光纤的双折射及偏振特性(精)

合集下载

激光技术第八章 ppt课件

激光技术第八章 ppt课件
18
现考虑一个脉冲在光纤中的传播,如图8.5-1(a)所示。 由于非线性光学克尔效应,光纤的折射率可写成
n=n1+n2I
(8.5-1)
式但中是I由为于光光强纤,中n2的约光为波3.约2×束10在-1极6c小m截2/W面。的虽纤然芯n中2值传很播小,,因
而光场相当强,而且因光纤很长经传播距离L后产生非线
8.4单模光纤的偏振和双折射
8.4.1 单模光纤的偏振特性 8.4.2 单模光纤的双折射 8.4.3 偏振型单模光纤
1
8.4.1单模光纤的偏振特性
理想单模光纤的模式是HE11模,它是线偏振的,偏振方 向为光纤的径向。在光纤截面上建立x-y直角坐标后, 任一径向的偏振可用两个独立的偏振分量HEx11和HEy11 来表示。在理想条件下,这两个偏振分量的传播常量相 等始HE,终y1即合1模成∆是β为=简原β并x-来β的的y=,径0如。向图在偏8传振.4播-状1中所态两示。个。也分由就量于是始两说终个,保模H持E是x1同独1和向立, 的,所以互不影响。例如,在光纤端面只沿x轴激励 HEx11模时,光纤中不会出现HEy11模,反之亦然。如果 沿轴之间的方向激励HE11模,则光纤中始终存在着 HEx11和HEy11模,它们的幅值比沿光纤不变。
6
我们知道,两个正交分量合成的偏振态由它们的相 位差决定。HEx11和HEy11正是两个正交分量,显然,合 成模(合振动)的偏振状态由传播相位
φ=∆β×l
(8.4-1)
决定,当φ=0时,为线偏振光;当φ=π/2且二分量振幅 相等时,则为圆偏振光;当φ=π时,变为线偏振光,但 偏振方向转过π/2角度;当φ=3π/2时,又变为旋转方向相 反的椭圆偏振光.当φ=2π时,恢复到原线偏振状态,如图 8.4-3(a)~(e)所示。在∆β沿光纤保持不变,即均匀 双折射条件下,上述偏振演变过程将周期重复下去。显 然这个重复周期反映了椭圆截面光纤的固有特性。

光子晶体光纤的双折射和偏振耦合特性研究的开题报告

光子晶体光纤的双折射和偏振耦合特性研究的开题报告

光子晶体光纤的双折射和偏振耦合特性研究的开题报告摘要:光子晶体光纤作为一种新型的光导纤维,由于其具备优秀的光学性能,已经在光通信、传感器、激光器等领域得到广泛的应用。

本文将主要研究光子晶体光纤的双折射和偏振耦合特性,明确其物理机制和影响因素,为其在实际应用中的调制和控制提供科学的依据和理论基础。

关键词:光子晶体光纤,双折射,偏振耦合,物理机制,调制和控制一、问题的提出随着信息技术的不断发展,对于传输、处理和存储信息的需求不断增加。

而光通信作为一种高速、大带宽的通信方式,正逐渐取代传统的电信技术。

其中,光子晶体光纤作为一种具备很多优秀性能的新型光导纤维,在光通信、传感器、激光器等领域得到了广泛的应用。

但是,光子晶体光纤的双折射和偏振耦合特性对其应用带来了一定的限制。

双折射会引起信号的偏移和扩散,偏振耦合会导致信号的损失和交叉干扰。

因此,深入研究光子晶体光纤的双折射和偏振耦合特性,明确其物理机制和影响因素,对其在实际应用中的调制和控制具有重要意义。

二、研究的目的和意义本文旨在研究光子晶体光纤的双折射和偏振耦合特性,明确其物理机制和影响因素,为其在实际应用中的调制和控制提供科学的依据和理论基础。

目的:1.探究光子晶体光纤的双折射现象及其物理机制。

2.研究光子晶体光纤的偏振耦合特性及其影响因素。

3.研究光子晶体光纤的调制和控制方法。

意义:1.为光子晶体光纤的应用提供重要的理论基础。

2.提高光子晶体光纤在光通信、传感器、激光器等领域的应用效率和性能。

3.对于新型光导纤维的研究具有借鉴意义。

三、研究的内容和方法研究内容:1.光子晶体光纤的结构及其光学特性。

2.光子晶体光纤的双折射现象及其物理机制的分析。

3.光子晶体光纤的偏振耦合特性及其影响因素的研究。

4.光子晶体光纤的调制和控制方法的研究。

研究方法:1.基于光学理论和数值模拟方法分析光子晶体光纤的结构和光学特性。

2.采用双折射和偏振分析技术,研究光子晶体光纤的双折射和偏振耦合特性。

光的偏振与光的双折射实验研究

光的偏振与光的双折射实验研究
使光源发出的光经过偏振片后成为线偏振光,并调整偏振片的角度以改变入射光的偏振状 态。
实验原理及步骤简介
3. 观察双折射现象
将线偏振光投射到双折射晶体上,观 察并记录寻常光和非常光的传播方向 和光强变化。
4. 数据采集与分析
使用测量仪器记录实验数据,并通过 计算机进行数据处理和分析,得出实 验结果。
03
光的双折射实验
双折射现象产生条件及原理
产生条件
当一束光通过某些晶体时,会分成两束光沿着不同方向传播,这种现象称为双折 射现象。
原理
双折射现象是由于晶体内部存在各向异性,导致光在晶体中传播时速度不同,从 而分成两束光。这两束光的振动方向相互垂直,分别称为寻常光(o光)和非寻 常光(e光)。
双折射晶体选择及实验装置搭建
在实验过程中需要记录光源的波长、晶 体的厚度和双折射率等参数,以及接收 屏上干涉条纹的位置和形状等信息。
VS
数据处理
通过对实验数据的分析处理,可以得到晶 体的双折射率、光在晶体中的传播速度等 重要物理量。同时,还可以通过比较不同 晶体或不同条件下的实验结果,进一步探 究双折射现象的规律和特点。
04
实验结果分析与讨论
偏振实验结果分析
01
在偏振实验中,通过旋转偏振片观察到光强的周期性变化,验 证了光的横波性质。
02
通过测量不同角度下的光强,得到了马吕斯定发现,当入射光为非偏振光时,透射光的光强随偏振
03
片旋转而发生变化,但不会出现完全消光现象。
05
误差来源及减小方法
系统误差来源分析
01
实验仪器误差
包括光源、偏振片、双折射晶 体等元件的制造精度和装配误
差。
02
环境因素

光纤的双折射及偏振特性-精品

光纤的双折射及偏振特性-精品

a A:光纤外径
R:曲率半径
Copyright Wang Yan
Optical fiber communications
1-8
2020/5/12
线P:双弹折光射子:数 ,l 二阶x 张量y 0 .2k 0 5 n 3 (p 1 1p 1) 2 1 ( ) R A 2
p11 p p21
B. 应力双折射
光纤中的应力双折射是由于光弹效应引起的,光纤材料 本身是各向同性的介质。因而不同方向的电场分量所遇到的
折射指数相同,设为n。当光纤受力时,引起了弹性形变, 通过光弹效应该形变可引起折射指数的变化,使材料变为各
向异性,从而呈现出双折射。
1. 光纤弯曲
2. 光纤侧向受压力
y
F
Ax R
y x
1-5 2020/5/12
由于光纤中存在线双折射,两正交线偏振光的相
Copyright Wang Yan
位差沿光纤变化,从而使合成光的偏振态沿光纤周期性变
化。偏振态完成一个周期变化的光纤长度,叫做拍长。
在一个拍长上,两正交偏振光的相位差变化了2π,因而有:
L LB 2
LB
2 L
0
B
双折射越厉害,拍长越短。如光纤的拍长远小于某种外界
j)
Ex
E0
expj(t
xz)
J0(Ur/a) J0(U)
Ey
E0
expj(t
yz)
J0(Ur/a) J0(U)
2、归一化双折射B:BBL
k0
xk 0 y :等效折射率指数差
nx,ny:LPx,LPy模的等效折射率指数
Optical fiber
L comm3un、ica拍tion长s B :

光的偏振与双折射

光的偏振与双折射

主截面 当光在一晶体表面入射时,此表 当光在一晶体表面入射时, 面的法线与光轴所成的平面。 面的法线与光轴所成的平面。 当入射面是主截面时, 光的振动垂直 当入射面是主截面时, O 光的振动垂直 主截面; 光的振动平行于主截面。 平行于主截面 主截面; 光的振动平行于主截面。
e
光轴
光轴
0
e光
o光
大学物理讲义
玻璃 讨论
n1 n2
n2 当 tan i0 = 时, n1
反射光为完全偏振光, 反射光为完全偏振光,且 振动面垂直入射面, 振动面垂直入射面,折射 光为部分偏振光。 光为部分偏振光。
1)此时反射光和折射光互相垂直 . )此时反射光和折射光互相垂直
n2 sin i0 tan i0 = = n1 cos i0 π cosi0 = sinγ = cos( γ ) 2
青岛科技大学
大学物理讲义
(polarization) 机械横波与纵波的区别 机 械 波 穿 过 狭 缝

自然光 偏振光 一般光源发出的光中, 自然光 :一般光源发出的光中,包含着各个方 向的光矢量,在所有可能的方向上的振幅都相等(轴 向的光矢量,在所有可能的方向上的振幅都相等 轴 对称),这样的光叫自然光。 对称 ,这样的光叫自然光。
青岛科技大学
n1 π cot i0 = = tan( i0 ) = tan γ n2 2
大学物理讲义
注意 对于一般的光学玻璃 , 反射光的强度约占 入射光强度的7.5%,大部分光将透过玻璃。 入射光强度的 ,大部分光将透过玻璃。
利用玻璃片堆产生线 利用玻璃片堆产生线偏振光 玻璃片堆产生
i0
青岛科技大学
起 偏
I0
起偏
青岛科技大学

光纤的双折射及偏振特性(精)

光纤的双折射及偏振特性(精)

L LB 2
LB
2 L
0
B
双折射越厉害, 拍长越短。如光纤的拍长远小于某种外界
干扰的长度周期, 它就可抵御这种干扰而有保持偏振状态
的能力。
4.消光比和功率耦合系数
在传输过程中,两个正交的线偏振模之间存在耦合,如在光
纤输入端激发x方向的线偏振模,其功率为P x ,由于耦合, 在光纤的输出端出现了y方向的线偏振模,其功率为 P y。用
Optical fiber communications
§3 光纤的双折射及偏振特性
Copyright Wang Yan
1-1 2024/8/17
一、Introduction
1. SMF实际上有两个简并模:LP0y1, LP0x1
2. 实际光纤并不完善(光纤芯子的椭圆变形,光纤内部
的残余应力),两个模式并不简并,纵向相位常数β略有
幅度比 R Ey0 / Ex0 相位差 y x ( y x )z
E
Ex
EyEx0 exp NhomakorabeaE
y
0
exp
j(t x z) j(t y z)
1
Ex Re xp( j)
Copyright Wang Yan
Optical fiber communications 1-3 2024/8/17
L
)
R L L R L
2
2
Optical fiber communications
1-12 2024/8/17
Copyright Wang Yan
2.旋光率:单位长度上旋过的角度
R L L R
L2
2
HW1
1.平板波导 n1 1.5, n2 1.45, n3 1.4, d 5m。

具有高双折射光子晶体光纤特性分析与研究

具有高双折射光子晶体光纤特性分析与研究

具有高双折射光子晶体光纤特性分析与研究具有高双折射光子晶体光纤特性分析与研究摘要:光子晶体光纤作为一种新兴的光纤传输技术,在光通信、光传感等领域具有广泛的应用前景。

本文通过对具有高双折射特性的光子晶体光纤的研究与分析,从光纤的制备过程、光纤的传输特性、光纤的偏振相关特性等方面进行了深入的阐述与探讨。

1. 引言在光通信和光传感领域,光纤作为一种重要的传输介质,以其带宽大、传输损耗小等优势而备受关注。

传统的光纤具有单折射特性,然而在某些应用中,需要一种具有高双折射特性的光纤来满足特定的传输需求。

光子晶体光纤作为一种新型的光纤结构,在光传输中具有独特的优势,具有高双折射特性的光子晶体光纤更是引人注目。

2. 光子晶体光纤的制备过程光子晶体光纤的制备通常采用光纤拉制技术。

首先,通过高纯度的石英玻璃材料制备光纤的芯杆材料,然后通过拉伸和熔融等工艺形成一种具有周期性微结构的光子晶体结构。

制备过程中的参数调控直接影响光子晶体光纤的性能,例如芯杆材料的纯度、拉伸速度、拉伸温度等。

3. 光子晶体光纤的传输特性与传统的单模光纤相比,具有高双折射特性的光子晶体光纤在传输中表现出独特的特性。

首先,光子晶体光纤具有较大的模场面积,可以实现更低的非线性效应和更低的色散效应。

其次,光子晶体光纤具有高度的模式选择性,可以实现光波在特定频率范围内的选择性传输。

此外,光子晶体光纤还具有较低的损耗和高的带宽等优点。

4. 光子晶体光纤的偏振相关特性光子晶体光纤的偏振相关特性是其独特性能的重要组成部分。

具有高双折射特性的光子晶体光纤能够实现偏振保持和调控等功能。

通过调节光子晶体光纤的结构参数,可以实现对特定偏振模式的选择传输,实现偏振编码和解码等应用。

5. 应用前景与展望在光通信、光传感等领域,具有高双折射特性的光子晶体光纤具有广阔的应用前景。

其高度的模式选择性和低损耗特性使其在多通道传输、色散补偿等方面具备重要的应用潜力。

此外,光子晶体光纤还可以应用于光传感领域,通过光纤中的微小结构变化实现对环境参数的高灵敏度检测。

光的偏振与双折射现象

光的偏振与双折射现象

光的偏振与双折射现象光是一种电磁波,可以在真空中以及各种介质中传播。

而在传播过程中,光的偏振与双折射现象是光波特性中非常重要的内容。

本文将介绍光的偏振与双折射现象的基本概念和原理。

一、光的偏振偏振是指光波中的电场矢量在传播方向上的振动方式。

光波可分为非偏振光、偏振光和部分偏振光。

1. 非偏振光:光波中的电场矢量在各个方向上均匀分布,没有特定的振动方向。

2. 偏振光:光波中的电场矢量在某一特定方向上振动,而在其他方向上几乎无振动。

常见的偏振光有线偏振光和圆偏振光。

3. 部分偏振光:光波中的电场矢量在多个方向上振动,但是其中有一个主要的振动方向。

光的偏振可以通过偏振片进行实验观察和分析。

偏振片是由特殊材料制成的,在某一方向上只允许特定方向的电场矢量通过。

当非偏振光通过偏振片时,只有与偏振片振动方向一致的电场矢量能通过,其他方向上的电场矢量则被滤除,从而得到偏振光。

二、双折射现象双折射指的是某些特定材料在光线入射时会发生两个不同速度的折射现象。

这是由于光在这些材料中的传播速度与光的偏振方向有关。

具有双折射现象的材料被称为双折射材料,其中最常见的是石英晶体。

当光线垂直于晶体的光轴方向传播时,不会发生双折射现象;但当光线不垂直于光轴时,就会发生双折射现象。

双折射材料可以通过偏振光的传播方向和光轴方向之间的夹角来进行分类。

根据夹角的不同,可以分为正常双折射和畸变双折射。

1. 正常双折射:在该类材料中,晶体的光轴方向与偏振光的振动方向垂直。

在光线通过材料时,会出现两个折射光束,一个按照正常的折射定律折射(常光),另一个则不按照常规定律折射(特光)。

2. 畸变双折射:在该类材料中,晶体的光轴方向与偏振光的振动方向不垂直。

在光线通过材料时,除了产生两个折射光束外,还会出现不同程度的畸变现象,导致光的传播路径变得复杂。

三、应用领域1. 光学器件:光的偏振与双折射现象在光学器件的设计中起着重要作用。

例如,偏振片可以用于光的调节、滤波和分析等方面。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Optical fiber communications 1-1
2018/9/26
§3 光纤的双折射及偏振特性
一、Introduction y x 1. SMF实际上有两个简并模:LP , LP 01 01 2. 实际光纤并不完善(光纤芯子的椭圆变形,光纤内部 的残余应力),两个模式并不简并,纵向相位常数β略有 不同。 3.由偏振模色散引起的典型的群时延是0.5ps/km(对短距 离光纤)。 4.群速不同:偏振色散(PMD)Polarization Mode Dispersion。 光的偏振态沿光纤轴向变化:光纤输出偏振态的不稳定 性。 5. 双折射:线、圆、椭圆 线双折射: x y ,应力变形。
P:弹光子数,二阶张量 p11 p12 p13 p p21 p22 p23 p p p 32 33 31
0.12i j 对石英玻璃 p 0.27i j
弯曲光纤相当于一线延迟器。适当选取曲率半径R和弯曲 光纤的圈数可做成光纤型的λ/4“波片”或λ/2“波片”。这可以 用来构成光纤型偏振控制器。 2. 光纤侧向受压力 设单位长度所加压力为 F,则应力双折射率为: 3 A:光纤外径;E:材料的杨氏弹性模量,对石英玻璃: E 6.5 1010 N / m 2
Optical fiber communications 1-11 2018/9/26
Copyright Wang Yan
E2 输出 经过L的光纤后,
1 1 1 1 E2 exp j L L exp j R L 2 j 2 j 1 exp( j L L ) exp( j R L ) 2 j exp( j L L ) exp( j R L ) 1 cos L L cos R L 2 sin R L sin L L R L cos L L 2 exp( j R L) 2 R L L sin 2 cos R L ) sin exp( j 2 L R R L L 2 2
k0:真空总的波数
nx , ny:LP , LP
x
neff :等效折射率指数差
y模的等效折射率指数
Optical fiber communications 3、拍长 1-5
2018/9/26
LB :
由于光纤中存在线双折射,两正交线偏振光的相 位差沿光纤变化,从而使合成光的偏振态沿光纤周期性变 化。偏振态完成一个周期变化的光纤长度,叫做拍长。 在一个拍长上,两正交偏振光的相位差变化了2π,因而有:
2018/9/26
0
0

2
Copyright Wang Yan

2

2



3 2
3 2
3 2 2
Optical fiber communications 1-4
2018/9/26
二、线双折射
Copyright Wang Yan
A. 参数: 1、线双折射率: L
x y
BL x y 2、归一化双折射B: B nx n y neff k0 k0
J 0 (Ur / a) j x z j y z E E x i E y j E0 exp jt (e ie j) J 0 (U ) J 0 (Ur / a) E x E0 exp j (t x z ) J 0 (U ) J 0 (Ur / a) E y E0 exp j (t y z ) J 0 (U )
Px 合作用: tan( hL) y P
2018/9/26
Copyright Wang Yan
n1
a
x
e2 32 双折射率: L ( ) 2 2
限定最短的拍长 LB min :拍长最小对应最大上折射
2 e 2.50 b 1 max 1 2 a 2 n LB min min 1
圆双折射:光纤对左旋和右旋偏振光有不同的相位常数。
Copyright Wang Yan
Optical fiber communications 1-2
2018/9/26
Copyright Wang Yan
HE11 是由两个旋转方向不同的光分成的。
Faraday 磁光效应,光纤的扭转。 椭圆双折射:当线和圆同时存在时,形成椭圆双折射。 Ex , E y E x E x 0 cos(t x z ) E y E y 0 cos(t y z ) 幅度比 R E y 0 / E x 0 相位差 y x ( y x ) z
L LB 2 0 2 LB L B
Optical fiber communications 1-6
L:光纤长度;h:耦合系数;这两参数说明光纤的保偏能力, 、h越大,保偏能力越强。 三、光纤的线双折射 A:光纤截面的非圆性变形 y n2 b 2 e 1 b / a 椭圆度:
Copyright Wang Yan
双折射越厉害,拍长越短。如光纤的拍长远小于某种外界 干扰的长度周期,它就可抵御这种干扰而有保持偏振状态 的能力。 4、消光比和功率耦合系数 在传输过程中,两个正交的线偏振模之间存在耦合,如在光 x 纤输入端激发x方向的线偏振模,其功率为P ,由于耦合, y 在光纤的输出端出现了y方向的线偏振模,其功率为 P 。用 消光比 和功率耦合系数h来表示这一对正交线偏振模的耦
Optical fiber communications 1-10 2018/9/26
Copyright Wang Yan
五、圆的双折射:光纤对左旋和右旋圆偏振光有不同的相位 常数,从而引起该两圆偏振光不同的相位变化,称为圆 双折射。 A. 参数 1、光纤的圆双折射率 R R L
E x E x 0 exp j (t x z ) E E E exp j ( t z ) y y y0 1 Ex Re xp ( j )
Optical fiber communications 1-3
Optical fiber communications 1-12 2018/9/26
Cቤተ መጻሕፍቲ ባይዱpyright Wang Yan
2、旋光率:单位长度上旋过的角度
R L R L L 2 2
HW1 1、平板波导 ① ② ③ ④
n1 1.5, n2 1.45, n3 1.4, d 5m。
求出TE模最低的3个模式的截止波长。 作出 曲线。 对0 1m的光波,画出最低三个模式的场的横向分布。 作图法求解0 1m 的光波的本征方程。
Optical fiber communications 1-7
2018/9/26
Copyright Wang Yan
例:n1 1.46, 0.003, 1.3m, 若LB min 50m, b / a 95.5 %。 B. 应力双折射 光纤中的应力双折射是由于光弹效应引起的,光纤材料 本身是各向同性的介质。因而不同方向的电场分量所遇到的 折射指数相同,设为n。当光纤受力时,引起了弹性形变, 通过光弹效应该形变可引起折射指数的变化,使材料变为各 向异性,从而呈现出双折射。 2. 光纤侧向受压力 1. 光纤弯曲 y F A
R 2、归一化双折射率 BR k0 B. 圆双折射对偏振态的影响 1、线偏振光通过圆双折射光纤后仍为线偏振光,但其方向 旋转了Ω角度,这种光纤的作用相当于一个旋光器。 以x方向的线偏振为例:
R , L左右旋圆偏振光的相位常数。
1 1 1 1 1 输入光:E1 0 2 j 2 j
1 F l k0 ( p11 p12 ) E A 4n0
Optical fiber communications 1-9
2018/9/26
Copyright Wang Yan
µ :材料的泊松比,对石英玻璃: µ =0.6 光纤的侧向受压也得到光纤线延迟器,其线延迟量由压力F 决定。 四、单模光纤的偏振色散 x y 由于存在双折射,单模光纤中基模LP , LP 的相位常数 x , y 不同,从而引进偏振色散,设这两个模式传输单位长度 所用的时间各为 x , y ,于是单位长度上产生的时延差为: d x d y d 0 x y d d d nx , n y 等效折射指数: n y nx x k 0 nx , y k0 n y c c 1 d (nx n y ) nx n y d (nx n y ) 故: 0 c d c c d nx n y c
y
x R x
a A:光纤外径
R:曲率半径
Optical fiber communications 1-8
A 3 l x y 0.25k0 n ( p11 p12 )(1 ) 线双折射: R
2018/9/26
Copyright Wang Yan
2
相关文档
最新文档