微波电路与系统(07)

合集下载

微波技术

微波技术
22 10
4-8
5
1218
2
1827
1.25
80100
0.3
•C~K 为早期的微波通信频段,80’s 后较少 •W(3mm) 实际上是卫星通信的主流频段 广播电视、通信频率相对较低: KHz~ 3G 在实验中使用厘米波中的X波段, 其标称波长为3.2cm,中心频率为9375MHz。
国际上对各微波频段用途的规定
2.频率极高,穿透性强
由于微波既能穿透电离层 (低频电磁波不行) 也能穿透 尘埃、云、雾 (光波不行), 因此,微波就成了卫星通讯、 空间通讯和射电天文研究的 重要手段。 可以容易穿入介质内部: 如微波加热——食品发热
近代物理实验专题讲座 2003.8
3. 频带宽,信息性好
可用频带很宽 (数百兆甚至上千兆赫兹),是低频 无线电波无法比拟的。因此,微波在通讯领域内得 到了广泛的应用。 微波通讯系统的工作频带宽、信息容量大、机动 性好,特别适合于卫星通讯,宇航通讯和移动通讯 等,因而在现代通讯系统中占有相当重要的地位。
λ(m)
广播 电视 微波 红外可见光 紫外
无 线 电 波 光 波
波长处于光波和无线电波之间
近代物理实验专题讲座 2003.8
微波频段的划分: 分米波, 厘米波,毫米波和亚毫米波
常用波段代号
波段代号 频率范围 (GHz) 标称波长 (cm) L S C X 8-12 3 Ku K W
1-2 2-4
微 波 技

山东师范大学物理实验中心
一、微波基础知识
按照国际电工委员会(IEC)的定义,微波 (Microwaves)是:
“波长足够短,以致在发射和接收中能实际 应用波导和谐振腔技术的电磁波”
微波是指:波长为1m至0.1mm,频率在 300MHz-3000GHz之间的电磁波或无线电波。

微波技术课程设计

微波技术课程设计

微波技术课程设计引言微波技术是一门涉及电磁波在微波频段的传输和应用的学科。

它在通信、雷达、无线电频谱分析等领域有着广泛的应用。

本文将介绍微波技术课程设计的相关内容,包括课程设计目标、内容安排、实验方案以及评估方法。

课程设计目标微波技术课程设计旨在培养学生对微波技术的理论基础和实践应用能力。

具体目标如下:1.理解微波技术的基本原理和概念;2.掌握微波器件和电路的设计方法;3.学会使用仿真工具进行微波系统分析和优化;4.能够独立完成一个小型微波系统的设计与实现。

课程内容安排本课程设计分为理论学习和实验项目两部分。

理论学习1.微波频段概述:介绍微波频段的定义、特点以及应用领域。

2.微波器件与电路:讲解常见的微波器件(如天线、滤波器、功率放大器等)和电路(如微波集成电路)的设计原理和性能指标。

3.微波传输线理论:介绍微波传输线的特性参数、传输线模型以及常见的微波传输线类型。

4.微波系统分析与优化:介绍微波系统的分析方法,包括S参数测量、噪声系数测量等,并讲解如何使用仿真工具进行系统优化。

实验项目1.微波器件测试:学生将使用测试仪器对不同类型的微波器件进行性能测试,包括频率响应、增益、带宽等指标。

2.微带天线设计:学生将根据给定的频率要求和天线类型,设计并制作一个微带天线,并进行性能测试和优化。

3.微波功率放大器设计:学生将设计一个微波功率放大器电路,并通过仿真工具进行性能分析和优化。

最后,学生需要制作并测试该功率放大器的实际性能。

实验方案实验设备与软件1.高频信号发生器:用于产生不同频率的高频信号。

2.高频功率计:用于测量高频信号的功率。

3.网络分析仪:用于测量S参数以及其他高频电路的性能。

4.仿真软件:如ADS、CST等,用于进行微波系统的仿真和优化。

实验步骤1.实验项目一:微波器件测试–准备不同类型的微波器件样品;–连接相应的测试仪器,测量器件的频率响应、增益、带宽等指标;–分析并比较不同器件的性能。

微波技术11-常用微波元件

微波技术11-常用微波元件

2a ln( ) 2 r
1
常用微波元件
•螺钉调配器
螺钉调配器调整较为方便。螺钉是低 功率微波装置中普遍采用的调谐和匹配元 件。
常用微波元件
实用时,为避免波导短路和击穿,通 常设计螺钉成容性,作可变电容用,螺钉 旋入波导的深度应小于3b/4,b为矩形波导 窄边的尺寸。
常用微波元件
扭波导
平接头
扼流接头
常用微波元件
(2) 拐角、弯曲和扭转元件 当需要改变电磁波的极化方向而不改变其传输方向时, 则要用到扭转元件。 对这些元件的要求是:引入的反射尽可能小、工作频 带宽、功率容量大。
E弯
H弯
常用微波元件 匹配元件
匹配元件的种类很多,这里只介绍膜片,销钉和螺钉匹 配器。
(1) 膜片
线性非互易元件
这类元件中包含磁化铁氧体等各向异性媒质, 具有非互易特性,其散射矩阵是不对称的。但仍 工作于线性区域,属于线性元件范围。常用的线 性非互易元件有隔离器、环行器等。
常用微波元件
非线性元件
这类元件中含有非线性物质,能对微波信号 进行非线性变换,从而引起频率的改变,并能通 过电磁控制以改变元件的特性参量。
高功率型
常用微波元件
大功率水冷匹配负载
常用微波元件
失配负载
实用中的失配负载都是做成标准失配负载, 具有某一固定的驻波比。失配负载常用于微波测 量中作标准终端负载。
失配负载的结构与匹配负载一样,只是波 导口径的尺寸b不同而已。 设b0为标准波导窄边尺寸,b为失配负载波 导的窄边尺寸,由于
Z Z0 Z Z0
常用微波元件
二端口元件可以等效为二端口网络,其散射 矩阵为
S11 S S 21

微波天线复习题

微波天线复习题

微波技术基础思考题一、填空题1、对于低于微波频率的无线电波的分析,常用 ;对于微波用 来研究系统的内部结构。

2、传输线接不同负载阻抗时,沿传输线纵向看,有三种不同的工作状态: 。

传输线可分为长线和短线,传输线长度为3c m ,当信号频率为20G Hz 时,该传输线为长线。

3、无耗传输线的阻抗具有 两个重要性质。

4、几个重要的参数:(1) 波阻抗: ;介质的固有波阻抗为εμη=,对于真空或空气,Ω==7.367000εμη(2) 特性阻抗: ,(3) 输入阻抗(分布参数阻抗):传输线上任一点的阻抗Z i n (d)定义为该点的电压和电流之比,即Z i n (d)=)()(d I d U 。

,(4) 传播常数:是描述导行波沿导行系统传播过程中的衰减和相位变化的参数,一般为复数:βαγωωj C j G L j R +==++))((1111对于无耗线:0=α,11CL ωβ=对于低耗线:d c Z G Z Rααα+=+=201021,11C L ωβ=(5) 反射系数:传输线上某点处的反射系数定义为该点的反射波电压与该点的入射波电压之比,即:)()()(d V d V d v +-=Γ,其表达式为:deLdeZLZZ L Zd v γγ2200)(-Γ=-+-=Γ,其中:Lj eL Z L Z ZL ZL Φ⋅Γ=+-=Γ0所以对于无耗线:)2()(d L j eLd β-Φ⋅Γ=Γ; 与阻抗的关系:0)(0)()(Z d in Z Zd inZ d +-=Γ; Z i n (d)=Z 0)(1)(1d d Γ-Γ+(6) 驻波系数:传输线上相邻的波腹点和波节点的电压之比,LL VV Γ-Γ+==11minmax ρ。

与阻抗的关系:Z i n (d mi n )=ρ0Z; Z L =Z 0minmin1dtg j dtg j βρβρ--(7) 无耗线在行波状态的条件是:Z L =Z 0,此时反射系数为零,驻波系数为1;工作在驻波状态的条件是:Z L =0;Z L =∞;Z L =+jX L 或-jX L ;工作在行驻波状态的条件是:Z L =R L +jX L or Z L =R L -jX L 。

微波技术与天线课后题答案

微波技术与天线课后题答案

1-1 解: f=9375MHz, / 3.2,/ 3.1251c f cm l λλ===>此传输线为长线1-2解: f=150kHz, 4/2000,/0.5101c f m l λλ-===⨯<<此传输线为短线1-3答: 当频率很高,传输线的长度与所传电磁波的波长相当时,低频时忽略的各种现象与效应,通过沿导体线分布在每一点的损耗电阻,电感,电容和漏电导表现出来,影响传输线上每一点的电磁波传播,故称其为分布参数。

用1111,,,R L C G 表示,分别称其为传输线单位长度的分布电阻,分布电感,分布电容和分布电导。

1-4 解: 特性阻抗050Z ====Ω f=50Hz X 1=ωL 1=2π×50×16.65×10-9Ω/cm=5.23×10-6Ω/cmB 1=ωC 1=2π×50×0.666×10×10-12=2.09×10-9S/cm 1-5 解: ∵ ()22j z j z i r U z U e U e ββ''-'=+ ()()2201j z j z i r I z U e U e Z ββ''-'=- 将 2223320,2,42i r U V U V z πβλπλ'===⋅= 代入 33223420220218j j z Ueej j j V ππλ-'==+=-+=-()3412020.11200z Ij j j A λ'==--=- ()()()34,18cos 2j te z u z t R U z e t V ωλπω'=⎛⎫''⎡⎤==- ⎪⎣⎦⎝⎭ ()()()34,0.11cos 2j t e z i z t R I z e t A ωλπω'=⎛⎫''⎡⎤==- ⎪⎣⎦⎝⎭ 1-6 解: ∵Z L =Z 0 ∴()()220j z i r U z U e U β''==()()()212321100j j z z U z e U z e πβ''-''==()()()()611100,100cos 6jU z e V u z t t V ππω'=⎛⎫=+ ⎪⎝⎭1-7 解:210.20.2130j L e ccm fπρρλ-Γ=-=-==Γ+==由 011L L L Z Z +Γ=-Γ 得 0110.2100150110.2L LL Z Z -Γ+===Ω+Γ- 由 ()()()22max 0.20.2j z j z L z e e z πββ-'-''Γ=Γ==Γ= 得 max1max120,7.54z z cm λπβ''-===1-8 解: (a) ()(),1in in Z z z ''=∞Γ= (b) ()()0100,0in in Z z Z z ''==ΩΓ= (c) ()()00012200,3in in in in Z Z Z z Z z Z Z -''==ΩΓ==+(d) ()()02200,1/3in in Z z Z z ''==ΩΓ= 1-9 解: 1 1.21.510.8ρ+Γ===-Γ 0max 0min 75,33Z Z Z Z ρρ==Ω==Ω1-10 解: min2min124z z cm λ''=-= min1120.2,0.514L z ρππβρλ-'Γ===⨯=+min1min120.2j z z L e β'-'Γ=-=Γ ∴ 2420.20.2j jL eeππ⨯-Γ=-=1-11 解: 短路线输入阻抗 0in Z jZ tg l β= 开路线输入阻抗 0in Z jZ ctg l β=- a) 00252063in Z jZ tgjZ tgj πλπλ=⨯=Ω b) 002252033in Z jZ tg jZ tg j πλπλ=⨯=-Ωc) 0173.23in Z jZ ctgj π=-=-Ω d) 02173.23in Z jZ ctg j π=-=Ω1-12 解: 29.7502050100740.6215010013o j L L L Z Z j j e Z Z j -++Γ=Γ====++1-13 解: 表1-41-17 解: 1350.7oj L e Γ= 1-18 解: minmax0.6U K U == min143.2o z β'= 用公式求min1min10min1min111L j tg z K jtg z Z Z Z jtg z jKtg z ρββρββ''--==''-- 0.643.25042.8522.810.643.2oojtg j j tg -==-Ω-⨯ 用圆图求 ()42.522.5L Z j =-Ω短路分支线的接入位置 d=0.016λ时()0.516B =- 最短分支线长度为 l=0.174λ()0.516B =- 1-19 解: 302.6 1.4,0.3,0.30.16100L L lZ j Y j λ=-===+ 由圆图求得 0.360.48in Z j =+ 1824in Z j =+Ω 1.01 1.31in Y j =- ()0.020.026in Y j S =- 1-20 解: 12L Y j =+ 0.5jB j =()()()()0.150.6 1.460.150.60.960.20.320.380.2 1.31 1.54in in in in Y j Y jB j Y j Z j λλλλ=-+=-=+=-∴ 6577in Z j =-Ω 1-21 解: 11 2.5 2.50.20.2L L Y j j Z ===+- 并联支节输入导纳 min 2.5B ctg l β=-=- min 0.061l λ=此时 1/2.5L Z '= 500/2.5200LZ '==Ω(纯电阻) 变换段特性阻抗316Z '===Ω 1-22 解: 1/0.851.34308.66o o L arctg ϕ=-=-=由 max120L z ϕβ'=-= 得 max10.43z λ'= 由 min12L z ϕβπ''=-=- 得 min10.1804L z ϕπλλπ+'== 1-23 解: 原电路的等效电路为由 1in Z j '+= 得 1in Z j '=- 向负载方向等效(沿等Γ图)0.25电长度 得 1in in Z Z ''='则 in in Y Z '''=由in in in Y Y j Z ''''''=+= 得 12in in Y Z j j ''''=-=- 由负载方向等效0.125电长度(沿等Γ图)得 12L Y j =+ 0.20.4L Z j =-1-24 答: 对导行传输模式的求解还可采用横向分量的辅助标位函数法。

单片射频微波集成电路技术与设计

单片射频微波集成电路技术与设计

单片射频微波集成电路技术与设计单片射频微波集成电路(Monolithic RF Microwave Integrated Circuit,简称MMIC)是一种在单个芯片上集成了射频(RF)和微波电路的技术。

它在通信、雷达、卫星通信等领域有着广泛的应用。

本文将介绍单片射频微波集成电路的技术原理和设计方法。

单片射频微波集成电路的核心是集成电路芯片,该芯片上集成了射频和微波电路所需的各种功能模块,如放大器、混频器、滤波器、功率放大器等。

相比传统的离散组件,单片射频微波集成电路具有体积小、重量轻、功耗低、可靠性高等优点,能够满足复杂电路的集成需求,提高系统性能。

单片射频微波集成电路的设计过程包括射频电路设计、微波电路设计、封装和测试等环节。

首先,需要根据系统需求和设计规范确定电路的工作频带、增益、带宽等参数。

然后,通过射频和微波电路的基本理论知识,选择合适的电路拓扑结构和器件参数。

在设计过程中,需要考虑电路的稳定性、噪声、线性度等指标,并进行相应的优化和调整。

在单片射频微波集成电路的设计中,还需要充分考虑电路的布局和封装技术。

合理的布局和封装可以降低电路的串扰和杂散,提高电路的性能。

同时,封装技术也需要考虑电路的散热和可靠性等因素。

现代封装技术如BGA(Ball Grid Array)和CSP(Chip Scale Package)等,可以满足单片射频微波集成电路的高集成度和小尺寸的要求。

当单片射频微波集成电路设计完成后,还需要进行测试和验证。

测试过程中需要使用专业的测试设备和仪器,对电路的性能进行准确的测量和评估。

通过测试结果,可以了解到电路的工作状态和性能指标是否符合设计要求,并进行必要的调整和优化。

随着射频和微波技术的不断发展,单片射频微波集成电路在无线通信、雷达、卫星通信等领域的应用越来越广泛。

它能够实现高度集成化、低功耗、小尺寸的设计要求,为现代通信系统的发展提供了强大的支持。

未来,随着射频和微波集成电路技术的进一步突破,单片射频微波集成电路将会在更多的领域发挥重要作用。

考研专业介绍:电磁场与微波技术

考研专业介绍:电磁场与微波技术

非统考专业介绍:电磁场与微波技术一、专业介绍电磁场与微波技术隶属于电子科学与技术一级学科。

1、研究方向目前,各大院校与电磁场与微波技术专业相关的研究方向都略有不同的侧重点。

以西安电子科技大学为例,该专业研究方向有:01电磁兼容、电磁逆问题、计算微波与计算电磁学04计算电磁学、智能天线、射频识别07宽带天线、电磁散射与隐身技术08卫星通信、无线通信、智能天线、信号处理09天线理论与工程及测量、新型天线10电磁散射与微波成像11天线CAD、工程与测量13移动卫星通信天线14天线理论与工程16电磁散射与隐身技术17电磁兼容、微波测量、信号完整性分析20移动通信中的相控阵、共形相控阵天线技术21计算微波与计算电磁学、微波通信、天线工程、电磁兼容22电阻抗成像、电磁兼容、非线性电磁学23天线工程与CAD、微波射频识别技术、微波电路与器件24电磁场、微波技术与天线电磁兼容25天线测量技术与伺服控制26天线理论与工程技术27天线近远场测试技术及应用、无线网络通讯技术28天线工程及数值计算29微波电路与微波工程30近场辐射及散射测量理论与技术31微波系统和器件设计、电磁场数值计算32电磁新材料、计算电磁学、电磁兼容33计算电磁学、电磁兼容、人工合成新材料34计算电磁学35电磁隐身技术、天线理论与工程36宽带小型化天线及电磁场数值计算37射频识别、多天线技术38天线和微波器件的宽带设计、小型化设计2、培养目标本专业培养德、智、体全面发展,在电磁信号(高频、微波、光波等)的产生、交换、发射、传输、传播、散射及接收等有关的理论与技术和信息(图像、语音、数据等)的获取、处理及传输的理论与技术两大方面具有坚实的理论基础和实验技能,了解本学科发展前沿和动态,具有独立开展本学科科学研究工作能力的高层次人才。

3、专业特色电磁场与微波技术是一门以电磁场理论、光导波理论、光器件物理及微波电路理论为基础,并和通信系统、微电子系统、计算机系统等实际相结合的学科。

微波技术基础复习重点

微波技术基础复习重点

第一章引论微波是指频率从300MHz到3000GHz范围内的电磁波,相应的波长从1m到0.1mm。

包括分米波(300MHz到3000MHz)、厘米波(3G到30G)、毫米波(30G 到300G)和亚毫米波(300G到3000G)。

微波这段电磁谱具有以下重要特点:似光性和似声性、穿透性、信息性和非电离性。

微波的传统应用是雷达和通信。

这是作为信息载体的应用。

微波具有频率高、频带宽和信息量大等特点。

强功率—微波加热弱功率—各种电量和非电量的测量导行系统:用以约束或者引导电磁波能量定向传输的结构导行系统的种类可以按传输的导行波划分为:(1)TEM(transversal Electromagnetic,横电磁波)或准TEM传输线(2)封闭金属波导(矩形或圆形,甚至椭圆或加脊波导)(3)表面波波导(或称开波导)导行波:沿导行系统定向传输的电磁波,简称导波微带、带状线,同轴线传输的导行波的电磁能量约束或限制在导体之间沿轴向传播。

是横电磁波(TEM)或准TEM波即电场或磁场沿即传播方向具有纵向电磁场分量。

开波导将电磁能量约束在波导结构的周围(波导内和波导表面附近)沿轴向传播,其导波为表面波。

导模(guided mode ):即导波的模式,又称为传输模或正规模,是能够沿导行系统独立存在的场型。

特点:(1)在导行系统横截面上的电磁场呈驻波分布,且是完全确定的,与频率以及导行系统上横截面的位置无关。

(2)模是离散的,当工作频率一定时,每个导模具有唯一的传播常数。

(3)导模之间相互正交,互不耦合。

(4)具有截止频率,截止频率和截止波长因导行系统和模式而异。

无纵向磁场的导波(即只有横向截面有磁场分量),称为横磁(TM)波或E波。

无纵向电场的导波(即只有横向截面有电场分量),称为横电(TE)波或H波。

TEM波的电场和磁场均分布在与导波传播方向垂直的横截面内。

第二章传输线理论传输线是以TEM模为导模的方式传递电磁能量或信号的导行系统,其特点是横向尺寸远小于其电磁波的工作波长。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档