人教版六年级上册奥数题大全及答案
十个奥数题及答案六年级

十个奥数题及答案六年级1. 题目一:一个数列的前三项分别为2,3,5,从第四项开始,每一项都是前三项的和。
求这个数列的第10项是多少?答案:根据题意,数列的第四项为2+3+5=10,第五项为3+5+10=18,以此类推。
数列的第10项为:5 + 10 + 18 = 33。
2. 题目二:一个长方形的长是宽的两倍,如果长增加10厘米,宽增加6厘米,面积就增加100平方厘米。
求原来长方形的长和宽。
答案:设原长方形的宽为x厘米,则长为2x厘米。
根据题意,(2x+10)(x+6) - 2x*x = 100。
解得x=5,所以原长方形的长为10厘米,宽为5厘米。
3. 题目三:一个数与它自己相加、相减、相乘、相除,所得结果的和为100。
求这个数。
答案:设这个数为x,则有 (x+x) + (x-x) + (x*x) + (x/x) = 100。
简化得 2x + x^2 = 100。
解这个一元二次方程,得到x=9。
4. 题目四:一个班级有学生若干人,如果每组有8人,多出3人;如果每组有12人,多出5人。
求这个班级至少有多少人?答案:设班级有x人。
根据题意,x-3是8的倍数,x-5是12的倍数。
求8和12的最小公倍数,得24。
所以班级至少有31人。
5. 题目五:一个数的平方减去这个数的两倍等于33,求这个数。
答案:设这个数为x,根据题意,x^2 - 2x = 33。
将方程改写为x^2 - 2x - 33 = 0,解得x=6或x=-11。
6. 题目六:两个数的和是60,它们的积是450。
求这两个数。
答案:设这两个数分别为x和y,根据题意,x+y=60且xy=450。
解这个方程组,得到x=30,y=30。
7. 题目七:一个数的立方减去这个数的两倍等于100,求这个数。
答案:设这个数为x,根据题意,x^3 - 2x = 100。
将方程改写为x^3 - 2x - 100 = 0,解得x≈4.62。
8. 题目八:一个数除以3余1,除以4余2,除以5余3。
人教版六年级奥数题及答案和题目图文百度文库

人教版六年级奥数题及答案和题目图文百度文库一、拓展提优试题1.有一个温泉游泳池,池底有泉水不断涌出,要想抽干满池的水,10台抽水机需工作8小时,9台抽水机需工作9小时,为了保证游泳池水位不变(池水既不减少,也不增多),则向外抽水的抽水机需台.2.图中阴影部分的两段圆弧所对应的圆心分别为点A和点C,AE=4m,点B 是AE的中点,那么阴影部分的周长是m,面积是m2(圆周率π取3).3.A、B、C、D四个箱子中分别装有一些小球,现将A箱中的部分小球按如下要求转移到其他三个箱子中:该箱中原有几个小球,就再放入几个小球,此后,按照同样的方法依次把B、C、D箱中的小球转移到其他箱子中,此时,四个箱子都各有16个小球,那么开始时装有小球最多的是箱,其中装有小球个.4.认真观察图4中的三幅图,则第三幅图中的阴影部分应填的数字是.5.如图,正方形ABCD和EFGH分别被互相垂直的直线分为两个小正方形和两个矩形,小正方形的面积的值已标在图中,分别为20和10,18和12,则正方形ABCD和EFGH中,面积较大的正方形是.6.从五枚面值为1元的邮票和四枚面值为1.60元的邮票中任取一枚或若干枚,可组成不同的邮资种.7.王老师在黑板上写了若干个从1开始的连续自然数:1,2,3,4,…,然后擦去三个数(其中有两个质数),如果剩下的数的平均数是19,那么王老师在黑板上共写了39个数,擦去的两个质数的和最大是.8.小强和小林共有邮票400多张,如果小强给小林一些邮票,小强的邮票就比小林的少;如果小林给小强同样多的邮票,则小林的邮票就比小强的少,那么,小强原有227张邮票,小林原有张邮票.9.如图,一只玩具蚂蚁从O点出发爬行,设定第n次时,它先向右爬行n个单位,再向上爬行n个单位,达到点A n,然后从点A n出发继续爬行,若点O记为(0,0),点A1记为(1,1),点A2记为(3,3),点A3记为(6,6),…,则点A100记为.10.如图,设定E、F分别是△ABC的边AB、AC上的点,线段CE,BF交于点D,若△CDF,△BCD,△BDE的面积分别为3,7,7,则四边形AEDF的面积是.11.根据图中的信息计算:鸡大婶和鸡大叔买的花束中,玫瑰、康乃馨、百合各多少枝?12.如图,一个长方形的长和宽的比是5:3.如果长方形的长减少5厘米,宽增加3厘米,那么这个长方形边长一个正方形.原长方形的面积是平方厘米.13.如图,一个底面直径是10厘米的圆柱形容器装满水.先将一个底面直径是8厘米的圆锥形铁块放入容器中,铁块全部浸入水中,再将铁块取出,这时水面的高度下降了3.2厘米.圆锥形铁块的高厘米.14.甲挖一条水渠,第一天挖了水渠总长度的,第二天挖了剩下水渠长度的,第三天挖了未挖水渠长度的,第四天挖完剩下的100米水渠.那么,这条水渠长米.15.张强晚上六点多外出锻炼身体,此时时针与分针的夹角是110°;回家时还未到七点,此时时针与分针的夹角仍是110°,则张强外出锻炼身体用了分钟.【参考答案】一、拓展提优试题1.解:设1台抽水机1小时抽1份水,每小时新增水:9×9﹣10×8=1;答:向外抽水的抽水机需1台.2.解:阴影部分的周长:4+3×4×2÷4+3×2×2÷4,=4+6+3,=13(米);阴影部分的面积:3×42÷4+3×22÷4﹣2×4,=12+3﹣8,=7(平方米);答:阴影部分的周长是13米,面积是7平方米.故答案为:13、7.3.解:根据最后四个箱子都各有16个小球,所以小球总数为16×4=64个,最后一次分配达到的效果是,从D中拿出一些小球,使A、B、C中的小球数翻倍,则最后一次分配前,A、B、C中各有小球16÷2=8个,由于小球的转移不改变总数,所以最后一次分配前,D中有小球64﹣8﹣8﹣8=40个;于是得到D被分配前的情况:A8,B8,C8,D40;倒数第二次分配达到的效果是,从C中拿出一些小球,使A、B、D中的小球数翻倍,则倒数第二次分配前,A、B中各有小球8÷2=4个,D中有40÷2=20个,总数不变,所以最后一次分配前,C中有小球64﹣4﹣4﹣20=36个,于是得到C被分配前的情况:A4,B4,C36,D20,同样的道理,在B被分配前,A中有小球4÷2=2个,C中有小球36÷2=18个,D中有小球20÷2=10个,B中有小球64﹣2﹣18﹣10=34个,即B被分配前的情况:A2,B34,C18,D10;再推导一次,在A被分配前,B中有小球34÷2=17个,C中有小球18÷2=9个,D中有小球10÷2=5个,B中有小球64﹣17﹣9﹣5=33个,即A被分配前的情况:A33,B17,C9,D5;而A被分配前的情况,就是一开始的情况,所以一开始,A箱子装有最多的小球,数量为33个;答:开始时装有小球最多的是A箱,其中装有33小球个;故答案为:A,33.4.解:由每个图形的数字表示该图形所含曲边的数目可得:第三幅图中的阴影部分含有5个曲边,所以阴影部分应填的数字是5,故答案为:5.5.解:小正方形的面积之和为30时,两正方形的面积差最小,则大正方形的面积越大,即EFGH的面积较大;故答案为:EFGH.6.解:根据分析可得:6×5﹣1=29(种);答:可组成不同的邮资29种.故答案为:29.7.解:由剩下的数的平均数是19,即得最大的数约为20×2=40个,又知分母是9,所以剩下的数的个数必含因数9,则推得剩余36个数.原写下了1到39这39个数;剩余36个数的和:19×36=716,39个数的总和:(1+39)×39÷2=780,擦去的三个数总和:780﹣716=64,根据题意,推得擦去的三个数中最小是1,那么两个质数和63=61+2能够成立,61>39不合题意;如果擦去的另一个数是最小的合数4,64﹣4=6060=29+31=23+37,成立;综上,擦去的两个质数的和最大是60.故答案为:39,60.8.解:(1﹣):1=13:19,13+19=32;1:(1﹣)=17:11,17+11=28,32与28的最小公倍数是224,小强和小林共有邮票400多张,所以共有224×2=448张,448÷32×13=182,448÷28×17=272.小强:(182+272)÷2=227张小林:448﹣227=221.故答案为:227,221.9.解:根据分析可知A100记为(1+2+3+…+100,1+2+3+…+100);因为1+2+3+…+100=(1+100)×100÷2=5050,所以A100记为(5050,5050);故答案为:A100记为(5050,5050).10.解:连接AD,因△CDF和△BCD的高相等,所以FD:DB=3:7,所△AFD和△ABD的面积比也是3:7,即可把△AFD的面积看作是3份,△ABD的面积看作是7份,S△BCD=7,S△BDE=7所以CD=DE,S△ACD=S△ADE,S△ACD+S△BDE=S△ABD,S△ACD+S△BDE=7份,S△AFD+S△CDF+S△BDE=7份,3份+3+7=7份,则1份=2.5,S四边形AEDF=10份﹣7=10×2.5﹣7=25﹣7=18答:四边形AEDF的面积是18.故答案为:18.11.解:依题意可知:玫瑰与康乃馨和百合的枝数化连比为:10:15:3;购买一份比例的价格为:3×20+15×6+15×10=300;正好是1倍关系.答:购买玫瑰10枝,康乃馨15枝,百合3枝.12.解:先求出一份的长:(5+3)÷(5﹣3)=8÷2=4(厘米)长是:4×5=20(厘米)宽是:4×3=12(厘米)原来的面积是:20×12=240(平方厘米);答:原来长方形的面积是240平方厘米.故答案为:240.13.解:圆锥形铁块的体积是:3.14×(10÷2)2×3.2=3.14×25×3.2=251.2(cm3)铁块的高是:251.2×3÷[3.14×()2]=251.2×3÷50.24=15(cm)答:铁块的高是15cm.14.解:把这条水渠总长度看作单位“1”,则第一天挖的分率为,第二天挖的分率(1﹣)×=,第三天挖的分率为(1﹣)×=,100÷((1﹣﹣﹣)=100÷=350(米)答:这条水渠长350米.故答案为:350.15.解:依题意可知:分针开始落后时针共格;后来分针领先格,路程差为格.锻炼身体的时间为:=40(分);故答案为:40.。
人教版六年级经典奥数题及答案图文百度文库

人教版六年级经典奥数题及答案图文百度文库一、拓展提优试题1.建筑公司建一条隧道,按原速度建成时,使用新设备,使修建速度提高了20%,并且每天的工作时间缩短为原来的80%,结果共用185天建完隧道,若没有新设备,按原速度建完,则需要天.2.有2013名学生参加数学竞赛,共有20道竞赛题,每个学生有基础分25分,此外,答对一题得3分,不答题得1分,答错一题扣1分,则所有参赛学生得分的总和是数(填“奇”或“偶”).3.(15分)快艇从A码头出发,沿河顺流而下,途经B码头后继续顺流驶向C码头,到达C码头后立即反向驶回B码头,共用10小时,若A、B相距20千米,快艇在静水中航行的速度是40千米/时,河水的流速是10千米/时,求B、C间的距离.4.一个两位数除以一位数,所得的商若是最小的两位数,那么被除数最大是.5.小强和小林共有邮票400多张,如果小强给小林一些邮票,小强的邮票就比小林的少;如果小林给小强同样多的邮票,则小林的邮票就比小强的少,那么,小强原有227张邮票,小林原有张邮票.6.已知自然数N的个位数字是0,且有8个约数,则N最小是.7.有三杯重量相等的溶液,它们的浓度依次是10%,20%,45%,如果依次将三个杯子中的溶液重量的,,倒入第四个空杯子中,则第四个杯子中溶液的浓度是%.8.如图是甲乙丙三人单独完成某项工程所需天数的统计图,根据图中信息计算,若甲先做2天,接着乙丙两人合作了4天,最后余下的工程由丙1人完成,则完成这项工程共用天.9.在救灾捐款中,某公司有的人各捐200元,有的人各捐100元,其余人各捐50元.该公司人均捐款元.10.用1024个棱长是1的小正方体组成体积是1024的一个长方体.将这个长方体的六个面都涂上颜色,则六个面都没有涂色的小正方体最多有个.11.小红买1支钢笔和3个笔记本共用了36.45元,其中每个笔记本售价的与每支钢笔的售价相等,则1支钢笔的售价是元.12.小丽做一份希望杯练习题,第一小时做完了全部的,第二小时做完了余下的,第三小时做完了余下的,这时,余下24道题没有做,则这份练习题共有道.13.如图,将正方形纸片ABCD折叠,使点A、B重合于点O,则∠EFO=度.14.甲、乙两人分别从A、B两地同时出发,相向而行,在C点相遇,若在出发时,甲将速度提高,乙将速度每小时提高10千米,二人依然在C点相遇,则乙原来每小时行千米.15.若(n是大于0的自然数),则满足题意的n的值最小是.【参考答案】一、拓展提优试题1.解:(1﹣)÷[(1+20%)×80%]=÷[120%×80%],=,=;185÷(+)=185÷,=180(天).答:按原速度建完,则需要180天.故答案为:180.2.解:每人答对x道,不答y道,答错z道题目,则显然x+y+z=20,z=20﹣x﹣y;所以一个学生得分是:25+3x+y﹣z,=25+3x+y﹣(20﹣x﹣y),=5+4x+2y;4x+2y显然是个偶数,而5+4x+2y的和一定是个奇数;2013个奇数相加的和仍是奇数.所以所有参赛学生得分的总和是奇数.故答案为:奇.3.解:设B、C间的距离为x千米,由题意,得+=10,解得x=180.答:B、C间的距离为180千米.4.解:商是10,除数最大是9,余数最大是8,9×10+8=98;被除数最大是98.故答案为:98.5.解:(1﹣):1=13:19,13+19=32;1:(1﹣)=17:11,17+11=28,32与28的最小公倍数是224,小强和小林共有邮票400多张,所以共有224×2=448张,448÷32×13=182,448÷28×17=272.小强:(182+272)÷2=227张小林:448﹣227=221.故答案为:227,221.6.解:自然数N的个位数字是0,它一定有质因数5和2,要使N最小,5的个数应最少为1个,而求其它因数最好都是2和3,并且2的个数不能超过2个,其它最好都是3;设这个自然数N=21×51×3a,根据约数和定理,可得:(a+1)×(1+1)×(1+1)=8,(a+1)×2×2=8,a=1;所以,N最小是:2×3×5=30;答:N最小是30.故答案为:30.7.解:依题意可知:设三杯溶液的重量为a.根据浓度=×100%=×100%=20%故答案为:20%8.解:依题意可知:甲乙丙的工作效率分别为:,,;甲乙工作总量为:×2+×4=;丙的工作天数为:(1﹣)=3(天);共工作2+4+3=9故答案为:99.解:捐50元人数的分率为:1﹣=,(200×+100×+50×)÷1=(20+75+7.5)÷1=102.5(元)答:该公司人均捐款102.5元.故答案为:102.5.10.解:因为1024=210=8×8×16(8﹣2)×(8﹣2)×(16﹣2)=6×6×14=504答:六个面都没有涂色的小正方体最多有504个.故答案为:504.11.解:36.45÷(3+)=36.45=5.45.4×=20.25(元)答:1支钢笔的售价是 20.25元.故答案为:20.25.12.解:24÷(1﹣)÷(1﹣)÷(1﹣)=24÷=60(道)答:这份练习题共有 60道.故答案为:60.13.解:沿DE折叠,所以AD=OD,同理可得BC=OC,则:OD=DC=OC,△OCD是等边三角形,所以∠DCO=60°,∠OCB=90°﹣60°=30°;由于是对折,所以CF平分∠OCB,∠BCF=30°÷2=15°∠BFC=180°﹣90°﹣15°=75°所以∠EFO=180°﹣75°×2=30°.故答案为:30.14.解:依题意可知:根据甲乙两人的相遇点相同,那么他们的速度比例是不变的.当甲提高时,乙也同样需要提高,而乙提高的是每小时10千米.即10÷=40千米/小时.故答案为:4015.解:当n=1时,不等式左边等于,小于,不能满足题意;当n=2时,不等式左边等于+==,小于,不能满足题意;同理,当n=3时,不等式左边大于,能满足题意;所以满足题意的n的值最小是3.故答案是:3。
小学六年级奥数题50道及答案

小学六年级奥数题50道及答案1. 三个袋子里放着相同数量的红球,黄球和蓝球,共有 10 粒球。
每袋子里各有几粒?答案:每袋子 3 粒2. 某人有 8 支铅笔,4 支钢笔,用它们排成一排,问最多可以排成几排?答案:两排3. 小明有 12 元钱,用它买了 6 个橘子,每个 1 元,还剩几块钱?答案:还剩 6 元4. 大卫有 3 个朋友,他们共分了 20 个苹果,大卫得到几个?答案:大卫得到 6 个苹果5. 一个游乐场有 5 个火车,每辆火车上有 8 个座位,共有多少个座位?答案:共有 40 个座位6. 一个餐厅共有 6 个桌子,每个桌子可以坐 4 人,共可以容纳多少人?答案:共可以容纳 24 人7. 一共有 10 块砖,每堆 3 块,共有几堆?答案:共有 4 堆8. 一共有 8 支铅笔,4 支钢笔,每支铅笔的价格是钢笔的 2 倍,大卫花了 48 元,买了几支钢笔?答案:买了 4 支钢笔9. 请问把12 个正方形拼成一个大正方形,大正方形有几条边?答案:大正方形有 4 条边10. 一共有 12 个苹果,每袋只能装 4 个,共需要几袋?答案:共需要 3 袋11. 一共有 18 个橘子,每篮可以装 6 个,需要几篮?答案:需要 3 篮12. 一共有 10 块砖头,每袋装 2 块,需要几袋?答案:需要 5 袋13. 一共有 9 张书,每盒可以装 3 张,需要几盒?答案:需要 3 盒14. 一共有 5 个小朋友,一共分了 15 块糖,每个小朋友可以得到几块糖?答案:每个小朋友可以得到 3 块糖15. 一共有 10 支铅笔,每盒装 3 支,需要几盒?答案:需要 4 盒16. 一共有 10 个小球,每篮可以装 4 个,需要几篮?答案:需要 3 篮17. 大卫有 6 元钱,用它买了 4 个橘子,每个 1.5 元,还剩几块钱?答案:还剩 0 元18. 一共有 12 支钢笔,每盒可以装 4 支,需要几盒?答案:需要 3 盒19. 一共有 24 个正方形,每排 6 个,一共有几排?答案:一共有 4 排20. 一共有 12 张牌,每人可以得到 3 张,共有几个人?答案:共有 4 个人21. 一共有 9 块蛋糕,每人可以分得 3 块,共有几个人?答案:共有 3 个人22. 一共有 10 瓶饮料,每袋可以装 5 瓶,需要几袋?答案:需要 2 袋23. 一共有 18 个书,每箱可以装 6 个,需要几箱?答案:需要 3 箱答案:一共有 12 粒食物,每袋装 4 粒,需要几袋?答案:需要 3 袋25. 一共有 5 个孩子,一共分了 15 个糖果,每个孩子可以得到几个糖果?答案:每个孩子可以得到 3 个糖果26. 一共有 8 块砖头,每袋装 2 块,需要几袋?答案:需要 4 袋27. 一共有 6 条链子,每盒可以装 3 条,需要几盒?答案:需要 2 盒28. 一共有 10 把伞,每把伞包一个盒子,一共需要几个盒子?答案:一共需要 10 个盒子29. 一共有 7 个苹果,每篮可以装 3 个,需要几篮?答案:需要 3 篮30. 一共有 14 支钢笔,每筒装 4 支,需要几筒?答案:需要 4 筒31. 一共有 12 块橡皮,每盒装 4 块,需要几盒?答案:需要 3 盒32. 一共有 10 个棋子,每盒可以装 2 个,需要几盒?答案:需要 5 盒33. 一共有 9 块布,每袋装 3 块,需要几袋?答案:需要 3 袋34. 一共有 16 小球,每份可以分 4 个,共有几份?答案:共有 4 份35. 一共有 11 个小朋友,一共分了 33 块糖,每个小朋友可以得到几块糖?答案:每个小朋友可以得到 3 块糖36. 一共有 8 支铅笔,每盒装 2 支,需要几盒?答案:需要 4 盒37. 一共有 12 条鱼,每箱可以装 4 条,需要几箱?答案:需要 3 箱38. 一共有 6 块橡皮,每袋装 2 块,需要几袋?答案:需要 3 袋39. 一共有 9 个正方形,每排 3 个,一共有几排?答案:一共有 3 排40. 一共有 12 张牌,每人可以得到 4 张,共有几个人?答案:共有 3 个人41. 一共有 10 瓶苹果汁,每箱可以装 5 瓶,需要几箱?答案:需要 2 箱42. 一共有 11 条狗,每把笼子可以关住 3 条,需要几个笼子?答案:需要 4 个笼子43. 一共有 6 只鸟,每把笼子可以装 2 只,需要几把笼子?答案:需要 3 把笼子44. 一共有 14 颗橘子,每篮可以装 4 颗,需要几篮?答案:需要 4 篮45. 一共有 8 支毛笔,每筒装 4 支,需要几筒?答案:需要 2 筒46. 一共有 9 条鱼,每盒可以装 3 条,需要几盒?答案:需要 3 盒47. 一共有 10 个姑娘,一共分了 20 个糖果,每个姑娘可以得到几个糖果?答案:每个姑娘可以得到 2 个糖果48. 一共有 12 个龙虾,每袋装 4 个,需要几袋?答案:需要 3 袋49. 一共有 7 个箱子,每排可以放下 3 个,一共有几排?答案:一共有 3 排50. 一共有 5 个孩子,一共分了 15 块巧克力,每个孩子可以得到几块巧克力?答案:每个孩子可以得到 3 块巧克力。
【奥数专题】精编人教版小学数学6年级上册 浓度问题(试题)含答案与解析

经典奥数:浓度问题(专项试题)一.选择题(共3小题)1.一杯含糖率30%的糖水,喝掉一半后,现在糖水的含糖率()A.大于30%B.等于30%C.小于30%D.无法确定2.在100克水中加入10克盐,这时盐水的含盐率约是()A.10%B.9.1%C.11.1%D.12%3.右图,更咸的是()A.第一杯B.第二杯C.都一样D.不能确定二.填空题(共9小题)4.甲容器装有4千克含盐15%的盐水,乙容器装有6千克含盐10%的盐水。
把两个容器的盐水混在一起,含盐率是%。
5.用浓度为2.5%的盐水800克制成浓度为4%的盐水,需要蒸发掉克水.6.杯子里盛有浓度为80%的酒精100克,现从中倒出10克,加入10克水,搅匀后,再倒出10克,再倒入10克水,问此时杯中纯酒精有克,水有克.7.容器中有某种浓度的酒精若干千克,如果加入一定量的酒精则浓度为12%,如果不加入酒精而加入等量的水则浓度为8%,求原来酒精占溶液的.8.两个杯子里分别装有浓度为23%与44%的盐水,将这两杯盐水倒在一起混合后,盐水浓度变为30%.若再加入300克15%的盐水,浓度变为25%.请问:原有44%的盐水克.9.现有浓度为20%的糖水300克,要把它变成浓度为40%的糖水,需加糖克.10.有甲乙两个瓶子,甲瓶中有盐水300克,其中盐与水的比是1:3;乙瓶盐水中含水160克,占乙瓶盐水的.现将两瓶盐水混合在一起,此时盐水的含盐率是%.11.在水槽里,装有13%的食盐水2千克,往这个水槽里分别倒入重600克和300克的A、B两种食盐水,水槽里的食盐水就变成了10%的食盐水了.B种食盐水浓度是A种食盐水浓度的2倍,则A种食盐水的浓度是%.12.在装满100克浓度为80%的盐水中倒出40克盐水后,再用清水将杯加满,搅拌后再倒出40克盐水,然后再用清水加满,如此反复三次后,杯中盐水的浓度是?三.应用题(共9小题)13.明明的爸爸为蔬菜喷药,配制成浓度为8%的药水200克,考虑到浓度太高容易伤到蔬菜,想把它制成浓度为5%的药水,需要再加水多少克?14.在实验室里有一瓶含盐为15%的盐水200克,现要把它改制成含盐10%的盐水应加入水、还是盐?应加入多少克?15.有两个品牌的橙汁含糖率不同,甲种橙汁210克,乙种橙汁280克,现在将两种橙汁倒出相等的数量,并交换后,两种橙汁的含糖率相等.两种橙汁各倒出多少克?16.墨莫从冰箱里拿出一瓶100%的汇源纯果汁,一口气喝了五分之一后又放回了冰箱.第二天妈妈拿出来喝了剩下的五分之一,觉得太浓,于是就加水兑满,摇匀之后打算明天再喝.第三天墨莫拿出这瓶果汁,一口气喝得只剩一半了.他担心妈妈说他喝得太多,于是就加了些水把果汁兑满.请问:这时果汁的浓度是多少?17.甲种酒精溶液中有酒精6升,水9升:乙种酒精溶液中有酒精9升,水3升;要配制成50%的酒精溶液7升,问两种酒精溶液各需多少升?18.兵兵在科学课上配制了含盐16%的盐水200克.结果发现盐水的浓度低了,需要用酒精加热,使水分蒸发.如果要使盐水的含盐率提高到20%,需要蒸发掉多少克水?19.甲容器中有纯酒精11升,乙容器中有水15升,第一次将甲容器中的一部分纯酒精倒入乙容器,使酒精与水混合,第二次将乙容器的一部分倒入甲容器,这样甲中含纯酒精62.5%,乙中含纯酒精25%,求:第一次从乙倒入甲容器的混合液是多少升?20.第1个容器里有10%的糖水200kg,第2个容器里有15%的糖水120kg,往两个容器里倒入等量的水,使两个容器中糖水的浓度一样.每个容器里倒入的水应是多少千克?21.酒精溶液A、B、C的质量分别为1500g,200g,1200g,三个溶液混合在一起刚好配成浓度为14%的酒精溶液.现已知A溶液含酒精20%,B溶液的酒精含量是C溶液的4倍,求B溶液的酒精含量?参考答案与试题解析一.选择题(共3小题)1.【解答】解:一杯含糖率30%的糖水,喝掉一半后,现在糖水的含糖率等于30%。
最新人教版新课标六年级数学上册奥数题(附答案)

人教版新课标六年级数学上册奥数题1. 小明买了一辆二手山地车,支付了山地车原价的90%,没过几天,他的朋友看中了这辆山地车,并表示愿意支付高出原价25%的价格买下.小明容许了,只经过简单一转手,这辆山地车就让小明赚了105元.那么,小明这辆山地车的原价是元.【分析】把这辆山地车的原价看成单位1,那么小明赚的钱对应的分率为1+25%-90%=35%2. 瓶中装有浓度为15%的酒精溶液1000克,现在又分别倒入100 克和400克的两种酒精溶液A、B,瓶里的酒精溶液浓度变成了14%. A种酒精溶液是B种酒精溶液浓度的2倍,那么,A种酒精溶液的浓度是%. 【分析】方法一:方程.设B种酒精的浓度为x,那么A种酒精的浓度为2x,于是可以得到:故A的浓度为.方法二:比例.1000 X 15%=150 〔克〕,混合后溶液中纯酒精为〔1000+400+10.X 14%=210 〔克〕,210-150=60 〔克〕,A 和B 共含酒精60克,A和B的重量比为1:4,浓度比为2:1,那么含酒精的量比1:2,那么A中含酒精60 + 3=20 〔克〕,那么A的浓度为20%.3. A、B两杯食盐水各有40克,浓度比是3: 2.在B中参加60 克水,然后倒入A中克.再在A、B中参加水,使它们均为100 克,这时浓度比为7: 3.【分析】比例思想.两杯中的食盐水总量相同,浓度比为3:2,那么含盐量也是3:2,向B杯中加水不会改变两杯中的含盐量.倒入后A和B的含盐量改变,比例变为7:3,但是倒入前后两杯盐水的含盐的总和是不变的,3+2=5,7+3=10统一份数.3:2=6:4,这时总含盐量看成10份,原来A、B各含6份和4份,倒入后各含7份和3份,说明B 向A 倒入了刚好1份的盐,从100克中倒出25克刚好含1份的盐.4 .经测算,地球上的资源可供100亿人生活100年,或可供80亿人生活300年.假设地球上新生资源的生长速度是一定的, 那么为了使人类有不断开展的潜力,地球上最多能养活多少亿人【分析】每亿人每年消耗资源量为1份.新生资源量:〔份〕即为保证不断开展,地球上最多养活70亿人.5 .有三块草地,面积分别是5, 15, 25亩.草地上的草一样厚,而且长得一样快.第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天,那么第三块草地可供〔〕头牛吃60天.【分析】设每头牛每天的吃草量为1份.第一块草地,5亩原有草量+5亩30天长的草=10X 30=300〔份〕,那么每亩面积=原有草量+每亩面积30天长的草=300+ 5=60 〔份〕:第二块草地,15亩原有草量+15亩45天长的草=28X45=1260份〕,即每亩面积原有草量+每亩面积45天长的草=1260+ 15=84份〕.所以每亩面积每天长草量〔84-60〕 +〔45-30〕=1.6〔份〕.每亩原有草量=60-30X 1,6=12 〔份〕.第三块草地面积是25亩,60天新生长的草量为:6X60X 25=2400 〔份〕.所以第三块草地可供〔2400+12X 25〕+60=45 〔头〕牛吃60天.6 .有一块草地,每天都有新的草长出.这块草地可供9头牛吃12天, 或可供8头牛吃16天.开始只有4头牛在这块草地上吃草,从第7 天起又增加了假设干头牛来吃草,又吃了6天吃完了所有的草.假设草的生长速度每天都相同,每头牛每天的吃草量也相同,那么从第7天起增加了头牛来吃草【分析】设每头牛每天的吃草量为1份.每天长草:〔8X16-9X12〕 + 〔16-12〕 =5 〔份〕原有草:108-5X12=48份〕吃12天需要牛的头数:[48+ 〔5-4〕 X6] +6+5=14世〕增加牛的头数:14-4=10 〔头〕7 .放满一个水池,如果同时翻开1, 2号阀门,那么12分钟可以完成;如果同时翻开1, 3号阀门,那么15分钟可以完成;如果单独翻开1号阀门,那么20分钟可以完成;那么,如果同时翻开1, 2, 3号阀门, 分钟可以完成.【分析】根据题意可知,1, 2号阀门的效率之和为,1, 3号阀门的效率之和为,1号阀门的效率为,所以1, 2, 3号阀门的效率之和为,所以,如果同时翻开1, 2, 3号阀门,10分钟可以完成.8 .一项工程,甲单独完成需要10天,乙单独完成需要15天,丙单独完成需20天,在三人合作3天后,甲有其它任务而退出,剩下乙、丙继续工作直至完工.完成这项工程共用天.【分析】甲的工作效率是 ,乙的工作效率是,丙的工作效率是, 三人工作3天完成.,剩下的乙、丙继续工作需要天.所以一共要用6天.9 .有两个同样的仓库,搬运完一个仓库的货物,甲需6小时,乙需7小时,丙需14小时.甲、乙同时开始各搬运一个仓库的货物.开始时,丙先帮甲搬运,后来又去帮乙搬运,最后两个仓库的货物同时搬完.那么丙帮甲小时,帮乙小时.【分析】整个搬运的过程,就是甲、乙、丙三人同时开始同时结束, 共搬运了两个仓库的货物,所以它们完成工作的总时间为小时.在这段时间内,甲、乙各自在某一个仓库内搬运,丙那么在两个仓库都搬运过.甲完成的工作量是,所以丙帮甲搬了的货物,丙帮甲做的时间为小时,那么丙帮乙做的时间为小时.10 .某人将他所有的钱的给他的儿子,给他的女儿,剩下的钱那么全给他的妻子.假设他的妻子得到元,请问此人原来有多少元【分析】〔元〕.11 .四位小朋友合购一个价值600元的生日礼物送给同学.第一位小朋友付的钱是其他小朋友付的总数的;第二位小朋友付的钱是其他小朋友付的总数的;第三位小朋友付的钱是其他小朋友付的总数的.请问第四位小朋友付多少钱【分析】〔元〕12 .实验小学六年级有学生152人.现在要选出男生人数的和女生5人,到国际数学家大会与专家见面.学校根据上述要求选出假设干名代表后,剩下的男、女生人数相等.问:实验小学六年级有男生多少人【分析】〔人〕13 .某次测试共有9道题,做对1〜9题的人数分别占参加测试人数的82%, 65%, 92%, 93%, 68%, 98%, 70%, 60%, 72%.如果做对5道或5道以上为及格,那么这次测试的及格率至少〔〕.【分析】不妨设参加测试的人数为100,那么做错l〜9题的人数分别为18人,35人,8人,7人,32人,2人,30人,40人,28人, 共做错18+35+8+7+32+2+30+40+28=200 道〕.一人做错5道或5道以上为不及格,,因此.100人中至多有40人不及格,至少有100 -40=60及格,及格率至少是60%.14 .有5堆苹果,较小的3堆平均有18个苹果,较大的2堆苹果数之差为5个.,较大的3堆平均有26个苹果,较小的2堆苹果数之差为7个.最大堆与最小堆平均有22个苹果.问:每堆各有多少苹果【分析】最大堆与最小堆共22X2 = 44个苹果较大的2堆与较小的2堆共44X2+7-5 = 90个苹果所以中间的一堆有:〔18X3+26X 3 — 90〕 +2 = 21个苹果较大的2堆有:26X 3-21=57个苹果,最大的一堆有:〔57+ 5〕 +2=31个苹果,次大的2堆有:57-31=26个苹果较小的2堆有:18X 3-21=33个苹果次小的一堆有:〔33+7〕+2 = 20个苹果最小的一堆有:20- 7= 13个苹果15 .小张、小李和小黄三人乘飞机出差,三人携带的行李重量都超过了可免费携带行李的重量,需另付行李托运费,三人其付90元.而三人行李共重65千克,如果三人的行李只由一人携带,除免费局部外,应另付行李托运费810元.求每人可免费携带的行李重量.【分析】设每人可免费携带x千克行李.如果65千克行李由三人携带,三人可免费携带3x千克行李,三人共付90元托运费,那么超重行李每千克付90+ (65 -3x);如果65千克行李由一人携带,一人可免费携带x千克行李,付810元托运费,那么超重行李每千克付810+ (65 -x).可列出方程所以每人可免费携带的行李重量是20千克.。
六年级上册奥数题大全及答案
六年级上册奥数题大全及答案六年级上册奥数题大全及答案 11、李明的爸爸经营个水果店,按开始的定价,每买出1千克水果,可获利0.2元。
后来李明建议爸爸降价销售,结果降价后每天的销量增加了1倍,每天获利比原来增加了50%。
问:每千克水果降价多少元?答案:设以前卖出X千克降价a元。
那么0.2X×(1+0.5)=(0.2-a)×2x则0.1X=2aXa=0.05答:每千克水果降价0.05元2、有5个小朋友,每人都从装有许多黑白围棋子的布袋中任意摸出3枚棋子.请你证明,这5个人中至少有两个小朋友摸出的棋子的颜色的配组是一样的。
解析与答案:首先要确定3枚棋子的颜色可以有多少种不同的情况,可以有:3黑,2黑1白,1黑2白,3白共4种配组情况,看作4个抽屉。
把每人的3枚棋作为一组当作一个苹果,因此共有5个苹果。
把每人所拿3枚棋子按其颜色配组情况放入相应的抽屉。
由于有5个苹果,比抽屉个数多,所以根据抽屉原理,至少有两个苹果在同一个抽屉里,也就是他们所拿棋子的颜色配组是一样的。
六年级上册奥数题大全及答案 2猎狗发现在离它10米的前方有一只奔跑着的兔子,马上追上去,兔跑9步的路程狗只需跑5步,但狗跑2步的时间,兔却跑3步。
问狗追上兔时,共跑了多少米路程?答案与解析:60米对于追及问题,我们知道:10米=速度差×追及时间狗追上兔时,所跑路程应为:总路程=狗的速度×追及时间这就是要弄清狗的速度与兔的速度差之间的倍数关系。
另一方面,在分析速度时,一定是相同时间内狗与兔的速度之间的倍数,而不是相同的步数或相同的路程。
只要分析清楚这些,就可以解出本题了。
详解1:为了看相同时间的路程关系,也就是速度关系,我们进行如下处理:狗跑2步的时间兔跑3步,则狗跑6步的时间兔子跑了9步,也就是兔子跑了狗的5步,那么在这段时间内,狗追上了兔子,狗的一步或狗兔间的距离缩短了狗的1步,而狗跑了6步,所以狗的速度是速度差的6倍。
【奥数题】人教版小学数学六年级上册按比分配奥数思维拓展(试题)含答案与解析
按比分配奥数思维拓展(试题)一.选择题(共6小题)1.一个三角形中三个角度数的比是1:2:3,这是()三角形。
A.锐角B.直角C.钝角D.无法确定2.甲乙两地相距900千米,一辆客车和一辆货车同时从两地相对开出,5小时相遇.已知客车和货车的速度比是5:4,客车平均每小时行()千米.A.100B.400C.500D.803.把一根木头按5:4分成甲乙两段,已知乙段长36cm,甲段长()厘米.A.20B.16C.45D.544.甲、乙两个瓶子装的酒精溶液体积的比是2:5,甲瓶中酒精与水的体积比是3:1,乙瓶中酒精与水的体积比是4:1.现在把两瓶溶液倒入一个大瓶中混合,这时酒精与水的体积比是()A.3:1B.11:3C.10:5D.5:105.某地出租车行S千米收费3S元.甲、乙、丙三人约定:由甲在A地租一辆出租车,途中乙在B地上车,丙在其后的C地上车,三人同时在D地下车.已知AB=BC=CD=10千米,出租车按规定收费90元,那么这笔车费由甲、乙、丙三人按乘车的路程合理分摊,顺次应付()元.A.40,30,20B.50,30,10C.45,30,15D.55,25,10 6.一块合金内铜与锌的比是2:3,现在再加入6克锌,共得新合金36克,则新合金内铜与锌的比是()A.1:2B.1:3C.2:3D.3:4二.填空题(共10小题)7.一根18米长的绳子按3:2分成两段,较长的一段是m,较长的一段占全长的%。
8.三角形三个内角的度数比是1:2:3,则这个三角形三个内角分别是°、°和°,这是一个三角形。
9.一个长方形的周长是18分米,长和宽的比是2:1,这个长方形的面积是平方分米.10.已知a:b=2:3,b:c=1:2,并且a+b+c=132,那么a=。
11.六(1)班有45人,男、女生人数的比是3:2,男生有人,女生有人.12.有50克盐,如果把盐和水按照1:10配制成盐水,能够配制克盐水.13.甲乙丙三人存入银行钱数的比是3:8:11,已知乙存款数为1600元,则甲存款为元,丙存款为元.14.一块铜和锡的合金中,铜与锡的重量比是7:4,已知铜比锡多840克,这块合金有克.15.甲、乙两城市的距离是120千米,甲、乙两城之间有一个电视塔,电视塔距甲、乙两城的距离比为1:5,乙城和电视塔之间的距离为千米.16.一个车间有两个小组,第一组人数与第二组人数的比是5:3,如果第一组有14人调到第二组后,这时第一组与第二组人数的比是1:2,这个车间共有人.三.应用题(共5小题)17.某水果批发市场存放的苹果与桃子的吨数的比是1:2,第一天售出苹果的20%,售出桃子的吨数与所剩桃子的吨数的比是1:3;第二天售出苹果18吨,桃子12吨,这样一来,所剩苹果的吨数是所剩桃子吨数的,原有苹果和桃子各多少吨?18.花园路小学2019年度办学经费有72万元,学校打算将经费的40%用来修建操场,用于教师培训学习.剩下的按3:1分别用于办公开支和奖励表彰.花园路小学今年用于奖励表彰的经费有多少万元?19.四、五、六年级同学给学校图书室整理800本图书,四年级整理了图书总数的20%,剩下的按3:5分给五年级和六年级.四、五、六年级各整理了多少本图书?20.有一种糖水160克,糖的含量是水的.(1)糖水中糖的含量有多少克?(2)现在要使这种糖水变淡,直到糖与水的比为1:15,需要加水多少克?21.红、黄、蓝三种铅笔共有120支,它们支数的比是2:3:5,红铅笔、黄铅笔、蓝铅笔各有多少支?参考答案与试题解析一.选择题(共6小题)1.【解答】解:180°×=90°根据直角三角形的含义可知:该三角形是直角三角形。
【奥数题】人教版小学数学六年级上册追及问题奥数思维拓展(试题)含答案与解析
追及问题奥数思维拓展(试题)一.填空题(共10小题)1.良种马每天跑120千米,劣种马每天跑75千米,若劣种马先跑3天,良种马需天追上劣种马.2.甲、乙两人步行的速度之比是8:7,甲、乙分别从A、B两地同时出发,如果相向而行,0.5小时以后相遇;如果它们同向而行,那么甲追上乙需要小时.3.某人执行爆破任务时,点燃导火线后往70米开外的安全地带奔跑,其奔跑的速度为7米/秒.已知导火线的燃烧速度时0.121米/秒.问:导火线的长度至少米才能确保安全.(进一精确到0.1米)4.甲、乙两车同时从A地向B地开出,甲每小时行45千米,乙每小时行30千米,开出1小时后,甲车因有紧急任务返回A地,到达A地后又立即向B地开出追上乙车,当甲追上乙车时,两车正好都到达B地,AB两地的距离是千米.5.小明走路去上学.爸爸发现小明没带课本后.骑车去追,在离家1500米处追上小明.这时小明又发现没带铅笔.于是爸爸再次回家去取.若爸爸骑车速度是小明走路速度的4倍.则爸爸再次追上小明时离家千米.6.某校202名学生排成两路纵队,以每秒3米的速度去春游,前后相邻两个人之间的距离为0.5米.李老师从队尾骑自行车以每秒5米的速度到队头,然后又返回到队尾,一共要用秒.7.狗兔进行100米赛跑,当狗跑到终点,兔子才跑到90米.现在狗的起跑线向后移10米,再和兔子赛跑,最先到达终点的是.8.某人在公共汽车上发现一个小偷向反方向步行,10秒钟后他下去追小偷,如其速度比小偷快一倍,比汽车慢,则追上小偷要秒.9.两个调皮的孩子逆着自动扶梯行驶的方向行走,从扶梯的一端到达另一端,男孩走了100秒,女孩走了300秒.已知在电梯静止时,男孩每秒走3级台阶,女孩每秒走2级台阶.则该自动扶梯共有级台阶.10.甲乙丙三人同时从同一地点出发去追前面的一个人,甲每分钟行400米,6分钟可以追上;乙每分钟行360米,9分钟可以追上,丙12分钟能追上,丙每分钟行米.二.应用题(共11小题)11.一天,猫发现前面20米的地方有只老鼠,立即去追,同时,老鼠也发现了猫,掉头就跑,猫每秒跑7米,用了10秒追上老鼠,老鼠每秒跑多少米?12.父子二人在同一个工厂上班,父亲从家里走到工厂需要30分钟,儿子走这段路只需要20分钟,一天,父亲比儿子早走5分钟,问儿子追上父亲需要几分钟?13.甲乙两车从A地开往B地分别需要用10小时和15小时,若乙车先出发3小时,则甲车出发几小时后能追上乙车?14.一只野兔逃出80步后猎狗才追它,野兔跑8步的路程猎狗只需跑3步,猎狗跑4步的时间兔子能跑9步.猎狗至少要跑多少步才能追上野兔?15.甲乙丙三个微型机器人在环形导轨上同时同地同向出发匀速行进;当甲第一次追上乙时,丙恰好行了3圈;当甲第一次追上丙时,乙恰好行了5圈.那么,当丙第一次追上乙时,甲恰好行了多少圈?16.东东和乐乐练习100米赛跑,东东每秒跑8米,乐乐每秒跑6米,东东站在跑道的起点处,乐乐站在他前面30米处,两人同时起跑同向而行,几秒后东东追上乐乐?17.甲、乙、丙三人在一条跑道上赛跑,当甲跑到终点时,乙离终点12米,丙离终点36米;而当乙跑到终点时,丙离终点还有28米.如果甲、乙、丙三人在赛跑中速度始终保持不变,那么这条跑道长多少米?18.快、中、慢三辆车同时从甲地出发追赶前方的骑车人,分别用2小时、4小时、10小时追上,已知快车每小时行24千米中车每小时行20千米,求慢车时速.19.A、B两地之间的距离是50千米,甲、乙两车同时从A出发向B地行驶,在A、B之间不断往返.已知甲车的速度是每小时87千米,乙车的速度是每小时57千米,请问:第6次甲追上乙时的地点距A地多少千米?20.甲、乙、丙、丁四辆车在一条路上行驶.甲车8点追上丙车,10点与丁车相遇,12点与乙车相遇,乙车13点与丙车相遇,14点追上丁车.请问:丙车和丁车几点、时几分相遇?21.惊险逃生陶陶和丁丁在野外玩耍时经过一个隧道口,尽管隧道口竖着一个大标牌,写着“行人,为了你的生命不受死亡的威胁,请别入内,危险!”出于好奇,他俩还是进入了隧道(你可别学调皮的陶陶和丁丁哟,别做一些毫无意义的冒险,要爱惜自己的生命),隧道很狭窄,仅够一列火车通过,当他俩走到隧道口内四分之一的路程时,突然听到后面传来火车准备进洞的汽笛声.陶陶和丁丁一下子吓呆了,慌乱下,陶陶以每秒5米的速度没命地向前跑;丁丁也以每秒5米的速度转头向入口跑去.他俩先后都跑出了洞口,而且丁丁刚跑出洞口,豪华火车就进隧道了:陶陶刚出洞,火车就出了隧道,考考你,你能从他俩的惊险逃生过程中,推算出火车行驶的速度是多少吗?参考答案与试题解析一.填空题(共10小题)1.【解答】解:(75×3)÷(120﹣75)=225÷45=5(天)答:良种马需5天追上劣种马.故答案为:5.2.【解答】解:(7+8)×0.5÷(8﹣7)=15×0.5÷1=7.5(小时)答:甲追上乙需要7.5小时.故答案为:7.5.3.【解答】解:0.121×(70÷7)=0.121×10=1.21≈1.3(米)答:导火线的长度至少 1.3米才能确保安全.故答案为:1.3.4.【解答】解:设乙车到达B地时用了x小时.45x﹣45×2=30x45x﹣90=30x45x﹣90+90=30x+9045x=30x+9045x﹣30x=30x+90﹣30x5x=905x÷5=90÷5x=630×6=180(千米)答:AB两地的距离是180千米.故答案为:180.5.【解答】解:1500×2÷(4﹣1)+1500=3000÷3+1500=1000+1500=2500(米)2500米=2.5千米答:爸爸再次追上小明时离家2.5千米.故答案为:2.5.6.【解答】解:①这支路队伍长度:(202÷2﹣1)×0.5=100×0.5=50(米)②赶上队头所需要时间:50÷(5﹣3)=50÷2=25(秒)③返回队尾所需时间:50÷(5+3)=50÷8=6.25(秒)④一共用的时间:25+6.25=31.25(秒)答:一共要用31.25秒.故答案为:31.25.7.【解答】解:100:90=10:9(100+10)×=110×0.9=99(米)100>99所以,兔子还没到达终点;答:最先到达终点的是狗.故答案为:狗.8.【解答】解:假设小偷的速度为“1”,则这人的速度就是“2”,汽车的速度就是:2÷(1﹣)=10,路程差:10×(1+10)=110110÷(2﹣1)=110(秒)答:追上小偷要110秒.故答案为:110.9.【解答】解:扶梯每秒自动下降:[(300×2)﹣(3×100)]÷(300﹣100)=[600﹣300]÷200,=300÷200,=1.5(级).该扶梯共有:300﹣100×1.5=300﹣150,=150(级).答:扶梯共有150级扶梯.故答案为:150.10.【解答】解;(360×9﹣400×6)÷(9﹣6)×(12﹣9)=840÷3×3=840(米)(840+360×9)÷12=4080÷12=340(米)故答案为:340米.二.应用题(共11小题)11.【解答】解:(7×10﹣20)÷10=50÷10=5(米)答:老鼠每秒跑5米.12.【解答】解:(×5)÷(﹣)=÷=10(分钟)答:儿子追上父亲需要10分钟.13.【解答】解:(×3)÷(﹣)==6(小时)答:甲车出发6小时后能追上乙车.14.【解答】解:设野兔跑9步和猎狗跑4步的时间为1秒,则:野兔跑8步的路程猎狗只需跑3步,设兔子一步3米,狗一步8米,则狗速度每秒为:8×4=32(米),兔速度每秒为9×3=27(米);距离为:80×3=240(米),追上的时间为240÷(32﹣27)=48(秒),狗一秒跑4步,所以总共跑了4×48=192(步).答:猎狗至少要跑192步才能追上野兔.15.【解答】解:甲第一次追上乙时,甲跑了(x+1)圈,乙跑了x圈,丙跑了3圈;甲第一次追上丙时,甲跑了(y+1)圈,丙跑了y圈,乙跑了5圈.利用三个机器人速度比不变,有:(x+1):(y+1)=x:5=3:y解得:x=25,y=6即甲追上乙时,甲跑3.5圈,乙跑2.5圈,丙跑3圈.显然当丙领先乙半圈时,甲跑3.5圈,那么丙追上乙时(领先1圈),甲跑7圈.答:当丙第一次追上乙时,甲恰好行了7圈.16.【解答】解:按追及问题及时,乐乐追东东所需时间为:30÷(8﹣6)=15(秒)而15秒二人均以超过终点.所以应把这一问题看作相遇问题,100×2﹣30=200﹣30=170(米)170÷(8+6)=170÷14≈12.1(秒)答:东东12.1秒后追上乐乐.17.【解答】解:由题可知:乙跑12米,丙跑36﹣28=8米乙:丙=3:2假设这条跑道长S米(S﹣12):(S﹣36)=3:22S﹣24=3S﹣108S=84答:这条跑道长84米.18.【解答】解:设骑车人的速度为v千米/小时,得2:4:10=1:2:5(24﹣v):(20﹣v)=2:124﹣v=40﹣2vv=1624﹣6=8(千米/小时)8÷5=1.6(千米/小时)1.6+16=17.6(千米/小时)答:慢车的速度为17.6千米/小时.19.【解答】解:(50×2)÷87×57=(千米)÷(87﹣57)=(小时)100÷(87﹣57)×5=(小时)(+)×87=1640(千米)1640÷(50×2)=16 (40)50×2﹣40=60(千米)答:第6次甲追上乙时的地点距A地60千米.20.【解答】解:以8点为基点,以此时的甲乙距离为“1”,甲车8点追上丙车,12点与乙相遇,从8点到12点共经过4小时,由此可知知:甲速+乙速=……①;由乙车13点与丙相遇,可知:乙速+丙速=……②;甲与丁相遇用了10﹣8=2小时,此时丁与乙的距离是1﹣2×=,此后乙用14﹣10=4小时追上丁,那么乙速﹣丁速=……③;①﹣③,得:甲速+丁速=……④,那么开始时,甲与丁的距离是2×,也就是丙与丁的距离是.②﹣④,得:丙速+丁速=,丙丁相遇时间是,即在8点+点=11点20分丙和丁相遇.答:丙丁在11点20分相遇.21.【解答】解:=1÷=25×2=10(米/秒)答:火车行驶的速度是10米/秒.。
人教版六年级数学上册第六单元百分数(一)奥数题(附答案)
人教版六年级数学上册第六单元百分数(一)奥数题(附答案)第六单元百分数(一)奥数题1.百分率%100?=学生总人数出勤的学生人数出勤率%100?=试验的种子总数发芽的种子数发芽率%100?=产品总数合格的产品数合格率 %100?=小麦的总质量出面粉的质量出粉率%100?=种植的总棵数成活的棵数成活率 %100?=油料作物的总质量油的质量出油率 %100?=考试总人数及格人数及格率%100?=投篮次数投中的次数命中率……例题1.希望小学六(3)班今天出勤人数和缺勤人数比是19:1,六(3)班今天的出勤率是多少?练习1.六(2)班同学语文考试中及格人数和不及格人数的比是47:3,六(2)班这次考试的及格率是多少?例题2.六(1)同学们在植树节植杨树,没成活的棵数占成活棵数的491。
求这批杨树的成活率是多少?练习2.体育课上,同学们练习投篮。
小强投中的次数占没投中次数的37,求小强投篮的命中率是多少?例题3.六年级男、女生各有80人参加数学竞赛,男生及格与不及格的人数比是9:1,女生及格与不及格人数比是7:3,求六年级这次数学竞赛的及格率是多少?练习3.同学们做黄豆种子发芽实验,先取来50粒黄豆,结果发芽种子数与没发芽种子数的比是24:1,后又取来60粒黄豆,结果发芽种子数与没发芽种子数的比是19:1.总的来说,这批黄豆种子的发芽是多少?例题4.实验小学四年级有140人,体育达标率为95%,五年级学生体育达标率为98%,五年级体育不达标的学生比四年级少2人。
五年级体育达标的有多少人?练习4.稻谷的出米率为70%,大豆的出油率是12%,李伯伯用50千克的稻谷碾大米,李伯伯还需要比大米少25千克的大豆油,李伯伯需要准备多少千克大豆?2.浓度问题(1)通常把被溶解的物质叫做溶质,如糖、盐、纯酒精等;把溶解这些溶质的液体称为溶剂,如水;溶质和溶剂的混合液体称为溶液,如糖水、盐水、酒精溶液等。
溶质的质量.....+.溶剂的...质量..=.溶液的质量.....(2)浓度就是溶质质量与溶液质量的比值,通常用百分数表示,即:%100%100?+=?=溶剂质量溶质质量溶质质量溶液质量溶质质量浓度(3)溶液混合问题:两种溶液的质量比等于它们的浓度与混合溶液浓度之差的反比...........................也就是:甲溶液质量.....:.乙溶液质量.....=.乙溶液与混合溶液浓度差值............:.甲溶液与混合溶液浓度差值............例题1.(浓缩问题)在一杯100克浓度为20%的糖水中,又加入了25克糖,新糖水的浓度是多少?练习1.有一瓶200克的糖水,浓度为30%,如果在这瓶糖水中倒入50克糖,那么新糖水的浓度是多少?例题2.(稀释问题)在一杯100克浓度为20%的糖水中,又加入了100克水,新糖水的浓度是多少?练习2.有一瓶200克的糖水,浓度为30%,如果在这瓶糖水中倒入100克水,那么新糖水的浓度是多少?例题3.(水量问题)(1)160千克青草,晒成干草后质量是28千克。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版六年级上册奥数题大全及答案六年级奥数题及答案1.某市举行小学数学竞赛,结果不低于80分的人数比80分以下的人数的4倍还多2人,及格的人数比不低于80分的人数多22人,恰是不及格人数的6倍,求参赛的总人数?解:设不低于80分的为A人,则80分以下的人数是(A-2)/4,及格的就是A+22,不及格的就是A+(A-2)/4-(A+22)=(A-90)/4,而6*(A-90)/4=A+22,则A=314,80分以下的人数是(A-2)/4,也即是78,参赛的总人数314+78=3922.电影票原价每张若干元,现在每张降低3元出售,观众增加一半,收入增加五分之一,一张电影票原价多少元?解:设一张电影票价x元(x-3)×(1+1/2)=(1+1/5)x(1+1/5)x这一步是什么意思,为什么这么做(x-3)×(1+1/2)左边算式求出了总收入(1+1/5)x如此计算后得到总收入,使方程左右相等3.甲乙在银行存款共9600元,如果两人分别取出自己存款的40%,再从甲存款中提120元给乙。
这时两人钱相等,求乙的存款答案取40%后,存款有9600×(1-40%)=5760(元)这时,乙有:5760÷2+120=3000(元)乙原来有:3000÷(1-40%)=5000(元)4.由奶糖和巧克力糖混合成一堆糖,如果增加10颗奶糖后,巧克力糖占总数的60%。
再增加30颗巧克力糖后,巧克力糖占总数的75%,那么原混合糖中有奶糖多少颗?巧克力糖多少颗?答案加10颗奶糖,巧克力占总数的60%,说明此时奶糖占40%,巧克力是奶糖的60/40=1。
5倍再增加30颗巧克力,巧克力占75%,奶糖占25%,巧克力是奶糖的3倍增加了3-1.5=1.5倍,说明30颗占1.5倍奶糖=30/1.5=20颗巧克力=1.5*20=30颗奶糖=20-10=10颗5.小明和小亮各有一些玻璃球,小明说:“你有球的个数比我少1/4!”小亮说:“你要是能给我你的1/6,我就比你多2个了。
”小明原有玻璃球多少个?答案小明说:“你有球的个数比我少1/4!”,则想成小明的球的个数为4份,则小亮的球的个数为3份4*1/6=2/3 (小明要给小亮2/3份玻璃球)小明还剩:4-2/3=3又1/3(份)小亮现有:3+2/3=3又2/3(份)这多出来的1/3份对应的量为2,则一份里有:3*2=6(个)小明原有4份玻璃球,又知每份玻璃球为6个,则小明原有玻璃球4*6=24(个)6.搬运一个仓库的货物,甲需要10小时,乙需要12小时,丙需要15小时.有同样的仓库A和B,甲在A仓库、乙在B仓库同时开始搬运货物,丙开始帮助甲搬运,中途又转向帮助乙搬运.最后两个仓库货物同时搬完.问丙帮助甲、乙各多少时间?解:设搬运一个仓库的货物的工作量是1.现在相当于三人共同完成工作量2,所需时间是答:丙帮助甲搬运3小时,帮助乙搬运5小时解本题的关键,是先算出三人共同搬运两个仓库的时间.本题计算当然也可以整数化,设搬运一个仓库全部工作量为 60.甲每小时搬运 6,乙每小时搬运 5,丙每小时搬运4三人共同搬完,需要60 × 2÷(6+ 5+ 4)= 8(小时)甲需丙帮助搬运(60- 6× 8)÷ 4= 3(小时)乙需丙帮助搬运(60- 5× 8)÷4= 5(小时)7.一件工作,若由甲单独做72天完成,现在甲做1天后,乙加入一起工作,合作2天后,丙也一起工作,三人再一起工作4天,完成全部工作的1/3,又过了8天,完成了全部工作的5/6,若余下的工作由丙单独完成,还需要几天?答案甲乙丙3人8天完成 :5/6-1/3=1/2甲乙丙3人每天完成:1/2÷8=1/16,甲乙丙3人4天完成:1/16×4=1/4则甲做一天后乙做2天要做 :1/3-1/4=1/12那么乙一天做 :[1/12-1/72×3]/2=1/48则丙一天做 :1/16-1/72-1/48=1/36则余下的由丙做要 :[1-5/6]÷1/36=6天答:还需要6天8.股票交易中,每买进或卖出一种股票都必须按成交易额的1%和2%分别交纳印花税和佣金(通常所说的手续费)。
老王10月8日以股票10.65元的价格买进一种科技股票3000股,6月26日以每月13.86元的价格将这些股票全部卖出,老王卖出这种股票一共赚了多少钱?答案10.65*1%=0.1065(元) 10.65*2%=0.213(元)10.1065+0.213=0.3195(元)0.3195+10.65=10.9695(元)13.86*1%=0.1386(元) 13.86*2%=0.2772(元)0.1386+0.2772=0.415813.86+0.4158=14.2758(元)14.2758-10.9695=3.3063(元)答:老王卖出这种股票一共赚了3.3063元.9.某书店老板去图书批发市场购买某种图书,第一次购书用100元,按该书定价2.8元出售,很快售完。
第二次购书时,每本的批发价比第一次增多了0.5元,用去150元,所购数量比第一次多10本,当这批书售出4/5时出现滞销,便以定价的5折售完剩余图书。
试问该老板第二次售书是赔钱还是赚钱,若赔,赔多少,若赚,赚多少答案(100+40)/2.8=50本 100/50=2 150/(2+0.5)=60本60*80%=48本 48*2.8+2.8*50*12-150=1.2 盈利1.2元对我有帮助一件工程原计划40人做,15天完成.如果要提前3天完成,需要增加多少人解: 设需要增加x人(40+x)(15-3)=40*15x=10所以需要增加10人10.仓库有一批货物,运走的货物与剩下的货物的质量比为2:7.如果又运走64吨,那么剩下的货物只有仓库原有货物的五分之三。
仓库原有货物多少吨?解:第1次运走:2/(2+7)=2/9. 64/(1-2/9-3/5)=360吨。
答:原仓库有360吨货物。
11.育才小学原来体育达标人数与未达标人数比是3:5,后来又有60名同学达标,这时达标人数是未达标人数的9/11,育才小学共有学生多少人?答案原来达标人数占总人数的3÷(3+5)=3/8现在达标人数占总人数的9/11÷(1+9/11)=9/20育才小学共有学生60÷(9/20-3/8)=800人12.小王,小李,小张三人做数学练习题,小王做的题数的一半等于小李的1/3,等于小张的1/8,而且小张比小王多做了72道,小王,小张,小李各做多少道?答案设小王做了a道,小李做了b道,小张做了c道由题意1/2a=1/3b=1/8cc-a=72解得a=24 b=36 c=9613.甲乙二人共同完成242个机器零件。
甲做一个零件要6分钟,乙做一个零件要5分钟。
完成这批零件时,两人各做了多少个零件?答案设甲做了X个,则乙做了(242-X)个6X=5(242-X)X=110242-110=132(个)答:甲做了110个,乙做了132个14.某工会男女会员的人数之比是3:2,分为甲乙丙三组,已知甲乙丙三组人数之比是10:8:7,甲组中男女比是3:1,乙组中男女比是5:3。
求丙组男女人数之比答案设男会员是3N,则女会员是2N,总人是:5N甲组有:5N*10/[10+8+7]=2N,其中:男:2N*3/4=3N/2,女:2N*1/4=N/2乙级有:5N*8/25=8/5N,其中男:8/5N*5/8=N,女:8/5N*3/8=3/5N丙级有:5N*7/25=7/5N丙级中男有:3N-3N/2-N=N/2,女有:2N-N/2-3/5N=9/10N那么丙组中男女之比是:N/2:9/10N=5:915.甲乙丙三个村合修一条水渠,修完后,甲乙丙村可灌溉的面积比是8:7:5原来三个村计划按可灌溉的面积比派出劳力,后来因为丙村抽不出劳力,经协商,丙村应抽出的劳力由甲乙两村分担,丙村付给甲乙两村工钱1350元,结果,甲村共派出60人,乙村共派出40人,问甲乙两村各应分得工钱多少元?答案根据甲乙丙村可灌溉的面积比算出总份数:8+7+5=20份每份需要的人数:(60+40)÷20=5人甲村需要的人数:8×5=40人,多出劳力人数:60-40=20人乙村需要的人数:7×5=35人,多出劳力人数:40-35=5人丙村需要的人数:5×5=25人或 20+5=25人每人应得的钱数:1350÷25=54元甲村应得的工钱:54×20=1080元乙村应得的工钱: 54×5=270元16.(1)李明的爸爸经营已个水果店,按开始的定价,每买出1千克水果,可获利0.2元。
后来李明建议爸爸降价销售,结果降价后每天的销量增加了1倍,每天获利比原来增加了50%。
问:每千克水果降价多少元?答案设以前卖出X 降价a 那么0.2X * (1+0.5)=(0.2-a) * 2x则0.1X=2aX a=0.05(2)哈利.波特参加数学竞赛,他一共得了68分。
评分的标准是:每做对一道得20分,每做错一道倒扣6分。
已知他做对题的数量是做错题的两倍,并且所有的题他都做了,请问这套试卷共有多少道题?解:设哈利波特答对2X题,答错X题20×2X-6X=6840X-6X=6834X=68X=2答对:2×2=4题共有:4+2=6题17.爸爸妈妈和奶奶乘飞机去旅行,三人所带行李的质量都超过了可免费携带行李的质量,要另付行李费,三人共付了4元,而三人行李共重150千克,如果这些行李让一个人带,那么除了免费部分,应另付行李费8元,求每人可免费携带行李的质量。
答案设可免费携带的重量为x kg,则:(150-3x)/4=(150-x)/8 //等式两边非免费部分单价相同;解方程:x=3018.一队少先队员乘船过河,如果每船坐15人,还剩9人,如果每船坐18人,刚好剩余1只船,求有多少只船?答案解法一:设船数为X,则(15X+9)/18=X-115X+9=18X-1827=3XX=9答:有9只船。
解法二:(15+9)÷(18-15)=8只船 --每船坐18人时坐了8只船8+1=9只船19.建筑工地有两堆沙子,一堆比2堆多85吨,两堆沙子各用去30吨后,一堆剩的是2堆的2倍,两堆沙子原来各有多少吨?答案设2堆为X吨,则一堆为X+85吨X+85-30=2(X-30)x=115(2堆)x+85=115+85=200(1堆)自然数1-100排列,用长方形框出二行六个数,六个数和为432,问这六个数最小的是几答案六个数分别是46 47 48 96 97 9820.甲乙两地相距420千米,其中一段路面铺了柏油,另一段是泥土路.一辆汽车从甲地驶到乙地用了8小时,已知在柏油路上行驶的速度是每小时60千米,而在泥土路上的行驶速度是每小时40千米.泥土路长多少千米?答案两段路所用时间共8小时。