计图和扇形统计图以及全班的学生数,即可得出女生评级3A 的学生和女生评级4A的学生数,即可补全折线统计图;(3)根据题意画出图表,再根据概率公式即可得出答案.【解答】解:因为合格的男生有2人,女生有1人,共计2+1=3人,又因为评级合格的学生占6%,所以全班共有:3÷6%=50(人).故答案为:50.(2)根据题意得:女生评级3A的学生是:50×16%﹣3=8﹣3=5(人),女生评级4A的学生是:50×50%﹣10=25﹣10=15(人),如图:(3)根据题意如表:∵共有12种等可能的结果数,其中一名男生和一名女生的共有7种,∴P=,答:选中一名男生和一名女生的概率为:.【点评】此题考查的是折线统计图、扇形统计图和用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;用到的知识点为:概率=所求情况数与总情况数之比.21.【考点】ME:切线的判定与性质.【分析】(1)连接OE,证明∠OEA=90°即可;(2)连接OF,过点O作OH⊥BF交BF于H,由题意可知四边形OECH为矩形,利用垂径定理和勾股定理计算出OH的长,进而求出CE的长.【解答】(1)证明:连接OE.∵OE=OB,∴∠OBE=∠OEB,∵BE平分∠ABC,∴∠OBE=∠EBC,∴∠EBC=∠OEB,∴OE∥BC,∴∠OEA=∠C,∵∠ACB=90°,∴∠OEA=90°∴AC是⊙O的切线;(2)解:连接OE、OF,过点O作OH⊥BF交BF于H,由题意可知四边形OECH为矩形,∴OH=CE,∵BF=6,∴BH=3,在Rt△BHO中,OB=5,∴OH==4,∴CE=4.【点评】本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线和垂径定理以及勾股定理的运用,具有一定的综合性.22.【考点】HA :抛物线与x 轴的交点;H5:二次函数图象上点的坐标特征.【分析】(1)直接将点A 的坐标代入到二次函数的解析式即可求出m 的值,写出二次函数的解析式,求出y=0时x 的值即可点B 的坐标;(2)计算当x=0时y 的值,根据三角形的面积公式可得;(3)因为S △ABD =S △ABC ,则根据同底等高的两个三角形的面积相等,所以只要高与OC 的长相等即可,因此要计算y=6和y=﹣6时对应的点即可.【解答】解:(1)∵函数过A (3,0),∴﹣18+12+m=0,∴m=6,∴该函数解析式为:y=﹣2x 2+4x +6,∴当﹣2x 2+4x +6=0时,x 1=﹣1,x 2=3,∴点B 的坐标为(﹣1,0);(2)当x=0时,y=6,则C 点坐标为(0,6),∴S △ABC ==12;(3)∵S △ABD =S △ABC =12,∴S △ABD ==12,∴|h |=6,①当h=6时:﹣2x 2+4x +6=6,解得:x 1=0,x 2=2∴D 点坐标为(0,6)或(2,6);②当h=﹣6时:﹣2x 2+4x +6=﹣6,解得:x 1=1+,x 2=1﹣ ∴D 点坐标为(1+,﹣6)、(1﹣,﹣6);∴D点坐标为(2,6)、(1+,﹣6)、(1﹣,﹣6).【点评】本题考查了利用待定系数法求二次函数的解析式和抛物线与两坐标轴的交点,待定系数法就是将已知的点代入解析式中列方程或方程组求解,对于抛物线与x轴的交点,令y=0代入即可,抛物线与y轴的交点,令x=0代入即可.23.【考点】HE:二次函数的应用.【分析】(1)根据利润=(单价﹣进价)×销售量,列出函数关系式即可;(2)根据(1)式列出的函数关系式,运用配方法求最大值;(3)分别求出方案A、B中x的取值,然后分别求出A、B方案的最大利润,然后进行比较.【解答】解:(1)由题意得,销售量=150﹣10(x﹣30)=﹣10x+450,则w=(x﹣25)(﹣10x+450)=﹣10x2+700x﹣11250;(2)w=﹣10x2+700x﹣11250=﹣10(x﹣35)2+1000,∵﹣10<0,∴函数图象开口向下,w有最大值,=1000元,当x=35时,w最大故当单价为35元时,该计算器每天的利润最大;(3)B方案利润高.理由如下:A方案中:∵25×24%=6,此时w A=6×(150﹣10)=840元,B方案中:每天的销售量为120件,单价为33元,∴最大利润是120×(33﹣25)=960元,此时w B=960元,∵w B>w A,∴B方案利润更高.【点评】本题考查了二次函数的应用,难度较大,最大销售利润的问题常利用函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.其中要注意应该在自变量的取值范围内求最大值(或最小值),也就是说二次函数的最值不一定在x=﹣时取得.24.【考点】GB:反比例函数综合题.【分析】(1)利用中点坐标公式即可得出结论;(2)①先确定出点A坐标,进而得出点C坐标,将点C,D坐标代入反比例函数中即可得出结论;②由n=1,求出点C,D坐标,利用待定系数法即可得出结论;(3)设出点E坐标,进而表示出点F坐标,即可建立面积与m的函数关系式即可得出结论.【解答】解:(1)∵点C是OA的中点,A(4,4),O(0,0),∴C(,),∴C(2,2);故答案为(2,2);(2)①∵AD=3,D(4,n),∴A(4,n+3),∵点C是OA的中点,∴C(2,),∵点C,D(4,n)在双曲线y=上,∴,∴,∴反比例函数解析式为y=;②由①知,n=1,∴C(2,2),D(4,1),设直线CD的解析式为y=ax+b,∴,∴,∴直线CD的解析式为y=﹣x+3;(3)如图,由(2)知,直线CD的解析式为y=﹣x+3,设点E(m,﹣m+3),由(2)知,C(2,2),D(4,1),∴2<m<4,∵EF∥y轴交双曲线y=于F,∴F(m,),∴EF=﹣m+3﹣,∴S=(﹣m+3﹣)×m=(﹣m2+3m﹣4)=﹣(m﹣3)2+,△OEF∵2<m<4,最大,最大值为∴m=3时,S△OEF【点评】此题是反比例函数综合题,主要考查了待定系数法,线段的中点坐标公与m的函数关系式.式,解本题的关键是建立S△OEF25.【考点】LO:四边形综合题.【分析】(1)根据正方形的性质得出AD=DC,∠ADE=∠DCF=90°,求出DE=CF,根据SAS推出△ADE≌△DCF,根据全等三角形的性质得出AE=DF,∠DAE=∠FDC 即可;(2)有两种情况:①当AC=CE时,设正方形ABCD的边长为a,由勾股定理求出AC=CE=a即可;②当AE=AC时,设正方形ABCD的边长为a,由勾股定理求出AC=AE=a,根据正方形的性质∠ADC=90°,根据等腰三角形的性质得出DE=CD=a即可;(3)根据(1)(2)知:点P在运动中保持∠APD=90°,得出点P的路径是以AD 为直径的圆,设AD的中点为Q,连接CQ并延长交圆弧于点P,此时CP的长度最大,求出QC即可.【解答】解:(1)AE=DF,AE⊥DF,理由是:∵四边形ABCD是正方形,∴AD=DC,∠ADE=∠DCF=90°,∵动点E,F分别从D,C两点同时出发,以相同的速度在直线DC,CB上移动,∴DE=CF,在△ADE和△DCF中,∴△ADE≌△DCF,∴AE=DF,∠DAE=∠FDC,∵∠ADE=90°,∴∠ADP+∠CDF=90°,∴∠ADP+∠DAE=90°,∴∠APD=180°﹣90°=90°,∴AE⊥DF;(2)(1)中的结论还成立,CE:CD=或2,理由是:有两种情况:①如图1,当AC=CE时,设正方形ABCD的边长为a,由勾股定理得:AC=CE==a,则CE:CD=a:a=;②如图2,当AE=AC时,设正方形ABCD的边长为a,由勾股定理得:AC=AE==a,∵四边形ABCD是正方形,∴∠ADC=90°,即AD⊥CE,∴DE=CD=a,∴CE:CD=2a:a=2;即CE:CD=或2;(3)∵点P在运动中保持∠APD=90°,∴点P的路径是以AD为直径的圆,如图3,设AD的中点为Q,连接CQ并延长交圆弧于点P,此时CP的长度最大,∵在Rt△QDC中,QC===,∴CP=QC+QP=+1,即线段CP的最大值是+1.【点评】本题考查了正方形的性质,勾股定理,圆周角定理,全等三角形的性质和判定,等腰三角形的性质,三角形的内角和定理的应用,能综合运用性质进行推理是解此题的关键,用了分类讨论思想,难度偏大.。

_北京市通州区2018-2019学年中考数学一模考试试卷

第1页,总25页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………北京市通州区2018-2019学年中考数学一模考试试卷考试时间:**分钟 满分:**分姓名:____________班级:____________学号:___________题号 一 二 三 总分 核分人 得分注意事项:1、填写答题卡的内容用2B铅笔填写2、提前 15 分钟收取答题卡第Ⅰ卷 客观题第Ⅰ卷的注释评卷人 得分一、单选题(共10题)用直尺度量线段AB ,可以读出AB的长度为( )A . 6cmB . 7cmC . 8cmD . 9cm2. 北京城市副中心生态文明建设在2016年取得突出成果,通过大力推进能源结构调整,热电替代供热面积为17960000平方米.将17960000用科学记数法表示应为( ) A . 1.796×106 B . 17.96×106 C . 1.796×107 D . 0.1796×1073. 如图,在平面直角坐标系xOy 中,点A ,B ,C 满足二次函数y=ax 2+bx 的表达式,则对该二次函数的系数a 和b 判断正确的是( )A . a>0,b>0B . a<0,b<0C . a>0,b<0D . a<0,b>04. 下列图形中,是中心对称图形的是( )答案第2页,总25页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………A .B .C .D .5. 如果a+b = ,那么 的值是( )A .B .C . 2D . 46. 实数a ,b ,c ,d 在数轴上的对应点的位置如图所示,则这四个数中,相反数是正数的为( )A . aB . bC . cD . d7. 如图是某个几何体的三视图,该几何体是( )A . 圆锥B . 四棱锥C . 圆柱D . 四棱柱8. 如图,将一张矩形的纸对折,旋转90°后再对折,然后沿着下图中的虚线剪下,则剪下的纸片打开后的形状一定为( )A . 三角形B . 菱形C . 矩形D . 正方形9. 如图,在平面直角坐标系xO 1y 中,点A 的坐标为(1,1).如果将x 轴向上平移3个单位长度,将y 轴向左平移2个单位长度,交于点O 2 , 点A 的位置不变,那么在平面直角坐标系xO 2y 中,点A 的坐标是( )第3页,总25页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………A . (3,﹣2)B . (﹣3,2)C . (﹣2,﹣3)D . (3,4)10. 小明和小亮组成团队参加某科学比赛.该比赛的规则是:每轮比赛一名选手参加,若第一轮比赛得分满60则另一名选手晋级第二轮,第二轮比赛得分最高的选手所在团队取得胜利.为了在比赛中取得更好的成绩,两人在赛前分别作了九次测试,如图为二人测试成绩折线统计图,下列说法合理的是( ) ①小亮测试成绩的平均数比小明的高;②小亮测试成绩比小明的稳定;③小亮测试成绩的中位数比小明的高;④小亮参加第一轮比赛,小明参加第二轮比赛,比较合理.A . ①③B . ①④C . ②③D . ②④第Ⅱ卷 主观题第Ⅱ卷的注释评卷人 得分一、填空题(共6题)1. 函数y= 的自变量x 的取值范围是 .2. 如图,正方形ABCD 由四个矩形构成,根据图形,写出一个含有a 和b 的正确的等式 .答案第4页,总25页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………3. 工人师傅常用角尺平分一个任意角.做法如下:如图,∠AOB 是一个任意角,在边OA ,OB 上分别取OM =ON ,移动角尺,使角尺两边相同的刻度分别与M ,N 重合.过角尺顶点C 的射线OC 即是∠AOB 的平分线.这种做法的依据是 .4. 某农场引进一批新麦种,在播种前做了五次发芽实验,每次任取800 粒麦种进行实验.实验结果如表所示 ( 发芽率精确到 0.001 ):实验的麦种数 800 800 800 800 800 发芽的麦种数787 779 786 789 782 发芽率 0.984 0.974 0.983 0.986 0.978在与实验条件相同的情况下,估计种一粒这样的麦种发芽的概率为 .5. 如图所示,某地三条互相平行的街道a ,b ,c 与两条公路相交,有六个路口分别为A ,B ,C ,D ,E ,F .路段EF 正在封闭施工.若已知路段AB 约为270.1米,路段BC 约为539.8米,路段DE 约为282.0米,则封闭施工的路段EF 的长约为 米.6. 古代有这样一个数学问题:韩信点一队士兵人数,三人一组余两人,五人一组余三人,七人一组余四人.问这队士兵至少多少人?我国古代学者早就研究过这个问题.例如明朝数学家程大位在他著的《算法统宗》中就用四句口诀暗示了此题的解法:三人同行七十稀,五树梅花甘一枝,七子团圆正半,除百零五便得知.这四句口诀暗示的意思是:当除数分别是3,5,7时,用70乘以用3除的余数(例如:韩信点兵问题中用70乘以2),用21乘以用5除的余数,用15乘以用7除的余数,然后把三个乘积相加.加得的结果如果比105大就除以105,所得的余数就是满足题目要求的最小正整数解.按这四句口诀暗示的方法计算韩信点的这队士兵的人数为 . 评卷人 得分二、解答题(共13题)∠O 上,BD 与过点C 的切线垂直于点D ,BD 与∠O 交于点E .(1)求证:BC 平分∠DBA ;第5页,总25页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………(2)连接AE 和AC ,若cos∠ABD = ,OA =m ,请写出求四边形AEDC 面积的思路.8. 如图,在矩形ABCD 中,连接对角线AC ,BD ,延长BC 至点E ,使BC=CE ,连接DE . 求证:DE=AC .9. 在等边三角形ABC 中,E 为直线AB 上一点,连接EC .ED 与直线BC 交于点D ,ED =EC .(1)如图1,AB =1,点E 是AB 的中点,求BD 的长;(2)点E 是AB 边上任意一点(不与AB 边的中点和端点重合),依题意,将图2补全,判断AE 与BD 间的数量关系并证明;(3)点E 不在线段AB 上,请在图3中画出符合条件的一个图形. 10. 在平面直角坐标系xOy 中,过原点O 的直线l 1与双曲线 的一个交点为A (1,m ).(1)求直线l 1的表达式;答案第6页,总25页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………(2)过动点P (n ,0)(n >0)且垂直于x 轴的直线与直线l 1和双曲线 的交点分别为B ,C ,当点B 位于点C 上方时,直接写出n 的取值范围.11. 关于x 的一元二次方程x 2﹣2mx+(m ﹣1)2=0有两个相等的实数根. (∠)求m 的值; (II )求此方程的根.12. 在平面直角坐标系xOy 中,抛物线y=x 2-2mx+m 2-m+2的顶点为 D.线段AB 的两个端点分别为A(-3,m),B(1,m).(1)求点D 的坐标(用含m 的代数式表示);(2)若该抛物线经过点B(1,m),求m 的值;(3)若线段AB 与该抛物线只有一个公共点,结合函数的图象,求m 的取值范围. 13. 阅读下列材料:环视当今世界,科技创新已成为发达国家保持持久竞争力的“法宝”.研究与试验发展(R&D )活动的规模和强度指标反映一个地区的科技实力和核心竞争力.北京市在研究和实验发展(R&D )活动中的经费投入也在逐年增加.2012年北京市全年研究与试验发展(R&D )经费投入1031.1亿元,比上年增长10.1%.2013年全年研究与试验发展(R&D )经费投入1200.7亿元.2014年全年研究与试验发展(R&D )经费投入1286.6亿元.2015年研究与试验发展(R&D )经费投入1367.5亿元.2016年研究与试验发展(R&D )经费投入1479.8亿元,相当于地区生产总值的5.94%. (以上数据来源于北京市统计局) 根据以上材料解答下列问题:(1)用折线统计图或者条形统计图将2012﹣2016年北京市在研究和实验发展(R&D )活动中的经费投入表示出来,并在图中标明相应数据;(2)根据绘制的统计图提供的信息,预估2017年北京市在研究和实验发展(R&D )活动中的经费投入约为多少亿元,写出你的预估理由. 14. 计算:+|1﹣|﹣2cos45°+( )﹣1 .第7页,总25页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………15. 解不等式组: 16. 某单位有职工200人,其中青年职工(20﹣35岁),中年职工(35﹣50岁),老年职工(50岁及以上)所占比例如扇形统计图所示.为了解该单位职工的健康情况,小张、小王和小李各自对单位职工进行了抽样调查,将收集的数据进行了整理,绘制的统计表分别为表1、表2和表3. 表1:小张抽样调查单位3名职工的健康指数年龄26 42 57 健康指数 97 79 72表2:小王抽样调查单位10名职工的健康指数年龄23 25 26 32 33 37 39 42 48 52 健康指数 93 89 90 83 79 75 80 69 68 60表3:小李抽样调查单位10名职工的健康指数年龄22 29 31 36 39 40 43 46 51 55 健康指数 94 90 88 85 82 78 72 76 62 60根据上述材料回答问题:小张、小王和小李三人中,谁的抽样调查的数据能够较好地反映出该单位职工健康情况,并简要说明其他两位同学抽样调查的不足之处.17. 如图,四边形ABCD 的对角线AC∠BD 于点E ,AB=BC ,F 为四边形ABCD 外一点,且∠FCA=90°,∠CBF=∠DCB .(1)求证:四边形DBFC 是平行四边形;答案第8页,总25页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………(2)如果BC 平分∠DBF ,∠CDB=45°,BD=2,求AC 的长.x … 1 2 4 5 6 8 9 … y … 3.92 1.95 0.98 0.78 2.44 2.44 0.78 …小风根据学习函数的经验,利用上述表格所反映出的y 与x 之间的变化规律,对该函数的图象和性质进行了探究.下面是小风的探究过程,请补充完整:(1)如图,在平面直角坐标系xOy 中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;(2)根据画出的函数图象,写出: ①x =7对应的函数值y 约为多少; ②写出该函数的一条性质.19. 在平面直角坐标系xOy 中,点A (x 1 , y 1),B (x 2 , y 2),若x 1x 2+y 1y 2=0,且A ,B 均不为原点,则称A 和B 互为正交点.比如:A (1,1),B (2,﹣2),其中1×2+1×(﹣2)=0,那么A 和B 互为正交点.(1)点P 和Q 互为正交点,P 的坐标为(﹣2,3), ①如果Q 的坐标为(6,m ),那么m 的值为多少; ②如果Q 的坐标为(x ,y ),求y 与x 之间的关系式;(2)点M 和N 互为正交点,直接写出∠MON 的度数;第9页,总25页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………(3)点C ,D 是以(0,2)为圆心,半径为2的圆上的正交点,以线段CD 为边,构造正方形CDEF ,圆心F 在正方形CDEF 的外部,求线段OE 长度的取值范围.参数答案1.【答案】:【解释】: 2.【答案】: 【解释】: 3.【答案】:【解释】:答案第10页,总25页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………4.【答案】:【解释】:5.【答案】:【解释】:第11页,总25页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………6.【答案】:【解释】: 7.【答案】: 【解释】: 8.【答案】: 【解释】: 9.【答案】: 【解释】:答案第12页,总25页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………10.【答案】:【解释】:【答案】:【解释】:【答案】:【解释】:第13页,总25页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………【答案】:【解释】: 【答案】: 【解释】: 【答案】: 【解释】:答案第14页,总25页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………【答案】:【解释】:(1)【答案】:第15页,总25页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………(2)【答案】:答案第16页,总25页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………【解释】:【答案】:第17页,总25页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………【解释】: (1)【答案】:(2)【答案】:答案第18页,总25页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………(3)【答案】:第19页,总25页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………【解释】: (1)【答案】:(2)【答案】: 【解释】:答案第20页,总25页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………【答案】:【解释】:(1)【答案】:(2)【答案】:(3)【答案】:【解释】:(1)【答案】:第21页,总25页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………(2)【答案】:【解释】: 【答案】: 【解释】:【答案】:答案第22页,总25页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………【解释】:【答案】:【解释】:(1)【答案】:(2)【答案】:第23页,总25页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………【解释】: (1)【答案】:(2)【答案】:【解释】:答案第24页,总25页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………(1)【答案】:(2)【答案】:(3)【答案】:第25页,总25页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………【解释】:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学试卷 第1 页 (共 18 页) FE

DCB

A

通州区2018年初三第三次模拟考试 数 学 试 卷 2018.6

学校 班级 姓名

考 生 须 知

1.本试卷共9页,共三道大题,28道小题,满分100分。考试时间120分钟. 2.在试卷和答题卡上认真填写学校名称、姓名和准考证号. 3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效. 4.在答题卡上,选择题、作图题用2B铅笔作答,其他试题用黑色字迹签字笔作答. 5.考试结束,请将本试卷、答题卡和草稿纸一并交回. 一、选择题(本题共16分,每小题2分) 下面1-8题均有四个选项,其中符合题意的选项只有..一个.

1.如图所示,AD,BE,CF分别是△ABC的角平分线,高线和中线, 则下列求△ABC的面积正确的公式是

A.12ABCSBCAD△=? B.12ABCSCABED=? C.12ABCSABCFD=? D.ABCSBECED=? 2.2018年1月11日,北京市举行“缓解交通拥堵,服务市民出行”新闻发布会,会议指出,2018年,在改善交通状况,缓解交通拥堵方面,北京市将把机动车保有量控制在6100000辆以内,中心城区路网交通指数控制在5.7左右. 轨道交通运营里程增加到632公里以上,治理自行车道900公里,使绿色出行比例提高到73%. 将6100000用科学记数法表示为 A.61105 B.6.1105 C.6.1106 D.6.1107 3.下面是四个手机APP的图标,其中既不是...轴对称图形,也不是...中心对称图形的是

A. B. C.

D.

神州租车 中国移动 百度外卖 微信 数学试卷 第2 页 (共 18 页)

4.一个几何体的三视图如图所示,则该几何体的直观图可以是

5.实数a,b在数轴上的位置如图所示,下列各式正确的是 A.0ab+> B.0ab> C. 0ab+< D.0ab-> 6.下列关于统计和概率知识的说法正确的是 A. 为了搜集一个问题的数据,可以采取多种方式,如实验采集,问卷调查,查询资料等 B. 只要是通过真实数据推断的结论都一定是可信的 C. 只有通过平均数,众数,中位数难以做出推断时,才需要计算方差 D. 概率很小的事件一定不会发生 7.下表反映了我国高速铁路基本情况,根据统计表提供的信息,下列推断不合理...的是

年份 营业里程 (公里) 占铁路营业 里程比重 (%) 客运量 (万人) 占铁路 客运量比重 (%) 2008 672 0.8 734 0.5 2009 2699 3.2 4651 3.1 2010 5133 5.6 13323 8.0 2011 6601 7.1 28552 15.8 2012 9356 9.6 38815 20.5 2013 11028 10.7 52962 25.1 2014 16456 14.7 70378 30.5 2015 19838 16.4 96139 37.9 2016 22980 18.5 122128 43.4

(上表摘自《2017中国统计年鉴》) A. 2008—2016年,我国高速铁路营业里程逐年增长 B. 2008—2016年,我国高速铁路营业里程占铁路营业里程比重增长最多的是2016年 C. 2008—2016年,我国高速铁路客运量逐年增长 D. 到2017年,我国高速铁路客运量占铁路客运量比重有望基本达到或超过50%

A. B. C. D. 俯视图

侧视图正视图数学试卷 第3 页 (共 18 页) 8.中国共产党第十八届中央委员会第五次全体会议认为,到二○二○年全面建成小康社会,

是我们党确定的“两个一百年”奋斗目标的第一个百年奋斗目标. 全会提出了全面建成小康社会新的目标要求:经济保持中高速增长,在提高发展平衡性、包容性、可持续性的基础上,到二○二○年国内生产总值和城乡居民人均收入比二○一○年翻一番(即二○二○年国内生产总值和城乡居民人均收入是二○一○年二倍),产业迈向中高端水平,消费对经济增长贡献明显加大,户籍人口城镇化率加快提高. 设从二○一一年起,城乡居民人均收入每一年比上一年都增长%p.下面给出了关于p

的四个判断:①p的值大于100;②p的值是50;③p的值是20;④p的值是7.2. 其中符合要求的是 A. ① B.② C.③ D.④ 二、填空题(本题共16分,每小题2分) 9.分解因式:32aab . 10.已知12x.在数轴上,表示数x的点的右侧的第一个整数是 . 11.在平面直角坐标系xOy中,点A在第三象限,且在一次函数yx的图象上,写出一个

..

符合条件的点A坐标 . 12.现有几个学生合买一本书,每人出9元,会多出11元;每人出6元,又差16元.问:有几个学生,买这本书需要多少元?设有x个学生,买这本书需要y元,那么可列方程组为 .

13.如图,点A,B,C,D是⊙O上的四个点,点B是AC的中点. 如果60ABC,那么ADB . 14.每年小明生日这一天,妈妈都会量一下他的身高并记录数据.现在小明学习了统计图,知道用扇形图、折线图、频数直方图可以直观、有效的描述数据,于是他想用统计图来描述这些年来自己的身高数据.上述三种统计图中,适合描述小明身高数据的是 .

15.在一个不透明的袋子里装有红、黄、蓝、黑四种颜色的小球各2个,这些球除颜色外,没有任何区别. 现从这个袋子中随机摸出一个球,摸到红球的概率是 . 16.画图、测量、填空

画一个半径为2cm的圆,画出角度分别为30o、45o、60o、90o、120o的圆心角,测量不同圆心角所对弦的长度,并填入下面的表格中.(数据保留一位小数)

ODCB

A数学试卷 第4 页 (共 18 页) CE

DB

A

半径 圆心角的度数 圆心角所对的弦长(cm) 2cm 30o

45o 60o 90o 120o 依据表格中的数据,当圆心角小于平角时,圆心角与它所对弦长之间的变化规律是 . 三、解答题(本题共68分,第17-25题每题5分,第26题7分,第27-28题,每题8分) 17.计算:02sin6012(3)|32|.

18.解不等式组413(1)312xxxx≤,并求不等式组的所有整数解.

19.如图,在△ABC中,90ABC,点D是AC中点,DEAC于点D,交BC于E,连接BD. 求证:ABDCED.

20. 在平面直角坐标系xOy中,一次函数yaxb的图象与x轴交于点A,与y轴交于点B,

与反比例函数kyx的图象在第一象限交于点(2,1)M.

(1)求反比例函数kyx的表达式; (2)如果AMOAOBSS△△,求一次函数yaxb的表达式.

21. 已知关于x的一元二次方程2210xxk有两个不相等的实数根. (1)求k的取值范围; 数学试卷 第5 页 (共 18 页)

(2)如果k是正整数,求方程的根. 22.如图,在矩形纸片ABCD中,点P在边AB上,沿着PC折叠纸片使B点落在边AD上的E点处,过点E作EF∥AB交PC于F,连接BF. (1)求证:四边形BFEP为菱形; (2)若1tan3BCP∠,AB=3cm,求AE的长.

23. 如图,四边形ABCD中,AD∥BC,AE⊥BC于E,∠ADC的平分线交AE于点O,以

点O为圆心,OA为半径的圆经过点B,交BC于另一点F. (1)求证:CD与⊙O相切; (2)若OD∥AB,BF=24,OE=5,求AD的长度.

24. 家庭过期药品属于 “国家危险废物”处理不当将污染环境,危害健康. 某市药监部门为了了解市民家庭处理过期药品的方式,决定对全市家庭作一次简单随机抽样调查. 设计调查方式: (1)有下列选取样本的方法 ①在市中心某个居民区以家庭为单位随机抽取 ②在全市医务工作者中以家庭为单位随机抽取 ③在全市常住人口中以家庭为单位随机抽取. 其中最合理的一种是 .(只需填上正确答案的序号) 收集整理数据: 本次抽样调查发现,接受调查的家庭都有过期药品,现将有关数据呈现如下表: 处理 方式 A 继续使用 B 直接丢弃 C 送回收点 D 搁置家中 E 卖给药贩 F 直接焚烧 所占比例 8% 51% 10% 20% 6% 5%

描述数据: (2)此次抽样的样本数为1000户家庭,请你绘制条形统计图描述各种处理过期药品方式的家庭数;

A P B F E C D 数学试卷 第6 页 (共 18 页)

xy 分析数据: (3)根据调查数据,你认为该市市民家庭处理过期药品最常见的方式是什么?说明你的理由; (4)家庭过期药品的正确处理方式是送回收点,若该市有500万户家庭,请估计大约有多少户家庭处理过期药品的方式是送回收点.

25. 在课外活动中,我们要研究一种四边形——“垂直四边形”. 定义:我们把对角线互相垂直的四边形叫做垂直四边形(如图1). 小聪根据学习平行四边形、菱形、矩形、正方形的经验,对垂直四边形进行了研究. 下面是小聪的研究过程,请补充完整: 概念理解: (1)根据垂直四边形的定义,在你学过的四边形中,满足垂直四边形的定义的是 ;(写出一种即可) (2)如图2,在四边形ABCD中,AB=AD,CB=CD,问四边形ABCD是垂直四边形吗?请说明理由. 性质探索: (3)试探索垂直四边形ABCD两组对边AB,CD与BC,AD之间的数量关系. 猜想结论:(要求用文字语言叙述) 写出证明过程(先画出图形,写出已知、求证).

户数 500 400 300 200 100 0 A B C D E F 处理方式

DCBA

相关文档
最新文档