微波电路与系统(等效电路)
微波技术原理 第4章 微波网络基础

7. 互易网络和无损网络的散射矩阵的性质
根据广义散射矩阵的定义得到:
(1) 互易网络的 [z]为对称矩阵,即 [z ]=[z ]T 。 可见,互易网络的散射矩阵是对称矩阵 [S]=[S]T 。
(2) 无损网络各端口的总输入能量等于总输出能量。
第4章 微波网络基础
微波系统中除了传输线外,还有各种各样的微波 元件或接头等非均匀区域。因为这些非均匀区域的形 状不规则,在其中的微波传输规律很复杂。因此,要 想通过求解麦克斯韦方程组得出其中的传输规律是不 可能的。
实际上,我们并不需要知道微波在其中的传输规 律,而只需知道这些非均匀区与外电路连接的端口特 性。所以通常将其等效为一个网络,称为微波网络。
微波网络的端口及其参考面举例
对于单模传输系统,微波网络的端口数 = 被等效区 域与外电路的接口数目 = 参考面的数目。
§4.3 微波网络的端口特性参量
1. 阻抗矩阵和导纳矩阵
V
2
I-2
V+2 I+2
I-3 V-3 I+3 V+3
I+1
V+1
I-1
V-1
I-N
I+N
V-N
V+N
2. 微波网络的互易性
从无耗网络的各个端口输入的总能量为 0。
互易网络的阻抗矩阵是对称的,因此,既互易又
无耗的网络满足:
(实部为0)
这说明,互易无耗网络的阻抗矩阵元为纯电抗。
例1 求下图的两端口网络的Z参量
ZA
ZB
端口1,V1
ZC
V2,端口2
根据定义:
微波电路及设计的基础知识

微波电路及设计的基础知识1. 微波电路的基本常识2. 微波网络及网络参数3. Smith圆图4. 简单的匹配电路设计5. 微波电路的电脑辅助设计技术及常用的CAD软件6. 常用的微波部件及其主要技术指标7. 微波信道分系统的设计、计算和指标分配8. 测试及测试仪器9. 应用电路举例微波电路及其设计1.概述所谓微波电路,通常是指工作频段的波长在10m~1cm(即30MHz~30GHz)之间的电路。
此外,还有毫米波〔30~300GHz〕及亚毫米波〔150GHz~3000GHz〕等。
实际上,对于工作频率较高的电路,人们也经常称为“高频电路”或“射频〔RF〕电路”等等。
由于微波电路的工作频率较高,因此在材料、结构、电路的形式、元器件以及设计方法等方面,与一般的低频电路和数字电路相比,有很多不同之处和许多独特的地方。
作为一个独立的专业领域,微波电路技术无论是在理论上,还是在材料、工艺、元器件、以及设计技术等方面,都已经发展得非常成熟,并且应用领域越来越广泛。
另外,随着大规模集成电路技术的飞速发展,目前芯片的工作速度已经超过了1GHz。
在这些高速电路的芯片、封装以及应用电路的设计中,一些微波电路的设计技术也已得到了充分的应用。
以往传统的低频电路和数字电路,与微波电路之间的界限将越来越模糊,相互间的借鉴和综合的技术应用也会越来越多。
2.微波电路的基本常识2.1 电路分类2.1.1 按照传输线分类微波电路可以按照传输线的性质分类,如:图1 微带线图2 带状线图3 同轴线图4 波导图5 共面波导2.1.2 按照工艺分类微波混合集成电路:采用别离组件及分布参数电路混合集成。
微波集成电路〔MIC〕:采用管芯及陶瓷基片。
微波单片集成电路〔MMIC〕:采用半导体工艺的微波集成电路。
图6微波混合集成电路例如图7 微波集成电路〔MIC〕例如图8微波单片集成电路〔MMIC〕例如2.1.3 微波电路还可以按照有源电路和无源电路分类。
射频天线的等效电路

射频天线的等效电路
射频天线的等效电路是指将射频天线系统中的各个部分用一组等效的电路元件来表示,以便于分析、设计和优化天线性能。
射频天线的等效电路主要包括以下几个部分:
1. 辐射电阻(Rrad):辐射电阻表示天线辐射能量的能力,它与天线的长度、形状和材质等因素有关。
2. 串联谐振电路(L和C):天线系统中通常存在多个谐振电路,它们影响着天线的频率响应和匹配性能。
串联谐振电路由电感(L)和电容(C)组成,它们共同决定了谐振频率。
3. 并联谐振电路(L和C):并联谐振电路同样由电感(L)和电容(C)组成,但它们的影响因素和串联谐振电路相反。
并联谐振电路主要影响天线的带宽和阻抗匹配。
4. 输入阻抗(Zin):输入阻抗表示天线系统对输入信号的阻抗匹配程度。
它受到天线结构、馈线长度和材质等因素的影响。
5. 输出阻抗(Zout):输出阻抗表示天线系统对外部负载的阻抗匹配程度。
一般情况下,天线系统希望输出阻抗越低,匹配性能越好。
6. 反射系数(S11和S21):反射系数表示天线系统对输入信号的反射程度。
通过测量反射系数,可以了解天线系统的匹配性能和性能优劣。
在实际应用中,射频天线的等效电路可以通过计算机辅助设计(CAD)软件(如
Ansys HFSS、CST等)进行仿真和优化,以达到设计要求。
通过等效电路法,设计师可以更方便地分析和调整天线系统的性能,缩短设计周期,降低设计成本。
非线性微波电路与系统 第三章..

Company name
非线性微波电路与系统
3.1 谐波平衡法
3.1.1 谐波平衡方程的建立
一般非线性二端口部件的等效电路
等效电路中的输入输出网络一般为匹配、偏置、 滤波等电路。
Company name
非线性微波电路与系统
Ym,n diag Ym,n (kwp ) , k 0,1,2,......, K
即
Ym ,n
Ym ,n (0) Y ( w ) m ,n p ... ... ... Ym ,n (kwp )
Vb1 V s 0 0 Vn1 V ...... n 2 V b2 0 ...... 0
非线性微波电路与系统
电子工程学院 电磁场与微波技术 主讲人: 徐锐敏
LOGO
(教授)
非线性微波电路与系统
3.1 谐波平衡法
谐波平衡法:
分析单一的频率信号激励强或弱的非线性电 路。用于分析功放、倍频器、带本振激励的混频器 等。 变换矩阵法(大/小信号法): 分析两个频率信号激励的非线性电路,其中 一个激励信号幅度很大而另一个幅度很小。用于混 频器、调制器、参量放大器、参量上变频器等。
I
即
Is
YNN
V
I = Is + YNN V
Company name
非线性微波电路与系统
3.1.1 谐波平衡方程的建立
电路图中的N+1,N+2端口的激励源转换为端口1至N的电 流源。到此,我们完成了求解流入线性子网络的电流向 量。
即:流入线性子网络的 电流+流入非线性子网 络的电流=0
0
微波

该式代表为负旋圆极化或左旋圆极化波, 该式代表为负旋圆极化或左旋圆极化波,即顺着外加恒 磁场方向看去,Ht随时间以固定振幅反时针转的波 随时间以固定振幅反时针转的波, 磁场方向看去,Ht随时间以固定振幅反时针转的波,如 图所示: 图所示:
铁氧体元件
上述结果表明: 上述结果表明: 1.在铁氧体中沿恒定磁场方向传播的平面波 在铁氧体中沿恒定磁场方向传播的平面波, 1.在铁氧体中沿恒定磁场方向传播的平面波,是圆极化 TEM波 TEM波; 2.对于圆极化波 铁氧体的导磁率不在为张量而为标量, 对于圆极化波, 2.对于圆极化波,铁氧体的导磁率不在为张量而为标量, 这意味着磁化铁氧体媒质对圆极化波表现为各向同性, 这意味着磁化铁氧体媒质对圆极化波表现为各向同性, 但导磁率的大小与圆极化波的旋转方向有关。 但导磁率的大小与圆极化波的旋转方向有关。 旋磁效应、 8.6.2 旋磁效应、微波铁氧体元件 旋磁效应 1.铁磁谐振效应 1.铁磁谐振效应
铁氧体元件
3. 场移效应 定义:场移效应是对放入导波系统中的铁氧体, 定义:场移效应是对放入导波系统中的铁氧体,外加横 向横磁场(垂直于波的传播方向) 向横磁场(垂直于波的传播方向)时,使导波场的分布产 生横向移动的效应。 生横向移动的效应。 微波铁氧体元件 隔离器—常用于微波源与负载之间 常用于微波源与负载之间, 隔离器 常用于微波源与负载之间,使全部功率传至负 载而反射功率不到微波源。 载而反射功率不到微波源。 场移式隔离器
铁氧体元件
当 ω = ω0 时,由 得知: 得知:
µ+ = µ + k = µ 0(1 + ωm ω0 − ω
)
µ + → ∞, β + → ∞,
正旋圆极化波的相速为零,波不传播, 正旋圆极化波的相速为零,波不传播,这种现象称为铁 磁谐振。 磁谐振。 注意:左旋波的旋转方向与进动方向相反,在任何频率 注意:左旋波的旋转方向与进动方向相反, 上都无法同步,故不发生谐振。因此, 上都无法同步,故不发生谐振。因此,铁磁谐振仅对右 旋波而言。 旋波而言。
微波电路与系统

仿真分析
通过CAD软件对设计进行 仿真分析,可以预测电路 性能并优化设计方案。
典型微波电路设计实例
放大器设计
根据性能指标选择合适的晶体 管或场效应管,设计匹配网络 和偏置电路,实现放大功能。
混频器设计
利用非线性元件实现频率转换 ,设计本振电路和滤波网络, 实现混频功能。
振荡器设计
选择合适的振荡器件,设计反 馈网络和输出匹配网络,实现 振荡功能。
接收机系统组成及工作原理
低噪声放大器
对接收到的微弱信号进行放大 ,同时降低噪声干扰。
中频放大器
对中频信号进行放大,以便于 后续处理。
天线
接收空间中的微波信号。
混频器
将接收到的微波信号与本振信 号进行混频,产生中频信号。
解调器
从中频信号中解调出原始信息 信号。
天线系统与馈线系统
天线类型
根据应用需求选择不同类型的天线,如抛物面天线、微带天线等。
功率放大器
是微波电路中的重要组成部分,用于将微弱的微波信号放大到足够的功率水平 以驱动负载。常见的功率放大器有行波管放大器、速调管放大器等。在选择功 率放大器时,需要考虑输出功率、效率、线性度等指标。
03
微波电路分析与设计
微波电路分析方法
等效电路法
数值分析法
将微波电路中的元件用集总参数元件 等效,进而利用电路理论进行分析。 这种方法适用于低频段和简单电路。
是一种具有放大、振荡等功能的三端器件。根据工作原理和结构不同,可分为双 极型晶体管(BJT)和场效应晶体管(FET)两大类。在微波电路中,常采用具有 高电子迁移率和高频特性的FET,如GaAs FET、GaN FET等。
场效应管与功率放大器
场效应管(FET)
微波的技术习题

微波技术习题思考题1.1 什么是微波?微波有什么特点?1.2 试举出在日常生活中微波应用的例子。
1.3 微波波段是怎样划分的?1.4 简述微波技术未来的发展状况。
2.1何谓分布参数?何谓均匀无损耗传输线?2.2 传输线长度为10cm,当信号频率为9375MHz时,此传输线属长线还是短线?2.3传输线长度为10cm,当信号频率为150KHz时,此传输线属长线还是短线?2.4传输线特性阻抗的定义是什么?输入阻抗的定义是什么?2.5什么是反射系数、驻波系数和行波系数?2.6传输线有哪几种工作状态?相应的条件是什么?有什么特点?3.1何谓矩形波导?矩形波导传输哪些模式?3.2何谓圆波导?圆波导传输哪些模式??3.3矩形波导单模传输的条件是什么?3.4何谓带状线?带状线传输哪些模式?3.5何谓微带线?微带线传输哪些模式?3.6 何谓截止波长?何谓简并模?工作波长大于或小于截止波长,电磁波的特性有何不同?3.7 矩形波导TE10模的场分布有何特点?3.8何谓同轴线?传输哪些模式?3.9为什么波导具有高通滤波器的特性?3.10 TE波、TM波的特点是什么?3.11何谓波的色散?3.12任何定义波导的波阻抗?分别写出TE波、TM波波阻抗与TEM波波阻抗之间的关系式。
4.1为什么微波网络方法是研究微波电路的重要手段?4.2微波网络与低频网络相比有哪些异同?4.3网络参考面选择的要求有什么?4.4表征微波网络的参量有哪几种?分别说明它们的意义、特性及其相互间的关系?4.5二端口微波网络的主要工作特性参量有哪些?4.6微波网络工作特性参量与网络参量有何关系?4.7常用的微波网络有哪些?对应的网络特性参量是什么?4.8微波网络的信号流图是什么?简要概述信号流图化简法则有哪些?5.1试述旋转式移相器的工作原理,并说明其特点。
5.2试分别叙述矩形波导中的接触式和抗流式接头的特点。
5.3试从物理概念上定性地说明:阶梯式阻抗变换器为何能使传输线得到较好的匹配。
《微波技术与天线》习题答案

第一章1-1解: f=9375MHz, / 3.2,/ 3.1251c f cm l λλ===> , 此传输线为长线。
1-2解: f=150kHz, 4/2000,/0.5101c f m l λλ-===⨯<< ,此传输线为短线。
1-3答: 当频率很高,传输线的长度与所传电磁波的波长相当时,低频时忽略的各种现象与效应,通过沿导体线分布在每一点的损耗电阻,电感,电容和漏电导表现出来,影响传输线上每一点的电磁波传播,故称其为分布参数。
用1111,,,R L C G 表示,分别称其为传输线单位长度的分布电阻,分布电感,分布电容和分布电导。
1-4 解: 特性阻抗050Z ====Ωf=50Hz X 1=ωL 1=2π×50×16.65×10-9Ω/cm=5.23×10-6Ω/cmB 1=ωC 1=2π×50×0.666×10×10-12=2.09×10-9S/cm 1-5 解: ∵ ()22j z j z i r Uz U e U e ββ''-'=+()()2201j z j z i r I z U e U e Z ββ''-'=- 将 2223320,2,42i r U V U V z πβλπλ'===⋅= 代入33223420220218j j z U eej j j Vππλ-'==+=-+=-()3412020.11200z I j j j A λ'==--=- ()()()34,18cos 2j te z uz t R U z e t V ωλπω'=⎛⎫''⎡⎤==- ⎪⎣⎦⎝⎭ ()()()34,0.11cos 2j te z i z t R I z e t A ωλπω'=⎛⎫''⎡⎤==- ⎪⎣⎦⎝⎭ 1-6 解: ∵Z L=Z 0∴()()220j z i r U z U e U β''==()()()212321100j j z z Uz e U z e πβ''-''==()()()()611100,100cos 6jU z e V u z t t V ππω'=⎛⎫=+ ⎪⎝⎭1-7 解: 210.20.2130j L e ccmfπρρλ-Γ=-=-==Γ+==由 011L L L Z Z +Γ=-Γ 得 0110.2100150110.2L LL Z Z -Γ+===Ω+Γ- 由 ()()()22max0.20.2j z j z L z e e z πββ-'-''Γ=Γ==Γ= 得 max1max120,7.54z z cm λπβ''-===1-8 解: (a) ()(),1inin Z z z ''=∞Γ=(b) ()()0100,0in in Z z Z z ''==ΩΓ=(c) ()()00012200,3in in in in Z Z Z z Z z Z Z -''==ΩΓ==+(d) ()()02200,1/3inin Z z Z z ''==ΩΓ=1-9 解: 1 1.21.510.8ρ+Γ===-Γmax 0min 75,33Z Z Z Z ρρ==Ω==Ω1-10 解: min2min124z z cm λ''=-=min1120.2,0.514L z ρππβρλ-'Γ===⨯=+ min1min120.2j z z L e β'-'Γ=-=Γ∴ 2420.20.2j jLeeππ⨯-Γ=-=1-11 解: 短路线输入阻抗 0in Z jZ tg l β= 开路线输入阻抗 0in Z jZ ctg l β=-a) 00252063inZ jZ tgjZ tgj πλπλ=⨯=Ω b) 002252033in Z jZ tg jZ tg j πλπλ=⨯=-Ωc) 0173.23inZ jZ ctgj π=-=-Ωd) 02173.23in Z jZ ctg j π=-=Ω1-12 解: 29.7502050100740.6215010013oj L L L Z Z j j e Z Z j -++Γ=Γ====++1-13 解: 表1-41-17 解: 1350.7j Le Γ=1-18 解: minmax0.6U K U == min143.2o z β'= 用公式求 min1min100min1min111L j tg z K jtg z Z Z Z jtg z jKtg z ρββρββ''--==''-- 0.643.25042.8522.810.643.2oojtg j j tg -==-Ω-⨯ 用圆图求 ()42.522.5LZ j =-Ω短路分支线的接入位置 d=0.016λ时()0.516B =-最短分支线长度为 l=0.174λ()0.516B =-1-19 解: 302.6 1.4,0.3,0.30.16100LL lZ j Y j λ=-===+由圆图求得 0.360.48in Z j =+ 1824in Z j =+Ω1.01 1.31in Y j =- ()0.020.026in Y j S =-1-20 解: 12LY j =+ 0.5jB j =()()()()0.150.6 1.460.150.60.960.20.320.380.2 1.311.54in in in in Y j Y jB j Y j Z j λλλλ=-+=-=+=-∴ 6577inZ j =-Ω 1-21 解: 11 2.5 2.50.20.2L L Y j j Z ===+- 并联支节输入导纳 min 2.5B ctg l β=-=- min 0.061l λ=此时 1/2.5LZ '= 500/2.5200LZ '==Ω(纯电阻)变换段特性阻抗 0316Z '==Ω 1-22 解: 1/0.851.34308.66o o Larctg ϕ=-=-= 由 max120L z ϕβ'=-= 得 max10.43z λ'= 由 min12Lz ϕβπ''=-=- 得 min10.1804L z ϕπλλπ+'== 1-23 解: 原电路的等效电路为由 1inZ j '+= 得 1inZ j '=-向负载方向等效(沿等Γ图)0.25电长度得 1inin Z Z ''='则 ininY Z '''=由inin in Y Y j Z ''''''=+= 得 12in inY Z j j ''''=-=-由负载方向等效0.125电长度(沿等Γ图)得12LY j =+ 0.20.4L Z j =-1-24 答: 对导行传输模式的求解还可采用横向分量的辅助标位函数法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
截止状态 , kc2 k 2
2 2 k k 传播状态, c
TE10波的截止波数
kc a
TE10波的传播常数
1 2a 1 2a
2
2
2a 2a
TE10波的特性阻抗
TE10阻抗的几个定义
自由空间波阻抗 0 0 0 120 377 TE波的波阻抗
TE 0 0
1 kc k
2
k 0 0 k 2 kc2
电压-电流定义
V b ZVI TE I 2a
功率-电压定义
Z PV
V 2 2b TE TE P a
最后的等效电路
由于,Y11=-Y12,故
1 Z Y 1 Z
1 Z 1 Z
等效电容
k k
2 c 2
2 2
2
j
波导传播常数
截止波数
真空传播常数
kc2 k 2
m n 2 kc a b
如果, 如果,
2 f k C
k jk
2
kc2 k 2 k k
CST的计算模型
1 Y Z 1 Y 1FSS计算结果
结果分析
由于膜片有厚度完整的等效电路为:
Z11 Z Z 21
Z12 Z 22
HFSS的计算结果可能存在误差!
串联等效电路的计算
Y11 Y12 Y Y21 Y22
功率-电流定义 Z PI
P 2b 2 TE I 8a
0 0 2 1 2 a 0 0 j 2 2 a 1
2a 2a
c0 f
经典方法的计算结果
1 X 1207.72Ohm B
微波电路与系统
膜片的等效电路
电子科技大学 贾宝富 博士
波导中的膜片
a 22.86mm b 10.16mm d 0.5mm b 5mm L 40mm f 10GHz
矩形波导的基本理论
波导中电场的波动方程
2 T E( x, y) kc2 E( x, y) 0
其中,