平面向量四心问题(最全).(汇编)
平面向量“四心”知识点总结与经典习题【强烈推荐】

平面向量“四心”知识点总结与经典习题【强烈推荐】平面向量的“四心”是指三角形的外心、内心、重心和垂心,它们各自具有特殊的性质。
在高中数学中,向量问题经常与“四心”问题结合考查。
因此,熟悉向量的代数运算和几何意义是解决这类问题的关键。
四心知识点总结如下:重心:1.重心是三角形三条中线的交点,也是重心到三角形三个顶点距离之和最小的点。
2.重心坐标为$(\frac{1}{3}(x_A+x_B+x_C),\frac{1}{3}(y_A+y_B+y_C))$。
垂心:1.垂心是三角形三条高线的交点,也是垂足到三角形三边距离之积最大的点。
2.若垂心为$O$,则有$OA\cdot OB=OA\cdot OC=OB\cdot OC$。
外心:1.外心是三角形三条中垂线的交点,也是到三角形三个顶点距离相等的点。
2.若外心为$O$,则有$OA=OB=OC$,或$(OA+OB)\cdot AB=(OB+OC)\cdot BC=(OC+OA)\cdot CA$。
内心:1.内心是三角形三条角平分线的交点,也是到三角形三边距离之和最小的点。
2.若内心为$O$,则有$a\cdot OA+b\cdot OB+c\cdotOC=0$,其中$a,b,c$为三角形三边的长度。
下面是一些经典题:1.在$\triangle ABC$中,$D,E,F$分别为$BC,CA,AB$的中点,$M$为重心,则$\vec{AM}$等于()。
A。
$\frac{1}{3}(\vec{AD}+\vec{BE}+\vec{CF})$B。
$\frac{1}{2}(\vec{AD}+\vec{BE}+\vec{CF})$C。
$\frac{1}{3}(\vec{AD}+\vec{BE}+\vec{CF})+\vec{OG}$ D。
$\frac{1}{2}(\vec{AD}+\vec{BE}+\vec{CF})+\vec{OG}$ 答案:C2.在$\triangle ABC$中,$O$为坐标原点,$P$满足$\vec{OP}=\frac{1}{3}(\vec{OA}+\vec{OB}+\vec{OC})$,则$P$一定在()上。
补充:平面向量中的三角形的四心问题

)距离之比为 2:1?
(二)垂心:高线的交点,常用字母 H 来表示
线量的公交式点:G(A外接GB圆的G圆C心)0常用G字是母OA来BC表的示重.心垂心O的向是量平表面示内:任H意A一 H点B , HB HC HC HA H 为 ABC 的垂心.
(2)内心的向量式:AB c , AC b ,BC a ,且aIA bIB cIC 0 ,
坐的外标中,心(公O点且在式B.三a:I角OACxy形)b的.BIxBy内C11部cxy33I(2,2OC钝Axy3角30O三,C角).形ACI的是外0心在三△角A形(BC3的 )的外设内(部(O心O,为A2。)△直外OA角BB心C三)所的.A角在向B形平量面(式O内:B任意OOA一C2点),.BOOCBI2(aOOOACA2aOb OCbB)O.Ac是cCO△C 0A, BCI
的外心 是△
的内心。※ 锐角三角形的外心在三角形的内部,钝角三角形的外心在三角形
OA bOB cOC , I 是△ABC
(4)内心的坐外标心公在式斜:边内的心中I (点ax. A
bxB cxC abc
,
ayA byB cyC abc
)
且 OG 1 (OA OB OC)
三角形H各为顶3点A的B距C离的相垂等心;.
(三)内(心四:)角外平心分:线的中交垂点线(的内交切点圆(的外圆心接)圆常的用圆字心母)I 来常表用示字母 O 来表示.
公式: G 是 ABC 字向量母式I 来:表OA示2 OB
2的重O心C2 SAOBG是△SAACBGC的S外BC(心G 1.)13角S平(A分B1C)线外上心的任到意三点角到形角各两顶边点的的距离距相离等相;等;
平面向量痛点问题之三角形“四心”问题(四大题型)(课件)高一数学新教材(人教A版2019必修第二册)

5
又 = 12 + 2 = 3,∴ = 9 ,
1
2
5
9
5
9
∵ = + = + ,∴ = = +
5
5
5
∴ + = 9 + 18 = 6.
5
,∴
18
5
5
= , = 18,
9
典型例题
题型三:外心定理
【典例3-1】(2024·吉林长春·高一东北师大附中校考阶段练习)已知点 O是△ABC的外心,AB=4,AC
2
1
则 × 4 × = × 6 × 4 × 2 + 16 ,得3 + 4 = 2②,
4
1
4
1
11
①②联立解得 = 9, = 6,所以 + = 9 + 6 = 18.故选:C.
典型例题
题型三:外心定理
【变式3-1】(2024·四川成都·高一成都市锦江区嘉祥外国语高级中学校考阶段练习)已知点 O是△ABC
,
+ ��
sin
= || ( + ) = 2|| ,
所以点在三角形的中线 上,则动点P的轨迹一定经过△ 的重心.故选:D.
典型例题
题型二:内心定理
【典例2-1】(2024·高一课时练习)已知点O是边长为 6的等边△ABC的内心,
则 + ⋅ + =
1
2
1
1
1
+ 3 ⋅ = 2 ⋅ + 3 2 = 30;
所以 2 = 45,由 = 30 2可得 = 2 10,即2 = 40;
平面向量痛点问题之三角形“四心”问题(学生版)--高一数学微专题

平面向量痛点问题之三角形“四心”问题【题型归纳目录】题型一:重心定理题型二:内心定理题型三:外心定理题型四:垂心定理【知识点梳理】一、四心的概念介绍:(1)重心:中线的交点,重心将中线长度分成2:1.(2)内心:角平分线的交点(内切圆的圆心),角平分线上的任意点到角两边的距离相等.(3)外心:中垂线的交点(外接圆的圆心),外心到三角形各顶点的距离相等.(4)垂心:高线的交点,高线与对应边垂直.二、三角形四心与推论:(1)O 是△ABC 的重心:S △BOC :S △COA :S △A 0B =1:1:1⇔OA +OB +OC =0.(2)O 是△ABC 的内心:S △B 0C :S △COA :S △AOB =a :b :c ⇔aOA +bOB +cOC =0.(3)O 是△ABC 的外心:S △B 0C :S △COA :S △AOB =sin2A :sin2B :sin2C ⇔sin2AOA +sin2BOB +sin2COC =0 .(4)O 是△ABC 的垂心:S △B 0C :S △COA :S △AOB =tan A :tan B :tan C ⇔tan AOA +tan BOB +tan COC =0.【方法技巧与总结】(1)内心:三角形的内心在向量AB AB +ACAC所在的直线上.AB ⋅PC +BC ⋅PC +CA⋅PB =0 ⇔P 为△ABC 的内心.(2)外心:PA =PB =PC⇔P 为△ABC 的外心.(3)垂心:PA ⋅PB =PB ⋅PC =PC ⋅PA⇔P 为△ABC 的垂心.(4)重心:PA +PB +PC =0⇔P 为△ABC 的重心.【典型例题】题型一:重心定理1(2024·重庆北碚·高一西南大学附中校考阶段练习)如图所示,已知点G 是△ABC 的重心,过点G 作直线分别与AB ,AC 两边交于M ,N 两点(点N 与点C 不重合),设AM =xAB ,AN =yAC ,则1x +1y的值为()A.3B.4C.5D.62(2024·全国·高一随堂练习)已知△ABC 中,点G 为△ABC 所在平面内一点,则“AB +AC -3AG=0”是“点G 为△ABC 重心”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3(2024·全国·高一专题练习)已知O 是三角形ABC 所在平面内一定点,动点P 满足OP =OA+λAB AB sin B +AC AC sin C λ≥0 ,则P 点轨迹一定通过三角形ABC 的()A.内心B.外心C.垂心D.重心题型二:内心定理1(2024·全国·高一专题练习)在△ABC 中,cos ∠BAC =13,若O 为内心,且满足AO =xAB +yAC ,则x +y 的最大值为.2(2024·江苏南通·高一如皋市第一中学期末)已知点P 为△ABC 的内心,∠BAC =23π,AB =1,AC =2,若AP =λAB +μAC,则λ+μ=.3(2024·广西柳州·高一统考期末)设O 为△ABC 的内心,AB =AC =5,BC =8,AO =mAB+nBCm ,n ∈R ,则m +n =题型三:外心定理1(2024·吉林长春·高一东北师大附中校考阶段练习)已知点O 是△ABC 的外心,AB =4,AC =2,∠BAC 为钝角,M 是边BC 的中点,则AM ⋅AO=.2(2024·安徽六安·高一六安市裕安区新安中学校考期末)已知O 是平面上一定点,A 、B 、C 是平面上不共线的三个点,动点P 满足OP =OA +OB 2+λCA CA cos A +CBCB cos B ,λ∈R ,则P 的轨迹一定经过△ABC 的.(从“重心”,“外心”,“内心”,“垂心”中选择一个填写)3(2024·四川遂宁·高一射洪中学校考阶段练习)已知△ABC 中,∠A =60°,AB =6,AC =4,O 为△ABC 的外心,若AO =λAB +μAC,则λ+μ的值为()A.1B.2C.1118D.12题型四:垂心定理1(2024·江苏泰州·高一统考期末)已知△ABC 的垂心为点D ,面积为15,且∠ABC =45°,则BD ⋅BC=;若BD =12BA +13BC ,则BD=.2(2024·湖北黄冈·高一校联考期末)若O 为△ABC 的垂心,2OA +3OB +5OC =0 ,则S △AOB S △AOC=,cos ∠BOC =.3(2024·山西·高一校联考阶段练习)已知H 为△ABC 的垂心(三角形的三条高线的交点),若AH=13AB+25AC ,则sin ∠BAC =.【过关测试】一、单选题1(2024·全国·高一专题练习)在直角三角形ABC 中,A =90°,△ABC 的重心、外心、垂心、内心分别为G 1,G 2,G 3,G 4,若AG i =λi AB +μi AC(其中i =1,2,3,4),当λi +μi 取最大值时,i =()A.1B.2C.3D.42(2024·黑龙江牡丹江·高一牡丹江一中校考阶段练习)若O 是△ABC 所在平面上一定点,H ,N ,Q 在△ABC 所在平面内,动点P 满足OP =OA +λAB AB +ACAC,λ∈0,+∞ ,则直线AP 一定经过△ABC 的心,点H 满足HA = HB = HC ,则H 是△ABC 的心,点N 满足NA +NB +NC=0,则N 是△ABC 的心,点Q 满足QA ·QB =QB ·QC =QC ·QA ,则Q 是△ABC 的心,下列选项正确的是()A.外心,内心,重心,垂心B.内心,外心,重心,垂心C.内心,外心,垂心,重心D.外心,重心,垂心,内心二、多选题3(2024·河南郑州·高一校联考期末)点O 为△ABC 所在平面内一点,则()A.若OA +OB +OC =0 ,则点O 为△ABC 的重心B.若OA ⋅AC AC -AB AB =OB ⋅BC BC -BABA =0,则点O 为△ABC 的垂心C.若OA +OB ⋅AB =OB +OC ⋅BC=0.则点O 为△ABC 的垂心D.在△ABC 中,设AC 2 -AB 2 =2AO ⋅BC,那么动点O 的轨迹必通过△ABC 的外心4(2024·内蒙古呼和浩特·高一呼市二中校考阶段练习)设点M 是△ABC 所在平面内一点,则下列说法正确的是()A.若AM =12AB +12AC ,则点M 是边BC 的中点B.若AM =2AB -AC ,则点M 是边BC 的三等分点C.若AM =-BM -CM ,则点M 是边△ABC 的重心D.若AM =xAB +yAC ,且x +y =13,则△MBC 的面积是△ABC 面积的235(2024·山东枣庄·高一校考阶段练习)数学家欧拉在1765年发表的《三角形的几何学》一书中提出定理:三角形的外心、重心、垂心依次位于同一条直线上,且重心到外心的距离是重心到垂心距离的一半,此直线被称为三角形的欧拉线,该定理则被称为欧拉线定理.设点O 、G 、H 分别是△ABC 的外心、重心、垂心,且M 为BC 的中点,则()A.OH =OA +OB +OCB.S △ABG =S △BCG =S △ACGC.AH =3OMD.AB +AC =4OM +2HM6(2024·安徽池州·高一统考期末)已知△ABC 的重心为O ,边AB ,BC ,CA 的中点分别为D ,E ,F ,则下列说法正确的是()A.OA +OB =2ODB.若△ABC 为正三角形,则OA ⋅OB +OB ⋅OC +OC ⋅OA=0C.若AO ⋅AB -AC=0,则OA ⊥BC D.OD +OE +OF =07(2024·广东广州·高一校考期末)下列命题正确的是()A.若A ,B ,C ,D 四点在同一条直线上,且AB =CD ,则AB =CDB.在△ABC 中,若O 点满足OA +OB +OC =0,则O 点是△ABC 的重心C.若a =(1,1),把a 右平移2个单位,得到的向量的坐标为(3,1)D.在△ABC 中,若CP =λCA |CA |+CB|CB |,则P 点的轨迹经过△ABC 的内心8(2024·新疆·高一兵团第三师第一中学校考阶段练习)点O 在△ABC 所在的平面内,则下列结论正确的是()A.若OA ⋅OB =OB ⋅OC =OC ⋅OA ,则点O 为△ABC 的垂心B.若OA +OB +OC =0 ,则点O 为△ABC 的外心C.若2OA +OB +3OC =0,则S △AOB :S △BOC :S △AOC =3:2:1D.若AO ⋅AB AB =AO ⋅AC AC 且CO ⋅CA CA =CO ⋅CB CB ,则点O 是△ABC 的内心三、填空题9(2024·甘肃武威·高一校联考期末)记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若O 为△ABC 的重心,OB ⊥OC ,3b =4c ,则cos A =.10(2024·全国·高一专题练习)点O 是平面上一定点,A 、B 、C 是平面上△ABC 的三个顶点,∠B 、∠C 分别是边AC 、AB 的对角,以下命题正确的是(把你认为正确的序号全部写上).①动点P 满足OP =OA +PB +PC,则△ABC 的重心一定在满足条件的P 点集合中;②动点P 满足OP =OA +λAB |AB |+AC|AC |(λ>0),则△ABC 的内心一定在满足条件的P 点集合中;③动点P 满足OP =OA +λAB |AB |sin B +AC|AC|sin C(λ>0),则△ABC 的重心一定在满足条件的P 点集合中;④动点P 满足OP =OA+λAB |AB |cos B +AC|AC|cos C(λ>0),则△ABC 的垂心一定在满足条件的P 点集合中;⑤动点P 满足OP =OB +OC 2+λAB |AB |cos B +AC|AC|cos C(λ>0),则△ABC 的外心一定在满足条件的P 点集合中.11(2024·辽宁·高一校联考期末)某同学在学习和探索三角形相关知识时,发现了一个有趣的性质:将锐角三角形三条边所对的外接圆的三条圆弧(劣弧)沿着三角形的边进行翻折,则三条圆弧交于该三角形内部一点,且此交点为该三角形的垂心(即三角形三条高线的交点).如图,已知锐角△ABC 外接圆的半径为2,且三条圆弧沿△ABC 三边翻折后交于点P .若AB =3,则sin ∠PAC =;若AC :AB :BC =6:5:4,则PA +PB +PC 的值为.12(2024·宁夏银川·高一银川唐徕回民中学校考期末)已知P 为△ABC 所在平面内一点,有下列结论:①若P 为△ABC 的内心,则存在实数λ使AP =λAB |AB |+AC|AC |;②若PA +PB +PC =0 ,则P 为△ABC 的外心;③若PA =PB =PC ,则P 为△ABC 的内心;④若AP =13AB +23AC ,则△ABC 与△ABP 的面积比为2:3.其中正确的结论是.(写出所有正确结论的序号)13(2024·广西河池·高一校联考阶段练习)在△ABC 中,已知AB =5,AC =3,A =2π3,I 为△ABC 的内心,CI 的延长线交AB 于点D ,则△ABC 的外接圆的面积为,CD =.14(2024·四川遂宁·高一遂宁中学校考阶段练习)已知O 是平面上的一定点,A ,B ,C 是平面上不共线的三个点,动点P 满足OP =OB +OC 2+λAB AB cos B +ACAC cos C ,λ∈0,+∞ ,则动点P 的轨迹一定通过△ABC 的(填序号).①内心 ②垂心 ③ 重心 ④外心15(2024·高一课时练习)已知O 为△ABC 的内心,∠BAC =π3,且满足AO =xAB +yAC ,则x +y 的最大值为.16(2024·高一课时练习)已知A ,B ,C 是平面内不共线的三点,O 为ΔABC 所在平面内一点,D 是AB 的中点,动点P 满足OP =132-2λ OD +1+2λ OCλ∈R ,则点P 的轨迹一定过△ABC 的(填“内心”“外心”“垂心”或“重心”).17(2024·高一课时练习)已知点O 是ΔABC 的内心,若AO =37AB +17AC,则cos ∠BAC =.18(2024·四川成都·高一成都市锦江区嘉祥外国语高级中学校考阶段练习)已知点O 是△ABC 的外心,AB =6,BC =8,B =2π3,若BO =xBA +yBC ,则3x +4y =.19(2024·湖北武汉·高一期末)△ABC 中,AB =2,BC =26,AC =4,点O 为△ABC 的外心,若AO=mAB +nAC ,则实数m =.20(2024·湖北·高一校联考阶段练习)在△ABC 中,已知AB =2,AC =5,∠BAC =60°,P 是△ABC 的外心,则∠APB 的余弦值为.21(2024·四川达州·高一达州中学校考阶段练习)设O 为△ABC 的外心a ,b ,c 分别为角A ,B ,C 的对边,若b =3,c =5,则OA ⋅BC=.22(2024·广东汕头·高一金山中学校考期末)已知O 为△ABC 的外心,若AO ⋅BC =4BO ⋅AC ,则cos A 最小值.23(2024·重庆渝中·高一重庆巴蜀中学校考期末)某同学在查阅资料时,发现一个结论:已知O 是△ABC 内的一点,且存在x ,y ,z ∈R ,使得xOA +yOB +zOC =0,则S △AOB :S △AOC :S △COB =z :y :x .请以此结论回答:已知在△ABC 中,∠A =π4,∠B =π3,O 是△ABC 的外心,且AO =λAB +μAC λ,μ∈R ,则λ+μ=.24(2024·辽宁大连·高一育明高中校考期末)已知点P 在△ABC 所在的平面内,则下列各结论正确的有①若P 为△ABC 的垂心,AB ⋅AC =2,则AP ⋅AB =2②若△ABC 为边长为2的正三角形,则PA ⋅PB +PC的最小值为-1③若△ABC 为锐角三角形且外心为P ,AP =xAB +yAC且x +2y =1,则AB =BC④若AP =1AB cos B +12 AB +1ACcos C+12AC ,则动点P 的轨迹经过△ABC 的外心25(2024·全国·高一专题练习)(1)已知O 是平面上的一定点,A ,B ,C 是平面上不共线的三个动点,若动点P 满足OP =OA +λ(AB +AC),λ∈(0,+∞),则点P 的轨迹一定通过△ABC 的(填“内心”“外心”“重心”或“垂心” ).(2)已知O 是平面上的一定点,A ,B ,C 是平面上不共线的三个动点,若动点P 满足OP =OA +λAB |AB |+AC |AC |,λ∈(0,+∞),则点P 的轨迹一定通过△ABC 的.(填“内心”“外心”“重心”或“垂心” )四、解答题26(2024·全国·高一专题练习)已知△ABC 中,过重心G 的直线交边AB 于P ,交边AC 于Q ,设△APQ 的面积为S 1,△ABC 的面积为S 2,AP =pPB ,AQ =qQC.(1)求GA +GB +GC ;(2)求证:1p +1q =1.(3)求S1S 2的取值范围.。
平面向量中的三角形四心问题

平面向量中的三角形四心问题结论2:的重心是证明:的重心是所在平面内一点,则为若ABC G ABC G ABC ∆⇔=++⇔=-+-+-⇔++=∆⇔++=∆)()()()(31)(31P二、垂心(orthocenter)三角形的三条高线的交点叫做三角形的垂心。
结论3:的垂心是所在平面内一点,则为若ABC H ABC ∆⇔⋅=⋅=⋅∆H为三角形垂心故同理,有证明:H ABHC CB HA ACHB AC HB HC HA HB HC HB HB HA ⊥⊥⊥⇔=⋅⇔=-⋅⇔⋅=⋅,00)(结论4:可知命题成立由结论同理可证得,得,证明:由的垂心是所在平面内一点,则为若3)()(H 22222222222222HAHC HC HB HA HC HB HC HB HA CA HB BC HA ABC H AB HC AC HB BC HA ABC ⋅=⋅=⋅⋅=⋅⇔-+=-++=+∆⇔+=+=+∆三、外心(circumcenter)三角形三条边的垂直平分线(中垂线)的相交点。
用这个点做圆心可以画三角形的外接圆。
结论5:命题成立证明:由外心定义可知的外心是所在平面内一点,则是若ABC O OC OB OA ABC O ∆⇔==∆结论6:的外心是(所在平面内一点,则是若ABC O AC OA OC CB OC OB BA OB OA ABC O ∆⇔⋅+=⋅+=⋅+∆)()()的外心为故故证明:ABC O OCOB OA OAOC OC OB OB OA OAOC OCOB OB OA OB OA OB OA BA OB OA ∆==⇒-=-=--=⋅+-=⋅+∴-=-+=⋅+)()())(()(Θ四、内心(incenter)三角形三条内角平分线的交点叫三角形的内心。
即内切圆的圆心。
结论7:的内心是所在平面内一点,则为若ABC P CB CB CA BC BA AC AB ABC P ∆⇔>⎪⎪⎪⎭⎫ ⎛++=⎪⎫ ⎛++=⎪⎫ ⎛++=∆)0(321λλλλ的内心为故的平分线上在同理可得,平分线上在即边夹角平分线上在为方向上的单位向量分别,证明:记ABC P C B P A P AC AB e e e e e e AC AB ∆∠∠∠++=⇒⎪⎫ ⎛++=,,)()(,21211121λλ结论8:的内心是所在平面内一点,则是若ABC P PC c PB b PA a ABC P ∆⇔=++∆0的内心是故是平分线同理可得其他的两条也的平分线是由角平分线定理,不共线,则与由于证明:不妨设ABC P ACB CD ab DB DA b ac b a DB DA PC b a c b a c b a c a PCPD ∆∠==+=++=++++⇒=++++⇒=++=,0,)()()()(b λλλλλ。
向量的四心问题(含答案)

向量的四心问题一、单选题(共7道,每道14分)1.在△ABC中,,则直线AD通过△ABC的( )A.垂心B.外心C.重心D.内心答案:D解题思路:试题难度:三颗星知识点:向量在几何中的应用2.已知O为△ABC所在平面内一点,且满足,则点O是△ABC的( )A.外心B.内心C.重心D.垂心答案:D解题思路:试题难度:三颗星知识点:向量在几何中的应用3.已知向量满足,,则△ABC的形状为( )A.等边三角形B.钝角三角形C.非等边的等腰三角形D.直角三角形答案:A解题思路:试题难度:三颗星知识点:向量在几何中的应用4.点P是△ABC所在平面内任一点,,则点G是△ABC的( )A.重心B.内心C.垂心D.外心答案:A解题思路:试题难度:三颗星知识点:向量在几何中的应用5.已知△ABC,点H,O为△ABC所在平面内的点,且,则点O为△ABC的( )A.内心B.外心C.重心D.垂心答案:B解题思路:试题难度:三颗星知识点:向量在几何中的应用6.在△ABC中,若,那么动点M的轨迹必通过△ABC的( )A.垂心B.内心C.外心D.重心答案:C解题思路:试题难度:三颗星知识点:向量在几何中的应用7.已知点O是平面上一定点,A,B,C是该平面内不共线的三个动点,点P满足:,则动点P的轨迹一定通过△ABC的( )A.重心B.垂心C.外心D.内心答案:C解题思路:试题难度:三颗星知识点:向量在几何中的应用。
平面向量中三角形“四心”与应用
平面向量种三角形“四心”与应用一.重要结论1.重心:三角形三条中线的交点,重心为O →→→→=++⇔0OC OB OA 证明:G 是ABC ∆所在平面内一点,GC GB GA ++=0⇔点G 是△ABC 的重心.证明:作图如右,图中GEGC GB =+连结BE 和CE ,则CE=GB ,BE=GC ⇔BGCE 为平行四边形⇒D 是BC 的中点,AD 为BC 边上的中线.将GE GC GB =+代入GC GB GA ++=0,得EG GA +=0⇒GD GE GA 2-=-=,故G 是△ABC 的重心.(反之亦然(证略))重心性质1.P 是△ABC 所在平面内任一点.G 是△ABC 的重心⇔)(31PC PB P A PG ++=.证明:CG PC BG PB AG P A PG +=+=+=⇒)()(3PC PB P A CG BG AG PG +++++=∵G 是△ABC 的重心∴GC GB GA ++=0⇒CG BG AG ++=0,即PC PB P A PG ++=3,由此可得)(31PC PB P A PG ++=.(反之亦然(证略))重心性质2.如图,已知点G 是ABC ∆的重心,过G 作直线与AB ,AC 两边分别交于M ,N两点,且AM xAB = ,AN y AC = ,则113x y+=.证明:点G 是ABC ∆的重心,知GA GB GC ++=O ,得()()AG AB AG AC AG -+-+-=O ,有1()3AG AB AC =+ .又M ,N ,G 三点共线(A不在直线MN 上),于是存在,λμ,使得(1)AG AM AN λμλμ=++=且,有AG xAB y AC λμ=+ =1()3AB AC +,得113x y λμλμ+=⎧⎪⎨==⎪⎩,于是得113x y +=2.外心:三角形三条中垂线的交点.外心O →→→==⇔OC OB OA 222OCOB OA ==⇔→→→→→→→→→=⋅⎪⎭⎫⎝⎛+=⋅⎪⎭⎫ ⎝⎛+=⋅⎪⎭⎫ ⎝⎛+⇔0CA OA OC BC OC OB AB OB OA 外心性质:如图,O 为ABC ∆的外心,证明:1.2||21→→→=⋅AB AB AO ;2||21→→→=⋅AC AC AO ,同理可得→→⋅BC BO 等.2.)|||(|4122→→→→+=⋅AC AB AF AO ,同理可得→→⋅BF BO 等.3.)|||(|2122→→→→-=⋅AB AC BC AO ,同理可得→→⋅AC BO 等.证明:结合三角形中线向量公式及极化恒等式即可完成证明.附:如图,直角三角形ABC 中,2||→→→=⋅AB AC AB .3.内心.三角形三条角平分线的交点.内心为O 0=⋅+⋅+⋅⇔→→→→→→OC AB OB CA OA BC 内心性质.O 是平面上的一定点,A,B,C 是平面上不共线的三个点,动点P 满足ACAC ABAB OA OP ++=λ,[)+∞∈,0λ则P 点的轨迹一定通过ABC ∆的()A.外心B.内心C.重心D.垂心解:ABAB AB 的单位向量设AB 与AC方向上的单位向量分别为21e e 和,又AP OA OP =-,则原式可化为)(21e e AP +=λ,由菱形的基本性质知AP 平分BAC ∠,那么在ABC ∆中,AP 平分BAC ∠,则知选B.4.垂心:三角形三条高线的交点.垂心为O →→→→→→⋅=⋅=⋅⇔OAOC OC OB OB OA 垂心性质.点H 是△ABC 所在平面内任一点,HA HC HC HB HB HA ⋅=⋅=⋅⇔点H 是△ABC 的垂心.由AC HB AC HB HA HC HB HC HB HB HA ⊥⇔=⋅⇔=-⋅⇔⋅=⋅00)(,同理AB HC ⊥,BC HA ⊥.故H 是△ABC 的垂心.(反之亦然(证略))二.典例分析1.若O 在△ABC 所在的平面内,a ,b ,c 是△ABC 的三边,满足以下条件0a OA b OB c OC ⋅+⋅+⋅=,则O 是△ABC 的()A .垂心B .重心C .内心D .外心解析:,OB OA AB OC OA AC =+=+ 且0a OA b OB c OC ⋅+⋅+⋅=,()0a b c OA b AB c AC ∴++⋅+⋅+⋅=,化简得bc AB AC AO a b c AB AC ⎛⎫ ⎪=+⎪++⎝⎭,设AB AC AP AB AC =+ ,又AB AB与AC AC 分别为AB 和AC 方向上的单位向量,AP ∴平分BAC ∠,又,AO AP共线,故AO 平分BAC ∠,同理可得BO 平分ABC ∠,CO 平分ACB ∠,故O 是△ABC 的内心.故选:C.2.在ABC 中,向量AB 与AC 满足0||||AB AC BC AB AC ⎛⎫+⋅= ⎪⎝⎭,且2||||BA BC BA BC ⋅=,则ABC为()A .等边三角形B .直角三角形C .锐角三角形D .等腰直角三角形解析:∵0||||AB AC BC AB AC ⎛⎫+⋅= ⎪⎝⎭,∴BAC ∠的角平分线垂直于BC ,根据等腰三角形三线合一定理得到ABC为等腰三角形,又∵2||||BA BC BA BC ⋅= ,∴=45ABC ∠︒,则ABC 为等腰直角三角形,故选:D.3.已知D 是ABC 内部(不含边界)一点,若::5:4:3ABD BCD CAD S S S =△△△,AD xAB y AC =+,则x y +=()A .23B .34C .712D .1解析:如图,连接AD 并延长交BC 与点M,设点B 到直线AD 的距离为B d ,点C 到直线AD 的距离为C d ,因为::5:4:3ABD BCD CAD S S S =△△△,所以设5,4,3ABD BCD CAD S k S k S k ===△△△,因为AM 与向量AD 共线,设AM AD xAB y AC ==+ λλλ,BM BC = μ,AM AB BM ∴=+AB BC =+ μ()(1),AB AC AB AB AC =+-=-+ μμμ所以1x y λμλμ=-⎧⎨=⎩,即11x y μμλλλ-+=+=,AM AD DM AD AD +==λ()()()B C B C AD DM d d AD d d +⨯+=⨯+111()53432221153222B B c B C C AD d AD d d d k k k k k AD d AD d ⨯+⨯+⨯+++===+⨯+⨯,所以123x y +==λ故选:A4.已知点P 是ABC 所在平面内的动点,且满足AB AC OP OA AB AC λ⎛⎫⎪=++⎪ ⎪⎝⎭(0)λ>,射线AP 与边BC 交于点D ,若23BAC π∠=,||1AD = ,则||BC 的最小值为()AB .2C.D.解析:AB AB 表示与AB 共线的单位向量,AC AC表示与AC共线的单位向量,所以点P 在BAC ∠的平分线上,即AD 为BAC ∠的角平分线,在ABD △中,3BAD π∠=,||1AD = ,利用正弦定理知:2sin sin 3sin AD BD B Bπ=⨯=同理,在ACD △中,2sin sin 3sin AD CD C Cπ=⨯=,1122sin sin 2sin sin BC BD CD B C B C ⎫=+==+⎝⎭,其中3B C π+=,分析可知当6B C π==时,BC取得最小值,即min 12sin 6BC π=⨯=5.已知点O 是锐角ABC 的外心,8AB =,12AC =,3A π=,若AO x AB y AC =+ ,则69x y +=()A .6B .5C .4D .3解析:如图所示,过点O 分别作⊥OD AB ,OE AC ⊥,垂足分别为D ,E ;则D ,E 分别为AB ,AC 的中点,∴221183222AO AB AB ⋅==⨯= ,2211127222AO AC AC ⋅==⨯= ;又3A π=,∴812cos 483AB AC π⋅=⨯⨯= ,∵AO x AB y AC =+ ,∴2AO AB xAB y AC AB ⋅=+⋅ ,2AO AC xAC AB y AC ⋅=⋅+ ,化为326448x y =+①,7248144x y =+②,联立①②解得16x =,49y =;∴695x y +=.故选:B6.已知ABC 外接圆圆心为O ,G 为ABC 所在平面内一点,且0GA GB GC ++=.若AB AC += 52AO,则sin BOG ∠=()A .12B .14C.4D解析:取BC 的中点D ,连接AD ,由0GA GB GC ++=,知G 为ABC 的重心,则G 在AD 上,所以12()33AG AB AC AD =+= ,而24()55AO AB AC AD =+=,所以A ,G ,O ,D 四点共线,所以AB AC =,即AD BC ⊥,不妨令5AD =,则4AO BO ==,1OD =.所以sin sin 4BD BOG BOD BO ∠=∠==.故选:C .7.设H 是ABC ∆的垂心,且3450HA HB HC ++=,则cos ABC ∠=______.解析:H 是ABC ∆的垂心⇔::tan :tan :tan BHC CHA AHB S S S A B C∆∆∆=⇔tan tan tan 0A HAB HBC HC∙∙∙++=由题设得tan tan tan345A B Cλ===.再由tan tan tan tan tan tan A B C A B C ++=,得λ=,tan 5B =.故cos 21ABC ∠=.故答案为:218.已知点O 为三角形ABC 所在平面内的一点,且满足1OA OB OC ===,3450OA OB OC ++=,则AB AC ⋅= ___.解析:∵1OA OB OC === ,3450OA OB OC ++= ,∴345OA OB OC +=-,两边同时平方可得,9162425OA OB ++⋅= ,∴0OA OB ⋅=,∵3455OC OA OB =--,则()()AB AC OB OA OC OA ⋅=-⋅- ()8455OB OA OA OB ⎛⎫=-⋅-- ⎪⎝⎭2284845555OB OA OB OA OB OA =-⋅-++⋅ 48400555=-++=,故答案为45.。
平面向量与三角形的“四心”问题
平面向量与三角形的“四心,,综合问题【例题精讲】例题1已知O ,N ,P 在二MC 所在平面内,且iQri=rsri=iE |, 丽+血+眈=0,且卫矿•血=帀•疋=疋・方,则点 O, N, P 依次是二ABC 的( )A.重心外心垂心B.重心外心内心C.夕卜心重心垂心D.夕卜心重心内心【解析】由了| = |亦| = |龙|知,O 为JABC 的外心;由丽+血+丙厂=0知,N 为匚/EC 的重心; 因为眉•南=血•比,所以(眉一龙)<^=0, 所以_CZ >-W = 0,所以左了口帀\即CA1PB, 同理APZBC, CPLAB,所以P 为二ABC 的垂心,故选C.例题 2 在 JABC 中,28=5, AC=6, cos A=j, O 是 JABC 的 内心,若OP 、= x OB' +y 0(2,其中x, yD[O,l],则动点卩的轨迹所 覆盖图形的面积为()【解析】根据向量加法的平行四边形法则可知,动点P 的轨迹是以05 OC 为邻边的平行四边形及其内部,其面积为~BOC 的面积的2倍.在匚曲C 中,设内角儿B, C 所对的边分别为厲b, c, A. ]0& 3由余弦定理 a 2=b 2+c 2—2bccosA,得 a = 7. 设~ABC 的内切圆的半径为r, 则y/jcsiiiA=^(a+b+c)r ,解得 r=^~,所以S :BOC= 故动点P 的轨迹所覆盖图形的面积为2Sd°c=呼,故选B.【知识小结】三角形“四心"的向量表示(1) 在二拐C 中,若 1^1 = 1^1 = |^|或0了2 =亦2 =龙2, 则点O 是二4BC 的外心.(2) 在匚曲C 中,若~at+~GB"+~G^=O,则点G 是LABC 的重 心.(3) 对于匚MC, O, P 为平面内的任意两点,若亦一乙了 = /」初+*反入口(0, +oo),则直线APyiLABC 的重心.(^Tat ~OB "=~o^ =员・玄T 或者同F+|优平=|勿卩+|岔卩,则点o 为三角形的垂心.(5)|反>勿+|女|•亦+|対|•龙=0,则点O 为三角形的 内心.(6)对于匚45C, O, P 为平面内的任意两点,若~Of = ~oX +【变式练习】G>0),则直线APxldABC 的内心. |xt7Xr = |x7x^^=AB"~AB "1.已知O是平面上的一定点,厦,B, C是平面上不共线的三个动点,若动点卩满足亦=勿+久(莎+女),2j(0, +◎,则点P的轨迹一定通过匚卫3C的()A.内心B.夕卜心C.重心D.垂心【解析】选C由原等式,得亦一岔=2(初+岔),即方=&(初+岔),根据平行四边形法则,知初+立=2訪(D为BC的中点),所以点P的轨迹必过~ABC的重心.故选C.] 3 2・在匚ABC中,|初| = 3, |五'| = 2, 方=于初+才羽,则直线2D 通过-ABC的()A.重心B.外心C.垂心D.内心解析:选D 口|対| = 3, |女|=2,1 Q Q匚护閃=汩©=41 3设龙=齐硏,~AF"=^A^,贝IJI龙| = |匚护|.1 2匚如=丁硏+才女=农 +击,O4Z)平分LEAF, 二Q平分二BAC、匚直线乂0通过3ABC的内心。
平面向量三角形四心(有详解)
平面向量三角形四心(有详解)平面向量三角形四心(有详解)平面向量是数学中的重要概念,可以用来表示空间中的点、线、面等几何对象。
在平面向量的运算和应用中,三角形是常见的几何形状之一。
本文将介绍平面向量与三角形四心的关系,并详细解析其性质和应用。
1. 三角形的四心概述三角形的四心是指三角形内部的四个特殊点,包括重心、外心、内心和垂心。
这四个点有着各自的特点和性质,对于研究三角形的形状和性质非常重要。
1.1 重心三角形的重心是三条中线的交点,即三角形三个顶点与对应中点的连线交于一点。
重心在三角形中心位置,对称性较强,具有重要的几何意义。
1.2 外心三角形的外心是外接圆的圆心,即三角形三个顶点的垂直平分线的交点。
外心离三角形各顶点的距离相等,是三角形的外接圆的圆心。
1.3 内心三角形的内心是内切圆的圆心,即三角形三条边的角平分线的交点。
内心到三角形三边的距离相等,是三角形的内切圆的圆心。
1.4 垂心三角形的垂心是三条高线的交点,即三角形三个顶点与对边垂线的交点。
垂心所在的直线被称为垂心线,与三角形的三条边垂直。
2. 平面向量与四心关系的性质平面向量与三角形的四心之间具有一些重要的几何性质和关系,下面将分别介绍。
2.1 重心与向量以三角形的重心为原点建立直角坐标系,三角形三个顶点的位置向量相对于重心的位置向量之和为零。
即,三角形三个顶点的位置向量和为零向量。
2.2 外心与向量三角形的三个顶点为A、B、C,以外心O为原点建立直角坐标系。
则三角形顶点A、B、C的位置向量之和等于三倍的外心O的位置向量。
即,OA + OB + OC = 3OO。
2.3 内心与向量设三角形的内心为I,以内心I为原点建立直角坐标系。
则三角形三个顶点的位置向量与对边的位置向量之和分别为倍数的内心I的位置向量。
即,AI + BI = CI = 2II。
2.4 垂心与向量以三角形的垂心为原点建立直角坐标系,三角形三个顶点的位置向量与对边垂线的位置向量之和为零。
高考数学专题平面向量与三角形的四心(含解析)
2023届高考专题——平面向量与三角形的“四心”一、三角形的“四心”(1)重心:三角形的三条中线的交点;O 是△ABC 的重心⇔OA →+OB →+OC →=0;(2)垂心:三角形的三条高线的交点;O 是△ABC 的垂心⇔OA →·OB →=OB →·OC →=OC →·OA →;(3)外心:三角形的三条边的垂直平分线的交点(三角形外接圆的圆心).O 是△ABC 的外心⇔|OA →|=|OB →|=|OC →|(或OA →2=OB →2=OC →2);(4)内心:三角形的三个内角角平分线的交点(三角形内切圆的圆心);O 是△ABC 的内心⇔OA →·⎝ ⎛⎭⎪⎪⎫AB →|AB →|-AC →|AC →|=OB →·⎝ ⎛⎭⎪⎪⎫BA →|BA →|-BC →|BC →|=OC →·⎝ ⎛⎭⎪⎪⎫CA →|CA →|-CB →|CB →|=0. 注意:向量λ⎝ ⎛⎭⎪⎪⎫AB →|AB →|+AC →|AC →|(λ≠0)所在直线过△ABC 的内心(是∠BAC 的角平分线所在直线).类型一 平面向量与三角形的“重心”问题例1 已知A ,B ,C 是平面上不共线的三点,O 为坐标原点,动点P 满足OP →=13[(1-λ)OA →+(1-λ)OB →+(1+2λ)·OC →],λ∈R ,则点P 的轨迹一定经过( C )A .△ABC 的内心B .△ABC 的垂心 C .△ABC 的重心D .AB 边的中点 [解析] 取AB 的中点D ,则2OD →=OA →+OB →,∵OP →=13[(1-λ)OA →+(1-λ)OB →+(1+2λ)OC →], ∴OP →=13[2(1-λ)OD →+(1+2λ)OC →] =21-λ3OD →+1+2λ3OC →, 而21-λ3+1+2λ3=1,∴P ,C ,D 三点共线, ∴点P 的轨迹一定经过△ABC 的重心.类型二 平面向量与三角形的“外心”问题例2 设P 是△ABC 所在平面内一点,若AB →·(CB →+CA →)=2AB →·CP →,且AB →2=AC →2-2BC →·AP →,则点P 是△ABC 的( A )A .外心B .内心C .重心D .垂心[解析] 由AB →·(CB →+CA →)=2AB →·CP →,得AB →·(CB →+CA →-2CP →)=0,即AB →·[(CB →-CP →)+(CA →-CP →)]=0,所以AB →·(PB →+PA →)=0.设D 为AB 的中点,则AB →·2PD →=0,故AB →·PD →=0.由AB →2=AC →2-2BC →·AP →,得(AB →+AC →)·(AB →-AC →)=-2BC →·AP →,即(AB →+AC →-2AP →)·BC →=0.设E 为BC 的中点,则(2AE →-2AP →)·BC →=0,则2PE →·BC →=0,故BC →·PE →=0.所以P 为AB 与BC 的垂直平分线的交点,所以P 是△ABC 的外心.故选A .跟踪练习在△ABC 中,O 为其外心,OA ―→·OC ―→=3,且 3 OA ―→+7OB ―→+OC ―→=0,则边AC 的长是________.[解析] 设△ABC 外接圆的半径为R ,∵O 为△ABC 的外心,∴|OA ―→|=|OB ―→|=|OC ―→|=R ,又 3 OA ―→ +7 OB ―→+OC ―→=0,则 3 OA ―→+OC ―→=-7OB ―→,∴3OA ―→2+OC ―→2+2 3OA ―→·OC ―→=7OB ―→2,从而OA ―→·OC ―→=32R 2,又OA ―→·OC ―→=3,所以R 2=2,又OA ―→·OC ―→=|OA ―→||OC ―→|cos ∠AOC =R 2cos ∠AOC =3,∴cos ∠AOC =32,∴∠AOC =π6,在△AOC 中,由余弦定理得AC 2=OA 2+OC 2-2OA ·OC ·cos∠AOC =R 2+R 2-2R 2×32=(2-3)R 2=4-23.所以AC =3-1. 类型三 平面向量与三角形的“垂心”问题例3 (2022·济南质检)已知O 是平面上的一定点,A ,B ,C 是平面上不共线的三个动点,点P 满足OP ―→=OA ―→+λ⎝⎛⎭⎪⎪⎫AB―→|AB ―→|cos B +|AC ―→||AC ―→|cos C ,则动点P 的轨迹一定通过△ABC 的( )A .重心B .外心C .垂心D .内心 [解析] OP ―→-OA ―→=λ⎝ ⎛⎭⎪⎪⎫AB ―→|AB ―→|cos B +AC ―→|AC ―→|cos C ,AP ―→=λ⎝ ⎛⎭⎪⎪⎫AB ―→|AB ―→|cos B +AC ―→|AC ―→|cos C ,BC ―→·AP ―→=λ⎝ ⎛⎭⎪⎪⎫BC ―→·AB ―→|AB ―→|cos B +BC ―→·AC ―→|AC ―→|cos C =λ⎝⎛⎭⎪⎪⎫|BC ―→||AB ―→|cos π-B |AB ―→|cos B +|BC ―→||AC ―→|cos C |AC ―→|cos C =λ(-|BC ―→|+|BC ―→|)=0,所以BC ―→⊥AP ―→,动点P 在BC 的高线上,动点P 的轨迹一定通过△ABC 的垂心,故选C .类型四 平面向量与三角形的“内心”问题例4 在△ABC 中,|AB →|=3,|AC →|=2,AD →=12AB →+34AC →,则直线AD 通过△ABC 的( D ) A .重心B .外心C .垂心D .内心[解析] ∵|AB →|=3,|AC →|=2,∴12|AB →|=34|AC →|=32.设AE →=12AB →,AF →=34AC →,则|AE →|=|AF →|.∵AD →=12AB →+34AC →=AE →+AF →,∴AD 平分∠EAF , ∴AD 平分∠BAC ,∴直线AD 通过△ABC 的内心.跟踪练习(2022·海南模拟)在△ABC 中,AB =5,AC =6,cos A =15,O 是△ABC 的内心,若OP ―→=x OB ―→+y OC ―→,其中x ,y ∈[0,1],则动点P 的轨迹所覆盖图形的面积为( )A .1063B .1463C .4 3D .6 2 [解析] 根据向量加法的平行四边形法则可知,动点P 的轨迹是以OB ,OC 为邻边的平行四边形及其内部,其面积为△BOC 的面积的2倍.在△ABC 中,设内角A ,B ,C 所对的边分别为a ,b ,c ,由余弦定理a 2=b 2+c 2-2bc cos A ,得a =7.设△ABC 的内切圆的半径为r ,则12bc sin A =12(a +b +c )r ,解得r =263,所以S △BOC =12×a ×r =12×7×263=763.故动点P 的轨迹所覆盖图形的面积为2S △BOC =1463. 二、三角形形状的判断在△ABC 中,①若|AB →|=|AC →|,则△ABC 为等腰三角形;②若AB →·AC →=0,则△ABC 为直角三角形;③若AB →·AC →<0,则△ABC 为钝角三角形;④若AB →·AC →>0,BA →·BC →>0,且CA →·CB →>0,则△ABC 为锐角三角形;⑤若|AB →+AC →|=|AB →-AC →|,则△ABC 为直角三角形;⑥若(AB →+AC →)·BC →=0,则△ABC 为等腰三角形.例5 (2022·驻马店质检)若O 为△ABC 所在平面内任一点,且满足(OB →-OC →)·(OB →+OC →-2OA →)=0,则△ABC 的形状为( C )A .正三角形B .直角三角形C .等腰三角形D .等腰直角三角形 [解析] 由题意知CB →·(AB →+AC →)=0.所以(AB →-AC →)·(AB →+AC →)=0,即|AB →|=|AC →|,所以△ABC 是等腰三角形,故选C .〔变式训练4〕(1)若P 为△ABC 所在平面内一点.①若(OP →-OA →)·(AB →-AC →)=0,则动点P 的轨迹必过△ABC 的垂心.②若OP →=OA →+λ(AB →+AC →)(λ≥0),则动点P 的轨迹必过△ABC 的重心.③若CA →2=CB →2-2AB →·CP →,则动点P 的轨迹必过△ABC 的外心.(2)已知非零向量AB →与AC →满足⎝ ⎛⎭⎪⎪⎫AB →|AB →|+AC →|AC →|·BC →=0且AB →|AB →|·AC →|AC →|=12,则△ABC 为( D )A .三边均不相等的三角形B .直角三角形C .等腰非等边三角形D .等边三角形[解析] (1)①由题意知AP →·CB →=0,∴AP ⊥BC ,∴动点P 必过△ABC 的垂心;②由题意知AP →=λ(AB →+AC →)=2λAM →(M 为BC 中点)∴P 、A 、M 共线,∴P 必过△ABC 的重心;③2AB →·CP →=CB →2-CA →2=(CB →-CA →)·(CB →+CA →)=AB →·(CB →+CA →),即2AB →·CP →=AB →·(CB →+CA →),∴AB →·(2CP →-CB →-CA →)=AB →·(BP →+AP →)=0.∴以BP →,AP →为邻边的平行四边形的对角线互相垂直.∴点P 在线段AB 的中垂线上,∴P 必过△ABC 的外心.(2)因为非零向量AB →与AC →满足⎝ ⎛⎭⎪⎪⎫AB →|AB →|+AC →|AC →|·BC →=0,所以∠BAC 的平分线垂直于BC ,所以AB =AC .又cos ∠BAC =AB →|AB →|·AC →|AC →|=12,所以∠BAC =π3.所以△ABC 为等边三角形.故选D .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
精品文档 精品文档 近年来,对于三角形的“四心”问题的考察时有发生,尤其是和平面向量相结合来考察很普遍,难度上偏向中等,只要对于这方面的知识准备充分,就能应付自如.下面就平面向量和三角形的“四心”问题的类型题做一阐述:
一、 重心问题 三角形“重心”是三角形三条中线的交点,所以“重心”就在中线上.
例1 已知O是平面上一 定点,A,B,C是平面上不共线的三个点,动点P 满足:
,则P的轨迹一定通过△ABC 的 ( )
A 外心 B 内心 C 重心 D 垂心 解析:如图1,以AB,AC为邻边构造平行四边形ABCD,E为对角线的交点,根据向量平行四边形法则 ,因为,
所以,上式可化为,E在直线AP上,因为AE为的中线,所以选 C. 点评:本题在解题的过程中将平面向量的有关运算与平行四边形的对角线互相平分及三角形重心性质等相关知识巧妙结合.
二、 垂心问题 三角形“垂心”是三角形三条高的交点,所以“垂心”就在高线上. 例2 P是△ABC所在平面上一点,若,则P是△ABC的( ). 精品文档 精品文档 A.外心 B.内心 C.重心 D.垂心
解析:由. 即. 则, 所以P为的垂心. 故选D. 点评:本题考查平面向量有关运算,及“数量积为零,则两向量所在直线垂直”、三角形垂心定义等相关知识.将三角形垂心的定义与平面向量有关运算及“数量积为零,则两向量所在直线垂直” 等相关知识巧妙结合.
三、 内心问题 三角形“内心”是三角形三条内角平分线的交点,所以“内心”就在内角平分线线上. 例3 已知P是△ABC所在平面内的一动点,且点P满足
,则动点P一定过△ABC的〔 〕. A、重心 B、垂心 C、外心 D、内心
解析:如图2所示,因为是向量的单位向量设与方向上的单位向量分别为, 又,则原式可化为,由菱形的基本性质知AP平分,那么在中,AP平分,则知选B. 精品文档 精品文档 点评:这道题给人的印象当然是“新颖、陌生”,首先是什么?想想一个非零向量除以它的模不就是单位向量? 此题所用的都必须是简单的基本知识,如向量的加减法、
向量的基本定理、菱形的基本性质、角平分线的性质等,若十分熟悉,又能迅速地将它们迁移到一起,这道题就迎刃而解了.
四、 外心问题 三角形“外心”是三角形三条边的垂直平分线的交点,所以“外心”就在垂直平分线线上.
例4 已知O是△ABC内的一点,若,则O是△ABC的〔 〕. A.重心 B.垂心 C.外心 D.内心
解析:,由向量模的定义知到的三顶点距离相等.故 是 的外心 ,选C.
点评:本题将平面向量模的定义与三角形外心的定义及性质等相关知识巧妙结合 三角形的“四心”与平面向量 向量本身是一个几何概念,具有代数形式和几何形式两种表示方法,易于数形结合,而且向量问题在进行数形结合时具有新形式、新特点,因此可称为高中数学的一个交汇点。三角形的“四心”(外心、内心、重心、垂心)是与三角形有关的一些特殊点,各自有一些特殊的性质。在高考中,往往将“向量作为载体”对三角形的“四心”进行考查。这就需要我们在熟悉向量的代数运算的基础上读懂向量的几何意义。 与三角形的“四心”有关的一些常见的重要的向量关系式有:
① 设,0,则向量)(ACACABAB必平分∠BAC,该向量必通过△ABC的内心;
② 设,0,则向量)(ACACABAB必平分∠BAC的邻补角 精品文档 精品文档 ③ 设,0,则向量)coscos(CACACBABAB必垂直于边BC,该向量必通过△ABC的垂心 ④ △ABC中ACAB一定过BC的中点,通过△ABC的重心
⑤ 点O是△ABC的外心 222OCOBOA ⑥ 点O是△ABC的重心 0OCOBOA ⑦ 点O是△ABC的垂心 OAOCOCOBOBOA ⑧ 点O是△ABC的内心 0OCcOBbOAa (其中a、b、c为△ABC三边) ⑨ △ABC的外心O、重心G、垂心H共线,即OG∥OH ⑩ 设O为△ABC所在平面内任意一点,G为△ABC的重心,,I为△ABC的内心,
则有)(31OCOBOAOG cbaOCcOBbOAaOI 并且重心G(XA+XB+XC3 ,YA+YB+YC3 ) 内心I(aXA+ bXB+ cXCa+b+c ,ayA+ byB+ cyCa+b+c )
例1:(2003年全国高考题)O是平面上一定点,A、B、C是平面上不共线的三点,动点P满足)(ACACABABOAOP,,0,则动点P的轨迹一定通过△ABC的( )
(A)外心 (B)内心 (C)重心 (D)垂心
事实上如图设,ABABAEACACAF都是单位向量
易知四边形AETF是菱形 故选答案B 例2:(2005年北京市东城区高三模拟题)O为△ABC所在平面内一点,如果OAOCOCOBOBOA,则O必为△ABC的( )
(A)外心 (B)内心 (C)重心 (D)垂心 事实上00)(OBCAOBOCOAOCOBOBOAOB⊥CA 故选答案D
A F E C T
B 精品文档
精品文档 例3:已知O为三角形ABC所在平面内一点,且满足 222222ABOCCAOBBCOA,则点O是三角形ABC的( )
(A)外心 (B)内心 (C)重心 (D)垂心 事实上由条件可推出OAOCOCOBOBOA 故选答案D
例4:设O是平面上一定点,A、B、C是平面上不共线的三点, 动点P满足)coscos(CACACBABABOAOP,,0,则动点P的轨迹一定通
过△ABC的( ) (A)外心 (B)内心 (C)重心 (D)垂心
事实上0)()coscos(BCBCBCCACACBABAB 故选答案D
例5、已知向量123,,OPOPOP满足条件1230OPOPOP,123||||||1OPOPOP,求证:123PPP△是正三角形. 分析 对于本题中的条件123||||||1OPOPOP,容易想到,点O是123PPP△的外心,而另一个条件1230OPOPOP表明,点O是123PPP△的重心. 故本题可描述为,若存在一个点既是三角形的重心也是外心,则该三角形一定是正三角形.在1951年高考中有一道考题,原题是:若一三角形的重心与外接圆圆心重合,则此三角形为何种三角形?与本题实质是相同的. 显然,本题中的条件123||||||1OPOPOP可改为123||||||OPOPOP.
高考原题 例6、O是平面上一 定点,A、B、C是平面上不共线的三个点,动点P满足
()[0,).||||ABACOPOAABAC则P的轨迹一定通过△ABC的( ). 精品文档 精品文档 A.外心 B.内心 C.重心 D.垂心 分析 已知等式即()||||ABACAPABAC,设,||||ABACAEAFABAC,显然,AEAF都是单位向量,以二者为邻边构造平行四边形,则结果为菱形,故AP为ABC的平分线,选B. 例7、ABC的外接圆的圆心为O,两条边上的高的交点为H,()OHmOAOBOC,则实数m = .
分析:本题除了利用特殊三角形求解外,纯粹利用向量知识推导则比较复杂,更加重要的一点是缺乏几何直观.解法如下,由已知,有向量等式0AHBC,将其中的向量分解,向已知等式形式靠拢,有()()0OHOAOCOB,将已知代入,有[()]()0mOAOBOCOAOCOB,即22()(1)0mOCOBmOABC,由O是外心,得(1)0mOABC,由于ABC
是任意三角形,则OABC不恒为0,故只有1m恒成立. 或者,过点O作OMBC与M,则M是BC的中点,有1()2OMOBOC;H是垂心,则AHBC,故AH与OM共线,设AHkOM,则()2kOHOAAHOAOBOC,又()OHmOAOBOC,故可得(1)()()022kkmOAmOBmOC,有102kmm,得1m. 根据已知式子()OHmOAOBOC中的OAOBOC部分,很容易想到三角形的重心坐标公式,设三角形的重心为G,O是平面内
任一点,均有3OAOBOCOG,由题意,题目显然叙述的是一个一般的结论,先作图使问题直观化,如图1,由图上观察,很容易猜想到2HGGO,至少有两个产生猜想的诱因,其一是,,BFOT均与三角形的边AC垂直,则//BFOT;其二,点G是三角形的中线BT的三等分G
HBC
AFT
EDO
图1 精品文档 精品文档 点.此时,会先猜想BHGTOG△∽△,但现在缺少一个关键的条件,即2BHOT,这样由两个三角形的两边长对应成比例,同时,夹角对应相等可得相似.当然,在考试时,只需大胆使用,也可利用平面几何知识进行证明. 本题结论是关于三角形的欧拉定理,即设O、G、H分别是△ABC的外心、重
心和垂心,则O、G、H三点共线,且OG∶GH=1∶2,利用向量表示就是3OHOG. 例8、点O是三角形ABC所在平面内的一点,满足OAOBOBOCOCOA,则点O是ABC的( ). A.三个内角的角平分线的交点 B.三条边的垂直平分线的交点 C.三条中线的交点 D.三条高的交点 分析 移项后不难得出,
0OBCAOCABOACB,点O是ABC的垂心,
选D.
3 推广应用题 例9 在△ABC内求一点P,使222APBPCP最小. 分析 如图2,构造向量解决.取,CAaCBb为基向量,设CPx,有,APxaBPxb.
于是,222222222
11
()()3[()]()33APBPCPxaxbxxababab.
当1()3xab时,222APBPCP最小,此时,即1()3OPOAOBOC,则点P为△ABC的重心. 例10 已知O为△ABC所在平面内一点,满足222222||||||||||||OABCOBCAOCAB,则O为△ABC的 心.
分析 将2222||()2BCOCOBOCOBOCOB,22||,||CAAB也类似展
C P 图2
A
B