高中数学人教A版必修4习题:第一章三角函数1.1.1含解析
高中数学 第一章 三角函数 1.2.1.1 三角函数的定义课后习题 新人教A版必修4(2021年整

高中数学第一章三角函数1.2.1.1 三角函数的定义课后习题新人教A版必修4编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学第一章三角函数1.2.1.1 三角函数的定义课后习题新人教A版必修4)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学第一章三角函数1.2.1.1 三角函数的定义课后习题新人教A版必修4的全部内容。
1。
2.1.1 三角函数的定义一、A组1。
tan的值为()A。
B。
C。
D.解析:tan=tan=tan .答案:B2。
(2016·山东乳山期末)已知sin θ·tan θ〈0,则角θ是()A.第一或第二象限角B。
第二或第三象限角C。
第三或第四象限角D。
第一或第四象限角解析:由sin θ·tan θ=<0,知sin θ≠0,且cos θ<0,所以θ为第二或第三象限角。
故选B.答案:B3。
已知角α的终边过点P(2sin 60°,—2cos 60°),则sin α的值为()A. B.C。
-D。
—解析:∵sin 60°=,cos 60°=,∴点P的坐标为(,-1),∴sin α==-。
答案:D4.设角α是第二象限角,且=—cos,则角是()A.第一象限角B.第二象限角C.第三象限角D.第四象限角解析:∵角α是第二象限角,∴为第一或第三象限角.又=—cos,∴cos<0。
∴角是第三象限角。
答案:C5.若420°角的终边上有一点P(4,a),则a的值为()A.4B.-4C.±4D。
解析:∵420°=360°+60°,∴tan 420°=tan 60°=,∴,∴a=4.答案:A6。
高中数学人教A版必修4第一章三角函数1.1.1角的概念的推广 答案和解析

高中数学人教A 版必修4第一章三角函数1.1.1角的概念的推广学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知A={第一象限角},B={锐角},C={小于90°的角},那么A 、B 、C 关系是( ) A .B=A∩CB .B ∪C=CC .A ⫋CD .A=B=C2.若角α的终边经过点M (0,-3),则角α( ) A .是第三象限角 B .是第四象限角C .既是第三象限角,又是第四象限角D .不是任何象限的角3.若α是第四象限角,则-α一定在( ) A .第一象限 B .第二象限 C .第三象限D .第四象限4.终边与坐标轴重合的角α的集合是( ) A .{α|α=k ·360°,k ∈Z } B .{α|α=k ·180°+90°,k ∈Z } C .{α|α=k ·180°,k ∈Z } D .{α|α=k ·90°,k ∈Z }5.下面说法正确的个数为( ) (1)第二象限角大于第一象限角;(2)三角形的内角是第一象限角或第二象限角; (3)钝角是第二象限角. A .0B .1C .2D .36.已知集合{}|9036,A a a k k Z ︒︒==⨯-∈,{}|180180B ββ︒︒=-<<,则A B等于( ) A .{}36,54︒︒-B .{}126,144︒︒-C .{}126,36,54,144︒︒︒︒-- D .{}126,54︒︒-二、填空题7.50°角的始边与x轴的非负半轴重合,把其终边按顺时针方向旋转3周,所得的角是________.8.若α为锐角,则角-α+k·360°(k∈Z)是第________象限角.9.在0°~360°范围内,与角-60°的终边在同一条直线上的角为________.三、解答题10.如图所示,写出阴影部分(包括边界)的角的集合,并指出-950°12′是否是该集合中的角.11.已知角β-y=0上.(1)写出角β的集合S;(2)写出S中适合不等式-360°<β<720°的元素.12.已知角α的集合M={α|α=30°+k·90°,k∈Z},回答下列问题:(1)集合M有几类终边不相同的角?(2)集合M中大于-360°且小于360°的角是哪几个?(3)写出集合M中的第二象限角β的一般表达式.四、双空题13.如图,终边落在OA的位置上的角的集合是________;终边落在OB的位置上,且在-360°~360°内的角的集合是________.参考答案1.B【解析】【分析】由集合A,B,C,求出B与C的并集,判断A与C的包含关系,以及A,B,C三者之间的关系即可.【详解】由题B⊆A,∵A={第一象限角},B={锐角},C={小于90°的角},∴B∪C={小于90°的角}=C,即B⊆C,则B不一定等于A∩C,A不一定是C的真子集,三集合不一定相等,故选B.【点睛】此题考查了集合间的基本关系及运算,熟练掌握象限角,锐角,以及小于90°的角表示的意义是解本题的关键,是易错题2.D【解析】因为点M(0,-3)在y轴负半轴上,所以角α的终边不在任何象限,故选D.3.A【解析】试题分析:由角α的表示法,确定-α的表示法,然后得出-α所在的范围.k·360°+180°<α<k·360°+270°,k∈Z⇒-k·360°-270°<-α<-k·360°-180°,k∈Z⇒k·360°+90°<-α<k·360°+180°,k∈Z⇒-α为第二象限角.考点:本题主要考查象限角的概念及表示.点评:简单题,涉及不等式的性质,能准确表示某象限的角是关键.4.D【解析】终边在坐标轴上的角为90°或90°的倍数角,所以终边与坐标轴重合的角的集合为{α|α=k·90°,k∈Z},故选D.5.B【解析】第二象限角如120°比第一象限角390°要小,故(1)错;三角形的内角可能为直角,直角既不是第一象限角,也不是第二象限角,故(2)错;(3)中钝角是第二象限角是对的.所以正确的只有1个,故选B.6.C【解析】由-180°<k·90°-36°<180°(k∈Z)得-144°<k·90°<216°(k∈Z),所以-14490<k<21690(k∈Z),所以k=-1,0,1,2,所以A∩B={-126°,-36°,54°,144°},故选C.7.-1 030°【解析】顺时针方向旋转3周转了-(3×360°)=-1 080°.又50°+(-1 080°)=-1 030°,故所得的角为-1 030°,故填-1 030°.8.四【解析】α为锐角,则角α是第一象限角,所以角-α是第四象限角,又因为角-α+k·360°(k∈Z)与-α的终边相同,所以角-α+k·360°(k∈Z)是第四象限角,故填四.9.120°300°【解析】根据终边相同角定义知,与-60°终边相同角可表示为β=-60°+k·360°(k∈Z),当k=1时β=300°与-60°终边相同,终边在其反向延长线上且在0°~360°范围内角为120°,故填120° ,300°.10.{α|k·360°≤α≤k·360°+125°,k∈Z},-950°12′不是该集合中的角.【解析】试题分析:题图阴影部分(包括边界)的角的范围是k·360°≤α≤k·360°+125°,k∈Z,而-950°12′=-3×360°+129°48′,不是集合中的角.试题解析:题图阴影部分(包括边界)的角的范围是k·360°≤α≤k·360°+125°,k∈Z,所求集合为{α|k·360°≤α≤k·360°+125°,k∈Z},因为-950°12′=-3×360°+129°48′,所以-950°12′不是该集合中的角.11.(1)S={β|β=60°+k·180°,k∈Z};(2)-300°,-120°,60°,240°,420°,600°.【分析】(1)角βx-y=0-y=0的倾斜角为60°,所以角β的集合S={β|β=60°+k·180°,k∈Z};(2)在S={β|β=60°+k·180°,k∈Z}中,对整数k赋值,找出S 中适合不等式-360°<β<720°的元素即可.【详解】(1)因为角βx-y=0x-y=0的倾斜角为60°,所以角β的集合S={β|β=60°+k·180°,k∈Z}.(2)在S={β|β=60°+k·180°,k∈Z}中,取k=-2,得β=-300°,取k=-1,得β=-120°,取k=0,得β=60°,取k=1,得β=240°,取k=2,得β=420°,取k=3,得β=600°.所以S中适合不等式-360°<β<720°的元素分别是-300°,-120°,60°,240°,420°,600°.12.(1)四类;(2)-330,-240°,-150,-60°,30°,120°,210°,300;(3)β=120°+k·360°,k∈Z. 【解析】试题分析:(1)集合M的角可以分成四类,即终边分别与-150°,-60°,30°,120°的终边相同的角;(2) 令-360°<30°+k·90°<360°,根据k的取值范围以及k∈Z,所以k=-4,-3,-2,-1,0,1,2,3,分别代入求出角度即可;(3)集合M中的第二象限角与120°角的终边相同,所以β=120°+k·360°,k∈Z.试题解析:(1)集合M的角可以分成四类,即终边分别与-150°,-60°,30°,120°的终边相同的角.(2)令-360°<30°+k·90°<360°,则-<k<,又因为k∈Z,所以k=-4,-3,-2,-1,0,1,2,3,所以集合M中大于-360°且小于360°的角共有8个,分别是-330,-240°,-150,-60°,30°,120°,210°,300.(3)集合M中的第二象限角与120°角的终边相同,所以β=120°+k·360°,k∈Z.13.{α|α=120°+k·360°,k∈Z} {-45°,315°}【解析】终边落在OA的位置上的角的集合是{α|α=120°+k·360°,k∈Z};终边落在OB的位置上的角的集合是{α|α=315°+k·360°,k∈Z}(或{α|α=-45°+k·360°,k∈Z}),取k=0,1,得α=315°,-45°,所求的集合是{-45°,315°},故填(1). {α|α=120°+k·360°,k∈Z}; (2). {-45°,315°}.。
高中数学人教A版(课件)必修四 第一章 三角函数 1.1.1

上一页
返回首页
下一页
象限角与区域角的表示
(1)如图 1-1-2,终边落在阴影部分(不包括边界)的角的集合是
()
A.{α|k·360°+30°<α<k·360°+45°,k∈Z}
B.{α|k·180°+150°<α<k·180°+225°,k∈Z}
C.{α|k·360°+150°<α<k·360°+225°,k∈Z}
【答案】 -30°
上一页
返回首页
下一页
教材整理 2 象限角与轴线角
阅读教材 P3“图 1.1-3 至探究”以上内容,完成下列问题. 1.象限角:以角的_顶__点__为坐标原点,角的_始__边__为 x 轴正半轴,建立平面 直角坐标系,角的终边(除端点外)在第几象限,就说这个角是第几象限角. 2.如果角的终边在坐标轴上,称这个角为轴线角.
上一页
返回首页
下一页
下列说法: ①第一象限角一定不是负角; ②第二象限角大于第一象限角; ③第二象限角是钝角; ④小于 180°的角是钝角、直角或锐角. 其中错误的序号为________(把错误的序号都写上). 【解析】 由象限角定义可知①②③④都不正确. 【答案】 ①②③④
上一页
返回首页
下一页
教材整理 3 终边相同的角
上一页
返回首页
下一页
[再练一题] 2.写出图 1-1-4 中阴影部分(不含边界)表示的角的集合. 【解】 在-180°~180°内落在阴影部分角集合为大 于-45°小于 45°,所以终边落在阴影部分(不含边界)的角
的集合为{α|-45°+k·360°<α<45°+k·360°,k∈Z}.
2018版数学人教A版必修四文档:第一章 三角函数1-1-2

1.1.2 弧度制学习目标 1.理解角度制与弧度制的概念,能对弧度和角度进行正确的转换.2.体会引入弧度制的必要性,建立角的集合与实数集一一对应关系.3.掌握并能应用弧度制下的弧长公式和扇形面积公式.知识点一 角度制与弧度制思考1 在初中学过的角度制中,1度的角是如何规定的? 答案 周角的1360等于1度.思考2 在弧度制中,1弧度的角是如何规定的,如何表示?答案 把长度等于半径长的弧所对的圆心角叫做1弧度(radian)的角,用符号rad 表示. 思考3 “1弧度的角”的大小和所在圆的半径大小有关系吗?答案 “1弧度的角”的大小等于半径长的圆弧所对的圆心角,是一个定值,与所在圆的半径大小无关.梳理 (1)角度制和弧度制(2)角的弧度数的计算如果半径为r 的圆的圆心角α所对弧的长为l ,那么,角α的弧度数的绝对值是|α|=lr .知识点二 角度制与弧度制的换算思考 角度制和弧度制都是度量角的单位制,它们之间如何进行换算呢? 答案 利用1°=π180rad 和1 rad =(180π)°进行弧度与角度的换算.梳理 (1)角度与弧度的互化(2)一些特殊角的度数与弧度数的对应关系知识点三 扇形的弧长及面积公式思考 扇形的面积与弧长公式用弧度怎么表示?答案 设扇形的半径为R ,弧长为l ,α为其圆心角,则:类型一 角度与弧度的互化 例1 将下列角度与弧度进行互化. (1)20°;(2)-15°;(3)7π12;(4)-11π5.解 (1)20°=20π180=π9.(2)-15°=-15π180=-π12.(3)7π12=712×180°=105°. (4)-11π5=-115×180°=-396°.反思与感悟 将角度转化为弧度时,要把带有分、秒的部分化为度之后,牢记π rad =180°即可求解.把弧度转化为角度时,直接用弧度数乘以⎝⎛⎭⎫180π°即可. 跟踪训练1 (1)把112°30′化成弧度; (2)把-5π12化成度.解 (1)112°30′=⎝⎛⎭⎫2252°=2252×π180=5π8. (2)-5π12=-⎝⎛⎭⎫5π12×180π°=-75°. 类型二 用弧度制表示终边相同的角例2 把下列各角化成2k π+α(0≤α<2π,k ∈Z )的形式,并指出是第几象限角. (1)-1 500°;(2)23π6;(3)-4.解 (1)∵-1 500°=-1 800°+300°=-5×360°+300°. ∴-1 500°可化成-10π+5π3,是第四象限角.(2)∵23π6=2π+11π6,∴23π6与11π6终边相同,是第四象限角. (3)∵-4=-2π+(2π-4),π2<2π-4<π.∴-4与2π-4终边相同,是第二象限角.反思与感悟 用弧度制表示终边相同的角2k π+α(k ∈Z )时,其中2k π是π的偶数倍,而不是整数倍,还要注意角度制与弧度制不能混用.跟踪训练2 (1)把-1 480°写成α+2k π(k ∈Z )的形式,其中0≤α≤2π; (2)在[0°,720°]内找出与2π5角终边相同的角.解 (1)∵-1 480°=-1 480×π180=-74π9,而-74π9=-10π+16π9,且0≤α≤2π,∴α=16π9.∴-1 480°=16π9+2×(-5)π.(2)∵2π5=2π5×(180)°=72°,∴终边与2π5角相同的角为θ=72°+k ·360°(k ∈Z ),当k =0时,θ=72°;当k =1时,θ=432°. ∴在[0°,720°]内与2π5角终边相同的角为72°,432°.类型三 扇形的弧长及面积公式的应用例3 (1)若扇形的中心角为120°,半径为3,则此扇形的面积为( ) A.π B.5π4 C.3π3 D.23π9(2)如果2弧度的圆心角所对的弦长为4,那么这个圆心角所对的弧长为( ) A.2 B.2sin 1 C.2sin 1 D.4sin 1答案 (1)A (2)D解析 (1)扇形的中心角为120°=2π3,半径为3, 所以S 扇形=12|α|r 2=12×2π3×(3)2=π.(2)连接圆心与弦的中点,则以弦心距、弦长的一半、半径长为长度的线段构成一个直角三角形,半弦长为2,其所对的圆心角也为2,故半径长为2sin 1.这个圆心角所对的弧长为2×2sin 1=4sin 1. 反思与感悟 联系半径、弧长和圆心角的有两个公式:一是S =12lr =12|α|r 2,二是l =|α|r ,如果已知其中两个,就可以求出另一个.求解时应注意先把度化为弧度,再计算. 跟踪训练3 一个扇形的面积为1,周长为4,求圆心角的弧度数. 解 设扇形的半径为R ,弧长为l ,则2R +l =4, ∴l =4-2R ,根据扇形面积公式S =12lR ,得1=12(4-2R )·R ,∴R =1,∴l =2,∴α=l R =21=2,即扇形的圆心角为2 rad.1.下列说法中,错误的是( )A.“度”与“弧度”是度量角的两种不同的度量单位B.1°的角是周角的1360,1 rad 的角是周角的12πC.1 rad 的角比1°的角要大D.用角度制和弧度制度量角,都与圆的半径有关 答案 D解析 根据1度、1弧度的定义可知只有D 是错误的,故选D. 2.时针经过一小时,转过了( ) A.π6 rad B.-π6 radC.π12 rad D.-π12rad答案 B解析 时针经过一小时,转过-30°,又-30°=-π6 rad ,故选B.3.若θ=-5,则角θ的终边在( ) A.第四象限 B.第三象限 C.第二象限 D.第一象限答案 D解析 2π-5与-5的终边相同, ∵2π-5∈(0,π2),∴2π-5是第一象限角,则-5也是第一象限角.4.已知扇形的周长是6 cm ,面积是2 cm 2,则扇形圆心角的弧度数是( ) A.1 B.4 C.1或4 D.2或4 答案 C解析 设扇形半径为r ,圆心角的弧度数为α, 则由题意得⎩⎪⎨⎪⎧2r +αr =6,12αr 2=2,∴⎩⎪⎨⎪⎧ r =1,α=4或⎩⎪⎨⎪⎧r =2,α=1. 5.已知⊙O 的一条弧AE 的长等于该圆内接正三角形的边长,则从OA 顺时针旋转到OE 所形成的角α的弧度数是 . 答案 - 3解析 设⊙O 的半径为r ,其内接正三角形为△ABC .如图所示,D 为AB 边中点, AO =r ,∠OAD =30°, AD =r ·cos 30°=32r , ∴边长AB =2AD =3r . ∴AE 的弧长l =AB =3r . 又∵α是负角,∴α=-l r =-3rr=- 3.1.角的概念推广后,在弧度制下,角的集合与实数集R 之间建立起一一对应的关系:每一个角都有唯一的一个实数(即这个角的弧度数)与它对应;反过来,每一个实数也都有唯一的一个角(即弧度数等于这个实数的角)与它对应.2.解答角度与弧度的互化问题的关键在于充分利用“180°=π rad ”这一关系式. 易知:度数×π180rad =弧度数,弧度数×⎝⎛⎭⎫180π°=度数. 3.在弧度制下,扇形的弧长公式及面积公式都得到了简化,在具体应用时,要注意角的单位取弧度.课时作业一、选择题1.-300°化为弧度是( ) A.-43πB.-53πC.-74πD.-76π答案 B解析 -300°=-300×π180=-53π.2.下列与9π4的终边相同的角的表达式中,正确的是( )A.2k π+45°(k ∈Z )B.k ·360°+9π4(k ∈Z ) C.k ·360°-315°(k ∈Z ) D.k π+5π4(k ∈Z )答案 C解析 A ,B 中弧度与角度混用,不正确. 9π4=2π+π4,所以9π4与π4的终边相同. -315°=-360°+45°,所以-315°也与45°的终边相同.故选C. 3.下列转化结果错误的是( ) A.60°化成弧度是π3B.-103π化成度是-600°C.-150°化成弧度是-76πD.π12化成度是15° 答案 C解析 C 项中-150°=-150×π180=-56π.4.设角α=-2弧度,则α所在的象限为( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限答案 C解析 ∵-π<-2<-π2,∴2π-π<2π-2<2π-π2,即π<2π-2<32π,∴2π-2为第三象限角, ∴α为第三象限角.5.把-114π表示成θ+2k π(k ∈Z )的形式,使|θ|最小的θ值是( )A.-34πB.-2πC.πD.-π答案 A解析 ∵-114π=-2π+⎝⎛⎭⎫-34π =2×(-1)π+⎝⎛⎭⎫-34π, ∴θ=-34π.6.若扇形圆心角为π3,则扇形内切圆的面积与扇形面积之比为( )A.1∶3B.2∶3C.4∶3D.4∶9答案 B解析 设扇形的半径为R ,扇形内切圆半径为r , 则R =r +rsinπ6=r +2r =3r .∴S 内切圆=πr 2.S 扇形=12αR 2=12×π3×R 2=12×π3×9r 2=32πr 2.∴S 内切圆∶S 扇形=2∶3.7.《九章算术》是我国古代数学成就的杰出代表作.其中《方田》章给出计算弧田面积所用的经验公式为:弧田面积=12(弦×矢+矢2).弧田(如图)由圆弧和其所对弦围成,公式中“弦”指圆弧所对的弦长,“矢”等于半径长与圆心到弦的距离之差.现有圆心角为2π3,半径为4 m的弧田,按照上述经验公式计算所得弧田面积约是( )A.6 m 2B.9 m 2C.12 m 2D.15 m 2答案 B解析 根据题设,弦=2×4sin π3=43(m),矢=4-2=2(m),故弧田面积=12×(弦×矢+矢2)=12(43×2+22)=43+2≈9(m 2). 二、填空题8.在直径长为20 cm 的圆中,圆心角为165°时所对的弧长为 cm. 答案55π6解析 ∵165°=π180×165=11π12(rad),∴l =11π12×10=55π6(cm).9.已知集合A ={x |2k π≤x ≤2k π+π,k ∈Z },集合B ={x |-4≤x ≤4},则A ∩B = . 答案 [-4,-π]∪[0,π] 解析 如图所示,∴A ∩B =[-4,-π]∪[0,π].10.若2π<α<4π,且α与-76π角的终边垂直,则α= .答案 73π或103π解析 α=-76π-π2+2k π=2k π-53π,k ∈Z ,∵2π<α<4π,∴k =2,α=73π;或者α=-76π+π2+2k π=2k π-23π,k ∈Z ,∵2π<α<4π,∴k =2,α=103π.综上,α=73π或103π.11.如果圆心角为2π3的扇形所对的弦长为23,则扇形的面积为 .答案4π3解析 如图,作BF ⊥AC .已知AC =23,∠ABC =2π3,则AF =3,∠ABF =π3.∴AB =AFsin ∠ABF =2,即R =2.∴弧长l =|α|R =4π3, ∴S =12lR =4π3.三、解答题12.已知一扇形的圆心角是α,所在圆的半径是R .(1)若α=60°,R =10 cm ,求扇形的弧长及该弧所在的弓形面积; (2)若扇形的周长是30,当α为多少弧度时,该扇形有最大面积? 解 (1)设弧长为l ,弓形面积为S 弓,∵α=60°=π3,R =10(cm),∴l =αR =10π3(cm).S 弓=S 扇-S △=12×10π3×10-2×12×10×sin π6×10×cos π6=50⎝⎛⎭⎫π3-32 (cm 2).(2)∵l +2R =30,∴l =30-2R , 从而S =12·l ·R =12(30-2R )·R=-R 2+15R =-⎝⎛⎭⎫R -1522+2254.∴当半径R =152 cm 时,l =30-2×152=15(cm),扇形面积的最大值是2254 cm 2,这时α=lR=2(rad).∴当扇形的圆心角为2 rad ,半径为152 cm 时,面积最大,为2254 cm 2.13.已知角α=1 200°.(1)将α改写成β+2k π(k ∈Z ,0≤β<2π)的形式,并指出α是第几象限的角; (2)在区间[-4π,π]上找出与α终边相同的角. 解 (1)∵α=1 200°=1 200×π180=20π3=3×2π+2π3, 又π2<2π3<π, ∴角α与2π3的终边相同,∴角α是第二象限的角.(2)∵与角α终边相同的角(含角α在内)为2k π+2π3,k ∈Z ,∴由-4π≤2k π+2π3≤π,得-73≤k ≤16.∵k ∈Z ,∴k =-2或k =-1或k =0.故在区间[-4π,π]上与角α终边相同的角是-10π3,-4π3,2π3.。
高中数学 第一章 三角函数测试题(含解析)新人教A版必修4(2021年整理)

高中数学第一章三角函数测试题(含解析)新人教A版必修4编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学第一章三角函数测试题(含解析)新人教A版必修4)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学第一章三角函数测试题(含解析)新人教A版必修4的全部内容。
第一章三角函数 测试题一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个是符合题目要求的。
)1.若cos θ>0,且tan θ<0,则角θ的终边所在象限是( ) A .第一象限B .第二象限C .第三象限D .第四象限2.如果α的终边过点P(2sin 6π,—2cos 6π),则sin α的值等于( ) A .12B .12-C .3-D .3-3。
已知角3π的终边上有一点P (1,a ),则a 的值是 ( ) A .3- B .3± C .33D .34. 已知1sin 1cos 2αα+=-,则cos sin 1αα-的值是 ( )A .12B .12- C .2 D .-25。
函数y=sin (2x +π)是 ( ) A .周期为π的奇函数B .周期为π的偶函数C .周期为2π的奇函数D .周期为2π的偶函数6.由函数y=sin2x 的图象得到函数y=sin (2x +3π)的图象,所经过的变换是( ) A .向左平移3π个单位 B .向右平移3π个单位C .向左平移6π个单位D .向右平移6π个单位7。
给出下列命题:①第二象限角大于第一象限角;②三角形的内角是第一象限角或第二象限角; ③不论用角度制还是用弧度制度量一个角,它们与扇形所在圆的半径的大小无关; ④若sin sin αβ=,则α与β的终边相同; ⑤若cos θ<0,则θ是第二或第三象限的角.其中正确..命题的个数是 ( )A .1B .2C .3D .48.如图1所示,为研究钟表与三角函数的关系,建立如图1所示的坐标系,设秒针针尖位置P (x ,y )。
2018版数学人教A版必修四文档:第一章 三角函数1-4-1

1.4.1 正弦函数、余弦函数的图象学习目标 1.了解利用单位圆中的正弦线画正弦曲线的方法.2.掌握“五点法”画正弦曲线和余弦曲线的步骤和方法,能用“五点法”作出简单的正弦、余弦曲线.3.理解正弦曲线与余弦曲线之间的联系.知识点一 正弦函数、余弦函数的概念思考 从对应的角度如何理解正弦函数、余弦函数的概念?答案 实数集与角的集合之间可以建立一一对应关系,而一个确定的角又对应着唯一确定的正弦(或余弦)值.这样,任意给定一个实数x ,有唯一确定的值sin x (或cos x )与之对应.由这个对应法则所确定的函数y =sin x (或y =cos x )叫做正弦函数(或余弦函数),其定义域是R . 知识点二 几何法作正弦函数、余弦函数的图象思考1 课本上是利用什么来比较精确的画出正弦函数的图象的?其基本步骤是什么? 答案 利用正弦线,这种作图方法称为“几何法”,其基本步骤如下:①作出单位圆:作直角坐标系,并在直角坐标系中y 轴左侧的x 轴上取一点O 1,作出以O 1为圆心的单位圆;②等分单位圆,作正弦线:从⊙O 1与x 轴的交点A 起,把⊙O 1分成12等份.过⊙O 1上各分点作x 轴的垂线,得到对应于0,π6,π3,π2,…,2π等角的正弦线;③找横坐标:把x 轴上从0到2π这一段分成12等份;④找纵坐标:把角x 的正弦线向右平移,使它的起点与x 轴上对应的点x 重合,从而得到12条正弦线的12个终点;⑤连线:用光滑的曲线将12个终点依次从左至右连接起来,即得到函数y =sin x ,x ∈[0,2π]的图象,如图.因为终边相同的角有相同的三角函数值,所以函数y =sin x ,x ∈[2k π,2(k +1)π),k ∈Z 且k ≠0的图象与函数y =sin x ,x ∈[0,2π)的图象的形状完全一致.于是只要将函数y =sin x ,x ∈[0,2π)的图象向左、向右平行移动(每次2π个单位长度),就可以得到正弦函数y =sin x ,x ∈R 的图象,如图.思考2 如何由正弦函数的图象通过图形变换得到余弦函数的图象?答案 把y =sin x ,x ∈R 的图象向左平移π2个单位长度,即可得到y =cos x ,x ∈R 的图象.梳理 正弦函数的图象和余弦函数的图象分别叫做正弦曲线和余弦曲线. 知识点三 “五点法”作正弦函数、余弦函数的图象 思考1 描点法作函数图象有哪几个步骤? 答案 列表、描点、连线.思考2 “五点法”作正弦函数、余弦函数在x ∈[0,2π]上的图象时是哪五个点? 答案梳理 “五点法”作正弦函数y =sin x 、余弦函数y =cos x ,x ∈[0,2π]图象的步骤: (1)列表(2)描点画正弦函数y =sin x ,x ∈[0,2π]的图象,五个关键点是 (0,0),⎝⎛⎭⎫π2,1,(π,0),⎝⎛⎭⎫3π2,-1,(2π,0); 画余弦函数y =cos x ,x ∈[0,2π]的图象,五个关键点是(0,1),⎝⎛⎭⎫π2,0,(π,-1),⎝⎛⎭⎫3π2,0,(2π,1). (3)用光滑曲线顺次连接这五个点,得到正弦曲线、余弦曲线的简图.类型一 “五点法”作图的应用例1 利用“五点法”作出函数y =1-sin x (0≤x ≤2π)的简图. 解 (1)取值列表:描点连线,如图所示.反思与感悟 作正弦曲线要理解几何法作图,掌握五点法作图.“五点”即y =sin x 或y =cos x 的图象在[0,2π]内的最高点、最低点和与x 轴的交点.“五点法”是作简图的常用方法. 跟踪训练1 用“五点法”作出函数y =1-cos x (0≤x ≤2π)的简图. 解 列表如下:描点并用光滑的曲线连接起来,如图.类型二 利用正弦、余弦函数的图象求定义域 例2 求函数f (x )=lg sin x +16-x 2的定义域.解 由题意,得x 满足不等式组⎩⎪⎨⎪⎧sin x >0,16-x 2≥0,即⎩⎪⎨⎪⎧sin x >0,-4≤x ≤4,作出y =sin x 的图象,如图所示.结合图象可得x ∈[-4,-π)∪(0,π).反思与感悟 一些三角函数的定义域可以借助函数图象直观地观察得到,同时要注意区间端点的取舍.跟踪训练2 求函数y =log 21sin x-1的定义域. 解 为使函数有意义,需满足⎩⎪⎨⎪⎧log 21sin x -1≥0,sin x >0,即0<sin x ≤12.由正弦函数的图象或单位圆(如图所示),可得函数的定义域为{x |2k π<x ≤2k π+π6或2k π+5π6≤x <2k π+π,k ∈Z }.类型三 与正弦、余弦函数有关的函数零点问题 命题角度1 零点个数问题例3 在同一坐标系中,作函数y =sin x 和y =lg x 的图象,根据图象判断出方程sin x =lg x 的解的个数.解 建立平面直角坐标系xOy ,先用五点法画出函数y =sin x ,x ∈[0,2π]的图象,再向右连续平移2π个单位,得到y =sin x 的图象.描出点(1,0),(10,1),并用光滑曲线连接得到y =lg x 的图象,如图所示.由图象可知方程sin x =lg x 的解有3个.反思与感悟 三角函数的图象是研究函数的重要工具,通过图象可较简便的解决问题,这正是数形结合思想方法的应用.跟踪训练3 方程x 2-cos x =0的实数解的个数是 . 答案 2解析 作函数y =cos x 与y =x 2的图象,如图所示, 由图象可知,原方程有两个实数解.命题角度2 参数范围问题例4 方程sin(x +π3)=m2在[0,π]上有两实根,求实数m 的取值范围及两实根之和.解 作出y 1=sin(x +π3),y 2=m2的图象如图,由图象可知,要使y 1=sin(x +π3),y 2=m 2在区间[0,π]上有两个不同的交点,应满足32≤m2<1,即3≤m <2.设方程的两实根分别为x 1,x 2,则由图象可知x 1与x 2关于x =π6对称,于是x 1+x 2=2×π6,所以x 1+x 2=π3.反思与感悟 准确作出函数图象是解决此类问题的关键,同时应抓住“临界”情况进行分析. 跟踪训练4 若函数f (x )=sin x -2m -1,x ∈[0,2π]有两个零点,求m 的取值范围. 解 由题意可知,sin x -2m -1=0在[0,2π]上有2个根,即sin x =2m +1有两个根, 可转化为y =sin x 与y =2m +1两函数的图象有2个交点. 由y =sin x 图象可知,-1<2m +1<1,且2m +1≠0, 解得-1<m <0,且m ≠-12.∴m ∈(-1,-12)∪(-12,0).1.用“五点法”作y =2sin 2x 的图象时,首先描出的五个点的横坐标是( ) A.0,π2,π,3π2,2πB.0,π4,π2,3π4,πC.0,π,2π,3π,4πD.0,π6,π3,π2,2π3答案 B解析 “五点法”作图是当2x =0,π2,π,3π2,2π时的x 的值,此时x =0,π4,π2,3π4,π,故选B.2.下列图象中,y =-sin x 在[0,2π]上的图象是( )答案 D解析 由y =sin x 在[0,2π]上的图象作关于x 轴的对称图形,应为D 项. 3.函数y =cos x ,x ∈[0,2π]的图象与直线y =-12的交点有 个.答案 2解析 作y =cos x ,x ∈[0,2π]的图象及直线y =-12(图略),可知两函数图象有2个交点.4.函数y =2sin x -1的定义域为 . 答案 [π6+2k π,5π6+2k π],k ∈Z解析 由题意知,自变量x 应满足2sin x -1≥0, 即sin x ≥12.由y =sin x 在[0,2π]的图象,可知π6≤x ≤5π6,所以y =2sin x -1的定义域为⎣⎡⎦⎤π6+2k π,5π6+2k π,k ∈Z . 5.请用“五点法”画出函数y =12sin ⎝⎛⎭⎫2x -π6的图象. 解 令X =2x -π6,则x 变化时,y 的值如下表:描点画图:将函数在⎣⎡⎦⎤π12,13π12上的图象向左、向右平移即得y =12sin ⎝⎛⎭⎫2x -π6的图象.1.对“五点法”画正弦函数图象的理解(1)与前面学习函数图象的画法类似,在用描点法探究函数图象特征的前提下,若要求精度不高,只要描出函数图象的“关键点”,就可以根据函数图象的变化趋势画出函数图象的草图. (2)正弦型函数图象的关键点是函数图象中最高点、最低点以及与x 轴的交点. 2.作函数y =a sin x +b 的图象的步骤:3.用“五点法”画的正弦型函数在一个周期[0,2π]内的图象,如果要画出在其他区间上的图象,可依据图象的变化趋势和周期性画出.课时作业一、选择题1.对于正弦函数y =sin x 的图象,下列说法错误的是( ) A.向左右无限伸展B.与y =cos x 的图象形状相同,只是位置不同C.与x 轴有无数个交点D.关于y 轴对称 答案 D解析 由正弦曲线知,A ,B ,C 均正确,D 不正确.2.用五点法画y =sin x ,x ∈[0,2π]的图象时,下列哪个点不是关键点( ) A.⎝⎛⎭⎫π6,12 B.⎝⎛⎭⎫π2,1 C.(π,0) D.(2π,0)答案 A解析 易知⎝⎛⎭⎫π6,12不是关键点.3.已知f (x )=sin ⎝⎛⎭⎫x +π2,g (x )=cos ⎝⎛⎭⎫x -π2,则将f (x )的图象( ) A.与g (x )的图象相同 B.与g (x )的图象关于y 轴对称 C.向左平移π2个单位,得g (x )的图象D.向右平移π2个单位,得g (x )的图象答案 D解析 f (x )=sin ⎝⎛⎭⎫x +π2, g (x )=cos ⎝⎛⎭⎫x -π2=cos ⎝⎛⎭⎫π2-x =sin x , f (x )的图象向右平移π2个单位得到g (x )的图象.4.函数y =-sin x ,x ∈⎣⎡⎦⎤-π2,3π2的简图是( )答案 D5.方程sin x =x10的根的个数是( )A.7B.8C.9D.10 答案 A解析 在同一坐标系内画出y =x10和y =sin x 的图象如图所示.根据图象可知方程有7个根.6.函数y =cos x +|cos x |,x ∈[0,2π]的大致图象为( )答案 D解析 由题意得y =⎩⎨⎧2cos x ,0≤x ≤π2或3π2≤x ≤2π,0,π2<x <3π2.显然只有D 合适.7.若函数y =2cos x (0≤x ≤2π)的图象和直线y =2围成一个封闭的平面图形,则这个封闭图形的面积是( ) A.4 B.8 C.2π D.4π 答案 D解析 作出函数y =2cos x ,x ∈[0,2π]的图象,函数y =2cos x ,x ∈[0,2π]的图象与直线y =2围成的平面图形为如图所示的阴影部分.利用图象的对称性可知,该阴影部分的面积等于矩形OABC 的面积,又∵OA =2,OC =2π, ∴S 阴影部分=S 矩形OABC =2×2π=4π. 二、填空题8.函数f (x )=lg cos x +25-x 2的定义域为 . 答案 ⎣⎡⎭⎫-5,-3π2∪⎝⎛⎭⎫-π2,π2∪⎝⎛⎦⎤3π2,5 解析 由题意,得x 满足不等式组⎩⎪⎨⎪⎧cos x >0,25-x 2≥0,即⎩⎪⎨⎪⎧cos x >0,-5≤x ≤5,作出y =cos x 的图象,如图所示.结合图象可得x ∈⎣⎡⎭⎫-5,-3π2∪⎝⎛⎭⎫-π2,π2∪⎝⎛⎦⎤3π2,5. 9.函数y =sin x ,x ∈[0,2π]的图象与直线y =-12的交点为A (x 1,y 1),B (x 2,y 2),则x 1+x 2= . 答案 3π 解析 如图所示,x 1+x 2=2×3π2=3π.10.函数f (x )=⎩⎪⎨⎪⎧sin x ,x ≥0,x +2,x <0,则不等式f (x )>12的解集是 .答案 {x |-32<x <0或π6+2k π<x <5π6+2k π,k ∈N }解析 在同一平面直角坐标系中画出函数f (x )和y =12的图象(图略),由图易得-32<x <0或π6+2k π<x <5π6+2k π,k ∈N .11.设0≤x ≤2π,且|cos x -sin x |=sin x -cos x ,则x 的取值范围为 . 答案 ⎣⎡⎦⎤π4,5π4解析 由题意知sin x -cos x ≥0,即cos x ≤sin x ,在同一坐标系画出y =sin x ,x ∈[0,2π]与y =cos x ,x ∈[0,2π]的图象,如图所示.观察图象知x ∈⎣⎡⎦⎤π4,5π4. 三、解答题12.用“五点法”画出函数y =12+sin x ,x ∈[0,2π]的简图.解 (1)取值列表如下:(2)描点、连线,如图所示.13.利用正弦曲线,求满足12<sin x ≤32的x 的集合.解 首先作出y =sin x 在[0,2π]上的图象,如图所示,作直线y =12,根据特殊角的正弦值,可知该直线与y =sin x ,x ∈[0,2π]的交点横坐标为π6和5π6; 作直线y =32,该直线与y =sin x ,x ∈[0,2π]的交点横坐标为π3和2π3. 观察图象可知,在[0,2π]上,当π6<x ≤π3或2π3≤x <5π6时,不等式12<sin x ≤32成立. 所以12<sin x ≤32的解集为{x |π6+2k π<x ≤π3+2k π或2π3+2k π≤x <5π6+2k π,k ∈Z }. 四、探究与拓展14.已知函数y =2sin x (π2≤x ≤5π2)的图象与直线y =2围成一个封闭的平面图形,那么此封闭图形的面积为( )A.4B.8C.4πD.2π答案 C解析 数形结合,如图所示.y =2sin x ,x ∈⎣⎡⎦⎤π2,5π2的图象与直线y =2围成的封闭平面图形的面积相当于由x =π2,x =5π2,y =0,y =2围成的矩形面积,即S =⎝⎛⎭⎫5π2-π2×2=4π.15.函数f (x )=sin x +2|sin x |,x ∈[0,2π]的图象与直线y =k 有且仅有两个不同的交点,求k 的取值范围.解 f (x )=sin x +2|sin x |=⎩⎪⎨⎪⎧3sin x ,x ∈[0,π],-sin x ,x ∈(π,2π].图象如图所示,若使f (x )的图象与直线y =k 有且仅有两个不同的交点,根据图象可得k 的取值范围是(1,3).。
高一数学人教a版必修四练习:第一章_三角函数1.1.1_word版含解析
高一数学人教a版必修四练习:第一章_三角函数1.1.1_word版含解析(本栏目内容,在学生用书中以独立形式分册装订!)一、选择题(每小题5分,共20分)1.-215°是()A.第一象限角B.第二象限角C.第三象限角D.第四象限角解析:由于-215°=-360°+145°,而145°是第二象限角,则-215°也是第二象限角.答案: B2.下面各组角中,终边相同的是()A.390°,690°B.-330°,750°C.480°,-420°D.3 000°,-840°解析:∵-330°=-360°+30°,750°=720°+30°,∴-330°与750°终边相同.答案: B3.已知下列各角:①-120°;②-240°;③180°;④495°,其中是第二象限角的是()A.①②B.①③C.②③D.②④解析:-120°是第三象限角;-240°是第二象限角;180°角不在任何一个象限内;495°=360°+135°,所以495°是第二象限角.答案: D4.终边在第二象限的角的集合可以表示为()A.{α|90°<α<180°}B.{α|90°+k·180°<α<180°+k·180°,k∈Z}C.{α|-270°+k·180°<α<-180°+k·180°,k∈Z}D.{α|-270°+k·360°<α<-180°+k·360°,k∈Z}解析:终边在第二象限的角的集合可表示为{α|90°+k·360°<α<180°+k·360°,k∈Z},而选项D是从顺时针方向来看的,故选项D正确.答案: D二、填空题(每小题5分,共15分)5.在下列说法中:①时钟经过两个小时,时针转过的角是60°;②钝角一定大于锐角;③射线OA绕端点O按逆时针旋转一周所成的角是0°;④小于90°的角都是锐角.其中错误说法的序号为________(错误说法的序号都写上).解析:①时钟经过两个小时,时针按顺时针方向旋转60°,因而转过的角为-60°,所以①不正确.②钝角α的取值范围为90°<α<180°,锐角θ的取值范围为0°<θ<90°,因此钝角一定大于锐角,所以②正确.③射线OA按逆时针旋转一周所成的角是360°,所以③不正确.④锐角θ的取值范围是0°<θ<90°,小于90°的角也可以是零角或负角,所以④不正确.答案:①③④6.α满足180°<α<360°,5α与α有相同的始边,且又有相同的终边,那么α=________.解析:5α=α+k·360°,k∈Z,∴α=k·90°,k∈Z.又∵180°<α<360°,∴α=270°.答案:270°7.若角α=2 016°,则与角α具有相同终边的最小正角为________,最大负角为________.解析:∵2 016°=5×360°+216°,∴与角α终边相同的角的集合为{α|α=216°+k·360°,k∈Z},∴最小正角是216°,最大负角是-144°.答案:216°-144°三、解答题(每小题10分,共20分)8.在0°~360°范围内,找出与下列各角终边相同的角,并指出它们是第几象限角:(1)549°;(2)-60°;(3)-503°36′.解析:(1)549°=189°+360°,而180°<189°<270°,因此,549°角为第三象限角,且在0°~360°范围内,与189°角有相同的终边.(2)-60°=300°-360°,而270°<300°<360°,因此,-60°角为第四象限角,且在0°~360°范围内,与300°角有相同的终边.(3)-503°36′=216°24′-2×360°,而180°<216°24′<270°,因此,-503°36′角是第三象限角,且在0°~360°范围内,与216°24′角有相同的终边.9.已知α与240°角的终边相同,判断α2是第几象限角. 解析: 由α=240°+k ·360°,k ∈Z ,得α2=120°+k ·180°,k ∈Z . 若k 为偶数,设k =2n ,n ∈Z ,则α2=120°+n ·360°,n ∈Z ,α2与120°角的终边相同,是第二象限角; 若k 为奇数,设k =2n +1,n ∈Z ,则α2=300°+n ·360°,n ∈Z ,α2与300°角的终边相同, 是第四象限角.所以,α2是第二象限角或第四象限角.。
高中数学必修4(人教A版)第一章三角函数1.1知识点总结含同步练习及答案
描述:例题:高中数学必修4(人教A版)知识点总结含同步练习题及答案
第一章 三角函数 1.1 任意角和弧度制
一、学习任务
1. 了解任意角的概念,了解终边相同的角的意义.
2. 了解弧度制的意义,并能进行弧度与角度的互化.
二、知识清单
任意角的概念 弧度制
三、知识讲解
1.任意角的概念
任意角角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形.如图,一条射线的端点是 ,它从起始位置 按逆时针方向旋转到终止位置 ,形成一个角 ,射线 称为角的始边,射线 称为角的终边.
角的分类
正角(positive angle) 按逆时针方向旋转形成的角.
负角(negative angle) 按顺时针方向旋转形成的角.
零角(zero angle) 如果一条射线没有作任何旋转,我们称它形成了一个零角.象限角与轴线角
在直角坐标系内,使角的顶点与原点重合,角的始边与 轴的非负半轴重合,那么,角的终边在第几象限,就说这个角是第几象限角(quadrant angle).如果角的终边在坐标轴上,就认为这个角不属于任何一个象限,称这样的角为轴线角.
终边相同的角
所有与角 终边相同的角,连同角 在内,可以构成一个集合
,即任一与角 终边相同的角,都可以表示成角 与整数个周角的和.
O OA OB αOA OB x ααS ={β| β=α+k ⋅,k ∈Z }360∘αα在下列说法中:
①时钟经过两个小时,时针转过的角是
;②钝角一定大于锐角;③射线 绕端点 按逆时针旋转一周所成的角是 ;
60∘OA O 0∘
高考不提分,赔付1万元,关注快乐学了解详情。
又 ,∴令 得 .
∵α∈(0,2π)k =1α=
π。
新人教A版必修四第一章1.1.1任意角知识梳理及重难点题型(含解析版)
1.1.1任意角重难点题型【举一反三系列】知识链接【知识点1 任意角的概念】1.任意角2.角的分类【知识点2 象限角与非象限角】1.象限角当角的顶点与坐标原点重合,角的始边与x轴的非负半轴重合,则角的终边(除端点外)在第几象限,就称这个角为第几象限角.2.象限角的集合表示3.非象限角当角的顶点与坐标原点重合,角的始边与x 轴的非负半轴重合,如果角的终边落在坐标轴上,就认为这个角不属于任何一个象限.4.非象限角的集合表示【知识点3 终边相同的角】一般地,所有与角α终边相同的角,连同角α在内,可构成一个集合,即任一与角α终边相同的角,都可以表示成角α与整个周角的和. 举一反三【考点1 象限角与集合间的基本关系】【例1】(2019春•杜集区校级月考)设A ={小于90°的角},B ={第一象限角},则A ∩B 等于( )A .{锐角}B .{小于90°的角}C .{第一象限角}D .{α|k •360°<α<k •360°+90°(k ∈Z ,k ≤0)} {}Z k k S ∈⋅+==,360| αββ【变式1-1】(2019秋•钦南区校级月考)已知A ={第一象限角},B ={锐角},C ={小于90°的角},那么A 、B 、C 关系是( )A .A ∩C =CB .B ⊆C C .B ∪A =CD .A =B =C【变式1-2】(2019秋•黄陵县校级月考)设A ={θ|θ为锐角},B ={θ|θ为小于90°的角},C ={θ|θ为第一象限的角},D ={θ|θ为小于90°的正角},则下列等式中成立的是( )A .A =B B .B =C C .A =CD .A =D【变式1-3】(2019秋•宜昌月考)设M ={α|α=k •90°,k ∈Z }∪{α|α=k •180°+45°,k ∈Z },N ={α|α=k •45°,k ∈Z },则( )A .M ⊆NB .M ⊇NC .M =ND .M ∩N =∅【考点2 求终边相同的角】【例2】(2019春•娄底期末)下列各角中与225°角终边相同的是( )A .585°B .315°C .135°D .45°【变式2-1】(2018春•武功县期中)下列各组角中,终边相同的角是( )A .﹣398°,1042°B .﹣398°,142°C .﹣398°,38°D .142°,1042°【变式2-2】(2018春•武邑县校级期末)与﹣457°角终边相同角的集合是( )A .{α|α=k •360°+457°,k ∈Z }B .{α|α=k •360°+97°,k ∈Z }C .{α|α=k •360°+263°,k ∈Z }D .{α|α=k •360°﹣263°,k ∈Z } 【变式2-3】(2018春•林州市校级月考)在0°~360°范围内,与﹣853°18'终边相同的角为( )A .136°18'B .136°42'C .226°18'D .226°42'【考点3 已知α终边所在象限求2α,2α,3α】 【例3】(2018秋•宜昌期末)已知α为锐角,则2α为( )A .第一象限角B .第二象限角C .第一或第二象限角D .小于180°的角【变式3-1】(2018•徐汇区校级模拟)若α是第二象限的角,则3α的终边所在位置不可能是( ) A .第一象限 B .第二象限 C .第三象限D .笫象限 【变式3-2】(2019春•北碚区校级期中)已知α为第二象限角,则2α所在的象限是( ) A .第一或第二象限B .第二或第三象限C .第一或第三象限D .第二或第四象限【变式3-3】(2019秋•宜城市校级月考)如果α是第三象限角,则2α-是( )A .第一象限角B .第一或第二象限角C .第一或第三象限角D .第二或第四象限角 【考点4 终边对称的角的表示法】 【例4】(2019春•南京期中)若角α=m •360°+60°,β=k •360°+120°,(m ,k ∈Z ),则角α与β的终边的位置关系是( )A .重合B .关于原点对称C .关于x 轴对称D .关于y 轴对称 【变式4-1】若角α的终边与45°角的终边关于原点对称,则α= .【变式4-2】若角α和β的终边关于直线x +y =0对称,且α=﹣60°,则角β的集合是 .【变式4-3】已知α=﹣30°,若α与β的终边关于直线x ﹣y =0对称,则β= ;若α与β的终边关于y 轴对称,则β= ;若α与β的终边关于x 轴对称,则β= .【考点5 已知终边求角】【例5】(2019春•凉州区校级月考)已知α=﹣1910°.(1)把角α写成β+k •360°(k ∈Z ,0°≤β<360°)的形式,指出它是第几象限的角;(2)求出θ的值,使θ与α的终边相同,且﹣720°≤θ<0°.【变式5-1】若角α的终边落在直线x +y =0上,求在[﹣360°,360°]内的所有满足条件的角α.【变式5-2】已知α、β都是锐角,且α+β的终边与﹣280°角的终边相同,α﹣β的终边与670°角的终边相同,求∠α、∠β的大小.【变式5-3】(2018春•武功县期中)已知角α=45°;(1)在区间[﹣720°,0°]内找出所有与角α有相同终边的角β;(2)集合|18045,2k M x x k Z ⎧⎫==⨯︒+︒∈⎨⎬⎩⎭,|18045,4k N x x k Z ⎧⎫==⨯︒+︒∈⎨⎬⎩⎭那么两集合的关系是什么? 【考点6 已知角终边的区域确定角】【例6】写出角的终边在阴影中的角的集合.【变式6-1】如图所示;(1)分别写出终边落在0A ,0B 位置上的角的集合;(2)写出终边落在阴影部分(包括边界)的角的集合.【变式6-2】用集合表示顶点在原点,始边重合于x轴非负半轴,终边落在阴影部分内的角(不含边界).【变式6-3】已知角x的终边落在图示阴影部分区域,写出角x组成的集合.1.1.1任意角重难点题型【举一反三系列】知识链接【知识点1 任意角的概念】1.任意角2.角的分类【知识点2 象限角与非象限角】1.象限角当角的顶点与坐标原点重合,角的始边与x轴的非负半轴重合,则角的终边(除端点外)在第几象限,就称这个角为第几象限角.2.象限角的集合表示3.非象限角当角的顶点与坐标原点重合,角的始边与x轴的非负半轴重合,如果角的终边落在坐标轴上,就认为这个角不属于任何一个象限.4.非象限角的集合表示【知识点3 终边相同的角】一般地,所有与角α终边相同的角,连同角α在内,可构成一个集合,即任一与角α终边相同的角,都可以表示成角α与整个周角的和. 举一反三【考点1 象限角与集合间的基本关系】【例1】(2019春•杜集区校级月考)设A ={小于90°的角},B ={第一象限角},则A ∩B 等于( )A .{锐角}B .{小于90°的角}C .{第一象限角}D .{α|k •360°<α<k •360°+90°(k ∈Z ,k ≤0)}【分析】先求出A ={锐角和负角},B ={α|k •360°<α<k •360°+90°,k ∈Z },由此利用交集的定义给求出A ∩B .【答案】解:∵A ={小于90°的角}={锐角和负角},B ={第一象限角}={α|k •360°<α<k •360°+90°,k ∈Z },∴A ∩B ={α|k •360°<α<k •360°+90°(k ∈Z ,k ≤0)}. {}Z k k S ∈⋅+==,360| αββ故选:D.【点睛】本题考查交集的求法,是基础题,解题时要认真审题,注意任意角的概念的合理运用.【变式1-1】(2019秋•钦南区校级月考)已知A={第一象限角},B={锐角},C={小于90°的角},那么A、B、C关系是()A.A∩C=C B.B⊆C C.B∪A=C D.A=B=C【分析】分别判断,A,B,C的范围即可求出【答案】解解:∵A={第一象限角}=(k•360°,90°+k•360°),k∈Z;B={锐角}=(0,90°),C={小于90°的角}=(﹣∞,90°)∴B⊆C,故选:B.【点睛】本题考查了任意角的概念和角的范围,属于基础题.【变式1-2】(2019秋•黄陵县校级月考)设A={θ|θ为锐角},B={θ|θ为小于90°的角},C={θ|θ为第一象限的角},D={θ|θ为小于90°的正角},则下列等式中成立的是()A.A=B B.B=C C.A=C D.A=D【分析】根据A={θ|θ为锐角}={θ|0°<θ<90°},D={θ|θ为小于90°的正角}={θ|0°<θ<90°},可得结论.【答案】解:根据A={θ|θ为锐角}={θ|0°<θ<90°},D={θ|θ为小于90°的正角}={θ|0°<θ<90°},可得A=D.故选:D.【点睛】本题考查象限角和任意角,考查学生对概念的理解,比较基础.【变式1-3】(2019秋•宜昌月考)设M={α|α=k•90°,k∈Z}∪{α|α=k•180°+45°,k∈Z},N={α|α=k •45°,k∈Z},则()A.M⊆N B.M⊇N C.M=N D.M∩N=∅【分析】讨论k为偶数和k为奇数时,结合N的表示,从而确定N与M的关系.【答案】解:∵N={α|α=k•45°,k∈Z},∴当k为偶数,即k=2n时,n∈Z,α=k•45°=2n•45°=n•90°,∴当k为奇数,即k=2n+1时,n∈Z,α=k•45°=(2n+1)•45°=n•90°+45°,又M={α|α=k•90°,k∈Z}∪{α|α=k•180°+45°,k∈Z},∴M⊆N.故选:A.【点睛】本题主要考查了集合之间的关系与应用问题,是基础题.【考点2 求终边相同的角】【例2】(2019春•娄底期末)下列各角中与225°角终边相同的是()A.585°B.315°C.135°D.45°【分析】写出与225°终边相同的角,取k值得答案.【答案】解:与225°终边相同的角为α=225°+k•360°,k∈Z,取k=1,得α=585°,∴585°与225°终边相同.故选:A.【点睛】本题考查终边相同角的表示法,是基础题.【变式2-1】(2018春•武功县期中)下列各组角中,终边相同的角是()A.﹣398°,1042°B.﹣398°,142°C.﹣398°,38°D.142°,1042°【分析】根据终边相同的角的定义,化﹣398°和1042°为α+k•360°,k∈Z的形式,再判断即可.【答案】解:由题意,﹣398°=322°﹣2×360°,1042°=322°+2×360°,142°,38°;这四个角中,终边相同的角是﹣398°和1042°.故选:A.【点睛】本题考查了终边相同角的概念与应用问题,是基础题.【变式2-2】(2018春•武邑县校级期末)与﹣457°角终边相同角的集合是()A.{α|α=k•360°+457°,k∈Z}B.{α|α=k•360°+97°,k∈Z}C.{α|α=k•360°+263°,k∈Z}D.{α|α=k•360°﹣263°,k∈Z}【分析】终边相同的角相差了360°的整数倍,又263°与﹣457°终边相同.【答案】解:终边相同的角相差了360°的整数倍,设与﹣457°角的终边相同的角是α,则α=﹣457°+k•360°,k∈Z,又263°与﹣457°终边相同,∴{α|α=263°+k•360°,k∈Z},故选:C.【点睛】本题考查终边相同的角的概念及终边相同的角的表示形式.【变式2-3】(2018春•林州市校级月考)在0°~360°范围内,与﹣853°18'终边相同的角为()A.136°18'B.136°42'C.226°18'D.226°42'【分析】直接由﹣853°18'=﹣3×360°+226°42′得答案.【答案】解:由﹣853°18'=﹣3×360°+226°42′,可得,在0°~360°范围内,与﹣853°18'终边相同的角为226°42′,故选:D .【点睛】本题考查终边相同的角的表示法,是基础题.【考点3 已知α终边所在象限求2α,2α,3α】【例3】(2018秋•宜昌期末)已知α为锐角,则2α为( )A .第一象限角B .第二象限角C .第一或第二象限角D .小于180°的角【分析】写出α的范围,直接求出2α的范围,即可得到选项.【答案】解:α为锐角,所以α∈(0°,90°),则2α∈(0°,180°),故选:D .【点睛】本题考查象限角与轴线角,基本知识的考查,送分题.【变式3-1】(2018•徐汇区校级模拟)若α是第二象限的角,则3α的终边所在位置不可能是()A .第一象限B .第二象限C .第三象限D .笫象限【分析】写出第二象限的角的集合,得到的范围,分别取k 值得答案.【答案】解:∵α是第二象限角,∴90°+k •360°<α<180°+k •360°,k ∈Z .则30°+k •120°<<60°+k •120°,k ∈Z .当k =0时,30°<<60°,α为第一象限角;当k =1时,150°<<180°,α为第二象限角;当k =2时,270°<<300°,α为第四象限角.由上可知,的终边所在位置不可能是第三象限角.故选:C .【点睛】本题考查象限角及轴线角,考查终边相同角的集合,是基础题.【变式3-2】(2019春•北碚区校级期中)已知α为第二象限角,则2α所在的象限是( ) A .第一或第二象限B .第二或第三象限C .第一或第三象限D .第二或第四象限【分析】用不等式表示第二象限角α,再利用不等式的性质求出满足的不等式,从而确定角的终边在的象限.【答案】解:∵α是第二象限角,∴k •360°+90°<α<k •360°+180°,k ∈Z ,则k •180°+45°<<k •180°+90°,k ∈Z ,令k =2n ,n ∈Z有n •360°+45°<<n •360°+90°,n ∈Z ;在一象限;k =2n +1,n ∈z ,有n •360°+225°<<n •360°+270°,n ∈Z ;在三象限;故选:C .【点睛】本题考查象限角的表示方法,不等式性质的应用,通过角满足的不等式,判断角的终边所在的象限【变式3-3】(2019秋•宜城市校级月考)如果α是第三象限角,则2α-是( )A .第一象限角B .第一或第二象限角C.第一或第三象限角D.第二或第四象限角【分析】由α是第三象限角,得到180°+k•360°<α<270°+k•360°,k∈Z,从而能求出﹣的取值范围,由此能求出﹣所在象限.【答案】解:∵α是第三象限角,∴180°+k•360°<α<270°+k•360°,k∈Z,∴﹣135°﹣k•180°<﹣<﹣90°﹣k•180°,∴﹣是第一或第三象限角.故选:C.【点睛】本题考查角所在象限的判断,是基础题,解题时要认真审题,注意第三象限角的取值范围的合理运用.【考点4 终边对称的角的表示法】【例4】(2019春•南京期中)若角α=m•360°+60°,β=k•360°+120°,(m,k∈Z),则角α与β的终边的位置关系是()A.重合B.关于原点对称C.关于x轴对称D.关于y轴对称【分析】结合角的终边相同的定义进行判断即可.【答案】解:α的终边和60°的终边相同,β的终边与120°终边相同,∵180°﹣120°=60°,∴角α与β的终边的位置关系是关于y轴对称,故选:D.【点睛】本题主要考查角的终边位置关系的判断,结合角的关系是解决本题的关键.【变式4-1】若角α的终边与45°角的终边关于原点对称,则α=.【分析】角α的终边与45°角的终边关于原点对称,可得α=k•360°+225°,(k∈Z).【答案】解:∵角α的终边与45°角的终边关于原点对称,∴α=k•360°+225°,(k∈Z).故答案为:α=k•360°+225°,(k∈Z).【点睛】本题考查了终边相同的角,属于基础题.【变式4-2】若角α和β的终边关于直线x+y=0对称,且α=﹣60°,则角β的集合是.【分析】求出β∈[0°,360°)时角β的终边与角α的终边关于直线y=﹣x对称的值,再根据终边相同的角写出角β的取值集合.【答案】解:若β∈[0°,360°),则由角α=﹣60°,且角β的终边与角α的终边关于直线y=﹣x对称,可得β=330°,所以当β∈R时,角β的取值集合是{β|β=330°+k•360°,k∈Z}.故答案为:{β|β=330°+k•360°,k∈Z}.【点睛】本题主要考查了终边相同的角的定义和表示方法,是基础题.【变式4-3】已知α=﹣30°,若α与β的终边关于直线x﹣y=0对称,则β=;若α与β的终边关于y轴对称,则β=;若α与β的终边关于x轴对称,则β=.【分析】由题意画出图形,然后利用终边相同角的表示法得答案.【答案】解:如图,设α=﹣30°所在终边为OA,则关于直线x﹣y=0对称的角β的终边为OB,终边在OB上的最小正角为120°,故β=120°+k•360°,k∈Z;关于y轴对称的角β的终边为OC,终边在OC上的最小正角为210°,故β=210°+k•360°,k∈Z;关于x轴对称的角β的终边为OD,终边在OD上的最小正角为30°,故β=30°+k•360°,k∈Z.故答案为:120°+k•360°,k∈Z;210°+k•360°,k∈Z;30°+k•360°,k∈Z.【点睛】本题考查终边相同角的表示法,数形结合使问题更加直观,是基础题.【考点5 已知终边求角】【例5】(2019春•凉州区校级月考)已知α=﹣1910°.(1)把角α写成β+k•360°(k∈Z,0°≤β<360°)的形式,指出它是第几象限的角;(2)求出θ的值,使θ与α的终边相同,且﹣720°≤θ<0°.【分析】(1)利用终边相同的假的表示方法,把角α写成β+k•360°(k∈Z,0°≤β<360°)的形式,然后指出它是第几象限的角;(2)利用终边相同的角的表示方法,通过k的取值,求出θ,且﹣720°≤θ<0°.【答案】解:(1)∵﹣1910°=﹣6×360°+250°,180°<250°<270°,∴把角α写成β+k•360°(k∈Z,0°≤β<360°)的形式为:﹣1910°=﹣6×360°+250°,它是第三象限的角.(2)∵θ与α的终边相同,∴令θ=k•360°+250°,k∈Z,k=﹣1,k=﹣2满足题意,得到θ=﹣110°,﹣470°.【点睛】本题考查终边相同角的表示方法,基本知识的考查.【变式5-1】若角α的终边落在直线x+y=0上,求在[﹣360°,360°]内的所有满足条件的角α.【分析】求出角α的终边相同的角,然后求解在[﹣360°,360°]内的所有满足条件的角α.【答案】解:角α的终边落在直线x+y=0上,则直线的倾斜角为:45°,角α的终边的集合为:{α|α=k•180°+45°,k∈Z}.当k=﹣2时,α=﹣315°,k=﹣1时,α=﹣135°,k=0时,α=45°,k=1时,α=225°,在[﹣360°,360°]内的所有满足条件的角α:﹣315°,135°,45°,225°.【点睛】本题考查终边相同角的表示,考查计算能力.【变式5-2】已知α、β都是锐角,且α+β的终边与﹣280°角的终边相同,α﹣β的终边与670°角的终边相同,求∠α、∠β的大小.【分析】按照终边相同角的表示方法将α+β、α﹣β表示出来,然后解出α、β,由α、β都是锐角得到所求.【答案】解:因为α+β的终边与﹣280°角的终边相同,α﹣β的终边与670°角的终边相同,所以α+β=﹣280°+360°k;α﹣β=670°+360°k;k∈Z;两式相加,2α=390°+720°k =360°+30°+720°k =30°+720°k ;α=15°+360°k ;因为α,β是锐角,所以α=15°;β=65°.【点睛】本题考查了终边相同角的表示,利用方程组的思想求两角,属于基础题.【变式5-3】(2018春•武功县期中)已知角α=45°;(1)在区间[﹣720°,0°]内找出所有与角α有相同终边的角β;(2)集合|18045,2k M x x k Z ⎧⎫==⨯︒+︒∈⎨⎬⎩⎭,|18045,4k N x x k Z ⎧⎫==⨯︒+︒∈⎨⎬⎩⎭那么两集合的关系是什么? 【分析】(1)所有与角α有相同终边的角可表示为45°+k ×360°(k ∈Z ),列出不等式解出整数k ,即得所求的角.(2)先化简两个集合,分整数k 是奇数和偶数两种情况进行讨论,从而确定两个集合的关系.【答案】解析:(1)由题意知:β=45°+k ×360°(k ∈Z ),则令﹣720°≤45°+k ×360°≤0°,得﹣765°≤k ×360°≤﹣45°,解得,从而k =﹣2或k =﹣1,代回β=﹣675°或 β=﹣315°.(2)因为M ={x |x =(2k +1)×45°,k ∈Z }表示的是终边落在四个象限的平分线上的角的集合; 而集合N ={x |x =(k +1)×45°,k ∈Z }表示终边落在坐标轴或四个象限平分线上的角的集合,从而:M ⊊N .【点睛】(1)从终边相同的角的表示入手分析问题,先表示出所有与角α有相同终边的角,然后列出一个关于k的不等式,找出相应的整数k,代回求出所求解;(2)可对整数k的奇、偶数情况展开讨论.【考点6 已知角终边的区域确定角】【例6】写出角的终边在阴影中的角的集合.【分析】利用象限角的表示方法、终边相同的角的集合性质即可得出.【答案】解:图1:角的集合为{α|30°+k×360°≤α≤120°+k•360°,k∈Z};图2:角的集合为{α|﹣210°+k•360°≤α≤30°+k•360°,k∈Z};图3:角的集合为{α|﹣45°+k•360°≤α≤30°+k•360°,k∈Z};图4:角的集合为{α|60°+k•360°≤α≤120°+k•360°,k∈Z}∪{α|240°+k•360°≤α≤300°+k•360°,k∈Z}.【点睛】本题考查了象限角的表示方法、终边相同的角的集合性质,考查了推理能力与计算能力,属于中档题.【变式6-1】如图所示;(1)分别写出终边落在0A,0B位置上的角的集合;(2)写出终边落在阴影部分(包括边界)的角的集合.【分析】(1)直接由终边相同角的表示法写出终边落在0A,0B位置上的角的集合;(2)结合(1)中写出的终边落在0A,0B位置上的角的集合,利用不等式表示出终边落在阴影部分(包括边界)的角的集合.【答案】解:(1)如图,终边落在OA上的角的集合为{α|α=150°+k•360°,k∈Z}.终边落在OB上的角的集合为{α|α=﹣45°+k•360°,k∈Z};(2)如图,终边落在阴影部分(包括边界)的角的集合为{β|﹣45°+k•360°≤β≤150°+k•360°,k∈Z}.【点睛】本题考查象限角和轴线角,考查了终边相同角的概念,是基础题.【变式6-2】用集合表示顶点在原点,始边重合于x轴非负半轴,终边落在阴影部分内的角(不含边界).【分析】直接利用所给角,表示角的范围即可.【答案】解:图1所表示的角的集合:{α|k•360°﹣30°<α<k•360°+75°,k∈Z}.图2终边落在阴影部分的角的集合.{α|k•360°﹣135°<α<k•360°+135°,k∈Z}【点睛】本题考查角的表示方法,是基础题.【变式6-3】已知角x的终边落在图示阴影部分区域,写出角x组成的集合.【分析】直接利用所给角,表示角的范围即可.【答案】解:图(1)所表示的角的集合:{α|k•360°﹣135°≤α≤k•360°+135°,k∈Z}.图2终边落在阴影部分的角的集合{α|k•180°+30°≤α≤k•180°+60°,k∈Z【点睛】本题考查角的表示方法,是基础题.。
【专业资料】新版高中数学人教A版必修4习题:第一章三角函数 1.2.1.1 含解析
1.2任意角的三角函数1.2.1任意角的三角函数第1课时三角函数的定义课时过关·能力提升基础巩固1sin 390°等于()A.12B.√22C.√32D.1解析:sin390°=sin(30°+360°)=sin30°=12.答案:A2若cos α<0,且tan α>0,则α的终边在()A.第一象限B.第二象限C.第三象限D.第四象限解析:由于cosα<0,则α的终边在第二或第三象限,又tanα>0,则α的终边在第一或第三象限,所以α的终边在第三象限.答案:C3cos 1 110°的值为()A.1B.√3C.−1D.−√3解析:cos1110°=cos(3×360°+30°)=cos30°=√3.答案:B4√cos2201.2°可化为()A.cos 201.2°B.-cos 201.2°C.sin 201.2°D.tan 201.2°解析:∵201.2°是第三象限角,∴cos201.2°<0,∴√cos2201.2°=|cos201.2°|=-cos201.2°.答案:B5已知点P (1,y )是角α终边上一点,且cos α=√36,则y = . 解析:∵P (1,y )是角α终边上一点,且cos α=√36,∴r =√1+y 2,1r =√1+y =√36,∴y =±√11. 答案:±√116已知点P (−√3,−1)是角α终边上的一点,则cos α+tan α= .解析:∵x=−√3,y =−1,∴r =OP =√(-√3)2+(-1)2=2.∴cos α=−√32,tanα=√3=√33. ∴cos α+tan α=−√32+√33=−√36.答案:−√367已知α的终边经过点(3a-9,a+2),且sin α>0,cos α<0,则a 的取值范围是 .解析:∵sin α>0,cos α<0,∴α是第二象限角.∴点(3a-9,a+2)在第二象限.∴{3a -9<0,a +2>0,解得-2<a<3. 答案:(-2,3)8判断下列各式的符号.(1)tan 250°cos(-350°); (2)sin 105°cos 230°.解(1)∵250°是第三象限角,-350°=-360°+10°是第一象限角,∴tan250°>0,cos(-350°)>0,∴tan250°cos(-350°)>0.(2)∵105°是第二象限角,230°是第三象限角,∴sin105°>0,cos230°<0,∴sin105°cos230°<0.9利用定义求si n 5π4,cos 5π4,tan 5π4的值.解如图,在平面直角坐标系中画出角5π4的终边.设角5π4的终边与单位圆的交点为P ,则有P (-√22,-√22).故si n 5π4=−√22,cos 5π4=−√22,tan 5π4=-√22-√22=1.能力提升1已知角α的终边经过点P (m ,-3),且cos α=−45,则m 等于( )A.−114B.114C.−4D.4解析:由题意得cos α=2=−45,两边平方可解得m=±4.又cos α=−45<0,则α的终边在第二或三象限,则点P 在第二或三象限,所以m<0,则m=-4.答案:C2已知P (2,-3)是角θ终边上一点,则tan(2π+θ)等于( ) A .32B.23C.−32D.−23解析:tan(2π+θ)=tan θ=-32=−32. 答案:C3如果点P (sin θ+cos θ,sin θcos θ)位于第二象限,那么角θ的终边所在的象限是( )A.第一象限B.第二象限C.第三象限D.第四象限 解析:由于点P (sin θ+cos θ,sin θcos θ)位于第二象限,则{sinθ+cosθ<0,sinθcosθ>0,所以有sin θ<0,cos θ<0,所以角θ的终边在第三象限.答案:C4已知角α的终边不在坐标轴上,则sinα|sinα|+cosα|cosα|+tanα|tanα|的取值集合是( )A.{1,2}B.{-1,3}C.{1,3}D.{2,3}解析:当α是第一象限角时,sinα|sinα|+cosα|cosα|+tanα|tanα|=3,当α是第二、三、四象限角时,其值为-1.所以sinα|sinα|+cosα|cosα|+tanα|tanα|的取值集合是{-1,3}.答案:B5已知角θ的顶点为坐标原点,始边为x轴的非负半轴,若P(4,y)是角θ终边上一点,且sinθ=−2√55,则y=.解析:|OP|=√42+y2,根据任意角的三角函数的定义知,sinθ=√4+y2=−2√55,∴y<0,解得y=-8.答案:-8★6已知θ=−11π6,P为角θ终边上一点,|OP|=2√3,则点P的坐标为.解析:sinθ=si n(-11π6)=sin(-2π+π6)=sinπ6=12,cosθ=co s(-11π6)=cos(-2π+π6)=cosπ6=√32.设P(x,y),则sinθ=y|OP|,cosθ=x|OP|,∴y=|OP|·sinθ=2√3×1=√3,x=|OP|·cosθ=2√3×√3=3,∴P(3,√3).答案:(3,√3)★7已知角α的终边经过点P(-3cos θ,4cos θ),其中θ∈(2kπ+π2,2kπ+π)(k∈Z),求角α的各个三角函数值.分析本题中的点P的坐标是用θ的三角函数表示的,在求点P到原点的距离时,应特别注意角θ的范围对r值的影响.解∵θ∈(2kπ+π2,2kπ+π)(k∈Z),∴cosθ<0.∴点P在第四象限.∵x=-3cosθ,y=4cosθ,∴r=√x2+y2=√(-3cosθ)2+(4cosθ)2=|5cosθ|=-5cosθ.∴sinα=−45,cosα=35,tanα=−43.★8已知1|sinα|=-1sinα,且lg cos α有意义. (1)试判断角α所在的象限.(2)若角α的终边上一点是M (35,m),且|OM|=1(O 为坐标原点),求m 的值及sin α的值. 解(1)由1|sinα|=−1sinα可知sin α<0,所以α是第三或第四象限角或终边在y 轴的负半轴上的角. 由lgcos α有意义可知cos α>0,所以α是第一或第四象限角或终边在x 轴的正半轴上的角. 综上可知角α是第四象限的角.(2)因为|OM|=1,所以(35)2+m2=1,解得m=±45.又α是第四象限角,所以m<0,从而m=−45.由正弦函数的定义可知sin α=y r =m |OM |=-451=−45.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
01第一章三角函数1.1任意角和弧度制1.1.1任意角课时过关·能力提升基础巩固1-215°是()A.第一象限角B.第二象限角C.第三象限角D.第四象限角解析:由于-215°=-360°+145°,而145°是第二象限角,则-215°也是第二象限角.答案:B2下列与150°角终边相同的角是()A.30°B.-150°C.390°D.-210°答案:D3与-457°角终边相同的角的集合是()A.{α|α=k·360°+457°,k∈Z}B.{α|α=k·360°+97°,k∈Z}C.{α|α=k·360°+263°,k∈Z}D.{α|α=k·360°-263°,k∈Z}答案:C4已知α是第二象限角,则2α的终边在()A.第一、二象限B.第二象限C.第三、四象限D.以上都不对解析:∵α是第二象限角,∴k·360°+90°<α<k·360°+180°,k∈Z,∴2k·360°+180°<2α<2k·360°+360°,k∈Z,∴2α角的终边在第三或第四象限或在y轴的非正半轴上.答案:D5若手表的时针走了2 h,则该时针转过的度数为()A.60°B.-60°C.30°D.-30°答案:B6在-360°~720°之间,与-367°角终边相同的角是.解析:与-367°角终边相同的角可表示为α=k·360°-367°,k∈Z.当k=1,2,3时,α=-7°,353°,713°,这三个角都是符合条件的角.答案:-7°,353°,713°7终边落在图中阴影部分(不包括边界)的角的集合为.解析:在0°~360°内,终边在阴影部分的角的范围是120°<α<225°,所以终边落在阴影部分的角的集合为{β|k·360°+120°<β<k·360°+225°,k∈Z}.答案:{β|k·360°+120°<β<k·360°+225°,k∈Z}8在坐标系中画出下列各角:(1)-180°;(2)1 070°.解在坐标系中画出各角如图.9在-720°~720°范围内,用列举法写出与60°角终边相同的角的集合S.解与60°角终边相同的角的集合为{α|α=60°+k·360°,k∈Z},令-720°≤60°+k·360°<720°(k∈Z),得k=-2,-1,0,1,相应的角为-660°,-300°,60°,420°,从而S={-660°,-300°,60°,420°}.10已知α=-1 910°.(1)把α写成β+k·360°(k∈Z,0°≤β<360°)的形式,并指出它是第几象限角;(2)求角θ,使θ与α的终边相同,且-720°≤θ<0°.解(1)∵-1910°=-6×360°+250°,∴β=250°,即α=250°-6×360°.又250°是第三象限角,∴α是第三象限角.(2)θ=250°+k·360°(k∈Z).∵-720°≤θ<0°,∴-720°≤250°+k·360°<0°,解得−9736≤k<−2536.又k∈Z,∴k=-1或k=-2.∴θ=250°-360°=-110°或θ=250°-2×360°=-470°.能力提升1下列说法中,正确的是()A.钝角必是第二象限角,第二象限角必是钝角B.第三象限的角必大于第二象限的角C.小于90°的角是锐角D.-95°20',984°40',264°40'是终边相同的角答案:D2若A={α|α=k·360°,k∈Z},B={α|α=k·180°,k∈Z},C={α|α=k·90°,k∈Z},则下列关系正确的是() A.A=B=C B.A=B∩CC.A∪B=CD.A⊆B⊆C答案:D3若角θ是第四象限角,则90°+θ是()A.第一象限角B.第二象限角C.第三象限角D.第四象限角解析:如图,将θ的终边按逆时针方向旋转90°得90°+θ的终边,则90°+θ是第一象限角.答案:A4已知α为第三象限角,则α3是第象限角.解析:∵α是第三象限角,∴k·360°+180°<α<k·360°+270°,k∈Z,∴k·120°+60°<α3<k·120°+90°,k∈Z.∵k·120°+60°角的终边在第一象限、x轴非正半轴、第四象限,k·120°+90°角的终边在y轴非负半轴、第三象限、第四象限,∴α3是第一、三或四象限角.答案:一、三或四5已知角α的终边在图中阴影所表示的范围内(不包括边界),则角α组成的集合为.解析:由图知,将x轴绕原点分别旋转30°与150°得边界,∴终边在阴影内的角的集合为{α|k·180°+30°<α<k·180°+150°,k∈Z}.答案:{α|k·180°+30°<α<k·180°+150°,k∈Z}★6角α满足180°<α<360°,角5α与α有相同的始边,且又有相同的终边,则角α=.解析:∵5α与α的始边和终边分别相同,∴这两角的差应是360°的整数倍,即5α-α=4α=k·360°.∴α=k·90°.又180°<α<360°,令180°<k·90°<360°,则2<k<4,∴k=3,α=270°.答案:270°7已知角的顶点与坐标原点重合,始边落在x轴的非负半轴上,作出下列各角,指出它们是第几象限角,并指出在0°~360°范围内与其终边相同的角.(1)780°;(2)-435°;(3)1 215°;(4)-870°.解(1)如图①,780°是第一象限角;在0°~360°范围内,60°角与其终边相同.(2)如图②,-435°是第四象限角;在0°~360°范围内,285°角与其终边相同.(3)如图③,1215°是第二象限角;在0°~360°范围内,135°角与其终边相同.(4)如图④,-870°是第三象限角;在0°~360°范围内,210°角与其终边相同.★8已知集合M={α|k·180°+30°<α<k·180°+120°,k∈Z},N={β|k·360°+90°<β<k·360°+270°,k∈Z},求M∩N.解∵M={α|k·180°+30°<α<k·180°+120°,k∈Z},∴当k=2n(n∈Z)时,M={α|n·360°+30°<α<n·360°+120°,n∈Z}.又N={β|k·360°+90°<β<k·360°+270°,k∈Z},∴M∩N={x|k·360°+90°<x<k·360°+120°,k∈Z}.当k=2n+1(n∈Z)时,M={α|n·360°+210°<α<n·360°+300°,n∈Z},又N={β|k·360°+90°<β<k·360°+270°,k∈Z},∴M∩N={x|k·360°+210°<x<k·360°+270°,k∈Z},∴M∩N={x|k·360°+90°<x<k·360°+120°或k·360°+210°<x<k·360°+270°,k∈Z}.。