第二章 曲柄连杆机构动力学分析

合集下载

第2章 曲柄连杆机构

第2章  曲柄连杆机构
主要包括曲轴、飞轮等机件。
第2章 曲柄连杆机构 2.1概述 2.1.1曲柄连杆机构的作用和组成
图2-1 桑塔纳2000GSi轿车AJR发动机曲柄连杆机构的组成
第2章 曲柄连杆机构
2.1概述 2.1.2曲柄连杆机构受力分析
1、气体作用力 在发动机工作循环的每个行程中,气体作用力始终存在且不断变化。作功
大多数湿式缸套压入缸体后,其顶面高出气缸体上平面0.05~0.15mm。这样当紧 固气缸盖螺栓时,可将气缸盖衬垫压得更紧,以保证气缸更好地密封和气缸套更好地定 位。
水冷式气缸周围和气缸盖中均有用以充水的空腔,称为水套。气缸体和气缸盖上的 水套是相互连通的,利用水套中的冷却水流过高温零件的周围而将热量带走。
第2章 曲柄连杆机构
学习目标
●理解曲柄连杆机构的作用和组成 ●知道曲柄连杆机构的受力分析 ●掌握机体组、活塞连杆组、曲轴飞轮组主要零件的构造
和装配连接关系 ●掌握机体组、活塞连杆组、曲轴飞轮组主要零件的检测
和维修方法 ●学会曲柄连杆机构的装配与调整
第2章 曲柄连杆机构
2.1概述 2.1.1曲柄连杆机构的作用和组成
龙门式气缸体其发动机的曲轴轴线高于气缸体下平面。其特点是结构刚度 和强度较好,密封简单可靠,维修方便,但工艺性较差,大中型发动机采用。
隧道式气缸体主轴承孔不分开,其特点是结构刚度最大,其质量也最大, 主轴承的同轴度易保证,但拆装比较麻烦,多用于主轴承采用滚动轴承的组 合式曲轴。
第2章 曲柄连杆机构
造成上述不均匀磨损的原因是:活塞在上止点附近时各道环的背压最大,其 中又以第一道环为最大,以下逐道减小;加之气缸上部温度高,润滑条件差, 进气中的灰尘附着量多,废气中的酸性物质引起的腐蚀等,造成了气缸上部磨 损较大。而圆周方向的最大磨损部位主要是侧向力、曲轴的轴向窜动等造成的。

02第二章 曲柄连杆机构

02第二章 曲柄连杆机构

2-2. 机体组
水平对置式机体(富士重工 SCX)
2-2. 机体组
(7)按曲轴箱结构形式分类
①平底式(一般式)机体 其特点是 油底壳安装平面和曲轴旋转中心在同 一高度。这种机体的优点是机体高度 小,重量轻,结构紧凑,便于加工, 曲轴拆装方便;但其缺点是刚度和强 度较差。
②龙门式机体 特点是油底壳安装平 面低于曲轴的旋转中心。它的优点是 强度和刚度都好,能承受较大的机械 负荷;但其缺点是工艺性较差,结构 笨重,加工较困难。
③半球形燃烧室 其结构紧凑,散热面积小,气门直径大,气道比较平直火焰传播距离短,有 利于促进燃料的完全燃烧。
④多球形燃烧室 结构紧凑,散热面积小,火焰传播距离短,气门直径大,气道比较平直,产 生挤气涡流。
⑤蓬形燃烧室 性能与半球形相似,且易组织挤气运动。
柴油机分割式燃烧室形状:
①涡流室燃烧室 主、副燃烧室之间的连接通道与副燃烧室切向连接, 副室形成压缩涡流, 燃料顺气流方向喷射。 ② 预燃室燃烧室主、副燃烧室之间的连接通道不与副燃烧室切向连接,副室形成强紊流, 燃料迎风喷射。
好。 气环:多采用合金铸铁 油环:钢片
2-3. 曲柄连杆机构--活塞组
4)气环的密封机理: 活塞环在自由状态下,由于开口的张开,环的外 径略大于气缸直径;而装入气缸后,由于径向弹 力的作用使环的外圆面与气缸壁贴紧形成所谓的 “第一密封面”,气缸内的高压气体不可能通过 第一密封面泄漏。而在工作条件下,一旦燃气压 力产生,则气环就在燃气压力作用下压紧在环槽 的下端面上,形成所谓的“第二密封面”。高压 气体也不可能通过第二密封面泄漏。进入径向间 隙中的高压气体只能使环的外圆面与气缸壁更加 贴紧。这时漏气的唯一通道就是活塞环的开口端 隙。如果几道活塞环的开口相互错开,那么就形 成了“迷宫式”漏气通道。

曲柄连杆机构受力分析

曲柄连杆机构受力分析
.
五、曲轴轴颈和轴承的负荷 1,曲柄销负荷矢量固
.
.
2.连杆轴承负荷矢量固
.
.Leabharlann ....
第二节 曲柄连杆机构上的作用力 一、气体压力
.
二、惯性力
.
1.往复惯性力 2.旋转惯性力
.
.
.
三、作用在曲柄连杆机构上的力
.
.
.
四、发动机的扭矩 1.单缸扭矩
发动机的翻倒力矩M’
.
2.多缸机扭矩、各主轴颈和曲柄销扭矩 知道了单缸扭短在一个循环的变化规律,考虑
各缸的着火间隔角将各缸扭矩作移相叠加就得多缸 扭矩。
.
影响扭矩不均匀度的因素: 1、对于同一台发动机,μ值随工况而变化,标定工况 下的μ值最小,往复惯性力仅影响上式分子,而平均 扭矩与示功图有关。 2、对于不同的发动机,μ值的大小取决于发动机的行 程数,气缸数,转速,气体压力,往复运动质量,曲 柄排列载型式,气缸夹角和发火顺序。 一般转速,功率相同时,二行程发动机较四行程发动 机μ值为小,相同类型的发动机气缸数越多μ值越小。
多缸发动机曲轴的输出扭矩最大值mmax一般发生在位于曲轴中间的各个主轴颈而不是靠近功率输出端的主轴颈上26扭矩不均匀度扭矩不均匀度用来评价发动机曲轴输出扭矩变化的均匀程度
第二章 曲柄连杆机构受力分析
.
第二章 曲柄连杆机构受力分析
本章分析曲柄连杆机构的运动规律和作用在主要 零件上的力,作为分析计算强度、刚度、振动和磨损 问题的依据。
.
多缸发动机曲轴的输出扭矩。
多缸发动机各个缸的工作情况稍有不同,但可
近似地用其中一个气缸的扭矩曲线来求多发动机的 合成扭矩曲线。
先在一个循环周期内绘制第一缸的扭矩曲线, 再按发火相位差绘制第2、3、......缸的扭 矩曲线,并放在第一缸的扭矩曲线与之相应的曲轴 转角的位置,然后求出同一曲轴转角的各个气缸的 扭矩曲线纵坐标的代数和,即得到多缸发动机的合 成扭矩。

第二章_曲柄连杆机构受力分析(冲突_WIN20160317ZJK_20130513224638)

第二章_曲柄连杆机构受力分析(冲突_WIN20160317ZJK_20130513224638)

11
曲柄连杆机构受力分析
2019/1/9
内燃机设计
12
曲柄连杆机构受力分析
2019/1/9
内燃机设计
13
一、气体作用力
• 作用在活塞顶上的气体力就是内燃机的示功 图,示功图可通过工作过程模拟计算(对新 设计内燃机)或试验方法(对现有内燃机) 确定。
Fg D ( pg p' ) / 4
* /(r ) sin ( / 2) sin 2 (1 2 sin 2 ) 1/ 2
a* a /(r 2 ) cos [cos2 (1 2 sin 2 ) (2 / 4) sin 2 2 ](1 2 sin 2 ) 3/ 2
sin sin
2019/1/9
内燃机设计
7
活塞运动规律
• 整理以上两式后得 x r[(1 1 / ) cos (1 2 sin 2 )1/ 2 / ]
r[sin ( / 2) sin 2 (1 2 sin 2 ) 1/ 2 ]
2019/1/9
内燃机设计
10
第二节 曲柄连杆机构受力分析
• 作用在内燃机曲柄连杆机构中的力有缸内气
体作用力、运动质量惯性力、摩擦力、支承
反力和有效负荷等。一般受力分析时忽略摩
擦力使受力分析偏于安全。所以,在内燃机
曲柄连杆机构中,气体作用力、惯性力与支
承反力、有效负荷相平衡。
2019/1/9
内燃机设计
2019/1/9
内燃机设计
8
2、活塞运动规律简化表达式
• 对于一般内燃机 1 / 3 ,可把上列各式简化 成
x* 1 cos ( / 4)(1 cos2 )

第2章曲柄连杆机构

第2章曲柄连杆机构
上一页 返回
2.3机体组
2.3.1汽缸体
1.汽缸体的结构形式 水冷发动机的汽缸体和曲轴箱通常铸成一体,可称为汽缸体
一曲轴箱,也可简称为汽缸体。汽缸体上半部有一个或若十个为 活塞在其中运动导向的圆柱形空腔,称为汽缸;下半部为支承曲轴 的曲轴箱,其内腔为曲轴运动的空间。作为发动机各个机构和系 统的装配基体,汽缸体本身应具有足够的刚度和强度。其具体结 构形式分为三种,如图2-4所示。
汽缸套有干式和湿式两种,如图2-10所示。
上一页 下一页 返回
2.3机体组
2.3.2汽缸盖与汽缸衬垫
1.汽缸盖 汽缸盖的主要功用是密封汽缸上部,并与活塞顶部和汽缸一
起形成燃烧室。同时,汽缸盖也为其他零部件提供安装位置。汽 缸盖的燃烧室一侧直接受到高温、高压燃气的作用。在承受热负 荷时,由于形状复杂,冷却不均匀,各部分温差大,特别是在进、 排气门口之间以及进、排气门口与汽油机的火花塞之间(或进、排 气门)与柴油机的喷油器之间的所谓“鼻梁区”,热应力很高,是 容易出现裂纹损坏的部位;而汽缸盖在机械负荷和热负荷作用下产 生的变形会导致进、排气门密封被破坏和汽缸盖密封(气封、水封、 油封)被破坏,影响发动机的动力性、经济性和工作可靠性。因此, 要求汽缸盖应具有足够的强度和刚度。
下一页 返回
2.5曲轴飞轮组
按照曲轴的主轴颈数,可以把曲轴分为全支承曲轴和非全支 承曲轴两种。在相邻的两个曲拐之间,都设置一个主轴颈的曲轴, 称为全支承曲轴;否则称为非全支承曲轴。
因此,直列发动机的全支承曲轴,其主轴颈的总数(包括曲轴 前端和后端的主轴颈)比汽缸数多一个;V形发动机的全支承曲轴, 其主轴颈的总数比汽缸数的一半多一个。全支承曲轴的优点是可 以提高曲轴的刚度和恋曲强度,并目可减轻主轴承的载荷。其缺 点是曲轴的加工表面增多,主轴承增多,使机体加长。这两种形 式的曲轴均可用于汽油机,但柴油机多采用全支承曲轴,这是因 为其载荷较大的缘故。

02曲柄连杆机构的运动和受力分析(2)

02曲柄连杆机构的运动和受力分析(2)

Fr
Fc'*
与单曲拐转矩 M大t小相等,方向相反
F g
+
Fj
Fl*
曲柄连杆机构中的力和力矩
—单元曲柄连杆机构对机体的作用力(4)
单缸机机体,受
曲柄连杆机构作用力 缸内气体作用力 发动机支撑反力
多缸机
每缸曲柄连杆机构作用 力、缸内气体作用力, 发动机支撑力
Fg Fc
Fr
ω Fc'*
设无平衡重时主轴颈载荷加平衡重后载荷平衡重引起的对主轴颈作用力则四冲程六缸机第二主轴颈zp2121z122zfff??121z?f122z?fzp2f曲柄连杆机构中的力和力矩轴颈和轴承载荷的极坐标图4四冲程六缸机第二主轴颈
汽车发动机设计
(2)
赵雨东
清华大学汽车工程系
Mercedes-Benz SLR Mclaren
,加平衡重后
载荷 F (1,2) Z(ϕ )(2)
,平衡重
引起的对主轴颈作用
力FZp(2) ,则
F = F + F (1,2) Z(ϕ )(2)
(1,2) Z(ϕ )(1)
Zp(2)
四冲程六缸机第二主轴颈
四冲程六缸机第二主轴颈
曲柄连杆机构中的力和力矩
—轴颈和轴承载荷的极坐标图(5)
主轴承载荷
F (i) Qy
cosψ i ]lb(i)
/ lc(i)
F (i+1) Zbx
=
−[(
F (i+1) Qx
+
F (i+1) rq
)
cosψ
i +1

F (i+1) Qy
sinψ
]l (i+1)

曲柄连杆机构受力分析

曲柄连杆机构受力分析

(1)沿气缸轴线作直线往复运动
(2)均匀转动的曲拐 (3)平面运动的连杆组
5
2. 连杆的质量换算
二质量系统
三质量系统
6
二质量系统
m1 ml (l l ) / l
m2 ml l / l
等效原则:
•质量相等 •质心重合 •转动惯量相等
7
3.往复质量和往复惯性力
(1)往复运动质量
mj mp m1
第二节 曲柄连杆机构受力分析
一、气体作用力
二、惯性力
三、零件的受力分析
1一、气体作Βιβλιοθήκη 力1、气体作用力pg
Fg
D
4
2
( pg p )
'
p′
2
一、气体作用力
2、缸内压力
3
二、惯性力
曲柄连杆机构的运动及质量换算 往复惯性力 旋转惯性力
4
1.曲柄连杆机构的运动
曲柄连杆机构的所有运动零件可分为三组:
10
2、连杆小头受力分析
FC Ftg
F F1 cos
侧推力:
F1
F cos
连杆力:
11
3、曲柄销受力分析
切向力 :
F F1' sin( ) F sin( ) cos
F1
F cos
法向力:
Fn F1' cos( ) F cos( ) cos
12
4、发动机的转矩
Fr sin( ) T F r cos
13
5、倾覆力矩
Tk Fc h T
r sin( ) sin h

第二章-曲柄连杆机构

第二章-曲柄连杆机构
振器等。 曲柄连杆机构中部分主要零件如图2-1所示
桑塔纳轿车的曲柄连杆机构
二、工作条件与受力分析
(一)、工作条件 高温:最高可达 2500K以上 高压:最高可达 3MPa—5MPa 高速:最高可达 3000 r/min—6000 r/min 化学腐蚀:可燃混合气和燃烧废气直接
接触机件。
(二)曲柄连杆机构 所受的力
③四冲程V型八缸发动机:发火间隔角为90°; 发火次序为1-8-4-3-6-5-7-2。工作循环如表2-4。
二、曲轴扭转减振器
1、功用:消除曲轴的扭转振动。 2、类型:最常见的为摩擦式扭转减振器。 它可以分为:橡胶式扭转减振器(图2-60)和 硅油式扭转减振器。
橡胶摩Байду номын сангаас式曲轴扭转减振器
一汽奥迪1.9发动机曲轴扭转减振器
图2-3b
后半程是加速运动,惯性力向上。图2-3b
第二节 气缸体与曲轴箱组
气缸体示意图
一、气缸体
1、气缸体:发动机的气缸体和曲轴箱常铸成 一体,称为气缸体--曲轴箱,简称气缸体。
气缸:气缸体上半部有若干个为活塞在其中 运动导向的圆柱形空腔。
2、气缸的工作条件:高温、高压,并且有活 塞在其中做高速往复运动。
气缸垫的要求:①足够的强度;②耐热和耐腐 蚀;③一定的弹性;④拆装方便,寿命长。
功用:保证燃烧室的密封。
类型:①金属-石棉气缸垫;②实心金属片气缸 垫;③加强型无石棉气缸垫。
气缸盖的拧紧:拧紧螺栓时,必须按由中央对称 地向四周扩展的顺序分几次进行,最后一次要用扳 手按工厂规定的拧紧力矩值拧紧。
铝合金气缸盖:最后必须在发动机冷态下拧紧;
铸铁气缸盖:最后必须在发动机热态下拧紧。
气缸盖衬垫的结构
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、活塞位移:
x ( L R) ( L cos R cos )
2 2
R(1 cos ) L(1 1 sin )
(精确式)
R x R(1 cos ) (1 cos 2 ) x I x II (近似式) 4
近似式与精确式相比误差很小,如当λ =1/3.5时,曲柄转角为 90度时误差为最大,在0.003R左右,此精度在工程上已足够。
Le 2 1 2
在曲柄连杆机构运动学计算中,通常将活塞的位移、速度和加速度 分别除以R、Rω 、Rω 2,无量纲化,写成 无量纲位移(活塞位移系数): x 1 x 1 cos 1 1 2 sin 2 R (精确式)


x 1 cos
mr R e
2 i
Pj m j a m j R 2 cos m j R 2 cos2 PjI PjII
式中a按近似式;PjI:一次往复惯性力;PjII:二次往复惯性力 令 C m j R 2 ,可将一次、二次往复惯性力分别写成复数形式:
cos vmax
L
1
L R 1 2 1 R R 1 2 cos
2 2
由近似式可得出活塞平均速度
cm
1



0
Sn R (sin sin 2 )d R 2 30

2
活塞的最大速度和平均速度之比是反映活塞运动交变程度的一个 指标:
v max R 1 2 2 1 2 cm 2 R
v max R (sin v max
及最大速度时曲轴转角

2
sin 2 v max )
v max
1 arccos 4


1 8 1
2

由活塞速度精确式,近似取 cosβ =1,在近似估计时,可认为最大 速度出现在α +β =90º 时,即连杆中心线与曲柄成直角位置,此时
1 sin 1 2 2 L cos 1 sin 2 (近似式)
2 2
L
cos
(精确式)
在α =0º 或180º 时达到极值: Le 连杆摆动角加速度ε L: sin 2 2 L 1 3/ 2 2 2 1 sin



4
1 cos 2 x I x II


(近似式)
无量纲速度(活塞速度系数):
v sin v R cos

2 无量纲加速度(活塞加速度系数): a cos( ) cos2 a 2 cos R cos3
v sin
1、 活塞组质量mp:含活塞、活塞环、活塞销质量 2、 曲柄换算质量mk:
mk m z 2m
பைடு நூலகம்
R
式中 mz—曲柄销部分质量; mω—单个曲柄臂不平衡质量; ρ—曲柄臂不平衡质量质心到曲轴回转中 心距离
3、 连杆组换算质量 常采用的方法为二质量替代系统:用集中在小头 处 的 换 算 质 量 mCA 和集中在大头处的质量 mCB 来代替连杆的实际质量。换算的原 则是: ① 换算系统两质量之和等于原连杆的质量mC,即 mCA+mCB=mC ② 换算系统的质心与原连杆质心重合,即 mCAlA=mCBlB lA:连杆质心至连杆小头中心距离 lB:连杆质心至连杆大头中心距离 由上述两个条件得
2 2 R 1 cos 1 cos 2 sin 4 2 1 sin( ) 活塞速度: v R R sin sin 2 cos cos 2
活塞销负偏置的作用
2、偏心机构运动学参数 活塞销或曲轴对气缸中心线的偏心距 e与曲柄半径R的比值称为偏 心率ξ:ξ=e/R。规定正偏心机构的e和ξ为正,负偏心机构的为负。 各运动学参数如下 活塞上止点时的曲柄转角: 1 arcsin 1 活塞下止点时的曲柄转角: 2 180 arcsin 1 2 2 2 2 2 2 S R 1 / 1 1 / 1 2 R 1 活塞行程: 2 2 1 1 2 2 活塞位移: x R 1 / 1 cos cos
旋转运动质量
mC l B m j m P mCA m P L mC l A mr mk mCB mk L
(二)曲柄连杆机构惯性力 1、 离心惯性力
Pr mr R mk R mCB R Prk PrB
2 2 2
也可写成复数形式: Pr 2、 往复惯性力
主 推 力 侧 次 推 力 侧
(a)曲轴正偏心 (b)活塞销正偏心 (c)活塞销负偏心
偏心曲柄连杆机构
负偏心机构广泛应用于车用汽油机中,目的是减轻活塞对气缸壁的 敲击,降低运转噪声。 正偏心机构多用于柴油机,目的是改善散热,减轻主推力边的热负 荷,使顶环隙整个圆周上不积碳。
(a)进、排气上止点前后 (b)压缩上止点前后
4、连杆的运动 连杆在摆动平面内的运动是随活塞的往复运动和绕活塞销的摆动 的复合运动。往复运动规律上面已给出,这里只考虑摆动。 连杆摆角β : arcsin( sin ) (精确式) 1 sin 1 2 sin 2 6 (近似式) 在α =90º 或270º 时达到极值: (精确式) e arcsin 1 2 e (1 ) (近似式) 6 连杆摆动角速度ω L:
mCA mCB m mC mCA l A mCB l B m l2 m l2 I CA A CB B
mCA I /( Ll A ) mCB I /( Ll B ) m m I /(l l ) C A B
通常 Δ m 较小。为确定 mCA、mCB 需要知道连杆组的质心位置, 为此可用天平称量法、力学索多边形法确定质心,现在的三维CAD 软件也有此功能。 最后可得出整个曲柄连杆机构的换算质量: 往复运动质量
用近似式计算加速度在α =0º 、180º 时没有误差,在α =90º 、270º 时误差最大。以λ =0.32时为例,相对误差约为 5.3%
由近似式可得出活塞加速度的最大值和最小值: ① 当λ <1/4时,α =0º 时活塞正向最大加速度 2 (极大值) a R (1 )
max
α =180º 时活塞负向最大加速度
§2—2 曲柄连杆机构受力分析
气体作用力 惯性力 作用在曲柄连杆 重力 机构上的作用力 负荷的反作用扭矩及机构的支撑反力 机构相对运动的摩擦力
一、曲柄连杆机构的惯性力 惯性力:加速度 质量 (一)曲柄连杆机构的换算质量 曲柄连杆机构加速度有往复运动加速度和离心运动加速度两 种,计算两种加速度引起的惯性力需将整个曲柄连杆机构的质量分 别换算成往复运动质量和离心运动质量。




(精确式)
1 2 L sin 1 1 3 cos2 (近似式) 2
2


在α =90º 或270º 时达到极值:
Le
2 (1 2 )1 / 2
(精确式)
1 (近似式) 2 摆动角速度和角加速度精确式中分母均近似等于 1 ,因此两者均 随α 近似按简谐规律变化。
② λ >1/4时,α =0º 时活塞正向最大加速度 2 (极大值) a R (1 )
amin R 2 (1 ) (极小值)
1 arccos( ) 时活塞负向最大加速度 4
2
max
a min
1 R (极小值,在180º —360º 范围内还有一个) 8

(精确式)

sin 2 v I v II
(近似式)
(精确式)
(近似式) 再将不同λ 值下上述无量纲量的数值列成表格,以备查用。
a cos cos 2 a I a II



二、偏心曲柄连杆机构(偏置曲柄连杆机构) 1、采用偏心曲柄连杆机构的原因 凡是曲轴回转中心线或者活塞销中心线不与气缸中心线相交的曲 柄连杆机构都是偏心机构。根据偏心方向的不同,分为正偏心机构 和负偏心机构。正偏心机构(如图a、图b所示)在活塞下行时连杆 摆角较小,使得作功行程中活塞侧推力有所减小。
活塞加速度:
2 cos cos 2 a R 3 cos cos R 2 cos cos 2 sin
arcsin sin cos L 连杆摆动角速度: 2 1/ 2 2 1 sin
第二章 曲柄连杆机构动力学
§1—1 曲柄连杆机构运动学 一、中心曲柄连杆机构(正置曲柄连杆机构)
图中:A—活塞销中心 B—曲柄销中心 L—连杆长度 R—曲柄半径 S—活塞行程,S=2R λ—曲柄半径连杆长度比(连杆 比),λ=R/L α—曲柄转角:曲柄顺时针方向 旋转时,从气缸中心线的上 方起顺时针方向为正 β—连杆摆角:自气缸中心线向右 为正 x—活塞位移,从上止点位置向下 为正
L lA mCA mC L L lB lA mCB mC mC L L
对于有的高速发动机还须满足一个条件: ③ 两个换算质量对连杆质心的转动惯量之和等于原来连杆的转动惯 量,即 2 2
mCAl A mCB l B I C
式中 IC为原连杆的转动惯量。但采用二质量替代系统时,在连杆 摆动角加速度下的惯性力矩要偏大 Δ MC=[(mCAlA2+mCBlB2)-IC]ε 为此,可用三质量替代系统:
相关文档
最新文档