贵阳市十九中九年级上册期末数学试题(含答案)
贵阳市十九中九年级上册压轴题数学模拟试卷及答案

贵阳市十九中九年级上册压轴题数学模拟试卷及答案一、压轴题1.如图,抛物线23y ax bx =++经过点A (1,0),B (4,0)与y 轴交于点C .(1)求抛物线的解析式;(2)如图①,在抛物线的对称轴上是否存在点P ,使得四边形PAOC 的周长最小?若存在,求出四边形PAOC 周长的最小值;若不存在,请说明理由.(3)如图②,点Q 是线段OB 上一动点,连接BC ,在线段BC 上是否存在这样的点M ,使△CQM 为等腰三角形且△BQM 为直角三角形?若存在,求M 的坐标;若不存在,请说明理由.2.如图,抛物线214y x bx c =-++经过点()6,0C ,顶点为B ,对称轴2x =与x 轴相交于点A ,D 为线段BC 的中点.(1)求抛物线的解析式; (2)P 为线段BC 上任意一点,M 为x 轴上一动点,连接MP ,以点M 为中心,将MPC 逆时针旋转90︒,记点P 的对应点为E ,点C 的对应点为F .当直线EF 与抛物线214y x bx c =-++只有一个交点时,求点M 的坐标. (3)MPC 在(2)的旋转变换下,若2PC =①求证:EA ED =.②当点E 在(1)所求的抛物线上时,求线段CM 的长.3.二次函数22(0)63m m y x x m m =-+>的图象交y 轴于点A ,顶点为P ,直线PA 与x 轴交于点B .(1)当m =1时,求顶点P 的坐标;(2)若点Q (a ,b )在二次函数22(0)63m m y x x m m =-+>的图象上,且0b m ->,试求a 的取值范围;(3)在第一象限内,以AB 为边作正方形ABCD .①求点D 的坐标(用含m 的代数式表示);②若该二次函数的图象与正方形ABCD 的边CD 有公共点,请直接写出符合条件的整数m 的值.4.在平面直角坐标系中,O 是坐标原点,抛物线2115:L y x bx a a=+-的顶点D 在第四象限,且经过(1,)A m n +,(1,)(0,0)B m n m n ->>两点直线AB 与y 轴交于点C ,与抛物线的1L 对称轴交于点E ,8AC BC ⋅=,点E 的纵坐标为1.(1)求抛物线1L 所对应的函数表达式;(2)若将直线AB 绕着点E 旋转,直线AB 与抛物线1L 有一个交点Q 在第三象限,另一个交点记为P ,抛物线2L 与抛物线1L 关于点P 成中心对称,抛物线2L 的顶点记为1D . ①若点Q 的横坐标为-1,抛物线1L 与抛物线2L 所对应的两个函数y 的值都随着x 的增大而增大,求相应的x 的取值范围;②若直线PQ 与抛物线2L 的另一个交点记为Q ,连接1PD ,11Q D ,试间:在旋转的过程中,1PDQ ∠的度数会不会发生变化?请说明理由. 5.如图,A 是以BC 为直径的圆O 上一点,AD ⊥BC 于点D ,过点B 作圆O 的切线,与CA 的延长线相交于点E ,G 是AD 的中点,连接并延长CG 与BE 相交于点F ,连接并延长AF 与CB 的延长线相交于点P .(1)求证:BF =EF ;(2)求证:PA 是圆O 的切线;(3)若FG =EF =3,求圆O 的半径和BD 的长度.6.如图1,在平面直角坐标系中,抛物线与x 轴交于点 A (-1,0) ,B (点A 在点B 的左侧),交y 轴与点(0,-3),抛物线的对称轴为直线x =1,点D 为抛物线的顶点. (1)求该抛物线的解析式;(2)已知经过点A 的直线y =kx +b (k >0)与抛物线在第一象限交于点E ,连接AD ,DE ,BE ,当2ADE ABE S S ∆∆=时,求点E 的坐标.(3)如图2,在(2)中直线AE 与y 轴交于点F ,将点F 向下平移233+个单位长度得到Q ,连接QB .将△OQB 绕点O 逆时针旋转一定的角度α(0°<α<360°)得到OQ B '',直线B Q ''与x 轴交于点G .问在旋转过程中是否存在某个位置使得OQ G '是等腰三角形?若存在,请直接写出所有满足条件的点Q '的坐标;若不存在,请说明理由.7.已知抛物线y =ax 2+bx+c(a >0),顶点D 在y 轴上,与x 轴的一个交点的横坐标为6.(1)求a 、c 满足的关系式;(2)若直线y =kx-2a 与抛物线交于A 、B 两点(点A 在点B 左侧),以AB 为直径的圆恒过点D .①求抛物线的解析式;②设直线y =kx-2a 与y 轴交于点M 、直线l 1:y =px+q 过点B ,且与抛物线只有一个公共点,过点D 作x 轴的平行线l 2,l 1与l 2交于点N .分别记BDM 、NDM 的面积为S 1,S 2,求12S S . 8.(问题发现)(1)如图①,在△ABC 中,AC =BC =2,∠ACB =90°,D 是BC 边的中点,E 是AB 边上一动点,则EC +ED 的最小值是 .(问题研究)(2)如图②,平面直角坐标系中,分别以点A (﹣2,3),B (3,4)为圆心,以1、3为半径作⊙A 、⊙B ,M 、N 分別是⊙A 、⊙B 上的动点,点P 为x 轴上的动点,试求PM +PN 的最小值.(问题解决)(3)如图③,该图是某机器零件钢构件的模板,其外形是一个五边形,根据设计要求,边框AB 长为2米,边框BC 长为3米,∠DAB =∠B =∠C =90°,联动杆DE 长为2米,联动杆DE 的两端D 、E 允许在AD 、CE 所在直线上滑动,点G 恰好是DE 的中点,点F 可在边框BC 上自由滑动,请确定该装置中的两根连接杆AF 与FG 长度和的最小值并说明理由.9.定义:对于已知的两个函数,任取自变量x 的一个值,当0x ≥时,它们对应的函数值相等;当0x <时,它们对应的函数值互为相反数,我们称这样的两个函数互为相关函数.例如:正比例函数y x =,它的相关函数为(0)(0)x x y x x ≥⎧=⎨-<⎩. (1)已知点()5,10A -在一次函数5y ax =-的相关函数的图像上,求a 的值;(2)已知二次函数2142y x x =-+-. ①当点3,2B m ⎛⎫ ⎪⎝⎭在这个函数的相关函数的图像上时,求m 的值;②当33x -≤≤时,求函数2142y x x =-+-的相关函数的最大值和最小值. (3)在平面直角坐标系中,点M 、N 的坐标分别为1,12⎛⎫- ⎪⎝⎭、9,12⎛⎫ ⎪⎝⎭,连结MN .直接写出线段MN 与二次函数24y x x n =-++的相关函数的图像有两个公共点时n 的取值范围.10.已知在矩形ABCD 中,AB=2,AD=4.P 是对角线BD 上的一个动点(点P 不与点B 、D 重合),过点P 作PF⊥BD,交射线BC 于点F .联结AP ,画∠FPE=∠BAP,PE 交BF 于点E .设PD=x ,EF=y .(1)当点A 、P 、F 在一条直线上时,求△ABF 的面积;(2)如图1,当点F 在边BC 上时,求y 关于x 的函数解析式,并写出函数定义域;(3)联结PC ,若∠FPC=∠BPE,请直接写出PD 的长.11.如图,在矩形ABCD 中,AB =6,BC =8,点E ,F 分别在边BC ,AB 上,AF =BE =2,连结DE ,DF ,动点M 在EF 上从点E 向终点F 匀速运动,同时,动点N 在射线CD 上从点C 沿CD 方向匀速运动,当点M 运动到EF 的中点时,点N 恰好与点D 重合,点M 到达终点时,M ,N 同时停止运动.(1)求EF 的长.(2)设CN =x ,EM =y ,求y 关于x 的函数表达式,并写出自变量x 的取值范围. (3)连结MN ,当MN 与△DEF 的一边平行时,求CN 的长.12.如图,在平面直角坐标系xOy 中,已知直线AB 经过点A (﹣2,0),与y 轴的正半轴交于点B ,且OA =2OB .(1)求直线AB 的函数表达式;(2)点C 在直线AB 上,且BC =AB ,点E 是y 轴上的动点,直线EC 交x 轴于点D ,设点E 的坐标为(0,m )(m >2),求点D 的坐标(用含m 的代数式表示);(3)在(2)的条件下,若CE :CD =1:2,点F 是直线AB 上的动点,在直线AC 上方的平面内是否存在一点G ,使以C ,G ,F ,E 为顶点的四边形是菱形?若存在,请求出点G 的坐标;若不存在,请说明理由.13.在直角坐标平面内,O 为原点,点A 的坐标为(10),,点C 的坐标为(0)4,,直线CM x ∥轴(如图所示).点B 与点A 关于原点对称,直线y x b =+(b 为常数)经过点B ,且与直线CM 相交于点D ,联结OD .(1)求b 的值和点D 的坐标;(2)设点P 在x 轴的正半轴上,若POD 是等腰三角形,求点P 的坐标;14.如图,在平面直角坐标系xOy 中,过⊙T 外一点P 引它的两条切线,切点分别为M ,N ,若60180MPN ︒︒≤∠<,则称P 为⊙T 的环绕点.(1)当⊙O 半径为1时,①在123(1,0),(1,1),(0,2)P P P 中,⊙O 的环绕点是___________;②直线y =2x +b 与x 轴交于点A ,y 轴交于点B ,若线段AB 上存在⊙O 的环绕点,求b 的取值范围;(2)⊙T 的半径为1,圆心为(0,t ),以3,(0)3m m m ⎛⎫> ⎪ ⎪⎝⎭为圆心,33m 为半径的所有圆构成图形H ,若在图形H 上存在⊙T 的环绕点,直接写出t 的取值范围.15.在平面直角坐标系中,抛物线2y ax bx c =++经过点A 、B 、C ,已知A (-1,0),B (3,0),C (0,-3).(1)求此抛物线的函数表达式;(2)若P 为线段BC 上一点,过点P 作y 轴的平行线,交抛物线于点D ,当△BCD 面积最大时,求点P 的坐标;(3)若M (m ,0)是x 轴上一个动点,请求出CM+12MB 的最小值以及此时点M 的坐标.16.已知,在平面直角坐标系中,二次函数212y x bx c =++的图象与x 轴交于点A B ,,与y 轴交于点C ,点A 的坐标为()3,0-,点B 的坐标为()1,0.(1)如图1,分别求b c 、的值;(2)如图2,点D 为第一象限的抛物线上一点,连接DO 并延长交抛物线于点E ,3OD OE =,求点E 的坐标;(3)在(2)的条件下,点P 为第一象限的抛物线上一点,过点P 作PH x ⊥轴于点H ,连接EP 、EH ,点Q 为第二象限的抛物线上一点,且点Q 与点P 关于抛物线的对称轴对称,连接PQ ,设2AHE EPH α∠+∠=,tan PH PQ α=⋅,点M 为线段PQ 上一点,点N 为第三象限的抛物线上一点,分别连接MH NH 、,满足60MHN ∠=︒,MH NH =,过点N 作PE 的平行线,交y 轴于点F ,求直线FN 的解析式.17.如图,在直角坐标系中,点C 在第一象限,CB x ⊥轴于B ,CA y ⊥轴于A ,3CB =,6CA =,有一反比例函数图象刚好过点C .(1)分别求出过点C 的反比例函数和过A ,B 两点的一次函数的函数表达式;(2)直线l x ⊥轴,并从y 轴出发,以每秒1个单位长度的速度向x 轴正方向运动,交反比例函数图象于点D ,交AC 于点E ,交直线AB 于点F ,当直线l 运动到经过点B 时,停止运动.设运动时间为t (秒).①问:是否存在t 的值,使四边形DFBC 为平行四边形?若存在,求出t 的值;若不存在,说明理由;②若直线l 从y 轴出发的同时,有一动点Q 从点B 出发,沿射线BC 方向,以每秒3个单位长度的速度运动.是否存在t 的值,使以点D ,E ,Q ,C 为顶点的四边形为平行四边形;若存在,求出t 的值,并进一步探究此时的四边形是否为特殊的平行四边形;若不存在,说明理由.18.如图,在平面直角坐标系中,四边形ABCD 的顶点A 、B 在函数(0)m y x x =>的图象上,顶点C 、D 在函数(0)n y x x=>的图象上,其中0m n <<,对角线//BD y 轴,且BD AC ⊥于点P .已知点B 的横坐标为4.(1)当4m =,20n =时,①点B 的坐标为________,点D 的坐标为________,BD 的长为________.②若点P 的纵坐标为2,求四边形ABCD 的面积.③若点P 是BD 的中点,请说明四边形ABCD 是菱形.(2)当四边形ABCD 为正方形时,直接写出m 、n 之间的数量关系.19.在Rt △ABC 中,∠ACB =90°,AC =1,记∠ABC =α,点D 为射线BC 上的动点,连接AD ,将射线DA 绕点D 顺时针旋转α角后得到射线DE ,过点A 作AD 的垂线,与射线DE 交于点P ,点B 关于点D 的对称点为Q ,连接PQ .(1)当△ABD 为等边三角形时,①依题意补全图1;②PQ 的长为 ;(2)如图2,当α=45°,且BD =43时,求证:PD =PQ ; (3)设BC =t ,当PD =PQ 时,直接写出BD 的长.(用含t 的代数式表示) 20.如图,在平面直角坐标系中,抛物线与轴交于点,与轴交于点,的解析式为,若将抛物线平移,使平移后的抛物线经过点, 对称轴为直线,抛物线与轴的另一个交点是,顶点是,连结.(1)求抛物线的解析式;(2)求证:∽(3)半径为的⊙的圆心沿着直线从点运动到,运动速度为1单位/秒,运动时间为秒,⊙绕着点顺时针旋转得⊙,随着⊙的运动,求的运动路径长以及当⊙与轴相切的时候的值.【参考答案】***试卷处理标记,请不要删除一、压轴题1.(1)2315344y x x =-+;(2)9;(3)存在点M 的坐标为(315,28)或(1212,77)使△CQM 为等腰三角形且△BQM 为直角三角形【解析】【分析】(1)根据抛物线经过A 、B 两点,带入解析式,即可求得a 、b 的值.(2)根据PA=PB ,要求四边形PAOC 的周长最小,只要P 、B 、C 三点在同一直线上,因此很容易计算出最小周长.(3)首先根据△BQM 为直角三角形,便可分为两种情况QM ⊥BC 和QM ⊥BO ,再结合△QBM ∽△CBO ,根据相似比例便可求解.【详解】解:(1)将点A (1,0),B (4,0)代入抛物线23y ax bx =++中,得:3016430a b a b ++=⎧⎨++=⎩ 解得:34154a b ⎧=⎪⎪⎨⎪=-⎪⎩所以抛物线的解析式为2315344y x x =-+.(2)由(1)可知,抛物线的对称轴为直线52x =.连接BC ,交抛物线的对称轴为点P ,此时四边形PAOC 的周长最小,最小值为OA+OC+BC=1+3+5=9. (3) 当QM ⊥BC 时,易证△QBM ∽△CBO 所以 QM BM OC OB=, 又因为△CQM 为等腰三角形 ,所以QM=CM.设CM=x , 则BM=5- x 所以534x x -= 所以157x .所以QM=CM=157,BM=5- x=207,所以BM:CM=4:3. 过点M 作NM ⊥O B 于N ,则MN//OC, 所以 NM BM BN OC CB OB ==, 即4374NM BN == ,所以1216,77MN BN ==, 127ON OB BN =-= 所以点M 的坐标为(1212,77) 当QM ⊥BO 时, 则MQ//OC, 所以 QM BQ OC OB =, 即34QM BQ = 设QM=3t , 则BQ=4t , 又因为△CQM 为等腰三角形 ,所以QM=CM=3t,BM=5-3t 又因为QM 2+QB 2=BM 2, 所以(3t )2+(4t )2=(5-3t )2, 解得58t =MQ=3t=158,32OQ OB BQ =-=, 所以点M 的坐标为(315,28). 综上所述,存在点M 的坐标为(315,28)或(1212,77)使△CQM 为等腰三角形且△BQM 为直角三角形【点睛】本题是一道二次函数的综合型题目,难度系数较高,关键在于根据图形化简问题,这道题涉及到一种分类讨论的思想,这是这道题的难点所在,分类讨论思想的关键在于根据直角三角形的直角进行分类的.2.(1)2134y x x =-++;(2)(32,0);(3)①见解析;②CM =231-或CM =123+【解析】【分析】(1)根据点C 在抛物线上和已知对称轴的条件可求出解析式;(2)根据抛物线的解析式求出点B 及已知点C 的坐标,证明△ABC 是等腰直角三角形,根据旋转的性质推出直线EF 与x 轴的夹角为45°,因此设直线EF 的解析式为y=x+b ,设点M 的坐标为(m ,0),推出点F (m ,6-m ),直线EF 与抛物线2134y x x =-++只有一个交点,联立两个解析式,得到关于x 的一元二次方程,根据根的判别式为0得到关于m 的方程,解方程得点M 的坐标.注意有两种情况,均需讨论.(3)①过点P 作PG ⊥x 轴于点G ,过点E 作EH ⊥x 轴于点H ,设点M 的坐标为(m ,0),由2PC =及旋转的性质,证明△EHM ≌△MGP ,得到点E 的坐标为(m-1,5-m ),再根据两点距离公式证明EA ED =,注意分两种情况,均需讨论;②把E (m-1,5-m )代入抛物线解析式,解出m 的值,进而求出CM 的长.【详解】(1)∵点()6,0C 在抛物线上,∴103664b c =-⨯++, 得到6=9b c +,又∵对称轴2x =,∴2122()4b b x a =-=-=⨯-, 解得1b =,∴3c =,∴二次函数的解析式为2134y x x =-++; (2)当点M 在点C 的左侧时,如下图:∵抛物线的解析式为2134y x x =-++,对称轴为2x =,()6,0C∴点A (2,0),顶点B (2,4),∴AB=AC=4,∴△ABC 是等腰直角三角形,∴∠1=45°;∵将MPC 逆时针旋转90︒得到△MEF ,∴FM=CM ,∠2=∠1=45°,设点M 的坐标为(m ,0),∴点F (m ,6-m ),又∵∠2=45°,∴直线EF 与x 轴的夹角为45°,∴设直线EF 的解析式为y=x+b ,把点F (m ,6-m )代入得:6-m=m+b ,解得:b=6-2m ,直线EF 的解析式为y=x+6-2m ,∵直线EF 与抛物线2134y x x =-++只有一个交点, ∴262134y x m y x x =+-⎧⎪⎨=-++⎪⎩, 整理得:213204x m +-=, ∴Δ=b 2-4ac=0,解得m=32, 点M 的坐标为(32,0). 当点M 在点C 的右侧时,如下图:由图可知,直线EF 与x 轴的夹角仍是45°,因此直线EF 与抛物线2134y x x =-++不可能只有一个交点.综上,点M 的坐标为(32,0). (3)①当点M 在点C 的左侧时,如下图,过点P 作PG ⊥x 轴于点G ,过点E 作EH ⊥x 轴于点H ,∵2PC 2)知∠BCA=45°,∴PG=GC=1,∴点G (5,0),设点M 的坐标为(m ,0),∵将MPC 逆时针旋转90︒得到△MEF ,∴EM=PM ,∵∠HEM+∠EMH=∠GMP+∠EMH =90°,∴∠HEM=∠GMP ,在△EHM 和△MGP 中,EHM MGP HEM GMP EM MP ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△EHM ≌△MGP (AAS ),∴EH=MG=5-m ,HM=PG=1,∴点H (m-1,0),∴点E 的坐标为(m-1,5-m );∴22(12)(50)m m --+--221634m m -+又∵D 为线段BC 的中点,B (2,4),C (6,0),∴点D (4,2),∴22(14)(52)m m --+--221634m m -+∴EA= ED .当点M 在点C 的右侧时,如下图:同理,点E 的坐标仍为(m-1,5-m ),因此EA= ED .②当点E 在(1)所求的抛物线2134y x x =-++上时, 把E (m-1,5-m )代入,整理得:m 2-10m+13=0,解得:m=523+m=523-,∴CM =231或CM =123+.【点睛】本题是二次函数综合题,熟练掌握二次函数的图象和性质、旋转的性质、分类讨论的思想是解题的关键.3.(1)P (2,13);(2)a 的取值范围为:a <0或a >4;(3)①D (m ,m +3); ②2,3,4.【解析】【分析】(1)把m =1代入二次函数22(0)63m m y x x m m =-+>解析式中,进而求顶点P 的坐标即可;(2)把点Q (a ,b )代入二次函数22(0)63m m y x x m m =-+>解析式中,根据0b m ->得到关于a 的一元二次不等式即一元一次不等式组,解出a 的取值范围即可; (3)①过点D 作DE ⊥x 轴于点E ,过点A 作AF ⊥DE 于点F ,求出二次函数与y 轴的交点A 的坐标,得到OA 的长,再根据待定系数法求出直线AP 的解析式,进而求出与x 轴的交点B 的坐标,得到OB 的长;通过证明△ADF ≌△ABO ,得到AF=OA=m ,DF=OB=3,DE=DF+EF= DF+OA=m+3,求出点D 的坐标;②因为二次函数的图象与正方形ABCD 的边CD 有公共点,由①同理可得:C (m+3,3),分当x 等于点D 的横坐标时与当x 等于点C 的横坐标两种情况,进行讨论m 可能取的整数值即可.【详解】解:(1)当m =1时,二次函数为212163y x x =-+, ∴顶点P 的坐标为(2,13); (2)∵点Q (a ,b )在二次函数22(0)63m m y x x m m =-+>的图象上, ∴2263m m b a a m =-+, 即:2263m m b m a a -=- ∵0b m ->,∴2263m m a a ->0, ∵m >0,∴2263a a ->0, 解得:a <0或a >4,∴a 的取值范围为:a <0或a >4;(3)①如下图,过点D 作DE ⊥x 轴于点E ,过点A 作AF ⊥DE 于点F ,∵二次函数的解析式为2263m m y x x m =-+, ∴顶点P (2,3m ), 当x=0时,y=m ,∴点A (0,m ),∴OA=m ;设直线AP 的解析式为y=kx+b(k≠0),把点A (0,m ),点P (2,3m )代入,得:23m b m k b =⎧⎪⎨=+⎪⎩, 解得:3m k b m⎧=-⎪⎨⎪=⎩,∴直线AP 的解析式为y=3m -x+m , 当y=0时,x=3,∴点B (3,0);∴OB=3;∵四边形ABCD 是正方形,∴AD=AB ,∠DAF+∠FAB=90°,且∠OAB+∠FAB =90°,∴∠DAF=∠OAB ,在△ADF 和△ABO 中, DAF OAB AFD AOB AD AB ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ADF ≌△ABO (AAS ),∴AF=OA=m ,DF=OB=3,DE=DF+EF= DF+OA=m+3,∴点D 的坐标为:(m ,m+3);②由①同理可得:C (m+3,3),∵二次函数的图象与正方形ABCD 的边CD 有公共点,∴当x =m 时,3y m ≤+,可得322363m m m m -+≤+,化简得:32418m m -≤. ∵0m >,∴2184m m m -≤,∴218(2)4m m--≤, 显然:m =1,2,3,4是上述不等式的解,当5m ≥时,2(2)45m --≥,18 3.6m ≤,此时,218(2)4m m-->, ∴符合条件的正整数m =1,2,3,4; 当x = m +3时,y ≥3,可得2(3)2(3)363m m m m m ++-+≥, ∵0m >,∴21823m m m ++≥,即218(1)2m m++≥, 显然:m =1不是上述不等式的解,当2m ≥时,2(1)211m ++≥,189m ≤,此时,218(1)2m m++>恒成立, ∴符合条件的正整数m =2,3,4;综上:符合条件的整数m 的值为2,3,4.【点睛】本题考查二次函数与几何问题的综合运用,熟练掌握二次函数的图象和性质、一次函数的图象和性质、正方形的性质是解题的关键.4.(1)2125333y x x =--;(2)①110x ≤≤;②不会发生变化,理由见解析 【解析】【分析】(1)根据点A ,B 坐标求出对称轴为1x =,得到2b a=-,代入抛物线解析式得到216(1)y x a a =--,写出顶点61,D a ⎛⎫- ⎪⎝⎭,根据其位置,得出0a >,根据A ,B 坐标表示出AC ,BC 长度,结合AC ·BC=8,求得m 的值,代入点A ,B 得其坐标,将A 坐标代入抛物线解析式得a 的值,即可得到抛物线的解析式;(2)①将1x =-代入2125333y x x =--,求得21,3Q ⎛⎫-- ⎪⎝⎭,结合点E 求得PQ 解析式,联立2125333y x x =--,解得点P 的坐标,根据中心对称的性质,得到点1D 的横坐标为10,可得x 的取值范围;②过,P Q 分别作直线1x =的垂线,垂足分别为,F G ,设出点P ,Q 坐标,求出PQ 的解析式,联立2125333y x x =--,得到1212,x x x x +⋅,由tan 1tan DPF QDG ∠=∠,得到DPF QDG ∠=∠,结合90DPF PDF ︒∠+∠=,得到90PDQ ︒∠=,可证得结果.【详解】解:(1)∵抛物线212y x bx a a=+-过(1,),(1,)(0)A m n B m n n +->两点, ∴由抛物线对称性知:抛物线对称轴为直线1x =, 112b a∴-=⨯ 2b a∴=- 2212516(1)y x x x a a a a a ∴=--=--61,D a ⎛⎫∴- ⎪⎝⎭ 又∵顶点D 在第四象限,60a ∴-<,解得:10,0a a>> 0,0m n >>,∴抛物线的开口向上,其图象如图所示,1,|1|,8AC m BC m AC BC =+=-⋅=,(1)(1)8m m ∴+-=±,解得:3m =±0m >, 3m ∴=,由题意可知,点E 在线段AB 上,而点E 的纵坐标为1, (4,1),(2,1)A B ∴-, 把(4,1)A 代入216(1)y x a a =--得,2161(41)a a=--解得:113a = ∴抛物线1L 所对应的函数表达式为2125333y x x =-- (2)①把1x =-代入2125333y x x =--得,23y =- 21,3Q ⎛⎫∴-- ⎪⎝⎭ (1,1)E ,∴直线PQ 的解析式为5166y x =+ 由25166125333y x y x x ⎧=+⎪⎪⎨⎪=--⎪⎩可得,21255133366x x x --=+, 解得:12111,2x x =-=∴点P 的横坐标为112由中心对称的性质可得,点1D 的横坐标为10,即抛物线2L 的对称轴为直线10x =, 结合图象:可得,x 的范围为110x ≤≤;②在旋转的过程中,1PDQ ∠的度数不会发生变化,理由如下: 连接,PD QD ,由中心对称的性质可得,11PD Q PDQ ∠=∠. 过,P Q 分别作直线1x =的垂线,垂足分别为,F G ,如图所示,设()()1122,,,P x y Q x y ,直线PQ 的解析式为y kx b '=+,则 ∵直线PQ 过(1,1)E ,1k b '∴=+,可得,1b k '=-,∴直线PQ 的解析式为(1)y kx k =+-由2(1)125333y kx k y x x =+-⎧⎪⎨=--⎪⎩得,2125(1)333x x kx k --=+- 整理得,2(32)(38)0x k x k -++-=121232,38x x k x x k ∴+=+⋅=-21111125(2)1333tan 13x x x DF DPF PF x -----∠===-,2222213tan 1251(2)333x QDG x x x -∠==-----, ()()()121212111tan (38)(32)11tan 999x x x x x x DPF k k QDG ---⋅++-∠--++-∴====∠ tan tan DPF QDG ∴∠=∠DPF QDG ∴∠=∠又90DPF PDF ︒∠+∠=90QDG PDF ︒∴∠+∠=90PDQ ︒∴∠=1190PDQ ︒∴∠=,即在旋转的过程中,PDQ ∠的度数不会发生变化. 【点睛】本题考查了二次函数与几何图形的综合应用,熟知其设计的知识点及相关关系,是解题的关键.5.(1)详见解析;(2)详见解析;(3)BD =r =【解析】【分析】(1)根据已知条件得到∠EBC =∠ADC =90°,根据平行线分线段成比例定理得出AG CG GD ==EF CF BF,等量代换即可得到结论; (2)证明∠PAO =90°,连接AO ,AB ,根根据直角三角形斜边中线的性质,切线的性质和等量代换,就可得出结论;(3)连接AB ,根据圆周角定理得到∠BAC =∠BAE =90°,推出FA =FB =FE =FG =3,过点F 作FH ⊥AG 交AG 于点H ,推出四边形FBDH 是矩形,得到FB =DH =3,根据勾股定理得到FH=r ,根据勾股定理列方程即可得到结论.【详解】解:(1)∵EB 是切线,AD ⊥BC ,∴∠EBC =∠ADC =90°,∴AD ∥EB ,(同位角相等,两直线平行) ∴AG CG GD ==EF CF BF,(平行线分线段成比例) ∵G 是AD 的中点,∴AG =GD ,∴EF =FB ;(2)证明:连接AO,AB,∵BC是⊙O的直径,∴∠BAC=90°,(直径所对圆周角为直角)在Rt△BAE中,由(1)知,F是斜边BE的中点,直角三角形斜边中线为斜边一半,∴AF=FB=EF,且等边对等角,∴∠FBA=∠FAB,又∵OA=OB,∴∠ABO=∠BAO,∵BE是⊙O的切线,∴∠EBO=90°,∵∠EBO=∠FBA+∠ABO=∠FAB+∠BAO=∠FAO=90°,∴PA是⊙O的切线;(3)如图2,连接AB,AO,∵BC是直径,∴∠BAC=∠BAE=90°,∵EF=FB,∴FA=FB=FE=FG=3,过点F作FH⊥AG交AG于点H,∵FA=FG,FH⊥AG,∴AH=HG,∵∠FBD=∠BDH=∠FHD=90°,∴四边形FBDH是矩形,∴FB=DH=3,∵AG=GD,∴AH=HG=1,GD=2,FH2222--,AF AH=31=22∴BD=22设半径为r,在Rt ADO中,∵222AO =AD +OD ,∴222r =4,解得:r =综上所示:BD =r =【点睛】本题主要考察了平行线的性质及定理、平行线分线段成比例定理、等边对等角、直角三角形斜边中线的性质、圆周角定理、勾股定理及圆的切线及其性质,该题较为综合,解题的关键是在于掌握以上这些定理,并熟练地将其结合应用.6.(1)223y x x =--;(2)点E 的坐标为(113,289);(3)存在;点Q '的坐标为:(232-)或(32,2)或(,32)或(32-, 【解析】【分析】(1)利用待定系数法代入计算,结合对称轴,即可求出解析式;(2)取AD 中点M ,连接BM ,过点A 作AE ∥BM ,交抛物线于点E ;然后求出直线AE 的解析式,结合抛物线的解析式,即可求出点E 的坐标;(3)由题意,先求出点F 的坐标,然后得到点Q 的坐标,得到OQ 和OB 的长度,然后结合等腰三角形的性质进行分类讨论,可分为四种情况进行分析,分别求出点Q '的坐标即可.【详解】解:(1)根据题意,设二次函数的解析式为2y ax bx c =++, ∵对称轴为12b x a=-=,则2b a =-, 把点(-1,0),点(0,-3)代入,有03a b c c -+=⎧⎨=-⎩, 又∵2b a =-,∴1a =,2b =-,3b =-,∴抛物线的解析式为:223y x x =--;(2)由(1)223y x x =--可知,顶点D 的坐标为(1,4-),点B 为(3,0),∵点A 为(1-,0),∴AD 的中点M 的坐标为(0,-2);如图,连接AD ,DE ,BE ,取AD 中点M ,连接BM ,过点A 作AE ∥BM ,交抛物线于点E ;此时点D 到直线AE 的距离等于点B 到直线AE 距离的2倍,即2ADE ABE S S ∆∆=,设直线BM 为y kx h =+,把点B 、点M 代入,有302k h h +=⎧⎨=-⎩, ∴直线BM 为223y x =-, ∴直线AE 的斜率为23, ∵点A 为(1-,0),∴直线AE 为2233y x =+, ∴2223323y x y x x ⎧=+⎪⎨⎪=--⎩,解得:10x y =-⎧⎨=⎩(舍去)或113289x y ⎧=⎪⎪⎨⎪=⎪⎩; ∴点E 的坐标为(113,289); (3)由(2)可知,直线AE 为2233y x =+, ∴点F 的坐标为(0,23), ∵将点F 向下平移233+Q , ∴点Q 的坐标为(0,3- ∴3OQ∵点B 为(3,0),则OB=3,在Rt △OBQ 中,3tan 33OB OQB OQ ∠===, ∴60OQB ∠=︒, 由旋转的性质,得60Q OQB '∠=∠=︒,3OQ OQ '==, ①当3OG OQ '==时,OQ G '∆是等边三角形,如图:∴点G 的坐标为(3,0),∴点Q '的横坐标为32, ∴点Q '的坐标为(32,32-); ②当3OQ Q G ''==,OQ G '∆是等腰三角形,如图:∵60OQ B ''∠=︒,∴30Q OG '∠=︒,∵3OQ '∴点Q '的坐标为(323 ③当3OG OQ '==OQ G '∆是等边三角形,如图:此时点G 的坐标为(3-,0),∴点Q '的坐标为(32-,32); ④当3Q G OQ ''==时,OQ G '∆是等腰三角形,如图:此时30Q OG '∠=︒,∴点Q '的坐标为(32-,3); 综合上述,点Q '332-)或(323332)或(32-,3). 【点睛】本题考查了二次函数的综合问题,也考查了解直角三角形,旋转的性质,等边三角形的性质,等腰三角形的性质,一次函数的性质,以及坐标与图形,解题的关键是熟练掌握图形的运动问题,正确的确定点Q '的位置是关键;注意运用数形结合的思想,分类讨论的思想进行解题.7.(1)6c a =-;(2)①2132y x =-;②2. 【解析】【分析】(1)先根据二次函数的对称性求出抛物线与x 轴的另一个交点的横坐标,然后根据二次函数与一元二次方程的联系、一元二次方程的根与系数的关系即可得;(2)①先根据(1)可得抛物线的解析式和顶点D 的坐标,再设11222),(2)(,,A x k a B k x x a x --,从而可得直线AD 、BD 解析式中的一次项系数,然后根据一元二次方程的根与系数的关系可得12k x x a +=,124x x =-,最后根据圆周角定理可得AD BD ⊥,从而可得1212144x x k a k a x x +⋅=-+,化简可求出a 的值,由此即可得出答案;②先求出点B 、D 的坐标,再根据直线1l 与抛物线只有一个交点可得出2213,2q p x p --==,然后联立直线1l 与2l 求出点N 的坐标,最后利用三角形的面积公式分别求出12,S S ,由此即可得.【详解】(1)抛物线2(0)y ax bx c a =++>,顶点D 在y 轴上,∴抛物线的对称轴为y 轴,即0x =,0b ∴=,抛物线与x∴抛物线与x轴的另一个交点的横坐标为是关于x 的一元二次方程20(0)ax bx c a ++=>的两根,(c a∴=, 即6c a =-;(2)①由(1)可得:抛物线的解析式为26y ax a =-,顶点D 的坐标为(0,6)D a -,由题意,设点A 、B 的坐标分别为11222),(2)(,,A x k a B k x x a x --,且21x x >, 由点A 、D 的坐标得:直线AD 解析式中的一次项系数为11112064x a x x k x a k a -=-++, 由点B 、D 的坐标得:直线BD 解析式中的一次项系数为22222064x a x x k x a k a -=-++, 联立262y ax a y kx a⎧=-⎨=-⎩可得240ax kx a --=, 则1x 与2x 是关于x 的一元二次方程240ax kx a --=的两根, 由根与系数的关系得:1212,4k x x x x a+==-,以AB 为直径的圆恒过点D ,90ADB ∴∠=︒,即AD BD ⊥, 则1212144x x k a k a x x +⋅=-+, 整理得:2164a =, 解得12a =或102a =-<(不符题意,舍去), 故抛物线的解析式为2132y x =-; ②由①可知,222(0,3),(,31)2D x x B --, 则直线2l 的解析式为3y =-, 联立2132y x y px q⎧=-⎪⎨⎪=+⎩可得22260px x q ---=, 1l 与抛物线只有一个公共点,∴方程22260px x q ---=只有一个实数根2x ,∴其根的判别式244(26)0p q ∆=++=,且2222260x px q ---=, 解得2132q p --=, 将2132q p --=代入2222260x px q ---=得:2x p =, 联立3y y px q =-⎧⎨=+⎩,解得33q x p y --⎧=⎪⎨⎪=-⎩, 即点N 的坐标为3(,3)q N p---, 21322p q p DN p p --∴===, 121122S DM x DM p =⋅=⋅,21112224p S DM DN DM DM p =⋅=⋅=⋅, 1212124DM S p M p S D ⋅⋅∴==. 【点睛】本题考查了二次函数与一元二次方程的联系、一元二次方程的根与系数的关系以及根的判别式、二次函数的对称性、圆周角定理等知识点,较难的是题(2)①,利用圆周角定理得出AD BD⊥,从而利用一次函数的性质建立等式是解题关键.8.(1)5;(2)744-;(3)4,理由见解析【解析】【分析】(1)作点C关于AB的对称点C',连接DE,与AB交于点E,连接CE.此时EC+ED=EC'+ED=C'D最短,易证DBC'=90°,C'B=CB=2,DB=1,所以在Rt△DBC'中,C'D2=12+22=5,故CD=5,即EC+ED的最小值是5;(2)作⊙A关于x轴的对称⊙A′,连接BA′分别交⊙A′和⊙B'于M'、N,交x轴于P,连接PA,交⊙A于M,根据两点之间线段最短得到此时PM+PN最小,再利用对称确定A′的坐标,接着利用两点间的距离公式计算出A′B的长,然后用A′B的长减去两个圆的半径即可得到MN的长,即得到PM+PN的最小值;(3)如图③,延长AD、CE,交于点H,连接GH.易知GE=12DE=1,所以点G在以H为圆心,1为半径的圆周上运动,作点A关于BC的对称点A',连接A'H,与BC交于点F,与⊙H交于点G,此时AF+FG=A'F+FG=A'G为最短,AB=2,AH=BC=3,A'B=2,A'A=4,所以A'H=2234+=5,因此A'G=A'H﹣GH=5﹣1=4,即该装置中的两根连接杆AF 与FG长度和的最小值为4.【详解】解:(1)如图①,作点C关于AB的对称点C',连接DE,与AB交于点E,连接CE.∴CE=C'E,此时EC+ED=EC'+ED=C'D最短,∵AC=BC=2,∠ACB=90°∴∠CBA=∠CAB=45°,C'B=CB=2∴∠C'BA=45°,∴∠DBC'=90°∵D是BC边的中点,∴DB=1,在Rt△DBC'中,C'D2=12+22=5,∴CD =5, ∴EC +ED 的最小值是5,故答案为5;(2)如图②,作⊙A 关于x 轴的对称⊙A ′,连接BA ′分别交⊙A ′和⊙B '于M '、N ,交x 轴于P ,连接PA ,交⊙A 于M .则此时PM +PN =PM '+PN =M 'N 最小,∵点A 坐标(﹣2,3),∴点A ′坐标(﹣2,﹣3),∵点B (3,4),∴A 'B =()()223243+++=74,∴M 'N =A ′B ﹣BN ﹣A ′M '=74﹣1﹣3=74﹣4∴PM +PN 的最小值为=74﹣4;(3)如图③,延长AD 、CE ,交于点H ,连接GH .∵∠DAB =∠B =∠C =90°∴∠DHE =90°,∵G 是DE 的中点,DE =2,∴GE =12DE =1, ∵联动杆DE 的两端D 、E 允许在AD 、CE 所在直线上滑动,∴点G 在以H 为圆心,1为半径的圆周上运动,作点A 关于BC 的对称点A ',连接A 'H ,与BC 交于点F ,与⊙H 交于点G ,此时AF +FG =A 'F +FG =A 'G 为最短,∵AB =2,AH =BC =3,A 'B =2,A 'A =4,∴A 'H,∴A 'G =A 'H ﹣GH =5﹣1=4,所以该装置中的两根连接杆AF 与FG 长度和的最小值为4.【点睛】本题考查了圆的综合题,涉及到勾股定理、轴对称性质求最短值,综合性比较强,结合题意添加合适的辅助线是解题的关键.9.(1)1;(2)①22-;②max 432y =,min 12y =-;(3)31n -<≤-,514n <≤ 【解析】【分析】(1)先求出5y ax =-的相关函数,然后代入求解,即可得到答案;(2)先求出二次函数的相关函数,①分为m <0和m ≥0两种情况将点B 的坐标代入对应的关系式求解即可;②当-3≤x <0时,y=x 2-4x+12,然后可 此时的最大值和最小值,当0≤x≤3时,函数y=-x 2+4x-12,求得此时的最大值和最小值,从而可得到当-3≤x≤3时的最大值和最小值; (3)首先确定出二次函数y=-x 2+4x+n 的相关函数与线段MN 恰好有1个交点、2个交点、3个交点时n 的值,然后结合函数图象可确定出n 的取值范围.【详解】解:(1)根据题意,一次函数5y ax =-的相关函数为5,(0)5,(0)ax x y ax x -≥⎧=⎨-+<⎩, ∴把点()5,10A -代入5y ax =-+,则(5)510a -⨯-+=,∴1a =;(2)根据题意,二次函数2142y x x =-+-的相关函数为2214,(0)214,(0)2x x x y x x x ⎧-+-≥⎪⎪=⎨⎪-+<⎪⎩, ①当m <0时,将B (m ,32)代入y=x 2-4x+12得m 2-4m+1322=, 解得:m=2-。
贵阳市十九中九年级数学上册第四单元《圆》测试(有答案解析)

一、选择题1.下列说法正确的是( )A .圆是轴对称图形,任何一条直径都是圆的对称轴B .平分弦的直径垂直于弦C .长度相等的弧是等弧D .在同圆或等圆中,相等的圆心角所对的弦相等2.在平面直角坐标系中,以点()3,4-为圆心,半径为5作圆,则原点一定( ) A .与圆相切B .在圆外C .在圆上D .在圆内 3.已知O 的直径10CD cm ,AB 是O 的弦,AB CD ⊥,垂足为M ,且8AB cm =,则AC 的长为( ) A .25 B .43 C .25或45 D .23或43 4.在⊙O 中,AB 为直径,点C 为圆上一点,将劣弧AC 沿弦AC 翻折交AB 于点D ,连结CD .如图,若点D 与圆心O 不重合,∠BAC =25°,则∠BDC 的度数( )A .45°B .55°C .65°D .70° 5.已知⊙O 的直径为6,圆心O 到直线l 的距离为3,则能表示直线l 与⊙O 的位置关系的图是( ) A . B .C .D .6.如图,EM 经过圆心O ,EM CD ⊥于M ,若4CD =,6EM =,则CED 所在圆的半径为( )A .103B .83C .3D .47.如图,A 、B 、C 三点在O 上,D 是CB 延长线上的一点,40ABD ∠=︒,那么AOC ∠的度数为( ).A .80°B .70°C .50°D .40°8.如图,⊙P 与y 轴相切于点C (0,3),与x 轴相交于点A (1,0),B (7,0),直线y=kx-1恰好平分⊙P 的面积,那么k 的值是( )A .12B .45C .1D .439.如图,△ABC 内接于☉O ,若☉O 的半径为6,∠A=60°,则BC 的长为( )A .2πB .4πC .6πD .8π10.在△ABC 中,∠ACB 为锐角,分别以AB ,AC 为直径作半圆,过点B ,A ,C 作弧BAC ,如图所示.若AB=4,AC=2,图中两个新月形面积分别为S 1,S 2,两个弓形面积分别为S 3,S 4,S 1-S 2=14π,则S 3-S 4的值是( )A .294πB .234πC .114πD .54π 11.在扇形中,∠AOB =90°,面积为4πcm 2,用这个扇形围成一个圆锥的侧面,这个圆锥的底面半径为 ( )A .1cmB .2cmC .3n cmD .4cm 12.一个圆锥的底面直径为4 cm ,其侧面展开后是圆心角为90°的扇形,则这个圆锥的侧面积等于( )A .4πcm 2B .8πcm 2C .12πcm 2D .16πcm 2第II 卷(非选择题)请点击修改第II 卷的文字说明参考答案二、填空题13.如图,在扇形AOB 中,90AOB ∠=︒正方形CDEF 的顶点C 是弧AB 的中点,点D 在OB 上,点E 在OB 的延长线上,当正方形CDEF 的边长为2时,阴影部分的面积为_______.14.如图,⊙O 是△ABC 的内切圆,若∠A =70°,则∠BOC =________°.15.如图,点C ,D 是半圈O 的三等分点,直径3AB =AC 交半径OD 于E ,则阴影部分的面积是_______.16.如图,已知BD 是⊙O 的直径,点A ,C 在⊙O 上,58AOB ∠=,B 是弧AC 的中点,则BDC ∠的度数为___________.17.如图,正五边形ABCDE 内接于⊙O ,点F 在DE 上,则∠CFD =_____度.18.如图,AB 是O 的直径,CD 是O 的弦,AB 、CD 的延长线交于点E ,已知2AB DE =,若COD ∆为直角三角形,则E ∠的度数为______︒.19.如图,直线33y x =+交x 轴于点A ,交y 轴于点B .以A 为圆心,以AB 为半径作弧交x 轴于点A 1;过点A 1作x 轴的垂线,交直线 AB 于点B 1,以A 为圆心,以AB 1为半径作弧交x 轴于点 A 2;…,如此作下去,则点n A 的坐标为___________;20.如图,MN 是O 的直径,2MN =,点A 在O 上,30AMN ∠=︒,B 为弧AN的中点,点P 是直径MN 上的一个动点,则PA PB +的最小值为_______.三、解答题21.如图,四边形ABCD 内接于⊙O ,AC 是⊙O 的直径,E 是AB 上一点,30AEO DAC ∠=∠=︒,连接BD .(1)求证:OAE CDB △≌△;(2)连接DE ,若DE AB ⊥,2OA =,求BC 的长.22.如图,已知AB 是O 的一条弦,DE 是O 的直径且DE AB ⊥于点C . (1)若3,5OC OA ==,求AB 的长;(2)求证:EAO BAD ∠=∠.23.在O 中,弦CD 与直径AB 相交于点,62P ABC ∠=︒.(1)如图1,若100APC ∠=︒,求BAD ∠和CDB ∠的大小;(2)如图2,若CD AB ⊥,过点D 作O 的切线,与AB 的延长线相交于点E ,求E∠的大小.24.如图,在平面直角坐标系中,点A 的坐标是()10,0,点B 的坐标是()8,0,点C ,D 在以OA 为直径的半圆M 上,且四边形OCDB 是平行四边形.(1)求CD 的长;(2)求直线BC 的解析式.25.如图,以点O 为圆心的两个同心圆中,大圆的弦AB 是小圆的切线,点P 为切点.求证:AP=BP .26.如图,BC 是圆O 的直径,AD 垂直BC 于D ,弧AB=弧AF ,BF 与AD 交于E ,求证:=(1)AE BEBC=,求AD的长.(2)若A,F把半圆三等分,12【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据对称轴的定义对A进行判断;根据垂径定理的推论对B进行判断;根据等弧定义对C 进行判断;根据圆心角定理对D进行判断.【详解】解:A、圆是轴对称图形,任何一条直径所在的直线都是它的对称轴,所以A选项错误;B、平分弦(非直径)的直径垂直于弦,并且平分弦所对的弧,所以B选项错误;C、长度相等的弧不一定能重合,所以不一定是等弧,所以C选项错误;D、在同圆或等圆中,相等的圆心角所对的弦相等,所以D选项正确.故选:D.【点睛】本题考查了圆的有关性质,掌握相关定理是解题关键.2.C解析:C【分析】设点(-3,4)为点P,原点为点O,先计算出OP的长,然后根据点与圆的位置关系的判定方法求解.【详解】解:∵设点(-3,4)为点P,原点为点O,∴OP22+5,34而⊙P的半径为5,∴OP等于圆的半径,∴点O在⊙P上.故选:C.本题考查了点与圆的位置关系:点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.3.C解析:C【分析】连结OA ,由AB CD ⊥,根据垂径定理可以得到4AM =,结合勾股定理可以得到3OM =.在分类讨论,如图,当8CM =和2CM =时,再结合勾股定理即可求出AC .【详解】连结OA ,∵AB CD ⊥, ∴118422AM BM AB ===⨯=, 在Rt OAM 中,5OA =,∴223OA OM AM -==,当如图时,538CM OC OM =+=+=,在Rt ACM △中,2245AC AM CM =+=,当如图时,532CM OC OM =-=-=,在Rt ACM △中,2225AC AM CM +=故选C .【点睛】 本题考查垂径定理“垂直于弦的直径平分弦且平分这条弦所对的两条弧”.分类讨论思想也是解决本题的关键.4.C解析:C【分析】连接BC ,求出∠B =65°,根据翻折的性质,得到∠ADC+∠B =180°,进而得到∠BDC=∠B =65°.解:连接BC,∵AB是直径,∴∠ACB=90°,∵∠BAC=25°,∴∠B=90°﹣∠BAC=90°﹣25°=65°,根据翻折的性质,AC所对的圆周角为∠B,ABC所对的圆周角为∠ADC,∴∠ADC+∠B=180°,∴∠BDC=∠B=65°,故选:C.【点睛】本题考查了圆周角定理及其推论,根据题意添加适当辅助线是解题关键.5.C解析:C【分析】因为⊙O的直径为6,所以圆的半径是3,圆心O到直线l的距离为3即d=3,所以d=r,所以直线l与⊙O的位置关系是相切.【详解】解:∵⊙O的直径为6,∴r=3,∵圆心O到直线l的距离为3即d=3,∴d=r∴直线l与⊙O的位置关系是相切.故选:C.【点睛】本题考查直线与圆的位置关系,若圆的半径为r,圆心到直线的距离为d,d>r时,圆和直线相离;d=r时,圆和直线相切;d<r时,圆和直线相交.6.A解析:A【分析】如图,连接OD,设半径为r,则OM=6-r;再由垂径定理求出MD的长,然后根据勾股定理解答即可.【详解】解:如图,连接OD ,设半径为r ,则OM=6-r∵EM CD ⊥∴MD=12CD=2 在Rt △MOD 中,OD=r ,OM=6-r ,MD=2 ∴222OM MD OD +=,即()22262r r -+=,解得r=103. 故答案为A .【点睛】本题考查了圆的垂径定理和勾股定理,根据垂径定理求得MD 的长是解答本题的关键. 7.A解析:A【分析】作弧ABC 所对的圆周角∠AEC ,如图,先利用邻补角计算出∠ABC=140°,再利用圆内接四边形的性质计算出∠E=40°,然后根据圆周角定理得到∠AOC 的度数.【详解】解:作弧ABC 所对的圆周角∠AEC ,∵∠ABD=40°,∴∠ABC=180°-40°=140°,∵∠AEC+∠ABC=180°,∴∠E=40°,∴∠AOC=2∠AEC=2×40°=80°.故选:A .【点睛】本题考查了圆内接四边形对角互补,以及圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.8.C解析:C【分析】连接PC,PA,过点P作PD⊥AB于点D,根据切线的性质可知PC⊥y轴,故可得出四边形PDOC是矩形,所以PD=OC=3,再求出AB的长,由垂径定理可得出AD的长,故可得出OD 的长,进而得出P点坐标,再把P点坐标代入直线y=kx-1即可得出结论.【详解】解:连接PC,PA,过点P作PD⊥AB于点D,∵⊙P与y轴相切于点C(0,3),∴PC⊥y轴,∴四边形PDOC是矩形,∴PD=OC=3,∵A(1,0),B(7,0),∴AB=7-1=6,∴AD=12AB=12×6=3,∴OD=AD+OA=3+1=4,∴P(4,3),∵直线y=kx-1恰好平分⊙P的面积,∴3=4k-1,解得k=1.故选:C.【点睛】本题考查的是圆的综合题,根据题意作出辅助线,构造出直角三角形求出P点坐标即可得出结论.9.B解析:B【分析】连接OB,OC,根据圆周角定理求出∠BOC度数,再由弧长公式即可得出结论.【详解】解:连接OB,OC,∵∠A=60°,∴∠BOC=2∠A=120°,∴BC =208161π⨯=4π. 故选:B .【点睛】 本题考查了三角形的外接圆与外心,根据题意作出辅助线,利用圆周角定理及弧长公式求解是解题的关键.10.D解析:D【分析】根据AB 和AC 的长和圆的面积公式可求得S 1+S 3,S 2+S 4的值,然后再两值相减即可得出结论.【详解】解:∵AB=4,AC=2,∴S 1+S 3=2π,S 2+S 4=2π, ∴(S 1+S 3)﹣(S 2+S 4)=(S 1﹣S 2)+(S 3﹣S 4)=32π ∵S 1-S 2=14π, ∴S 3-S 4= 32π﹣14π= 54π, 故选:D .【点睛】 本题考查了圆的面积,正确表示出S 1+S 3,S 2+S 4的值是解答的关键.11.A解析:A【分析】圆锥的底面周长等于侧面展开图的扇形弧长,因而要先求扇形的弧长,根据扇形的面积公式2360n R S π=,可以求出扇形的半径,就可以求出弧长. 【详解】解:根据扇形的面积公式2360n R S π=得到:2904360R ππ=; ∴R=4,则弧长9042180cm ππ⋅==, 设圆锥的底面半径为r ,则2π=2πr ;∴r=1cm .故选:A .【点睛】 本题综合考查有关扇形和圆锥的相关计算.解题思路:解决此类问题时要紧紧抓住两者之间的两个对应关系:(1)圆锥的母线长等于侧面展开图的扇形半径;(2)圆锥的底面周长等于侧面展开图的扇形弧长.正确对这两个关系的记忆是解题的关键.12.D解析:D【分析】设展开后的圆半径为r ,根据圆锥性质可知底面周长就等于展开后扇形的弧长,然后算出展开后扇形的半径,进而计算出扇形的面积.【详解】解:设展开后的扇形半径为r ,由题可得:4π=2r π解得r =8∴S 扇形=14π×82 =16π故选:D【点睛】此题主要考查了圆锥的计算,正确理解圆锥侧面展开图与各部分对应情况是解题关键. 二、填空题13.π﹣2【分析】连结OC 根据勾股定理可求OC 的长根据题意可得出阴影部分的面积=扇形BOC 的面积﹣三角形ODC 的面积依此列式计算即可求解【详解】解:连接OC ∵在扇形AOB 中∠AOB =90°正方形CDEF解析:π﹣2【分析】连结OC ,根据勾股定理可求OC 的长,根据题意可得出阴影部分的面积=扇形BOC 的面积﹣三角形ODC 的面积,依此列式计算即可求解.【详解】解:连接OC ,∵在扇形AOB 中,∠AOB =90°,正方形CDEF 的顶点C 是弧AB 的中点,∴∠COD =45°,∴OC =2CD =22,∴阴影部分的面积=扇形BOC 的面积﹣三角形ODC 的面积=245(22)π⨯⨯﹣12×22 =π﹣2.故答案为:π﹣2..【点睛】本题考查了扇形面积的计算以及正方形的性质,解题的关键是得到扇形半径的长度. 14.125【分析】根据三角形内角和性质结合题意可计算得的值;根据内切圆的性质分析可计算得的值从而完成求解【详解】∵∠A =70°∴∵⊙O 是△ABC 的内切圆∴∴∴故答案为:125【点睛】本题考查了三角形内角解析:125【分析】根据三角形内角和性质,结合题意,可计算得ABC ACB ∠+∠的值;根据内切圆的性质分析,可计算得OBC OCB ∠+∠的值,从而完成求解. 【详解】∵∠A =70°∴180110ABC ACB A ∠+∠=-∠=∵⊙O 是△ABC 的内切圆∴12OBC ABC ∠=∠,12OCB ACB ∠=∠ ∴11111055222OBC OCB ABC ACB ∠+∠=∠+∠=⨯= ∴180********BOC OBC OCB ∠=-∠-∠=-=故答案为:125.【点睛】本题考查了三角形内角和、三角形内切圆的知识;解题的关键是熟练掌握三角形内角和、三角形内切圆的性质,从而完成求解.15.【分析】连接OC 由点CD 是半圆O 的三等分点得到根据垂径定理得到OD ⊥AC ∠DOC=60°求得OE=CE=3根据扇形和三角形的面积公式即可得到结论【详解】解:连接OC ∵点CD 是半圆O 的三等分点∴∴OD 解析:332π-【分析】连接OC ,由点C ,D 是半圆O 的三等分点,得到AD CD CB ==,根据垂径定理得到OD ⊥AC ,∠DOC=60°,求得OE=3,CE=3,根据扇形和三角形的面积公式即可得到结论.【详解】解:连接OC ,∵点C ,D 是半圆O 的三等分点, ∴AD CD CB ==,∴OD ⊥AC ,∠DOC=60°,∴∠OCE=30°, ∵3AB =∴3∴3CE=3,∴S 阴影=S 扇形COD -S △OCE 260(23)1333322ππ⋅⋅-⨯=-. 故答案为:3322π-. 【点睛】本题考查了扇形的面积的计算,垂径定理,含30°角的直角三角形的性质,正确的识别图形是解题的关键. 16.29°【分析】先由是弧的中点可得再根据圆周角定理可得结果【详解】解:连接OC ∵是弧的中点∴∴∠BOC=∠AOB=58°∴∠BDC==29°故答案为29°【点睛】本题考查了圆周角定理掌握圆周角定理是解解析:29°【分析】先由B 是弧AC 的中点,可得AB BC = ,再根据圆周角定理可得结果.【详解】解:连接OC ,∵B是弧AC的中点,∴AB BC=.∴∠BOC=∠AOB=58°∴∠BDC=1582⨯︒=29°.故答案为29°.【点睛】本题考查了圆周角定理,掌握圆周角定理是解题的关键.17.36【分析】连接OCOD求出∠COD的度数再根据圆周角定理即可解决问题【详解】如图连接OCOD∵五边形ABCDE是正五边形∴∠COD==72°∴∠CFD=∠COD=36°故答案为:36【点睛】本题考解析:36.【分析】连接OC,OD.求出∠COD的度数,再根据圆周角定理即可解决问题.【详解】如图,连接OC,OD.∵五边形ABCDE是正五边形,∴∠COD=3605︒=72°,∴∠CFD=12∠COD=36°,故答案为:36.【点睛】本题考查了正多边形和圆、圆周角定理等知识,解题的关键是熟练掌握基本知识.18.【分析】由于AB是⊙O的直径则AB=2DO而AB=2DE可得DO=DE根据等腰三角形的性质得到∠DOE=∠E又由于△COD为直角三角形而OC=OD所以△COD为等腰直角三角形于是可得∠CDO=45°解析:22.5︒【分析】由于AB是⊙O的直径,则AB=2DO,而AB=2DE,可得DO=DE,根据等腰三角形的性质得到∠DOE=∠E,又由于△COD为直角三角形,而OC=OD,所以△COD为等腰直角三角形,于是可得∠CDO=45°,利用三角形外角性质有∠CDO=∠DOE+∠E,则∠E=1 2∠CDO=22.5°.【详解】解:∵AB是⊙O的直径,∵AB=2DO,而AB=2DE,∴DO=DE,∴∠DOE=∠E,∵△COD为直角三角形,而OC=OD,∴△COD为等腰直角三角形,∴∠CDO=45°,∵∠CDO=∠DOE+∠E,∴∠E=12∠CDO=22.5°.故答案为:22.5°.【点睛】本题考查了圆的认识:圆上任意两点的连线段叫圆的弦;过圆心的弦叫圆的直径;直径的长等于半径的2倍.也考查了等腰直角三角形的判定与性质以及等腰三角形的性质.19.(2n﹣10)【分析】根据题意先求出点AB的坐标再利用勾股定理求出AA1AA2AA3……AAn的长可得到点A1A2A3……An的坐标找到规律即可解答【详解】解:当x=0时y=当y=0时x=﹣1∴A(解析:(2n﹣1,0)【分析】根据题意,先求出点A、B的坐标,再利用勾股定理求出AA1、AA2、AA3……AA n的长,可得到点A1、A2、A3……A n的坐标,找到规律即可解答.【详解】解:当x=0时,y=0时,x=﹣1,∴A(﹣1,0),B(0,∴AA12=,则点A1(1,0),B1(1,,∴AA2=AB14=,则点A2(3,0),B2(3,,∴AA3=AB28=,则点A3(7,0),B3(7,,……∴可以得到A n 的坐标为(2n ﹣1,0),故答案为:(2n ﹣1,0).【点睛】本题考查了一次函数图象上的点的坐标特征、图形的规律探究、圆的基本知识、勾股定理,解答的关键是利用勾股定理求得AA 1、AA 2、AA 3……AA n 的长,进而得到A 1、A 2、A 3……A n 的坐标的变化规律.20.【分析】作点A 的对称点根据中位线可知最小时P 正好在上在根据圆周角定理和等弧所对圆心角相等求得再利用勾股定理即可求解【详解】如图作点关于的垂线交圆与连接交于点连接则此时的值最小∵∴∵点是的中点∴∵关于 解析:2【分析】作点A 的对称点,根据中位线可知PA PA =' ,PA PB +最小时P 正好在A B '上,在根据圆周角定理和等弧所对圆心角相等求得90AOB ∠'=︒,再利用勾股定理即可求解.【详解】如图,作点A 关于MN 的垂线交圆与A ' ,连接A B ' 交MN 于点P ,连接AP OB OA OA '、、、 ,则此时AP BP + 的值最小A B =' ,∵30AMN ∠=︒,∴60AON ∠=︒,∵点B 是AN 的中点,∴30BON ∠=︒ ,∵A A '、 关于MN 对称,∴60AON AON ∠'=∠=︒,∴306090AOB ∠'=︒+︒=︒,又∵112122OA OB MN '===⨯=, 在RT A OB '△中 ∴221+1=2A B '=AP BP + 的值最小22.【点睛】本题主要考查了圆心角、弧、弦之间的关系、圆周角定理、垂直平分线定理、勾股定理等.在同圆或等圆中,一条弧所对的圆周角等于它所对的圆心角的一半.本题是与圆有关的将军饮马模型.三、解答题21.(1)见解析;(2)277. 【分析】(1)借助同圆中,同弧上的圆周角相等,利用AAS 证明全等;(2) 过O 作OH AB ⊥,利用三角形全等,勾股定理,建立一元二次方程求解即可.【详解】解:(1)证明:∵AC 是O 的直径, ∴90ADC ∠=︒.∵30CAD ∠=︒,∴2AC CD =.∵2AC OA =,∴OA CD =.∵BC BC =,CD CD =,∴EAO CDB ∠=∠,CAD CBD ∠=∠.∵AEO DAC ∠=∠,∴AEO CBD ∠=∠.∴OAE CDB △≌△;(2)解:连接DE ,过O 作OH AB ⊥于H ,∴AH HB =.∵AO OC =,∴2BC OH =.设OH x =,∵30OEA CAD ∠=∠=︒, ∴HE =.由(1)知OAE CDB △≌△,∴AE DB =.∵AD AD =,∴60ABD ACD ∠=∠=︒.∵DE AB ⊥,∴30BDE ∠=︒.∴2DB BE =,AE DB =.∴2AE BE =.设AH HB y ==,则AE y =+,BE y =-.∴()2y y =.∴y =.在Rt OAH 中,2OA =,AH =,OH x =,222OH AH OA +=,()2222x +=.解得1x =,2x =(舍去).∴7OH =.∴2BC OH ==. 【点睛】本题考查了圆周角的性质,垂径定理,勾股定理,方程思想,熟练运用圆周角定理,作辅助线,构造垂径定理是解题的关键.22.(1)8AB =;(2)见解析【分析】(1)由DE ⊥AB ,得∠OCA =90°,OC =3,OA =5,通过勾股定理即可求出AC ;由DE 是⊙O 的直径,所以DE 平分AB ,得到AB =2AC ,即可得到AB ;(2)由OA =OE ,得∠EAO =∠E ,而直径DE ⊥AB ,则AD BD =,所以∠E =∠BAD ,由此得到∠EAO =∠BAD .【详解】(1)∵DE ⊥AB∴∠OCA=90°,则OC 2+AC 2=OA 2又∵OC =3,OA =5,∴AC=4,∵DE 是⊙O 的直径,且DE ⊥AB ,∴AB =2AC=8(2)证明∵ EO=AO ,∴∠E=∠EAO又∵DE 是⊙O 的直径,且DE ⊥AB ,∴AD BD =,∴∠E=∠BAD∴∠EAO =∠BAD .【点睛】本题考查了圆周角定理.在同圆或等圆中,同弧和等弧所对的圆周角相等,一条弧所对的圆周角是它所对的圆心角的一半.同时考查了垂径定理以及勾股定理.23.(1)3828BAD CDB ∠=∠=,;(2)34E ∠=.【分析】(1)首先利用三角形外角的性质即可求出∠BAD 的度数,然后利用圆周角定理及其推论即可求出∠CDB 的度数;(2)首先根据直角三角形两锐角互余得出∠PCB 的度数,然后根据切线的性质及圆周角定理即可得出答案.【详解】(1)如图1,,APC ABC BCP ∠=∠+∠又100,62APC ABC ∠=︒∠=︒,38,BCD ∴∠=︒38,BAD BCD ∴∠=∠=︒ AB 是O 的直径,90,ADB ∴∠=︒62,ADC ABC ∠=∠=︒28CDB ∴∠=.(2)如图2,连接,OD AD ,则,A ADO ∠=∠,CD AB ⊥90,BPC APD ∴∠=∠=︒62,ABC ∠=︒28BCP DAP ∴∠=∠=.56,DOP ∴∠=︒34,ODP ∴∠=︒ DE 是O 的切线,90,ODE ∴∠=︒34E ODP ∴∠=∠=.【点睛】本题主要考查圆的综合问题,掌握切线的性质,圆周角定理及其推论是解题的关键. 24.(1)8CD =;(2)32477y x =-+ 【分析】(1)根据平行四边形的性质即可求得答案;(2)添加辅助线构造直角三角形,根据平行四边形的性质、垂径定理、勾股定理、线段的和差即可求得()1,3C,再根据待定系数法即可求得直线解析式.【详解】解:(1)∵点B 的坐标是()8,0∴8OB =∵四边形OCDB 是平行四边形∴8CD OB ==.(2)过点M 作MN CD ⊥,连接MC ,过点C 作CH OA ⊥,如图:∵MN CD ⊥,8CD = ∴142CN CD == ∵()10,0A∴10OA = ∴152OM OA == ∴在Rt CMN 中,223MN CM CN =-=∵四边形OCDB 是平行四边形∴//CD OB∵CH OA ⊥∴四边形CHMN 是平行四边形∴3CH MN ==,4HM CN ==∴1OH OM HM =-=∴()1,3C∴设直线BC 的解析式为:y kx b =+ ∴083k b k b =+⎧⎨=+⎩ ∴37247k b ⎧=-⎪⎪⎨⎪=⎪⎩∴直线BC 的解析式为:32477y x =-+. 【点睛】本题考查了平行四边形的性质和判定、垂径定理、勾股定理、线段的和差、待定系数法等,添加辅助线构造直角三角形是解决问题的关键.25.见解析【分析】根据切线的性质得出OP ⊥AB ,根据垂径定理得出即可.【详解】证明:如图,连接OP ,∵大圆的弦AB 是小圆的切线,点P 为切点,∴OP ⊥AB ,∵OP 过O ,∴AP=BP .【点睛】本题考查了切线的性质和垂径定理的应用,主要考查学生的推理能力,题目比较好,难度适中.26.(1)见解析;(2)33【分析】(1)连接AC ,则∠BAC=90°,进而证得∠C=∠BAE ,由弧AB=弧AF 证得∠C=∠ABF ,则∠ABE=∠BAE ,根据等腰三角形的等角对等边证得结论;(2)由A ,F 把半圆三等分可得∠ACB=30°,再由BC=12和直角三角形中30°角所对的直角边等于斜边的一半可得AB=6,由勾股定理求得AC=63=AC AD 的长.【详解】(1)证明:连AC ,如图,∵BC 为直径,则90BAC ∠=︒, 90C ABC ∴∠+∠=︒,又∵AD ⊥BC90BAE ABC ∴∠+∠=︒,C BAE ∴∠=∠,由弧AB=弧AF ,可得C ABF ∠=∠,ABE BAE ∴∠=∠,AE BE ∴=;(2)∵A ,F 把半圆三等分,30ACB ∴∠=︒,在直角三角形ABC 中,12BC =,则162AB BC ==,363AC AB = 在直角三角形ADC 中,1332AD AC == 所以33AD =.【点睛】本题考查了同弧或等弧所对的圆周角相等、直径所对的圆周角是直角、含30°角的直角三角形的性质,熟练掌握圆的基本知识和直角三角形中30°角所对的直角边等于斜边的一半是解答的关键.。
贵州省贵阳市九年级上学期数学期末考试试卷

贵州省贵阳市九年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)如图图形中完全是中心对称图形的一组是()A . ①②B . ③④C . ①③D . ②④2. (2分) (2017九上·金华开学考) 如图在⊙O中,弦AB=8,OC⊥AB,垂足为C,且OC=3,则⊙O的半径()A . 5B . 10C . 8D . 63. (2分)(2018·青岛) 已知一次函数y= x+c的图象如图,则二次函数y=ax2+bx+c在平面直角坐标系中的图象可能是()A .B .C .D .4. (2分)某厂改进工艺降低了某种产品的成本,两个月内从每件产品250元,降低到了每件160元,平均每月降低率为()A . 15%B . 20%C . 5%D . 25%5. (2分) (2016九上·苍南月考) 如图,二次函数图象,过点A(3,0),二次函数图象的对称轴是直线x=1,下列结论正确的是()A . 2a+b=0B . ac>0C .D .6. (2分)如图,抛物线y1=ax2+bx+c与直线y2=kx+n的图象交于A(﹣4,﹣1),B两点,下列判断中:①abc >0;②a+b+c<0;③不等式ax2+bx+c<kx+n的解集为﹣4<x<;④方程ax2+bx+c=﹣1的解为x=﹣4,其中正确的个数是()A . 1B . 2C . 3D . 47. (2分)在下列某品牌T恤的四个洗涤说明图案的设计中,没有运用旋转或轴对称知识的是()A .B .C .D .8. (2分)如图,在△ABC中,AB为⊙O 的直径,∠B=60°,∠BOD=100°,则∠C的度数为()A . 50ºB . 60ºC . 70ºD . 80º9. (2分)如图,在Rt△ABC中,∠ACB=90°,M为AB边的中点,将Rt△ABC绕点M旋转,使点A与点C重合得到△CED,连接MD.若∠B=26°,则∠BMD等于()A . 76°B . 96°C . 52°D . 104°10. (2分) (2019九上·德清期末) 二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论正确的是().A . a>0B . abc>OC . 2a+b<0D . ax2+bx+c=o有两个不相等的实数根二、填空题 (共7题;共8分)11. (2分)(2015·义乌) 在Rt△ABC中,∠C=90°,BC=3,AC=4,点P在以C为圆心,5为半径的圆上,连结PA,PB.若PB=4,则PA的长为________.12. (1分)从1,2,3,4,5五个数中任意取2个(不可重复),它们的和是偶数的概率为________ .13. (1分)(2017·临沂模拟) 在综合实践活动课上,小明同学用纸板制作了一个圆锥形漏斗模型.如图所示,它的底面半径OB=6cm,高OC=8cm.则这个圆锥漏斗的侧面积是________.14. (1分) (2017九上·浙江月考) 如图,弦AB的长等于⊙O的半径,那么弦AB所对的圆周角的度数________.15. (1分) (2019八上·威海期末) 当x=________时,多项式x2+2x﹣5有最小值.16. (1分)如图,边AB是⊙O内接正六边形的一边,点C在上,且BC是⊙O内接正八边形的一边,若AC是⊙O内接正n边形的一边,则n=________.17. (1分) (2016九上·岑溪期中) 方程x2﹣3x=0的解是________.三、解答题 (共9题;共67分)18. (5分) (2019八下·嘉兴期中) 解下列一元二次方程:(1)(2)19. (10分) (2018八上·东台期中) 阅读下面材料,并解决问题:(1)如图(1),等边△ABC内有一点P若点P到顶点A,B,C的距离分别为3,4,5欲求∠APB的度数,由于PA,PB不在一个三角形中,为了解决本题我们可以将△ABP绕顶点A旋转到△ACP′处,此时△ACP′≌△ABP这样,就可以利用全等三角形知识,将三条线段的长度转化到一个三角形中从而求出∠APB的度数.请将下列解题过程补充完整。
贵州省贵阳市九年级上学期期末数学试卷

贵州省贵阳市九年级上学期期末数学试卷姓名: ________ 班级: ___________________ 成绩: ___________________一、精心选一选(共10题;共20分)1.(2分)(2015八下•箫山期中)用配方法将方程x2+6x-ll=0变形,正确的是()A・(x-3) 2=20B・(x-3) 2=2C・(x+3) 2=2D・(x+3) 2=202.(2分)(2017九上•宣化期末)在一个不透明的盒子中装有12个红球,若干个篮球,它们除颜色不同外,4其余均相同,若从中随机摸出一个球为红球的概率是7 ,则篮球的个数为()A・4B・6C・8D・93.(2分)如图,两个同心圆的半径分别为3cm和5cm,弦AB与小圆相切于点C,则AB的长为()A ・ 4cmB ・ 5cmC ・ 6cmD ・ 8cm• l-?w-4・(2分)在反比例函数y==T的图象上有三点(xl , yl), (x2 , y2), (x3 , y3).若xl>x2>0> x3 ,则下列各式正确的是()A ・ y3>yl>y2B ・ y3>y2>ylC ・ yl>y2>y3D ・ yl>y3>y25・(2分)(2016九上•江北期末)如图,圆内接四边形ABCD的BA, CD的延长线交于P, AC, BD交于E,则图中相似三角形有( )6. (2 分)RtAABC 中,ZC=90° , AB 二 13, BC 二5,贝ijtan Z A 的值(_5_A ・T213D ・T27・(2分)如图,一个空心圆柱体,其左视图正确的是( )°. n8. ( 2分)(2018・日照)已知二次函数 尸ax2+bx+c (aH0)的图象如图所示,下列结论: nano①2a+b〈0;②abc>0:③4a«2b+c>0;④a+c>0,其中正确结论的个数为(A . 1个B . 2个C . 3个D . 4个9.(2分)下列说法正确的是()A •全等的两个图形成中心对称B •成中心对称的两个图形必须重合C •成中心对称的两个图形全等D •旋转后能够重合的两个图形成中心对称10.(2分)正六边形ABCDEF内接于00,正六边形的周长是12,则00的半径是()二、细心填一填(共8题;共8分)11.(1分)(2017 •十堰模拟)我市某果园2014年豹;猴桃产量为100吨,2016年狒猴桃产量为150吨,设该果园徹猴桃产量的年平均增长率为X,则根据题意可列方程为__________ .12.(1分)在一个不透明的盒子中装有n个小球,它们只有颜色上的区别,其中有2个红球,每次摸球前先将盒中的球摇匀,随机摸岀一个球记下颜色后再放回盒中,通过大量重复试验后发现,摸到红球的频率稳左于0.2, 那么可以推算出n大约是 ____________ .13.(1分)已知一圆锥的底而半径为lcm,母线长为4cm,则它的侧而积为____________ cm2 (结果保留n ).14.(1分)(2017 •江阴模拟)如图,ZUBC三个顶点的坐标分别为A (2, 2), B (4, 2), C (6, 4),以原点0为位似中心,将AABC缩小为原来的一半,则线段AC的中点P变换后在第一象限对应点的坐标为____________ ・lTTTTt^x15.(1分)(2016九下•苏州期中)如图,00是以原点为圆心,2为半径的圆,点P是直线y= - x+4 ±的一点,过点P作00的一条切线PQ, Q为切点,则切线长PQ的最小值为___________ ・16.(1分)(2019九上•孝感月考)二次函数7=疋一 N 一 3的顶点坐标为___________ .17.(1分)(2017 •遵义)如图,点E, F在函数y二舟的图象上,直线EF分别与x軸、y轴交于点A、B,且BE: BF=1: 3,则ZXE0F的面积是_______ ・18.(1分)(2015九上•房山期末)活动楼梯如图所示,ZB二90° ,斜坡AC的坡度为1: b斜坡AC的坡而长度为8m,则走这个活动楼梯从A点到C点上升的髙度BC为__________ ・三. 解答题(共6题;共51分)19・(6分)(2017 •乐陵模拟)为鼓励大学生创业,政府制左了小型企业的优惠政策,许多小型企业应运而生.某市统讣了该市2015年月新注册小型企业的数量,并将结果绘制成如图两种不完整的统计图:2015年1-5月旨月新注册小201、年1-5月各月新注册屮型企业型企业数量折线统计囹数量占今年前五月新注册小型企A数里赛业总蚩的百分比扇形统计图(1)某市2015年1・5月份新注册小型企业一共 _________ 家,请将折线统计图补充完整.(2)该rlf 2015年3月新注册小型企业中,只有2家是养殖企业,现从3月新注册的小型企业中随机抽取2 家企业了解其经营情况•请以列表或画树状图的方法求出所抽取的2家企业恰好都是养殖企业的概率.20. (5分)(2016九上•延庆期末)如图,已知00是AABC的外接圆,AB是00的直径,D是AB的延长线上的一点,AE丄DC交DC的延长线于点E,且AC平分ZEAB.求证:DE是00的切线・21・(5分)(2018九上•吴兴期末)如图所示,点D在ZiABC的AB边上,AD二2, BD二4, AC二2占•求证:△ACD S/XA BC.22.(5分)(2020 •虹口模拟)某次台风来袭时,一棵笔直大树树干AB (假泄树干AB垂直于水平地面)被刮倾斜7° (即ZBAB' =T)后折断倒在地上,树的顶部恰好接触到地而D处,测得ZCDA=37° , AD=5米,求这棵大树AB的髙度.(结果保留根号)(参考数拯:sin37^0.6> cos37=0・8, tan37^0. 75)23.(15分)(2017 •平谷模拟)直线y= - 3x+3与x 轴、y 轴分别父于A 、B 两点,点A 关于直线- 1的对 称点为点C. 54g 21° ■■5 ・4 -3•: ?0 -1-2 1 2x■ (1) 求点C 的坐标;(2) 若抛物线y=mx2+nx - 3m (mHO )经过A 、B 、C 三点,求抛物线的表达式;(3) 若抛物线y=ax2+bx+3 (aHO )经过A, B 两点,且顶点在第二象限.抛物线与线段AC 有两个公共点,求 a 的取值范困.24. (15分)(2014 •河南)某商店销售10台A 型和20台B 型电脑的利润为4000元,销售20台A 型和10 台B 型电脑的利润为3500元.(1) 求每台A 型电脑和B 型电脑的销售利润:(2) 该商店计划一次购进两种型号的电脑共100台,其中B 型电脑的进货量不超过A 型电脑的2倍,设购进 A 型电脑x 台,这100台电脑的销售总利润为y 元.① 求y 关于x 的函数关系式:② 该商店购进A 型、B 型电脑各多少台,才能使销售总利润最大?(3) 实际进货时,厂家对A 型电脑出厂价下调m (0<mV100)元,且限定商店最多购进A 型电脑70台,若 商店保持同种电脑的售价不变,请你根据以上信息及(2)中条件,设il •出使这100台电脑销售总利润最大的进货 方案.精心选一选(共10题;共20分)1- 1. D2- 1. °3- 1. °4- 1. A5- 1. °6- 1.人7- 1. 88- 1. 89- 1.匚10- 1. B二、细心填一填(共8题;共8分)【第1空】100(1十X) &150【第1空】10【第1空】也【第1空】(2, 1 )【第1空】2【第1空】(I _4)【第1空】|【第1空】4电三、解答题(共6题;共51分)I—【第1空】16参考答案11-1、12-1.13-1. 14-1. 15-1. 16-1. 17-1.设该镇今年3月新注册的小型企业为甲.乙.丙.丁,冥中臥 乙为养殖企业.画树状图得; /1\ /N /4\ /N 乙丙丁甲丙丁甲乙丁冃乙丙••哄有12种等可能的结果,甲.乙2家企业恰好被抽到的有2种,・••所抽取的2家企业恰好都是弄殖企业的載率为:鲁=£.\zCAO=zACO f vAC^zEAB r /.zEAC=zCAO=zACO r .-.AEiiCO , 又AE 丄DE , •■•CO 丄 DE f 20-1.・・・DE 是OO 的切线 #?: vAD=2f AC=2°JJ B f BD=4 fAC 心$ ■■■■■■■ MV MB ■■■■■ •辺 _ 2T _ 3 ..ID AC ••疋=丽 又TN A 二N A F 2]-]、・・-ABC-二ACD.19-2 甲 乙 丙 丁K解:过点4{乍力£丄点£ .则“4£心山£6 90 o •・••点Bfi9^彩(0阳);当尸• 3x+3=0时,x=l r•••点A 的坐标为(1,0).・・•点A 关于直线x 二-1的対称点为点G 23-1. •舄t 的坐标为(-3f0) ••在f zADC= 37 o f-cos37 o 二塔二竽=08 ,;.£?£= 4 r•*sin37。
〖汇总3套试卷〗贵阳市某达标中学2019年九年级上学期数学期末统考试题

九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1. “一般的,如果二次函数y=ax 2+bx+c 的图象与x 轴有两个公共点,那么一元二次方程ax 2+bx+c=0有两个不相等的实数根.——苏科版《数学》九年级(下册)P 21”参考上述教材中的话,判断方程x 2﹣2x=1x ﹣2实数根的情况是 ( )A .有三个实数根B .有两个实数根C .有一个实数根D .无实数根 【答案】C【解析】试题分析:由得,,即是判断函数与函数的图象的交点情况.因为函数与函数的图象只有一个交点 所以方程只有一个实数根 故选C.考点:函数的图象点评:函数的图象问题是初中数学的重点和难点,是中考常见题,在压轴题中比较常见,要特别注意. 2.如图,AB 是O 的直径,AC ,CD 是O 的两条弦,CD AB ⊥,连接OD ,若20CAB ∠=︒,则BOD ∠的度数是( )A .10°B .20°C .30°D .40°【答案】D 【分析】连接AD ,由AB 是⊙O 的直径及CD ⊥AB 可得出弧BC=弧BD ,进而可得出∠BAD=∠BAC ,利用圆周角定理可得出∠BOD 的度数.【详解】连接AD ,如图所示:∵AB是⊙O的直径,CD⊥AB,∴弧BC=弧BD,∴∠BAD=∠BAC=20°.∴∠BOD=2∠BAD=40°,故选:D.【点睛】此题考查了圆周角定理以及垂径定理.此题难度不大,利用圆周角定理求出∠BOD的度数是解题的关键.3.函数y=mx2+2x+1的图像与x轴只有1个公共点,则常数m的值是()A.1 B.2 C.0,1 D.1,2【答案】C【解析】分两种情况讨论,当m=0和m≠0,函数分别为一次函数和二次函数,由抛物线与x轴只有一个交点,得到根的判别式的值等于0,列式求解即可.【详解】解:①若m=0,则函数y=2x+1,是一次函数,与x轴只有一个交点;②若m≠0,则函数y=mx2+2x+1,是二次函数.根据题意得:b2-4ac=4-4m=0,解得:m=1.∴m=0或m=1故选:C.【点睛】本题考查了一次函数的性质与抛物线与x轴的交点,抛物线与x轴的交点个数由根的判别式的值来确定.本题中函数可能是二次函数,也可能是一次函数,需要分类讨论,这是本题的容易失分之处.4.已知⊙O的半径为5cm,圆心O到直线l的距离为5cm,则直线l与⊙O的位置关系为()A.相交B.相切C.相离D.无法确定【答案】B【分析】根据圆心到直线的距离5等于圆的半径5,即可判断直线和圆相切.【详解】∵圆心到直线的距离5cm=5cm,∴直线和圆相切,故选B.【点睛】本题考查了直线与圆的关系,解题的关键是能熟练根据数量之间的关系判断直线和圆的位置关系.若d<r ,则直线与圆相交;若d=r ,则直线于圆相切;若d >r ,则直线与圆相离.5.如果一个正多边形的内角和等于720°,那么这个正多边形的每一个外角等于( )A .45°B .60°C .120°D .135°【答案】B【分析】先用多边形的内角和公式求这个正多边形的边数为n ,再根据多边形外角和等于360°,可求得每个外角度数.【详解】解:设这个正多边形的边数为n ,∵一个正多边形的内角和为720°,∴180°(n-2)=720°,解得:n=6,∴这个正多边形的每一个外角是:360°÷6=60°.故选:B .【点睛】本题考查了多边形的内角和与外角和的知识.应用方程思想求边数是解题关键.6.四位同学在研究函数2y x bx c =++(,b c 是常数)时,甲发现当1x =时,函数有最小值;乙发现1-是方程20x bx c ++=的一个根;丙发现函数的最小值为3;丁发现当2x =时,4y =,已知这四位同学中只有一位发现的结论是错误的,则该同学是( )A .甲B .乙C .丙D .丁 【答案】B【分析】利用假设法逐一分析,分别求出二次函数的解析式,再判断与假设是否矛盾即可得出结论.【详解】解:A .假设甲同学的结论错误,则乙、丙、丁的结论都正确由乙、丁同学的结论可得 01442b c b c =-+⎧⎨=++⎩解得:1323b c ⎧=⎪⎪⎨⎪=-⎪⎩∴二次函数的解析式为:221212533636⎛⎫=+-=+ ⎪⎝⎭-y x x x ∴当x=16-时,y 的最小值为2536-,与丙的结论矛盾,故假设不成立,故本选项不符合题意; B .假设乙同学的结论错误,则甲、丙、丁的结论都正确 由甲、丙的结论可得二次函数解析式为()213y x =-+当x=2时,解得y=4,当x=-1时,y=7≠0∴此时符合假设条件,故本选项符合题意;C . 假设丙同学的结论错误,则甲、乙、丁的结论都正确由甲乙的结论可得1201b b c⎧-=⎪⎨⎪=-+⎩ 解得:23b c =-⎧⎨=-⎩∴223y x x =--当x=2时,解得:y=-3,与丁的结论矛盾,故假设不成立,故本选项不符合题意;D . 假设丁同学的结论错误,则甲、乙、丙的结论都正确由甲、丙的结论可得二次函数解析式为()213y x =-+当x=-1时,解得y=7≠0,与乙的结论矛盾,故假设不成立,故本选项不符合题意.故选B .【点睛】此题考查的是利用待定系数法求二次函数解析式,利用假设法求出b 、c 的值是解决此题的关键. 7.下列事件中,是必然事件的是( )A .打开电视,它正在播广告B .抛掷一枚硬币,正面朝上C .打雷后会下雨D .367人中有至少两人的生日相同【答案】D【解析】分析:必然事件指在一定条件下一定发生的事件,据此解答即可.详解:A. 打开电视,它正在播广告是随机事件;B. 抛掷一枚硬币,正面朝上是随机事件;C. 打雷后下雨是随机事件;D. ∵一年有365天,∴ 367 人中有至少两个人的生日相同是必然事件.故选D.点睛:本题考查了必然事件的定义,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.8.下列图像中,当0ab >时,函数2y ax =与y ax b =+的图象时( )A.B.C.D.【答案】D【分析】根据直线直线y=ax+b经过的象限得到a>0,b<0,与ab>0矛盾,则可对A进行判断;根据抛物线y=ax2开口向上得到a>0,而由直线y=ax+b经过第二、四象限得到a<0,由此可对B进行判断;根据抛物线y=ax2开口向下得到a<0,而由直线y=ax+b经过第一、三象限得到a>0,由此可对C进行判断;根据抛物线y=ax2开口向下得到a<0,则直线y=ax+b经过第二、四象限,并且b<0,得到直线与y轴的交点在x轴下方,由此可对D进行判断.【详解】解:A、对于直线y=ax+b,得a>0,b<0,与ab>0矛盾,所以A选项错误;B、由抛物线y=ax2开口向上得到a>0,而由直线y=ax+b经过第二、四象限得到a<0,所以B选项错误;C、由抛物线y=ax2开口向下得到a<0,而由直线y=ax+b经过第一、三象限得到a>0,所以C选项错误;D、由抛物线y=ax2开口向下得到a<0,则直线y=ax+b经过第二、四象限,由于ab>0,则b<0,所以直线与y轴的交点在x轴下方,所以D选项正确.故选:D.【点睛】本题考查了一次函数和二次函数的图像与性质,掌握函数的性质,从而判断图像是解题的基础.9.下列四个几何体中,主视图与俯视图不同的几何体是()A.B.C.D.【答案】C【分析】根据正方体的主视图与俯视图都是正方形,圆柱横着放置时,主视图与俯视图都是长方形,球体的主视图与俯视图都是圆形,只有圆锥的主视图与俯视图不同进行分析判定.【详解】解:圆锥的主视图与俯视图分别为圆形、三角形,故选:C.【点睛】本题考查简单的几何体的三视图,注意掌握从不同方向看物体的形状所得到的图形可能不同.10.当压力F(N)一定时,物体所受的压强p(Pa)与受力面积S(m2)的函数关系式为P=F(S≠0),s这个函数的图象大致是()A .B .C .D .【答案】C【分析】根据实际意义以及函数的解析式,根据函数的类型,以及自变量的取值范围即可进行判断.【详解】解:当F 一定时,P 与S 之间成反比例函数,则函数图象是双曲线,同时自变量是正数. 故选:C .【点睛】此题主要考查了反比例函数的应用,现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用实际意义确定其所在的象限.11.在平面直角坐标系中,对于二次函数22()1y x =-+,下列说法中错误的是( )A .y 的最小值为1B .图象顶点坐标为(2,1),对称轴为直线2x =C .当2x <时,y 的值随x 值的增大而增大,当2x ≥时,y 的值随x 值的增大而减小D .它的图象可以由2y x 的图象向右平移2个单位长度,再向上平移1个单位长度得到 【答案】C【分析】根据题目中的函数解析式,可以判断各个选项中的说法是否正确.【详解】解:二次函数22()1y x =-+,10a =>,∴该函数的图象开口向上,对称轴为直线2x =,顶点为(2,1),当2x =时,y 有最小值1,当2x >时,y 的值随x 值的增大而增大,当2x <时,y 的值随x 值的增大而减小;故选项A 、B 的说法正确,C 的说法错误;根据平移的规律,2y x 的图象向右平移2个单位长度得到2(2)y x =-,再向上平移1个单位长度得到22()1y x =-+;故选项D 的说法正确,故选C .【点睛】本题考查二次函数的性质、二次函数的最值,二次函数图象与几何变换,解答本题的关键是明确题意,利用二次函数的性质解答.12.在如图所示的象棋盘(各个小正方形的边长均相等)中,根据“马走日”的规则,“马”应落在下列哪个位置处,能使“马”、“车”、“炮”所在位置的格点构成的三角形与“帅”、“相”,“兵”所在位置的格点构成的三角形相似()A.①处B.②处C.③处D.④处【答案】B【分析】确定“帅”、“相”、“兵”所在位置的格点构成的三角形的三边的长,然后利用相似三角形的对应边的比相等确定第三个顶点的位置即可.【详解】帅”、“相”、“兵”所在位置的格点构成的三角形的三边的长分别为2,25,42;“车”、“炮”之间的距离为1,“炮”②之间的距离为5,“车”②之间的距离为2 2,∵52212 2542==∴马应该落在②的位置,故选B【点睛】本题考查了相似三角形的知识,解题的关键是利用勾股定理求得三角形的各边的长,难度不大.二、填空题(本题包括8个小题)13.如图,ABC的中线AD、CE交于点G,点F在边AC上,GF BC,那么GFBC的值是__________.【答案】1 3【分析】根据三角形的重心和平行线分线段成比例解答即可.【详解】∵△ABC的中线AD、CE交于点G,∴G是△ABC的重心,∴21 AGGD=,∵GF ∥BC , ∴23GF AG DC AD ==, ∵DC=12BC , ∴13GF BC = , 故答案为:13. 【点睛】 此题考查三角形重心问题以及平行线分线段成比例,解题关键是根据三角形的重心得出比例关系. 14.如图,假设可以在两个完全相同的正方形拼成的图案中随意取点,那么这个点取在阴影部分的概率是______.【答案】37【分析】先设一个阴影部分的面积是x ,可得整个阴影面积为3x ,整个图形的面积是7x ,再根据几何概率的求法即可得出答案.【详解】设一个阴影部分的面积是x ,∴整个阴影面积为3x ,整个图形的面积是7x ,∴这个点取在阴影部分的概率是37x x =37, 故答案为:37【点睛】本题考查几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A );然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A )发生的概率.15.已知x =1是一元二次方程x 2+mx +n =0的一个根,则m 2+2mn +n 2的值为_____.【答案】1【分析】根据题意首先求出m n +,再将所求式子因式分解,最后代入求值即可.【详解】把1x =代入一元二次方程20x mx n ++=得1m n +=-,所以()()2222211m mn n m n ++=+=-=.故答案为:1.【点睛】本题考查了一元二次方程的解及因式分解求代数式的值,明确方程的解的意义即熟练因式分解是解决问题的关键.16.如图,一小球沿与地面成一定角度的方向飞出,小球的飞行路线是一条抛物线,如果不考虑空气阻力,小球的飞行高度y(单位:m)与飞行时间x(单位:s)之间具有函数关系y =﹣5x 2+20x ,在飞行过程中,当小球的行高度为15m 时,则飞行时间是_____.【答案】1s 或3s【解析】根据题意可以得到15=﹣5x 2+20x ,然后求出x 的值,即可解答本题.【详解】∵y=﹣5x 2+20x ,∴当y=15时,15=﹣5x 2+20x ,得x 1=1,x 2=3,故答案为1s 或3s .【点睛】本题考查二次函数的应用、一元二次方程的应用,解答本题的关键是明确题意,利用二次函数的性质和一元二次方程的知识解答.17.古希腊数学家把数1,3,6,10,15,21,…叫做三角形数,它有一定的规律性,若把第一个三角形数记为x 1,第二个三角形数记为x 2,…第n 个三角形数记为x n ,则x n +x n+1= .【答案】2(1)n +.【分析】根据三角形数得到x 1=1,x 1=3=1+1,x 3=6=1+1+3,x 4=10=1+1+3+4,x 5=15=1+1+3+4+5,即三角形数为从1到它的顺号数之间所有整数的和,即x n =1+1+3+…+n=()21n n +、x n+1=()()122n n ++,然后计算x n +x n+1可得.【详解】∵x 1=1,x 1═3=1+1,x 3=6=1+1+3,x 4═10=1+1+3+4,x 5═15=1+1+3+4+5,…∴x n =1+1+3+…+n=()21n n +, x n+1=()()122n n ++, 则x n +x n+1=()()122n n +++()21n n +=(n+1)1, 故答案为:(n+1)1.18.2sin452cos603tan60+-=____. 【答案】22-【分析】根据特殊角度的三角函数值2sin45=,1cos602=,tan603=,代入数据计算即可.【详解】∵2sin452=,1cos602=,tan603=,∴原式=21223322 22⨯+⨯-⨯=-.【点睛】熟记特殊角度的三角函数值是解本题的关键.三、解答题(本题包括8个小题)19.箱子里有4瓶牛奶,其中有一瓶是过期的.现从这4瓶牛奶中任意抽取牛奶饮用,抽取任意一瓶都是等可能的.(1)若小芳任意抽取1瓶,抽到过期的一瓶的概率是;(2)若小芳任意抽取2瓶,请用画树状图或列表法求,抽出的2瓶牛奶中恰好抽到过期牛奶的概率.【答案】(1)14;(2)抽出的2瓶牛奶中恰好抽到过期牛奶的概率为12.【分析】(1)直接根据概率公式计算可得;(2)设这四瓶牛奶分别记为A、B、C、D,其中过期牛奶为A,画树状图可得所有等可能结果,从所有等可能结果中找到抽出的2瓶牛奶中恰好抽到过期牛奶的结果数,再根据概率公式计算可得.【详解】(1):(1)小芳任意抽取1瓶,抽到过期的一瓶的概率是14,故答案为:14.(2)设这四瓶牛奶分别记为A、B、C、D,其中过期牛奶为A画树状图如图所示,由图可知,共有12种等可能结果;由树状图知,所抽取的12种等可能结果中,抽出的2瓶牛奶中恰好抽到过期牛奶的有6种结果,所以抽出的2瓶牛奶中恰好抽到过期牛奶的概率为61 122=.【点睛】本题考查了列表法与树状图法,以及概率公式,用到的知识点为:概率=所求情况数与总情况数之比.20.已知关于x的一元二次方程x2-3x+m=1.(1)当m 为何值时,方程有两个相等的实数根;(2)当34m =-时,求方程的正根.【答案】(1)m=94;(2)32+. 【分析】(1)若一元二次方程有两等根,则根的判别式△=b 2-4ac=1,建立关于m 的方程,求出m 的取值. (2)把m 的值代入方程,利用求根公式可解出方程,求得方程的正根.【详解】解:(1)∵b 2-4ac=9-4m ,∴9-4m=1时,方程有两个相等的实数根,解得:m=94, 即m=94时,方程有两个相等的实数根. (2)当m=-94时,b 2-4ac=9-4m=9+3=12>1,∴由求根公式得:33x 22±±==;∵3<∴302-<,∴所求的正根为32+. 【点睛】本题主要考查了根的判别式和利用求根公式解一元二次方程.21.数学兴趣小组几名同学到某商场调查发现,一种纯牛奶进价为每箱40元,厂家要求售价在40~70元之间,若以每箱70元销售平均每天销售30箱,价格每降低1元平均每天可多销售3箱.现该商场要保证每天盈利900元,同时又要使顾客得到实惠,那么每箱售价为多少元?【答案】当每箱牛奶售价为50元时,平均每天的利润为900元.【解析】试题分析:本题可设每箱牛奶售价为x 元,则每箱赢利(x-40)元,平均每天可售出(30+3(70-x))箱,根据每箱的盈利×销售的箱数=销售这种牛奶的盈利,据此即可列出方程,求出答案.试题解析:设每箱售价为x 元,根据题意得:(x-40)[30+3(70-x)]=900化简得:x²-120x+3500=0解得:x 1=50或x 2=70(不合题意,舍去)∴ x=50答:当每箱牛奶售价为50元时,平均每天的利润为900元22.如图,直径为1m 的圆柱形水管有积水(阴影部分),水面的宽度AB 为0.8m ,求水的最大深度CD .【答案】水的最大深度为0.2m【分析】先求出OA 的长,再由垂径定理求出AC 的长,根据勾股定理求出OC 的长,进而可得出结论.【详解】解:∵O 的直径为1m ,∴0.5OA OD m ==.∵⊥OD AB ,0.8AB m =,∴0.4AC m =, ∴22220.50.40.3OC OA AC m =-=-=,∴0.50.30.2CD OD OC m =-=-=.答:水的最大深度为0.2m .【点睛】本题考查的是垂径定理的应用,根据勾股定理求出OC 的长是解答此题的关键.23.已知:如图,C ,D 是以AB 为直径的⊙O 上的两点,且OD ∥BC .求证:AD=DC .【答案】见解析证明.【解析】试题分析:连结OC ,根据平行线的性质得到∠1=∠B ,∠2=∠3,而∠B=∠3,所以∠1=∠2,则根据圆心角、弧、弦的关系即可得到结论.试题解析:连结OC ,如图,∵OD ∥BC ,∴∠1=∠B ,∠2=∠3,又∵OB=OC ,∴∠B=∠3,∴∠1=∠2,∴AD=DC .考点: 圆心角、弧、弦的关系.24.如图,一次函数6y x =-+的图象与反比例函数(0)k y k x=≠在第一象限的图象交于()2,A a 和B 两点,与x 轴交于点C .(1)求反比例函数的解析式;(2)若点M 在x 轴上,且AMC ∆的面积为10,求点M 的坐标.【答案】(1)8y x=;(2)()1,0或()11,0 【分析】(1)先把点()2,A a 代入6y x =-+解得a 的值,再代入反比例函数(0)k y k x=≠中解得k 的值即可; (2)AMC ∆的面积可以理解为是以MC 为底,点A 的纵坐标为高,根据三角形的面积公式列式求解即可.【详解】解:(1)把点()2,A a 代入6y x =-+,得26a =-+,解得:4a =,()2,4A ∴把()2,4A 代入反比例函数k y x=, 248k ∴=⨯=; ∴反比例函数的表达式为8y x =; (2)一次函数6y x =-+的图象与x 轴交于点C ,()6,0C ∴,设(),0M x ,6MC x ∴=-,164102AMC S x ∆∴=-⨯=, 1x ∴=或11x =,M ∴的坐标为()1,0或()11,0.【点睛】本题主要考查一次函数和反比例函数的交点问题,注意MC 的值有两个.25.如图,已知,在直角坐标系xOy 中,直线483y x =+与x 轴、y 轴分别交于点,A C ,点P 从A 点开始以1个单位/秒的速度沿x 轴向右移动,点Q 从O 点开始以2个单位/秒的速度沿y 轴向上移动,如果,P Q 两点同时出发,经过几秒钟,能使PQO ∆的面积为8个平方单位.【答案】2秒,4秒或317【分析】首先求得直线与两坐标轴的交点坐标,然后表示出三角形的两边利用三角形的面积计算公式列出方程计算即可.【详解】解:直线AC 与x 轴交于点A (-6,0),与y 轴交于点C (0,1),所以,OA =6,OC =1.设经过x 秒钟,则OQ 为2x .当06x <<时,点P 在线段OA 上,底OP =6x -,可列方程2(6)82x x -=, 解得122,4x x ==.当6x ≥时,点P 与点O 重合或在线段OA 的延长线上,底OP =6x -,可列方程2(6)82x x -=, 解得12317,317x x ==,而2317x =综上所述,经过2秒,4秒或317+秒能使△PQO 的面积为1个平方单位.【点睛】本题考查了一次函数和一元二次方程的应用,解题的关键是能够根据直线的解析式确定直线与两坐标轴的交点,从而求得有关的线段的长,注意分类讨论,难度不大.26.如图,AOB ∆在平面直角坐标xOy 中,反比例函数11k y x=的图象经过点A ,反比例函数22k y x =的图象经过点B ,作直线1x =分别交12,y y 于,C D 两点,已知(2,3),(3,1)A B .(1)求反比例函数12,y y 的解析式;(2)求COD ∆的面积.【答案】(1)16y x =,23y x =;(2)32【分析】(1)根据待定系数法,分别把(2,3),(3,1)A B 分别代入12,y y ,进而得出解析式.(2)根据函数的交点性质,求出C 、D 的坐标,进而求出CD 的长和三角形的高,进行求面积即可.【详解】解:(1)∵11k y x=的图象过点(2,3)A ,22k y x =的图象过点(3,1)B , ∴12236,313k k =⨯==⨯=,∴16y x =,23y x=. (2)由(1)可知两条曲线与直线1x =的交点为()()1,6,1,3C D ,∴633CD =-=,∴13322COD S ∆⨯==. 【点睛】本题主要考察了反比例函数的性质,灵活运用待定系数法和函数的交点性质是解题的关键.27.如图,抛物线23y ax bx =++(a ,b 是常数,且a ≠0)与x 轴交于A ,B 两点,与y 轴交于点C .并且A ,B 两点的坐标分别是A(-1,0),B(3,0)(1)①求抛物线的解析式;②顶点D 的坐标为_______;③直线BD 的解析式为______;(2)若P 为线段BD 上的一个动点,其横坐标为m ,过点P 作PQ ⊥x 轴于点Q ,求当m 为何值时,四边形PQOC 的面积最大?(3)若点M 是抛物线在第一象限上的一个动点,过点M 作MN ∥AC 交x 轴于点N .当点M 的坐标为_______时,四边形MNAC 是平行四边形.【答案】(1)①2y x 2x 3=-++;②(1,4);③26y x =-+;(2)当94m =时,S 最大值=8116;(3)(2,3) 【分析】(1)①把点A 、点B 的坐标代入23y ax bx =++,求出a ,b 即可;②根据顶点坐标公式24(,)24b ac b a a--求解;③设直线BD 的解析式为y kx n =+,将点B 、点D 的坐标代入即可; (2)求出点C 坐标,利用直角梯形的面积公式可得四边形PQOC 的面积s 与m 的关系式,可求得面积的最大值;(3)要使四边形MNAC 是平行四边形只要//MC AN 即可,所以点M 与点C 的纵坐标相同,由此可求得点M 坐标.【详解】解:(1)①把A (-1,0),B (3,0)代入23y ax bx =++,得 30,9330.a b a b -+=⎧⎨++=⎩解得1,2.a b =-⎧⎨=⎩ ∴22 3.y x x =-++ ②当2122b x a 时,24124444ac b y a ---===- 所以顶点坐标为(1,4)③设直线BD 的解析式为y kx n =+,将点B (3,0)、点D (1,4)的坐标代入得304k n k n +=⎧⎨+=⎩,解得26k n =-⎧⎨=⎩所以直线BD 的解析式为2 6.y x =-+(2)∵点P 的横坐标为m ,则点P 的纵坐标为26m -+.当0x =时,003 3.y =++=∴C (0,3).由题意可知:OC=3,OQ=m ,PQ=26m -+.∴s=1(263)2m m -++⋅ =292m m -+ =2981()416m --+. ∵-1<0,1<94<3, ∴当94m =时,s 最大值=81.16 如图,MN ∥AC ,要使四边形MNAC 是平行四边形只要//MC AN 即可.设点M 的坐标为223)(,x x x -++,由2y x 2x 3=-++可知点(0,3)C //MC AN2233x x ∴-++=解得2x =或0(不合题意,舍去)2234433x x ∴-++=-++=当点M 的坐标为(2,3)时,四边形MNAC 是平行四边形.【点睛】本题考查了二次函数的综合题,涉及了二次函数的解析式及顶点、一次函数的解析式、二次函数在三角形和平行四边形中的应用,将二次函数的解析式与几何图形相结合是解题的关键.九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.用16米长的铝制材料制成一个矩形窗框,使它的面积为9平方米,若设它的一边长为x ,根据题意可列出关于x 的方程为( )A .()89x x +=B .()89x x -=C .()169x x -=D .()1629x x -= 【答案】B【分析】一边长为x 米,则另外一边长为:8-x ,根据它的面积为9平方米,即可列出方程式.【详解】一边长为x 米,则另外一边长为:8-x ,由题意得:x (8-x )=9,故选:B .【点睛】此题考查由实际问题抽相出一元二次方程,解题的关键读懂题意列出方程式.2.如图,点A 、点B 是函数y=k x的图象上关于坐标原点对称的任意两点,BC ∥x 轴,AC ∥y 轴,△ABC 的面积是4,则k 的值是( )A .-2B .±4C .2D .±2【答案】C 【详解】解:∵反比例函数的图象在一、三象限, ∴k >0,∵BC ∥x 轴,AC ∥y 轴,∴S △AOD =S △BOE =12k , ∵反比例函数及正比例函数的图象关于原点对称,∴A 、B 两点关于原点对称,∴S 矩形OECD =1△AOD =k ,∴S △ABC =S △AOD +S △BOE +S 矩形OECD =1k=4,解得k=1.故选C .【点睛】本题考查反比例函数的性质.3.已知⊙O的半径为5,若PO=4,则点P与⊙O的位置关系是()A.点P在⊙O内B.点P在⊙O上C.点P在⊙O外D.无法判断【答案】A【分析】已知圆O的半径为r,点P到圆心O的距离是d,①当r>d时,点P在⊙O内,②当r=d时,点P在⊙O上,③当r<d时,点P在⊙O外,根据以上内容判断即可.【详解】∵⊙O的半径为5,若PO=4,∴4<5,∴点P与⊙O的位置关系是点P在⊙O内,故选:A.【点睛】本题考查了点与圆的位置关系的应用,注意:已知圆O的半径为r,点P到圆心O的距离是d,①当r>d 时,点P在⊙O内,②当r=d时,点P在⊙O上,③当r<d时,点P在⊙O外.4.四条线段a,b,c,d成比例,其中b=3cm,c=8cm,d=12cm,则a=()A.2cm B.4cm C.6cm D.8cm【答案】A【解析】由四条线段a、b、c、d成比例,根据比例线段的定义,即可得a cb d=,又由b=3cm,c=8cm,d=12cm,即可求得a的值.【详解】∵四条线段a、b、c、d成比例,∴a cb d =∵b=3cm,c=8cm,d=12cm,∴8 312 a=解得:a=2cm.故答案为A.【点睛】此题考查了比例线段的定义.解题的关键是熟记比例线段的概念.5.下列各组中的四条线段成比例的是( )A .4cm ,2cm ,1cm ,3cmB .1cm ,2cm ,3cm ,5cmC .3cm ,4cm ,5cm ,6cmD .1cm ,2cm ,2cm ,4cm【答案】D【分析】四条线段成比例,根据线段的长短关系,从小到大排列,判断中间两项的积是否等于两边两项的积,相等即成比例.【详解】A.从小到大排列,由于1423⨯≠⨯,所以不成比例,不符合题意;B. 从小到大排列,由于1523⨯≠⨯,所以不成比例,不符合题意;C. 从小到大排列,由于3645⨯≠⨯,所以不成比例,不符合题意;D. 从小到大排列,由于1422⨯=⨯,所以成比例,符合题意;故选D.【点睛】此题主要考查线段成比例的关系,解题的关键是通过计算判断是否成比例.6.若将二次函数2y x 的图象先向左平移2个单位长度,再向下平移2个单位长度,则所得图象对应函数的表达式为( )A .2(2)2y x =++B .2(2)2y x =--C .2(2)2y x =+-D .2(2)2y x =-+ 【答案】C【分析】根据抛物线的平移规律:上加下减,左加右减解答即可.【详解】解:将2y x 的图象先向左平移2个单位长度,再向下平移2个单位长度,则所得二次函数的表达式为:2(2)2y x =+-.故选:C.【点睛】本题考查了抛物线的平移,属于基本知识题型,熟练掌握抛物线的平移规律是解题的关键.7.如图,O 的半径为10,圆心O 到弦AB 的距离为6,则AB 的长为( )A.8B.10C.12D.16【答案】D【分析】过点O作OC⊥AB于C,连接OA,根据勾股定理求出AC长,根据垂径定理得出AB=2CA,代入求出即可.【详解】过点O作OC⊥AB于C,连接OA,则OC=6,OA=10,由勾股定理得:228AC OA OC=-=,∵OC⊥AB,OC过圆心O,∴AB=2AC=16,故选D.【点睛】本题主要考查了勾股定理和垂径定理等知识点的应用,正确作出辅助线是关键.8.如图,在正方形网格上有两个相似三角形△ABC和△DEF,则∠BAC的度数为()A.105°B.115°C.125°D.135°【答案】D【分析】根据相似三角形的对应角相等即可得出.【详解】∵△ABC∽△EDF,∴∠BAC=∠DEF,又∵∠DEF=90°+45°=135°,∴∠BAC=135°,故选:D.本题考查相似三角形的性质,解题的关键是找到对应角9.如图,在△ABC 中,∠BAC =65°,将△ABC 绕点A 逆时针旋转,得到△AB'C',连接C'C .若C'C ∥AB ,则∠BAB'的度数为( )A .65°B .50°C .80°D .130°【答案】B 【分析】根据平行线的性质可得65C CA BAC '∠=∠=︒,然后根据旋转的性质可得AC AC '=,65C AB BAC ''∠=∠=︒,根据等边对等角可得65C CA CC A ''∠=∠=︒,利用三角形的内角和定理求出C AC '∠,根据等式的基本性质可得C AC B AB ''∠=∠,从而求出结论.【详解】解:∵∠BAC =65°,C C '∥AB∴65C CA BAC '∠=∠=︒由旋转的性质可得AC AC '=,65C AB BAC ''∠=∠=︒∴65C CA CC A ''∠=∠=︒,C AB B AC BAC B AC ''''∠-∠=∠-∠∴18050C AC C CA CC A '''∠=︒-∠-∠=︒,C AC B AB ''∠=∠∴50B AB '∠=︒故选B .【点睛】此题考查的是平行线的性质、旋转的性质和等腰三角形的性质,掌握平行线的性质、旋转的性质和等边对等角是解决此题的关键.103合并的是( )A 12B 8C 12D 15【答案】C【分析】化为最简二次根式,然后根据同类二次根式的定义解答. 3312228215三数的被开方数分别是2、2、15,所以它们不是同类二次根式,不能合并,即选项A 、B 、D 都不符合题12333C 符合题意.【点睛】本题考查同类二次根式的定义:化成最简二次根式后,被开方数相同,这样的二次根式叫做同类二次根式.11.如图,点D,E分别在△ABC的AB,AC边上,增加下列哪些条件,①∠AED=∠B,②AE DE AB BC=,③AD AEAC AB=,使△ADE与△ACB一定相似()A.①②B.②C.①③D.①②③【答案】C【分析】根据相似三角形的判定方法即可一一判断;【详解】解:∵∠A=∠A,∠AED=∠B,∴△AED∽△ABC,故①正确,∵∠A=∠A,AD AEAC AB=,∴△AED∽△ABC,故③正确,由②无法判定△ADE与△ACB相似,故选C.【点睛】本题考查相似三角形的判定,熟练掌握相似三角形的判定方法是解题的关键.12.如图,在菱形ABCD中,DE AB⊥,3cos5A=,3BE=,则tan DBE∠的值是()A.43B.2 C5D5【答案】B【分析】由菱形的性质得AD=AB,由3cos5AEAAD==,求出AD的长度,利用勾股定理求出DE,即可求出tan DBE∠的值.【详解】解:在菱形ABCD中,有AD=AB,。
贵州省贵阳市九年级上学期数学期末考试试卷

贵州省贵阳市九年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)下列食品商标中,既是轴对称图形又是中心对称图形的是()A .B .C .D .2. (2分)下列说法正确的是()A . 垂直于半径的直线是圆的切线B . 圆周角等于圆心角的一半C . 圆是中心对称图形D . 圆的对称轴是直径3. (2分) (2019八下·温州期中) 用配方法解方程 ,配方后正确的是()A .B .C .D .4. (2分)(2020·孝感) 已知蓄电池的电压为定值,使用蓄电池时,电流I(单位:A)与电阻R(单位:)是反比例函数关系,它的图象如图所示.则这个反比例函数的解析式为()A .B .C .D .5. (2分)如图,⊙O是正方形ABCD的内切圆,与各边分别相切于点E、F、G、H,则∠1的正切值等于()A .B .C . 1D . 26. (2分) (2016八上·杭州期末) 如图,在平面直角坐标系中,等腰直角三角形ABC的腰长为2,直角顶点A在直线l:y=2x+2上移动,且斜边BC∥x轴,当△ABC在直线l上移动时,BC的中点D满足的函数关系式为()A . y=2xB . y=2x+1C . y=2x+2﹣D . y=2x﹣7. (2分)在平行四边形ABCD中,点E在AD上,且AE:ED=3:1,CE的延长线与BA的延长线交于点F,则S△AFE:S四边形ABCE为()A . 3:4B . 4:3C . 7:9D . 9:78. (2分)同时投掷两枚硬币每次出现正面都向上的概率是()A .B .C .D .9. (2分)(2019·秦安模拟) 下列二次函数的图象通过平移能与二次函数的图象重合的是()A .B .C .D .10. (2分)如图,若将图正方形剪成四块,恰能拼成图的矩形,设,则的值为()A .B .C .D .11. (2分)如图,以图中的直角三角形三边为边长向外作三个正方形M、P、Q,且正方形M、P的面积分别为225和81,则正方形Q的面积是()A . 144B . 196C . 12D . 1312. (2分)对于抛物线,下列说法正确的是()A . 开口向下,顶点坐标(5,3)B . 开口向上,顶点坐标(5,3)C . 开口向下,顶点坐标(-5,3)D . 开口向上,顶点坐标(-5,3)二、填空题 (共4题;共4分)13. (1分)(2018·龙东模拟) 已知圆锥底面圆的直径是20cm,母线长40cm,其侧面展开图圆心角的度数为________.14. (1分)(2014·淮安) 一只不透明的袋子中装有1个白球和3个红球,这些球除颜色外都相同,搅匀后从中任意摸出1个球,则摸出红球的概率为________.15. (1分)如图,点P、Q是反比例函数y=图象上的两点,PA⊥y轴于点A,QN⊥x轴于点N,作PM⊥x轴于点M,QB⊥y轴于点B,连接PB、QM,△ABP的面积记为S1 ,△QMN的面积记为S2 ,则S1 ________S2 .(填“>”或“<”或“=”)16. (1分)若(x2+y2)2﹣3(x2+y2)﹣10=0,则x2+y2=________ .三、解答题 (共10题;共117分)17. (10分)解方程:(1) x2﹣4x+1=0(用配方法)(2)(x+1)(x+2)=2x+4.18. (10分) (2016七下·潮州期中) 读语句作图(1)点P是直线AB外一点,直线CD经过点P,且与直线AB垂直;(2)直线AB、CD是相交直线,点P是直线AB、CD外的一点,直线EF经过点P且与直线AB平行,与直线CD 相交于点E.19. (14分)(2017·准格尔旗模拟) 今年以来,我国持续大面积的雾霾天气让环保和健康问题成为焦点.为了调查学生对雾霾天气知识的了解程度,某校在学生中做了一次抽样调查,调查结果共分为四个等级:A.非常了解;B.比较了解;C.基本了解;D.不了解.根据调查统计结果,绘制了不完整的三种统计图表.对雾霾了解程度的统计表:对雾霾的了解程度百分比A.非常了解5%B.比较了解mC.基本了解45%D.不了解n请结合统计图表,回答下列问题.(1)本次参与调查的学生共有________人,m=________,n=________;(2)图2所示的扇形统计图中D部分扇形所对应的圆心角是________度;(3)请补全图1示数的条形统计图;(4)根据调查结果,学校准备开展关于雾霾知识竞赛,某班要从“非常了解”态度的小明和小刚中选一人参加,现设计了如下游戏来确定,具体规则是:把四个完全相同的乒乓球标上数字1,2,3,4,然后放到一个不透明的袋中,一个人先从袋中随机摸出一个球,另一人再从剩下的三个球中随机摸出一个球.若摸出的两个球上的数字和为奇数,则小明去;否则小刚去.请用树状图或列表法说明这个游戏规则是否公平.20. (15分) (2019八上·无锡月考) 已知函数y=(2m+1)x+m﹣3.(1)若函数图象经过原点,求m的值;(2)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围;(3)若这个函数是一次函数,且图象不经过第四象限,求m的取值范围.21. (10分)如图,在 ABCD中,F是AD的中点,延长BC到点E,使CE= BC,连结DE,CF。
【35套试卷合集】贵州省贵阳市数学九上期末模拟试卷含答案
D 2019-2020学年九上数学期末模拟试卷含答案一、选择题(本题共16分,每小题2分)下面各题均有四个选项,其中只有一个..是符合题意的. 1. 二次函数2(1)3y x =--的顶点坐标是A .(1,-3)B .(-1,-3)C .(1,3)D .(-1,3)2.如图,在△ABC 中,M ,N 分别为AC ,BC 的中点.则△CMN 与△CAB 的面积之比是A .12B . 13C .14D .193.如图,在⊙O 中,A ,B ,D 为⊙O 上的点,∠AOB=52°,则∠ADB 的度数 是A .104°B .52°C .38°D .26°4. 如图,在△ABC 中,DE ∥BC ,若 13=AD AB ,AE =1,则EC 等于A .1B . 2C .3D .45. 如图,点P 在反比例函数2y x=的图象上,PA ⊥x 轴于点A ,则△PAO 的面积为A .1B .2C .4D .66. 如图,在△ABC 中,B ACD ∠=∠,若AD =2,BD =3,则AC 长为A .B .C D .67. 抛物线22y x x m =-+与x 轴有两个交点,则m 的取值范围为A .1m >B .=1mC . 1m <D .4m <8. 已知二次函数y 1=ax 2+bx +c(a ≠0)和一次函数y 2=kx +n(k ≠0)的图象如图所示,下面有四个推断 ①二次函数y 1有最大值②二次函数y 1的图象关于直线1x =-对称 ③当2x =-时,二次函数y 1的值大于0④过动点P(m ,0)且垂直于x 轴的直线与y 1,y 2的图象的交点分别 为C ,D ,当点C 位于点D 上方时,m 的取值范围是m <-3或m >-BCBA .①③B .①④C .②③D .②④二、填空题(本题共16分,每小题2分) 9. 已知点A (1,a )在反比例函数12y x=-的图象上,则a 的值为 . 10.请写出一个开口向上,并且与y 轴交点在y 轴负半轴的抛物线的表达式:11. 如图,在⊙O 中,AB 为弦,半径OC ⊥AB 于E ,如果AB=8,CE=2, 那么⊙O 的半径为 .12. 把二次函数245=-+y x x 化为()2y a x h k =-+的形式,那么h k +=_____.13. 如图,∠DAB=∠CAE ,请你再添加一个条件____________, 使得△ABC ∽△ADE .14. 若一个扇形的圆心角为45°,面积为6π,则这个扇形的半径为 .15. 为测量学校旗杆的高度,小明的测量方法如下:如图,将直角三角形硬纸板DEF 的斜边DF 与地面保持平行,并使边DE 与旗杆顶点A 在同一直线上. 测得DE=0.5米,EF=0.25米,目测点D 到地面的距离DG=1.5米,到旗杆的水平距离DC=20米.按此方法,请计算旗杆的高度为 米.16.如图1,将一个量角器与一张等边三角形(△ABC )纸片放置成轴对称图形,CD ⊥AB ,垂足为D ,半圆(量角器)的圆心与点D 重合,此时,测得顶点C 到量角器最高点的距离CE =2cm ,将量角器沿DC 方向平移1cm ,半圆(量角器)恰与△ABC 的边AC ,BC 相切,如图2,则AB 的长为 cm .图1CBAEEABC 图2三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,第27,28题,每小题7分)17.计算:o o o 2sin 45tan 602cos30++18. 下面是小西“过直线外一点作这条直线的垂线”的尺规作图过程. 已知:直线l 及直线l 外一点P .B求作:直线PQ ,使得PQ ⊥l. 做法:如图,①在直线l 的异侧取一点,以点P 为圆心,P 长为半径画弧,交直线l 于点A ,B ; ②分别以点A ,B 为圆心,大于12AB 的同样长为半径画弧,两弧交于点Q (与P 点不重合); ③作直线PQ ,则直线PQ 就是所求作的直线. 根据小西设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹) (2)完成下面的证明.证明:∵PA = ,QA = ,∴PQ ⊥l ( )(填推理的依据).19.如图,由边长为1的25个小正方形组成的正方形格上有一个△ABC ,且A ,B ,C 三点均在小正方形的顶点上,试在这个格上画一个与△ABC 相似的△A 1B 1C 1,要求:A 1,B 1,C 1三点都在小正方形的顶点上,并直接写出△A 1B 1C 1的面积.20. 如图,在四边形ABCD 中,CD ∥AB ,AD=BC. 已知A (﹣2,00),D (0,3),函数(0)=>k y x x的图象G 经过点C .(1)求点C 的坐标和函数(0)=>ky x x的表达式; (2)将四边形ABCD 向上平移2个单位得到四边形''''A B C D 是否落在图象G 上?21. 小磊要制作一个三角形的模型,已知在这个三角形中,长度为x (单位:cm)的边与这条边上的高之和为40 cm ,这个三角形的面积为S (单位:cm 2).(1)请直接写出S 与x 之间的函数关系式(不要求写出自变量x 的取值范围);(2)当x 是多少时,这个三角形面积S 最大?最大面积是多少?[来22. 如图,在△ABC 中,∠ACB=90︒,D 为AC 上一点,DE ⊥AB于点E ,AC=12,BC=5.(1)求ADE ∠cos 的值;(2)当DE DC =时,求AD 的长.23. 如图,反比例函数=k y x分别交于M ,N 两点,已知点M (1)求反比例函数的表达式;(2)点P 为y 轴上的一点,当∠24. 如图,AB ,AC 是⊙O 连接BE ,连接AO .A(1)求证:AO ∥BE ;(2)若2=DE ,tan ∠BEO ,求DO 的长.25. 如图,在Rt △ABC 中,∠ACB=90°,D 是AB 的中点,连接CD ,过点B 作CD 的垂线,交CD 延长线于点E. 已知AC=30,cosA=53. (1)求线段CD 的长; (2)求sin ∠DBE 的值.26. 在平面直角坐标系xOy 中,点()4,2A --,将点A 向右平移6个单位长度,得到点B. (1)直接写出点B 的坐标;(2)若抛物线2y x bx c =-++经过点A,B ,求抛物线的表达式;(3)若抛物线2y xbx c =-++的顶点在直线2y x =+上移动,当抛物线与线段AB 有且只有一个公共点时,求抛物线顶点横坐标t 的取值范围.B27.如图,Rt△ ABC中,∠ACB=90°,AD平分∠BAC,作AD的垂直平分线EF交AD于点E,交BC的延长线于点F,交AB于点G,交AC于点H.(1)依题意补全图形;(2)求证:∠BAD=∠BFG;(3)试猜想AB,FB和FD之间的数量关系并进行证明.28. 如图,在平面直角坐标系xOy中,已知点A(1,2),B(3,2),连接AB. 若对于平面内一点P,线段AB上都存在点Q,使得PQ≤1,则称点P是线段AB的“临近点”.(1)在点C(0,2),D(2,32),E(4,1)中,线段AB的“临近点”是__________;(2)若点M(m,n)在直线2y x=+上,且是线段AB的“临近点”,求m的取值范围;DB C(3)若直线y b=+上存在线段AB的“临近点”,求b的取值范围.九年级数学一.选择题(本题共16分,每小题2分)二.填空题(本题共16分,每小题2分)9. -12 10.略 11. 5 12. 3 13.略 14.15. 11.5 16.三. 解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,第27,28题,每小题7分)17. 2sin45tan602cos30︒+︒+︒2222=⨯+⨯-……………………4分=……………………………………5分18. (1)如图所示………………………………………1分(2)PA=PB,QA=QB …………………………………3分依据:①到线段两个端点距离相等的点在这条线段的垂直平分线上;②两点确定一条直线. ………………………………………5分19. 画图略…………………………………………………3分面积略……………………………………………………5分20.(1)C(4,3),……………………………………………1分反比例函数的解析式y=x12;………………………3分(2)点B′恰好落在双曲线上.…………………………5分l21.(1)x x S 20212+-= …………………………2分 (2)∵21-=a <0,∴S 有最大值, …………………………3分 当20)21(2202=-⨯-=-=abx 时,S 有最大值为200202020212=⨯+⨯-=S ∴当x 为20cm 时,三角形面积最大,最大面积是200cm 2. …………………………5分22. 解如图,(1)∵DE ⊥AB ,∴∠DEA=90°. ∴∠A+∠ADE=90°. ∵∠ACB=90︒, ∴∠A+∠B=90°.∴∠ADE=∠B . ………………………………1分 在Rt △ABC 中,∵AC=12,BC=5, ∴AB=13. ∴5cos 13BC B AB ==. ∴5cos cos 13ADE B ∠==. ………………………………2分 (2)由(1)得5cos 13DE ADE AD ∠==, 设AD 为x ,则513DE DC x ==. ………………………………3分 ∵ 12AC AD CD =+=, ∴51213x x +=. .………………………………4分 解得263x =. ∴ 263AD =. ……………………………5分23. (1)∵点M (-2,m )在一次函数12y x =-的图象上, ∴()1=212m -⨯-= . ∴M (-2,1). ……………………………2分A∵反比例函数ky x=的图象经过点M (-2,1), ∴k =-2×1=-2.∴反比例函数的表达式为2=-y x. ……………………………4分 (2)点P 的坐标为(0,……………………………6分24. (1) 证明:连结BC ,∵AB ,AC 是⊙O 的两条切线,B ,C 为切点,∴=AB AC ,平分∠OA BAC ………………………………1分 ∴OA ⊥BC. ∵CE 是⊙O 的直径, ∴∠CBE=90°,∴ OA ∥BE. ………………………………2分 (2)∵OA ∥BE, ∴∠BEO=∠AOC. ∵tan ∠∴tan ∠.在Rt △AOC 中,设OC=r,则r ………………………4分∴在Rt △CEB 中,EB=3r. ∵BE ∥OA, ∴△DBE ∽△D AO∴DE EBDO OA=, ………………………………………………………………5分 2rDO =, ∴DO=3. ………………………………6分25. ⑴∵∠ACB=90°,AC=30,cosA=53,∴BC=40,AB=50. ……………………2分 ∵D 是AB 的中点, ∴CD=21AB=25. …………………………3分 (2)∵CD=DB,∴∠DCB=∠DBC. ………………………4分BA∴cos ∠DCB=cos ∠DBC=45. ∵BC=40,∴CE=32, ……………………5分 ∴DE=CE -CD=7, ∴sin ∠DBE=725=DE DB . ……………………6分26. (1)()2,2B -……………………2分(2)抛物线2y x b x c =-++过点,A B , ∴1642422b c b c --+=-⎧⎨-++=-⎩, 解得26b c =-⎧⎨=⎩∴抛物线表达式为226y x x =--+ ………………………4分 (3)抛物线2y x bx c =-++顶点在直线2y x =+上∴抛物线顶点坐标为(),2t t +∴抛物线表达式可化为()22y x t t =--++. 把()4,2A --代入表达式可得()2242t t -=---++解得123,4t t =-=-. ∴43t -≤<-.把()2,2B -代入表达式可得()2222t t --++=-.解得340,5t t == ∴05<≤t .综上可知t 的取值范围时43t -≤<-或05<≤t . …………………6分27. (1)补全图形如图; ……………………………2分 (2)证明∵AD 平分∠BAC,∴∠BAD=∠CAD∵FE ⊥AD, ∠ACF=90°, ∠AHE=∴∠CFH=∠CAD∴∠BAD=∠CFH, 即∠BAD=∠(3)猜想 222AB FD FB += 证明:连接AF ,∵EF 为AD 的垂直平分线,∴ AF=FD ,∠ DAF=∠ ADF ,∴ ∠DAC+∠ CAF=∠ B+∠ ∵ AD 是角平分线, ∴ ∠ BAD=∠ CAD ∴ ∠ CAF=∠ B , ∴ ∠ BAF=∠ BAC+∠ CAF=∠ BAC+∠ B=90°………………………6分∴222AB AF FB +=∴222+=AB FD FB ………………………………7分28.(1)C 、D (2)如图,设3y x =-+易知M (0,2),∴m≥0,易知N 的纵坐标为1,代入y =∴∴. …………………………………………4分(3)当直线y b =+与半圆A 相切时,=2-b …………5分当直线3y x b =-+与半圆B 相切时,=2+3b 分∴2+332-≤b ……………………………………………7分2019-2020学年九上数学期末模拟试卷含答案(试卷分值:100分 考试时间:100分钟)同学们,一个学期的拼搏今天即将展现在试卷上,老师相信你一定会把诚信答满试卷,也一定会让努力书写成功,答题时记住细心和耐心.21世纪教育注意:1. 本试卷由问卷和答卷两部分组成,其中问卷共4页,答卷共4页。
贵阳市九年级上学期数学期末考试试卷
贵阳市九年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)如图所示的正六边形ABCDEF中,可以由△AOB经过平移得到的三角形有()A . 5个B . 4个C . 3个D . 2个2. (2分) (2020九上·松北期末) 如图,以原点O为圆心,半径为1的弧交坐标轴于A,B两点,P是上一点(不与A,B重合),连接OP,设∠POB=α,则点P的坐标是()A . (sinα,sinα)B . (cosα,cosα)C . (cosα,sinα)D . (sinα,cosα)3. (2分) (2019九上·如皋期末) 一个几何体的三视图如图所示,则这个几何体是()A .B .C .D .4. (2分) (2019九上·如皋期末) 如图,在的正方形方格图形中,小正方形的顶点称为格点若的顶点都在格点上,则的值等于A .B .C .D .5. (2分) (2019九上·如皋期末) 如图,在中,两条中线BE、CD相交于点O,则:A . 1:4B . 2:3C . 1:3D . 1:26. (2分) (2019九上·如皋期末) 如图,在平面直角坐标系中,经过三点,,,点D是上一动点,则点D到弦OB的距离的最大值是A . 6B . 8C . 9D . 107. (2分) (2019九上·如皋期末) 点P1(﹣1,),P2(3,),P3(5,)均在二次函数的图象上,则,,的大小关系是()A .B .C .D .8. (2分) (2019九上·如皋期末) 已知点、都在反比例函数的图象上,且,则下列结论一定成立的是A .B .C .D .9. (2分) (2019九上·如皋期末) 如图,边长为1的正方形ABCD中,点E在CB的延长线上,连接ED交AB 于点F,AF=x(0.2≤x≤0.8),EC=y.则在下面函数图象中,大致能反映y与x之间函数关系的是()A .B .C .D .10. (2分) (2019九上·如皋期末) 如图,▱ABCD中,,,,是边AB上的两点,半径为2的过点A,半径为1的过点、E、F分别是边CD,和上的动点则的最小值等于A .B . 6C .D . 9二、填空题 (共8题;共9分)11. (1分)我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦图”(如图(1)).图(2)由弦图变化得到,它是由八个全等的直角三角形拼接而成,记图中正方形ABCD、正方形EFGH、正方形MNKT的面积分别为S1、S2、S3 .若正方形EFGH的边长为2,则S1+S2+S3= ________.12. (1分) (2019九上·如皋期末) 已知点A(a,4)、B(﹣2,2)都在双曲线y=上,则a=________.13. (1分) (2019九上·如皋期末) 求值: ________.14. (2分) (2018九上·鼎城期中) 如图,为估算某河的宽度,在河对岸选定一个目标点A,在近岸取点B,C,D,使得AB⊥BC,CD⊥BC,点E在BC上,并且点A,E,D在同一条直线上.若测得BE=20m,EC=10m,CD=20m,则河的宽度AB=________m.15. (1分) (2019九上·如皋期末) 如图,由四个全等的直角三角形围成的大正方形的面积是169,小正方形的面积是49,则的值等于________.16. (1分)(2018·扬州) 用半径为,圆心角为的扇形纸片围成一个圆锥的侧面,则这个圆锥的底面圆半径为________ .17. (1分) (2019九上·如皋期末) 如图,在平面直角坐标系中,每个小方格都是边长为1个单位长度的正方形.已知△AOB与△A1OB1位似中心为原点O,且相似比为3:2,点A,B都在格点上,则点B1的坐标为________.18. (1分) (2019九上·如皋期末) 在直角坐标系中,已知直线经过点和点,抛物线y=ax2-x+2(a≠0)与线段MN有两个不同的交点,则a的取值范围是________.三、解答题 (共10题;共92分)19. (5分) (2019九上·西城期中) 在△ABC中,∠ACB为锐角.点D为射线BC上一动点,连接AD,将线段AD绕点A逆时针旋转90°得到AE,连结EC.如果AB=AC,∠BAC=90°.①当点D在线段BC上时(与点B不重合),如图1,请你判断线段CE、BD之间的位置和数量关系(直接写出结论);②当点D在线段BC的延长线上时,请你在图2画出图形,判断①中的结论是否仍然成立,并证明你的判断.20. (2分) (2017九下·杭州开学考) 某商场购进一种每件价格为100元的新商品,在商场试销发现:销售单价x(元/件)与每天销售量y(件)之间满足如图所示的关系:(1)求出y与x之间的函数关系式;(2)写出每天的利润W与销售单价x之间的函数关系式;若你是商场负责人,会将售价定为多少,来保证每天获得的利润最大,最大利润是多少?21. (15分) (2019九上·如皋期末) 如图,一次函数与函数的图象交于,两点,轴于C,轴于D(1)求k的值;(2)根据图象直接写出的x的取值范围;(3)是线段AB上的一点,连接PC,PD,若和面积相等,求点P坐标.22. (10分) (2019九上·如皋期末) 如图,为的直径,点在上,延长至点,使,延长与的另一个交点为,连接, .(1)求证:;(2)若,,求的长.23. (10分) (2019九上·如皋期末) 如图,抛物线经过,两点,顶点为D.(1)求a和b的值;(2)将抛物线沿y轴方向上下平移,使顶点D落在x轴上.求平移后所得图象的函数解析式;若将平移后的抛物线,再沿x轴方向左右平移得到新抛物线,若时,新抛物线对应的函数有最小值2,求平移的方向和单位长度.24. (10分) (2019九上·如皋期末) 如图,已知四边形ABCD内接于⊙O,A是的中点,AE⊥AC于A,与⊙O及CB的延长线交于点F,E,且.(1)求证:△ADC∽△EBA;(2)如果AB=8,CD=5,求tan∠CAD的值.25. (10分) (2019九上·如皋期末) 如图,在中,,以AC为直径的与AB 边交于点D,(1)求证:DE是的切线;(2)若以点O、D、E、C为顶点的四边形是正方形,试判断的形状,并说明理由.26. (10分) (2019九上·如皋期末) 如图,中,,,为AB的中点,,DE交AC于点G,DF经过点C.(1)求的值.(2)如图②,将绕点D顺时针方向旋转,的两边分别交AC于M,BC于试判断的值是否随着的变化而变化?如果不变,请求出的值;反之,请说明理由.27. (5分) (2019九上·如皋期末) 复习课中,教师给出关于x的函数(k是实数).教师:请独立思考,并把探索发现的与该函数有关的结论(性质)写到黑板上.学生思考后,黑板上出现了一些结论.教师作为活动一员,又补充一些结论,并从中选择如下四条:①存在函数,其图像经过(1,0)点;②函数图像与坐标轴总有三个不同的交点;③当时,不是y随x的增大而增大就是y随x的增大而减小;④若函数有最大值,则最大值必为正数,若函数有最小值,则最小值必为负数;教师:请你分别判断四条结论的真假,并给出理由,最后简单写出解决问题时所用的数学方法.28. (15分) (2019九上·如皋期末) 如图,在四边形ABCD的边AB上任取一点点P不与A,B重合,分别连接PD,PC,可以把四边形ABCD分成三个三角形,如果其中有两个三角形相似,我们就把P叫四边形ABCD 的边AB上的“相似点”;如果这三个三角形都相似,我们就把P叫做四边形ABCD的边AB上的“强相似点“.解决问题(1)如图①,,试判断点P是否是四边形ABCD的边AB上的相似点,并说明理由.(2)如图②,在四边形ABCD中,A,B,C,D四点均在正方形网格网格中每个小正方形的边长为的格点即每个小正方形的顶点上,试在图中画出四边形ABCD的边BC上的相似点,并写出对应的相似三角形;(3)如图③,在四边形ABCD中,,,,点P在边BC上,若点P是四边形ABCD的边BC上的一个强相似点,求BP的长.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共8题;共9分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共10题;共92分)20-1、20-2、21-1、21-2、21-3、22-1、22-2、23-1、23-2、24-1、24-2、25-1、25-2、26-1、26-2、27-1、28-1、28-2、28-3、。
〖汇总3套试卷〗贵阳市2019年九年级上学期期末质量检测数学试题
九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.反比例函数4yx=-(x<0)如图所示,则矩形OAPB的面积是()A.-4 B.-2 C.2 D.4【答案】D【分析】根据反比例函数的比例系数的几何意义:反比例函数图象上一点向x轴,y轴作垂线与坐标轴围成的矩形面积等于|k|解答即可.【详解】∵点P在反比例函数4yx=-(x<0)的图象上,∴S矩形OAPB=|-4|=4,故选:D.【点睛】本题主要考查反比例函数的比例系数的几何意义,掌握反比例函数上一点向x轴,y轴作垂线与坐标轴围成的矩形面积等于|k|是关键.2.如图,⊙O的半径为2,点A的坐标为()2,?23,直线AB为⊙O的切线,B为切点,则B点的坐标为()A.38,?25⎛⎫-⎪⎪⎝⎭B.()3,?1-C.49,?55⎛⎫-⎪⎝⎭D.()1,?3-【答案】D【解析】过点A作AC⊥x轴于点C,过点B作BD⊥x轴于点D,∵⊙O 的半径为2,点A 的坐标为(2,,即OC=2.∴AC 是圆的切线.∵OA=4,OC=2,∴∠AOC=60°.又∵直线AB 为⊙O 的切线,∴∠AOB=∠AOC=60°.∴∠BOD=180°-∠AOB-∠AOC=60°.又∵OB=2,∴OD=1,,即B 点的坐标为(-.故选D.3.一元二次方程x (3x+2)=6(3x+2)的解是( )A .x =6B .x =﹣23C .x 1=6,x 2=﹣23D .x 1=﹣6,x 2=23 【答案】C【分析】根据因式分解法解一元二次方程即可求出答案.【详解】解:∵x (3x+2)=6(3x+2),∴(x ﹣6)(3x+2)=0,∴x =6或x =23-, 故选:C .【点睛】本题主要考查因式分解法解一元二次方程,掌握因式分解法是解题的关键.4.二次函数221y x =-的图象是一条抛物线,下列说法中正确的是( )A .抛物线开口向下B .抛物线经过点()1,1-C .抛物线的对称轴是直线1x =D .抛物线与x 轴有两个交点 【答案】D【分析】根据二次函数的性质对A 、C 进行判断;根据二次函数图象上点的坐标特征对B 进行判断;利用方程2x 2-1=0解的情况对D 进行判断.【详解】A. a=2,则抛物线y=2x 2−1的开口向上,所以A 选项错误;B. 当x=1时,y=2×1−1=1,则抛物线不经过点(1,-1),所以B 选项错误;C. 抛物线的对称轴为直线x=0,所以C 选项错误;D. 当y=0时,2x 2−1=0,此方程有两个不相等的实数解,所以D 选项正确.故选D.【点睛】本题考查了抛物线与x 轴的交点,二次函数的性质,二次函数图象上点的坐标特征,结合图像是解题的关键.5.若点B 是直线2y x =-+上一点,已知()0,2A -,则AB OB +的最小值是( )A .4B .25C .23D .2【答案】B【分析】根据题意先确定点B 在哪个位置时AB OB +的最小值,先作点A 关于直线CD 的对称点E,点B 、E 、O 三点在一条直线上,再根据题意,连结OE 与CD 的交点就是点B,求出OE 的长即为所求.【详解】解:在y=-x+2中,当x=0时, y=2,当y=0时, 0=-x+2,解得x=2,∴直线y=-x+2与x 的交点为C(2.0),与y 轴的交点为D(0,2),如图,∴OC=OD=2,∵OC ⊥OD,:OC ⊥OD,∴△OCD 是等腰直角三角形,∴∠OCD=45°,∴A(0,-2),∴OA=OC=2连接AC ,如图,∵OA ⊥OC,∴△OCA 是等腰直角三角形,∴∠OCA= 45°,∴∠ACD=∠OCA+∠OCD=90°,∴.AC ⊥CD,延长AC 到点E ,使CE=AC,连接BE ,作EF ⊥轴于点F ,则点E 与点A 关于直线y= -x+2对称,∠EFO= ∠AOC=90,点O 、点B 、点E 三点共线时,OB+AB 取最小值,最小值为OE 的长,在△CEF 和△CAO 中,EFC AOC ECF ACO CE AC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△CEF ≌OCAO(AAS),∴EF=OA=2,CF=OC=2∴OF=OC+CF=4,OE ∴===即OB+AB的最小值为故选:B【点睛】本题考查的是最短路线问题,找最短路线是解题关键.找一点的对称点连接另一点和对称点与对称轴的交点就是B 点.6.计算:x (1﹣21x )÷221x x x++的结果是( ) A .11x + B .x+1 C .11x x -+ D .1x x+ 【答案】C【分析】直接利用分式的性质化简进而得出答案.【详解】解:原式=()()()2111x x x x x +-⋅+ =11x x -+. 故选:C .【点睛】此题主要考查分式的运算,解题的关键是熟知分式的运算法则.7.某果园2011年水果产量为100吨,2013年水果产量为144吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为x ,则根据题意可列方程为( )A .144(1﹣x )2=100B .100(1﹣x )2=144C .144(1+x )2=100D .100(1+x )2=144【答案】D【解析】试题分析:2013年的产量=2011年的产量×(1+年平均增长率)2,把相关数值代入即可. 解:2012年的产量为100(1+x ),2013年的产量为100(1+x )(1+x )=100(1+x )2,即所列的方程为100(1+x )2=144,故选D .点评:考查列一元二次方程;得到2013年产量的等量关系是解决本题的关键.8.边长为2的正六边形的面积为( )A .63B .62C .6D .3 【答案】A【解析】首先根据题意作出图形,然后可得△OBC 是等边三角形,然后由三角函数的性质,求得OH 的长,继而求得正六边形的面积.【详解】解:如图,连接OB ,OC ,过点O 作OH ⊥BC 于H ,∵六边形ABCDEF 是正六边形,∴∠BOC =16×360°=60°, ∵OB =0C ,∴△OBC 是等边三角形,∴BC =OB =OC =2,∴它的半径为2,边长为2;∵在Rt △OBH 中,OH =OB•sin60°=2×32, ∴边心距是:3;∴S 正六边形ABCDEF =6S △OBC =6×12×2×3=63. 故选:A .【点睛】本题考查圆的内接正六边形的性质、正多边形的内角和、等边三角形的判定与性质以及三角函数等知识.此题难度不大,注意掌握数形结合思想的应用.9.若37x y =(x 、y 均不为0),则下列等式成立的是( )A .73x y =B .73y x =C .73y x =D .73x y = 【答案】D【分析】直接利用比例的性质分别判断得出答案.【详解】解:A 、73x y=,则xy=21,故此选项错误;B 、73y x=,则xy=21,故此选项错误; C 、73y x =,则3y=7x ,故此选项错误; D 、73x y =,则3x=7y ,故此选项正确. 故选:D .【点睛】此题主要考查了比例的性质,正确将比例式变形是解题关键.10.下列方程中是关于x 的一元二次方程的是( )A .x 2+1x =0B .(x -1)2=(x +3)(x -2)+1C .x =x 2D .ax 2+bx +c =0 【答案】C【详解】A. x 2+1x=0,是分式方程,故错误; B. (x -1)2=(x +3)(x -2)+1经过整理后为:3x-6=0,是一元一次方程,故错误;C. x =x 2 ,是一元二次方程,故正确;D. 当a=0时,ax 2+bx +c =0不是一元二次方程,故错误,故选C.11.下列方程中,没有实数根的是( )A .20x x +=B .220x -=C .210x x +-=D .210x x -+=【答案】D【分析】要判定所给方程根的情况,只要分别求出它们的判别式,然后根据判别式的正负情况即可作出判断.没有实数根的一元二次方程就是判别式的值小于0的方程.【详解】解:A 、x 2+x=0中,△=b 2-4ac=1>0,有实数根;B 、x 2-2=0中,△=b 2-4ac=8>0,有实数根;C 、x 2+x-1=0中,△=b 2-4ac=5>0,有实数根;D 、x 2-x+1=0中,△=b 2-4ac=-3,没有实数根.故选D .【点睛】本题考查一元二次方程根判别式△:即(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.12.若气象部门预报明天下雨的概率是65%,下列说法正确的是( )A .明天一定会下雨B .明天一定不会下雨C .明天下雨的可能性较大D .明天下雨的可能性较小【答案】C【分析】根据概率的意义找到正确选项即可.【详解】解:气象部门预报明天下雨的概率是65%,说明明天下雨的可能性比较大,所以只有C 合题意. 故选:C .【点睛】此题主要考查了概率的意义,关键是理解概率表示随机事件发生的可能性大小:可能发生,也可能不发生.二、填空题(本题包括8个小题)13.等腰△ABC 的腰长与底边长分别是方程x 2﹣6x+8=0的两个根,则这个△ABC 的周长是_____.【答案】11【详解】∵2x 6x 80-+=,∴(x -2)(x -4)=1.∴x -2=1或x -4=1,即x 1=2,x 2=4.∵等腰△ABC 的腰长与底边长分别是方程2x 6x 80-+=的两个根,∴当底边长和腰长分别为2和4时,满足三角形三边关系,此时△ABC 的周长为:2+4+4=11; 当底边长和腰长分别为4和2时,由于2+2=4,不满足三角形三边关系,△ABC 不存在.∴△ABC 的周长=11.故答案是:1114.在一个不透明的袋子中装有6个白球和若干个红球,这些球除颜色外无其他差别.每次从袋子中随机摸出一个球,记下颜色后再放回袋中,通过多次重复试验发现摸出红球的频率稳定在0.7附近,则袋子中红球约有_____个.【答案】1【分析】设袋子中的红球有x 个,利用红球在总数中所占比例得出与试验比例应该相等求出即可.【详解】解:设袋子中的红球有x 个, 根据题意,得:6x x+=0.7, 解得:x =1,经检验:x =1是分式方程的解,∴袋子中红球约有1个,故答案为:1.【点睛】此题主要考查概率公式的应用,解题的关键是根据题意列式求解.15.如图,圆O 是一个油罐的截面图,已知圆O 的直径为5m ,油的最大深度4CD =m (CD AB ⊥),则油面宽度AB 为__________m .【答案】1【分析】连接OA ,先求出OA 和OD ,再根据勾股定理和垂径定理即可求出AD 和AB .【详解】解:连接OA∵圆O 的直径为5m ,油的最大深度4CD =m∴OA=OC=52m ∴OD=CD -OC=32m ∵CD AB ⊥根据勾股定理可得:222OA OD m ∴AB=2AD=1m故答案为:1.【点睛】此题考查的是垂径定理和勾股定理,掌握垂径定理和勾股定理的结合是解决此题的关键.16.已知二次函数22my mx -=的图像开口向上,则m 的值为________. 【答案】2【分析】根据题意:x 的最高次数为2,由开口向上知二次项系数大于0,据此求解即可.【详解】∵22m y mx -=是二次函数,∴222m -=,即24m =解得:2m =±,又∵图象的开口向上,∴0m >,∴2m =.故答案为:2.【点睛】本题综合考查了二次函数的性质及定义,要注意二次项系数的取值范围.17.自行车因其便捷环保深受人们喜爱,成为日常短途代步与健身运动首选.如图1是某品牌自行车的实物图,图2是它的简化示意图.经测量,车轮的直径为66cm ,中轴轴心C 到地面的距离CF 为33cm ,后轮中心A 与中轴轴心C 连线与车架中立管BC 所成夹角72ACB ∠=︒,后轮切地面l 于点D .为了使得车座B 到地面的距离BE 为90cm ,应当将车架中立管BC 的长设置为_____________cm .(参考数据: 720.95,720.31,2.1 )73sin cos tan ︒≈︒≈︒≈【答案】60【分析】先计算出AD=33cm ,结合已知可知AC ∥DF ,由由题意可知BE ⊥ED,即可得到BE ⊥AC,然后再求出BH 的长,然后再运用锐角三角函数即可求解.【详解】解:∵车轮的直径为66cm∴AD=33cm∵CF=33cm∴AC ∥DF∴EH=AD=33cm∵BE ⊥ED∴BE ⊥AC∵BH=BE-EH=90-33=57cm∴∠sinACB=sin72°=57BH BC BC==0.95 ∴BC=57÷0.95=60cm故答案为60.【点睛】本题考查了解直角三角形的应用,将实际问题中抽象成数学问题是解答本题的关键.18.两同学玩扔纸团游戏,在操场上固定了如下图所示的矩形纸板,E 为AD 中点,且∠ABD =60°,每次纸团均落在纸板上,则纸团击中阴影区域的概率是________.【答案】18 【分析】先根据矩形的性质求出矩形对角线所分的四个三角形面积相等,再根据E 为AD 中点得出S △ODE 12=S △OAD ,进而求解即可. 【详解】∵ABCD 是矩形, ∴S △AOD =S △AOB =S △BOC =S △COD 14=S 矩形纸板ABCD . 又∵E 为AD 中点,∴S △ODE 12=S △OAD , ∴S △ODE 18=S 矩形纸板ABCD , ∴纸团击中阴影区域的概率是18. 故答案为:18. 【点睛】 本题考查了几何概率,用到的知识点为:概率=相应的面积与总面积之比.三、解答题(本题包括8个小题)19.如图,DC EF GH AB ,12AB =,6CD =,::3:4:5DE EG GA =.求EF 和GH 的长.【答案】7.5EF =,9.5GH =.【分析】过C 作CQ ∥AD ,交GH 于N ,交EF 于M ,交AB 于Q ,则可判断四边形AQCD 为平行四边形,所以AQ=CD=6,同理可得EM=EM=CD=6,则BQ=AB-AQ=6,再利用平行线分线段成比例定理得到DE :EG :GA=CF :HF :HB=3:4:5,然后根据平行于三角形的一边,并且和其他两边(或两边的延长线)相交的直线,所截得的三角形的三边与原三角形的三边对应成比例得到MF :BQ=CF :CB=3:12,NH :BQ=CH :CB=7:12,则可计算出MF 和NH ,从而得到GH 和EF 的长【详解】解:过C 作CQ AD ,交GH 于点N ,交EF 于点M ,交AB 于Q ,如图,∵CD AB ,∴四边形AQCD 为平行四边形.∴6AQ CD ==,同理可得6GN EM CD ===.∴6BQ AB AQ =-=.∵DC EF GH AB ,∴::::3:4:5DE EG GA CF HF HB ==.∵MF NH BQ ,∴()::3:345MF BQ CF CB ==++,()()::34:345NH BQ CH CB ==+++. ∴36 1.512MF =⨯=,76 3.512NH =⨯=. ∴6 1.57.5EF EM MF =+=+=,6 3.59.5HG GN NH =+=+=.故答案为7.5EF =,9.5GH =.【点睛】本题考查了平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.平行于三角形的一边,并且和其他两边(或两边的延长线)相交的直线,所截得的三角形的三边与原三角形的三边对应成比例.20.小明按照列表、描点、连线的过程画二次函数的图象,下表与下图是他所完成的部分表格与图象,求该二次函数的解析式,并补全表格与图象.【答案】245y x x =-++,(4,1),(1,0)【详解】分析:利用待定系数法、描点法即可解决问题;本题解析:设二次函数的解析式y=ax²+bx+c . 把(-1,0)(0,1),(2,9)代得到05429a b c c a b c -+=⎧⎪=⎨⎪++=⎩解得145a b c =-⎧⎪=⎨⎪=⎩,∴二次数解析式y=-x +4x+1.当x=4时,y=1,当y=0时,x=-1或1.21.小红想利用阳光下的影长测量学校旗杆AB 的高度.如图,她在地面上竖直立一根2米长的标杆CD ,某一时刻测得其影长DE =1.2米,此时旗杆AB 在阳光下的投影BF =4.8米,AB ⊥BD ,CD ⊥BD .请你根据相关信息,求旗杆AB 的高.【答案】旗杆AB 的高为8m .【分析】证明△ABF ∽△CDE ,然后利用相似比计算AB 的长.【详解】∵AB ⊥BD ,CD ⊥BD ,∴∠AFB =∠CED ,而∠ABF =∠CDE =90°,∴△ABF ∽△CDE , ∴AB CD =BF DE ,即 4.82 1.2AB , ∴AB =8(m ).答:旗杆AB 的高为8m .【点睛】本题考查了平行投影:由平行光线形成的投影是平行投影,如物体在太阳光的照射下形成的影子就是平行投影.平行投影中物体与投影面平行时的投影是全等的.22.如图,已知反比例函数y 1=1k x 与一次函数y 2=k 2x+b 的图象交于点A (2,4),B (﹣4,m )两点. (1)求k 1,k 2,b 的值;(2)求△AOB 的面积;(3)请直接写出不等式1k x≥k 2x+b 的解.【答案】(1)k 1=8,k 1=1,b =1;(1)2;(3)x≤﹣4或0<x≤1.【解析】(1)由点A 的坐标利用反比例函数图象上点的坐标特征,即可得出反比例函数解析式,再结合点B 的横坐标即可得出点B 的坐标,根据点A 、B 的坐标利用待定系数法,即可求出一次函数解析式; (1)根据一次函数图象上点的坐标特征,即可求出一次函数图象与y 轴的交点坐标,再利用分割图形法即可求出△AOB 的面积;(3)根据两函数图象的上下位置关系,即可得出不等式的解集.【详解】(1)∵反比例函数y=1k x 与一次函数y=k 1x+b 的图象交于点A (1,4),B (﹣4,m ), ∴k 1=1×4=8,m =8-4=﹣1, ∴点B 的坐标为(﹣4,﹣1).将A (1,4)、B (﹣4,﹣1)代入y 1=k 1x+b 中,222442k b k b +=⎧⎨-+=-⎩, 解得:212k b =⎧⎨=⎩, ∴k 1=8,k 1=1,b =1.(1)当x =0时,y 1=x+1=1,∴直线AB 与y 轴的交点坐标为(0,1),∴S △AOB =12×1×4+12×1×1=2. (3)观察函数图象可知:不等式1k x≥k 1x+b 的解集为x≤﹣4或0<x≤1.【点睛】本题考查了反比例函数与一次函数的交点问题,解题的关键是:(1)根据待定系数法求出函数解析式;(1)利用分割图形法求出△AOB 的面积;(3)根据两函数图象的上下位置关系找出不等式的解集. 23.如图1.正方形AEFG 的边长为22,点B 在AE 上,且2AB =.()1如图2.将线段AB 绕点A 逆时针旋转,设旋转角为()0360a a <<,并以AB 为边作正方形ABCD ,连接,,DG EB 试问随着线段AB 的旋转,BE 与DG 有怎样的数量关系?说明理由;()2如图3,在()1的条件下,若点B 恰好落在线段DG 上,求点B 走过的路径长(保留π).【答案】(1)BE DG =;(2)76π 【分析】(1)利用已知条件得出()ABE ADG SAS ≌,从而可得出结论(2) 连接AC ,交BD 于,M 连接CG ,可得出CG=AG ,接着可证明ACG 是等边三角形.,再找出GAB 15,EAB 105∠∠=︒=︒,最后利用弧长公式求解即可.【详解】解:()1BE DG =.理由如下:由题意,可知2,AB AD GAD EAB a ==∠=∠=.又AE AG =,()ABE ADG SAS ∴≌.BE DG ∴=.()2如图,连接AC ,交BD 于,M 连接CG .四边形ABCD 是正方形,AC ∴与BD 互相垂直平分.点B 在线段DG 上,DG ∴垂直平分AC .CG AG ∴=.由题意,知2AD CD ==, 22AC ∴=.又正方形AEFG 的边长为22,AC AG ∴=. .AC AG CG ∴==,即ACG 是等边三角形.60.CAG ∴∠=︒12604515CAG ∴∠=∠-∠=︒-︒=︒.11590105EAB GAE ∴∠=∠+∠=︒+︒=︒.则点B 走过的路径长就是以A 为圆心,AB 长为半径,且圆心角为105°的一段弧的弧长.即105271806ππ⨯= 所以点B 走过的路径长是76π. 【点睛】本题是一道利用旋转的性质来求解的题目,考查到的知识点有全等三角形的判定及性质,等边三角形的判定,旋转的性质以及求弧长的公式.综合性较强.24.如图,在△ABC 中,∠A =30°,∠C =90°,AB =12,四边形EFPQ 是矩形,点P 与点C 重合,点Q 、E 、F 分别在BC 、AB 、AC 上(点E 与点A 、点B 均不重合).(1)当AE =8时,求EF 的长;(2)设AE =x ,矩形EFPQ 的面积为y .①求y 与x 的函数关系式;②当x 为何值时,y 有最大值,最大值是多少?(3)当矩形EFPQ 的面积最大时,将矩形EFPQ 以每秒1个单位的速度沿射线CB 匀速向右运动(当点P 到达点B 时停止运动),设运动时间为t 秒,矩形EFPQ 与△ABC 重叠部分的面积为S ,求S 与t 的函数关系式,并写出t 的取值范围.【答案】(1)1;(2)①y=323x (0<x <12);②x=6时,y 有最大值为3(3)S=22393(03)3(6(36)t t t t ⎧+≤<⎪⎨⎪-<≤⎪⎩) 【分析】(1)由EF ∥BC,可得EF AE BC AB=,由此即可解决问题; (2)①先根据点E 为AB 上一点得出自变量x 的取值范围,根据30度的直角三角形的性质求出EF 和AF 的长,在在Rt △ACB 中,根据三角函数求出AC 的长,计算FC 的长,利用矩形的面积公式可求得S 的函数关系式; ②把二次函数的关系式配方可以得结论;(3)分两种情形分别求解即可解决问题.【详解】解:(1)在Rt △ABC 中,∵AB=12,∠A=30°,∴BC=AB=6,AC=BC=6,∵四边形EFPQ 是矩形,∴EF ∥BC ,∴=, ∴=,∴EF=1.(2)①∵AB=12,AE=x ,点E 与点A 、点B 均不重合,∴0<x <12,∵四边形CDEF 是矩形,∴EF ∥BC ,∠CFE=90°,∴∠AFE=90°,在Rt △AFE 中,∠A=30°,∴EF=x ,AF=cos30°•AE=x ,在Rt △ACB 中,AB=12,∴cos30°=, ∴AC=12×=6,∴FC=AC ﹣AF=6﹣x , ∴y=FC•EF=x (6﹣x )=﹣x 2+3x (0<x <12); ②y=x (12﹣x )=﹣(x ﹣6)2+9,当x=6时,S 有最大值为9;(3)①当0≤t <3时,如图1中,重叠部分是五边形MFPQN ,S=S 矩形EFPQ ﹣S △EMN =9﹣t 2=﹣t 2+9.②当3≤t≤6时,重叠部分是△PBN ,S=(6﹣t )2,综上所述,S=22393(03)236(36)2t t t ()+≤<⎪⎪⎨⎪-<≤⎪⎩ 【点睛】本题考查二次函数与三角形综合的知识,难度较大,需综合运用所学知识求解.25.如图,在ABC ∆中,90C =∠,AB 的中点O .(1)求证:,,A B C 三点在以O 为圆心的圆上;(2)若90ADB ∠=,求证:,,,A B C D 四点在以O 为圆心的圆上.【答案】(1)见解析;(2)见解析【分析】(1)连结OC ,利用直角三角形斜边中线等于斜边一半可得OA =OB =OC ,所以A ,B ,C 三点在以O 为圆心,OA 长为半径的圆上;(2)连结OD ,可得OA =OB =OC =OD ,所以A ,B ,C ,D 四点在以O 为圆心,OA 长为半径的圆上.【详解】(1)连结OC ,在ABC ∆中,90C =∠,AB 的中点O ,∴OC=OA=OB ,∴,,A B C 三点在以O 为圆心的圆上;(2)连结OD ,∵90ADB ∠=,∴OA=OB=OC=OD ,∴,,,A B C D 四点在以O 为圆心的圆上.【点睛】此题考查了圆的定义:到定点的距离等于定长的点都在同一个圆上,所以证明几个点共圆,只需要证明这几个点到某个定点的距离相等即可.26.如图,菱形ABCD 的边AB 在x 轴上,点A 的坐标为()1,0,点()44D ,在反比例函数k y x =(0x >)的图象上,直线23y x b =+经过点C ,与y 轴交于点E ,连接AC ,AE .(1)求k ,b 的值;(2)求ACE ∆的面积.【答案】(1)16k =,2b =-;(2)6∆=AEC S .【解析】(1)由菱形的性质可知()6,0B ,()9,4C ,点()44D ,代入反比例函数k y x=,求出k ;将点()9,4C 代入23y x b =+,求出b ; (2)求出直线223y x =-与x 轴和y 轴的交点,即可求AEC ∆的面积; 【详解】解:(1)由已知可得5AD =,∵菱形ABCD ,∴()6,0B ,()9,4C , ∵点()44D ,在反比例函数()0k y x x =>的图象上, ∴16k =,将点()9,4C 代入23y x b =+, ∴2b =-; (2)()0,2E -,直线223y x =-与x 轴交点为()3,0, ∴()122462AEC S ∆=⨯⨯+=; 【点睛】本题考查反比例函数、一次函数的图象及性质,菱形的性质;能够将借助菱形的边长和菱形边的平行求点的坐标是解题的关键.27.如图,在阳光下的电线杆AB 落在地上的影子BD 长3米,落在墙上的影子CD 的高为2米,同一时刻,竖起一根1米高的竹竿MN ,其影长MF 为1.5米,求电线杆的高度.【答案】电线杆子的高为4米.【分析】作CG⊥AB于G,可得矩形BDCG,利用同一时刻物高与影长的比一定得到AG的长度,加上GB 的长度即为电线杆AB的高度.【详解】过C点作CG⊥AB于点G,∴GC=BD=3米,GB=CD=2米.∵∠NMF=∠AGC=90°,NF∥AC,∴∠NFM=∠ACG,∴△NMF∽△AGC,∴NM MF AG GC=,∴AG=NI GCMF⋅=131.5⨯=2,∴AB=AG+GB=2+2=4(米),答:电线杆子的高为4米.【点睛】此题考查了相似三角形的应用,构造出直角三角形进行求解是解决本题的难点;用到的知识点为:同一时刻物高与影长的比一定.九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.若ABC ∆与111A B C ∆相似且对应中线之比为2:5,则周长之比和面积比分别是( ) A .2:5,4:5B .2:5,4:25C .4:25,4:25D .4:25,2:5 【答案】B【分析】直接根据相似三角形的性质进行解答即可. 【详解】解:ABC ∆与111A B C ∆相似,且对应中线之比为2:5,∴其相似比为2:5,∴ABC ∆与11A B C ∆周长之比为2:5,ABC ∆与11A B C ∆面积比为4:25,故选:B.【点睛】本题考查的是相似三角形的性质,熟知相似三角形周长的比等于相似比,相似三角形的对应线段(对应中线、对应角平分线、对应边上的高)的比也等于相似比,相似三角形面积比是相似比的平方是解答此题的关键.2.在一个不透明的口袋中装有5个完全相同的小球,把它们分别标号为1,2,3,4,5,从中随机摸出一个小球,其标号小于4的概率为( )A .15B .25C .35D .45【答案】C【分析】直接利用概率公式求解即可求得答案.【详解】解:∵在一个不透明的口袋中装有5个完全相同的小球,把它们分别标号为1,2,3,4,5, 其中小于4的3个,∴从中随机摸出一个小球,其标号小于4的概率为:35故选:C .【点睛】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.3.如图,半径为3的⊙O 内有一点A ,OA=3,点P 在⊙O 上,当∠OPA 最大时,PA 的长等于( )A.3B.6C.3 D.23【答案】B【解析】如图所示:∵OA、OP是定值,∴在△OPA中,当∠OPA取最大值时,PA取最小值,∴PA⊥OA时,PA取最小值;在直角三角形OPA中,OA=3√,OP=3,∴22=6OP OA故选B.点睛:本题考查了垂径定理、圆周角定理、勾股定理的应用.解答此题的关键是找出“PA⊥OA时,∠OPA 最大”这一隐含条件. 当PA⊥OA时,PA取最小值,∠OPA取得最大值,然后在直角三角形OPA中利用勾股定理求PA的值即可.4.已知⊙O的半径为1,点P到圆心的距离为d,若关于x的方程x2-2x+d=0有实数根,则点P ( ) A.在⊙O的内部B.在⊙O的外部C.在⊙O上D.在⊙O上或⊙O内部【答案】D【分析】先根据条件x 2 -2x+d=0有实根得出判别式大于或等于0,求出d的范围,进而得出d与r的数量关系,即可判断点P和⊙O的关系..【详解】解:∵关于x的方程x 2 -2x+d=0有实根,∴根的判别式△=(-2) 2 -4×d≥0,解得d≤1,∵⊙O的半径为r=1,∴d≤r∴点P在圆内或在圆上.故选:D.【点睛】本题考查了点和圆的位置关系,由点到圆心的距离和半径的数量关系对点和圆的位置关系作出判断是解答此题的重要途径,即当d>r时,点在圆外,当d=r时,点在圆上,当d<r时,点在圆内.5.下列说法正确的是()A.一颗质地均匀的骰子已连续抛掷了2000次,其中抛掷出5点的次数最少,则第2001次一定抛掷出5点B .抛掷一枚图钉,钉尖触地和钉尖朝上的概率不相等C .明天降雨的概率是80%,表示明天有80%的时间降雨D .某种彩票中奖的概率是1%,因此买100张该种彩票一定会中奖【答案】B【分析】根据概率的求解方法逐一进行求解即可得.【详解】A.无论一颗质地均匀的骰子多少次,每次抛掷出5点的概率都是16,故 A 错误; B.抛掷一枚图钉,因为图钉质地不均匀,钉尖触地和钉尖朝上的概率不相等,故 B 正确;C.明天降雨的概率是80%,表示明天有80%的可能性降雨,故 C 错误D.某种彩票中奖的概率是1%,表 明 中奖的 概 率为1%,故 D 错误故答案为:B.【点睛】本题考查了对概率定义的理解,熟练掌握是解题的关键.6.如图,在ABCD □中,AE BC ⊥,垂足为E ,BAE DEC ∠=∠,若45,sin 5AB B ==,则DE 的长为( )A .203B .163C .5D .125【答案】A【分析】根据题意先求出AE 和BE 的长度,再求出∠BAE 的sin 值,根据平行线的性质得出∠ADE=∠BAE ,即可得出答案.【详解】∵45,sin 5AB B ==,AE BC ⊥ ∴4AE AB sinB ==223AB AE -=∴35BE sin BAE AB ∠== ∵ABCD 是平行四边形∴AD ∥BC∴∠ADE=∠DEC又∵∠BAE=∠DEC∴∠BAE=∠ADE ∴35AE sin ADE sin BAE DE ∠=∠== ∴203DE = 故答案选择A.【点睛】本题考查的是平行四边形的综合,难度适中,涉及到了平行四边形的性质以及三角函数值相关知识,需要熟练掌握.7.在同一坐标系中,一次函数2y mx n =-+与二次函数2y x m =+的图象可能是( ). A . B . C . D .【答案】D【解析】试题分析:A .由直线与y 轴的交点在y 轴的负半轴上可知,2n <0,错误;B .由抛物线与y 轴的交点在y 轴的正半轴上可知,m >0,由直线可知,﹣m >0,错误;C .由抛物线y 轴的交点在y 轴的负半轴上可知,m <0,由直线可知,﹣m <0,错误;D .由抛物线y 轴的交点在y 轴的负半轴上可知,m <0,由直线可知,﹣m >0,正确,故选D .考点:1.二次函数的图象;2.一次函数的图象.8.在平面直角坐标系xOy 中,以点(3,4)为圆心,4为半径的圆与y 轴( )A .相交B .相切C .相离D .无法确定【答案】A【分析】先找出圆心到y 轴的距离,再与圆的半径进行比较,若圆心到y 轴的距离小于半径,则圆与y 轴相交,反之相离,若二者相等则相切故答案为A 选项【详解】根据题意,我们得到圆心与y 轴距离为3,小于其半径4,所以与y 轴的关系为相交【点睛】本题主要考查了圆与直线的位置关系,熟练掌握圆心距与圆到直线距离的大小关系对应的位置关系是关键 9.如图,在△ABC 中,∠B=90°,AB=6,BC=8,将△ABC 沿DE 折叠,使点C 落在△ABC 边上C ’处,并且C'D//BC ,则CD 的长是( )A .409B .509C .154D .244【答案】A【分析】先由求出AC ,再利用平行条件得△AC'D ∽△ABC ,则对应边成比例,又CD=C ′D ,那么就可求出CD.【详解】∵∠B=90°,AB=6,BC=8,∴AC=22AC BC +=10,∵将△ABC 沿DE 折叠,使点C 落在AB 边上的C'处,∴CD=C'D ,∵C'D ∥BC ,∴△AC'D ∽△ABC ,∴'AD C D AC BC=, 即10108CD CD -=, ∴CD=409, 故选A.【点睛】本题考查了翻折变换(折叠问题),相似三角形的判定与性质,熟练掌握和灵活运用相关知识是解题的关键. 10.已知二次函数2y ax bx c =++(a≠0)的图象如图所示,则下列结论:①b <0,c >0;②a+b+c <0;③方程的两根之和大于0;④a ﹣b+c <0,其中正确的个数是( )A .4个B .3个C .2个D .1个【答案】B 【解析】试题分析:∵抛物线开口向下,∴a <0,∵抛物线对称轴x >0,且抛物线与y 轴交于正半轴,∴b >0,c >0,故①错误;由图象知,当x=1时,y <0,即a+b+c <0,故②正确,令方程20ax bx c ++=的两根为1x 、2x ,由对称轴x >0,可知122x x +>0,即12x x +>0,故③正确; 由可知抛物线与x 轴的左侧交点的横坐标的取值范围为:﹣1<x <0,∴当x=﹣1时,y=a ﹣b+c <0,故④正确.故选B .考点:二次函数图象与系数的关系.11.下列图案中,是中心对称图形的是( )A .B .C .D .【答案】C【解析】根据中心对称图形的概念即可得出答案. 【详解】A 选项中,不是中心对称图形,故该选项错误;B 选项中,是轴对称图形,不是中心对称图形,故该选项错误;C 选项中,是中心对称图形,故该选项正确;D 选项中,不是中心对称图形,故该选项错误.故选C【点睛】本题主要考查中心对称图形,掌握中心对称图形的概念是解题的关键.12.若△ABC ∽△DEF ,且△ABC 与△DEF 的面积比是94,则△ABC 与△DEF 对应中线的比为( ) A .23 B .8116 C .94 D .32【答案】D【分析】根据相似三角形的面积比等于相似比的平方,再结合相似三角形的对应中线的比等于相似比解答即可.【详解】∵△ABC ∽△DEF ,△ABC 与△DEF 的面积比是94, ∴△ABC 与△DEF 的相似比为32, ∴△ABC 与△DEF 对应中线的比为32, 故选D .【点睛】考查的是相似三角形的性质,相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方;相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比.二、填空题(本题包括8个小题)13.已知反比例函数3m y x-=,当0x >时,y 随x 的增大而增大,则m 的取值范围为_______. 【答案】m >1 【分析】根据反比例函数3m y x-=,如果当x >0时,y 随自变量x 的增大而增大,可以得到1-m <0,从而可以解答本题. 【详解】解:∵反比例函数3m y x -=,当x >0时,y 随x 的增大而增大, ∴1-m <0,解得,m >1,故答案为:m >1.【点睛】本题考查反比例函数的性质,解答本题的关键是明确题意,利用反比例函数的性质解答.14.6与x 的2倍的和是负数,用不等式表示为 .【答案】6+2x <1【解析】试题分析:6与x 的2倍的和为2x+6;和是负数,那么前面所得的结果小于1.解:x 的2倍为2x ,6与x 的2倍的和写为6+2x ,和是负数,∴6+2x <1,故答案为6+2x <1.15.如果关于x 的一元二次方程210ax bx ++=的一个根是1,x =-则a b -=_______________________.【答案】1-【分析】把x=﹣1代入一元二次方程ax 2+bx+1=0,即可得到a -b 的值.【详解】解:把x=-1代入一元二次方程ax 2+bx+1=0,得a-b+1=0,所以a-b=﹣1.故答案为:﹣1.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解. 16.某日6时至10时,某交易平台上一种水果的每千克售价、每千克成本与交易时间之间的关系分别如图1、图2所示(图1、图2中的图象分别是线段和抛物线,其中点P 是抛物线的顶点).在这段时间内,出售每千克这种水果收益最大的时刻是_____ ,此时每千克的收益是_________。
<合集试卷3套>2019年贵阳市某达标中学九年级上学期数学期末达标测试试题
九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.下列图形中,既是中心对称图形,又是轴对称图形的是( )A .B .C .D .【答案】B【解析】根据中心对称图形的定义“是指在平面内,把一个图形绕着某个点旋转180︒,如果旋转后的图形能与原来的图形重合的图形”和轴对称图形的定义“是指平面内,一个图形沿着一条直线折叠,直线两旁的部分能够完全重合的图形”逐项判断即可.【详解】A 、既不是中心对称图形,也不是轴对称图形,此项不符题意B 、既是中心对称图形,又是轴对称图形,此项符合题意C 、是轴对称图形,但不是中心对称图形,此项不符题意D 、是中心对称图形,但不是轴对称图形,此项不符题意故选:B.【点睛】本题考查了中心对称图形的定义和轴对称图形的定义,这是常考点,熟记定义是解题关键.2.如图,四边形ABCD 的顶点A ,B ,C 在圆上,且边CD 与该圆交于点E ,AC ,BE 交于点F.下列角中,弧AE 所对的圆周角是( )A .∠ADEB .∠AFEC .∠ABED .∠ABC【答案】C 【分析】直接运用圆周角的定义进行判断即可.【详解】解:弧AE 所对的圆周角是:∠ABE 或∠ACE故选:C【点睛】本题考查了圆周角的定义,掌握圆周角的定义是解题的关键.3.若sinA cosB =,下列结论正确的是( )A .AB ∠=∠B .90A B ∠+∠=C . 180A B ∠+∠=D .以上结论均不正确【答案】B【分析】利用互余两角的三角函数关系()90sinA cos A =︒-,得出90A B ∠∠=︒-.【详解】∵()90sinA cos A sinA cosB =︒-=,,∴90A B ∠∠︒-=,∴90A B ∠∠+=︒,故选:B .【点睛】本题考查了锐角三角函数的定义,掌握互为余角的正余弦关系:一个角的正弦值等于另一个锐角的余角的余弦值则这两个锐角互余.4.已知2是关于x 的方程250x x k -+=的一个根,则这个方程的另一个根是( )A .3B .-3C .-5D .6【答案】A【解析】由根与系数的关系,即2加另一个根等于5,计算即可求解.【详解】由根与系数的关系,设另一个根为x ,则2+x=5,即x=1.故选:A .【点睛】本题考查了根与系数的关系,用到的知识点:如果x 1,x 2是方程x 2+px+q=0的两根,那么x 1+x 2=-p . 5.如图,在⊙O 中,弦AC ∥半径OB ,∠BOC =50°,则∠OAB 的度数为( )A .25°B .20°C .15°D .30°【答案】A 【分析】根据圆周角定理可得∠BAC=25°,又由AC ∥OB ,∠BAC=∠B=25°,再由等边对等角即可求解答.【详解】解:∵∠BOC=2∠BAC ,∠BOC=50°,∴∠BAC=25°,又∵ AC ∥OB∴∠BAC=∠B=25°∵.OA=OB∴∠OAB=∠B=25°故答案为A.【点睛】本题考查了圆周角定理和平行线的性质,灵活应用所学定理以及数形结合思想的应用都是解答本题的关键.6.计算23x x⋅=()A.6x B.5x C.x D.1x-【答案】B【分析】根据同底数幂乘法公式进行计算即可.【详解】235x x x.故选:B.【点睛】本题考查同底数幂乘法,熟记公式即可,属于基础题型.7.下列图形中,∠1与∠2是同旁内角的是()A.B.C.D.【答案】C【解析】分析:根据同旁内角的定义进行分析判断即可.详解:A选项中,∠1与∠2是同位角,故此选项不符合题意;B选项中,∠1与∠2是内错角,故此选项不符合题意;C选项中,∠1与∠2是同旁内角,故此选项符合题意;D选项中,∠1与∠2不是同旁内角,故此选项不符合题意.故选C.点睛:熟知“同旁内角的定义:在两直线被第三直线所截形成的8个角中,夹在被截两直线之间,且位于截线的同侧的两个角叫做同旁内角”是解答本题的关键.8.如图,点P在△ABC的边AC上,要判断△ABP∽△ACB,添加一个条件,不正确的是()A.∠ABP=∠C B.∠APB=∠ABCC.AP ABAB AC=D.AB ACBP CB=【答案】D【解析】试题分析:A.当∠ABP=∠C时,又∵∠A=∠A,∴△ABP∽△ACB,故此选项错误;B.当∠APB=∠ABC时,又∵∠A=∠A,∴△ABP∽△ACB,故此选项错误;C.当AP ABAB AC=时,又∵∠A=∠A,∴△ABP∽△ACB,故此选项错误;D.无法得到△ABP∽△ACB,故此选项正确.故选D.考点:相似三角形的判定.9.在平面直角坐标系中,以点(3,2)为圆心、2为半径的圆,一定()A.与x轴相切,与y轴相切B.与x轴相切,与y轴相离C.与x轴相离,与y轴相切D.与x轴相离,与y轴相离【答案】B【分析】本题应将该点的横纵坐标分别与半径对比,大于半径时,则坐标轴与该圆相离;若等于半径时,则坐标轴与该圆相切.【详解】∵是以点(2,3)为圆心,2为半径的圆,则有2=2,3>2,∴这个圆与x轴相切,与y轴相离.故选B.【点睛】本题考查了直线与圆的位置关系、坐标与图形性质.直线与圆相切,直线到圆的距离等于半径;与圆相离,直线到圆的距离大于半径.10.下列四个结论,①过三点可以作一个圆;②圆内接四边形对角相等;③平分弦的直径垂直于弦;④相等的圆周角所对的弧也相等;不正确的是( )A .②③B .①③④C .①②④D .①②③④ 【答案】D【分析】根据确定圆的条件、圆的内接四边形的性质、垂径定理及圆心角、弧、弦的关系定理逐一判断即可得答案.【详解】过不在同一条直线上的三点可以作一个圆,故①错误,圆的内接四边形对角互补,故②错误,平分弦(非直径)的直径垂直于弦,并且平分弦所对的弧,故③错误,在同圆或等圆中,相等的圆周角所对的弧也相等,故④错误,综上所述:不正确的结论有①②③④,故选:D.【点睛】本题考查确定圆的条件、圆的内接四边形的性质、垂径定理及圆心角、弧、弦的关系定理,熟练掌握相关性质及定理是解题关键.11.若a b +=a b -=22a b -的值为( )A .6B .CD 【答案】D【分析】先利用平方差公式得到22a b -=(a+b )(a-b ),再把a b +=a b -=【详解】解:22a b -=(a+b )(a-b ).故答案为D .【点睛】本题考查了平方差公式,把a+b 和a-b 看成一个整体是解题的关键.12.已知一个单位向量e ,设a 、b 是非零向量,那么下列等式中正确的是( ). A .1a e a =; B .e a a =; C .b e b =; D .11a b a b =.【答案】B【分析】长度不为0的向量叫做非零向量,向量包括长度及方向,而长度等于1个单位长度的向量叫做单位向量,注意单位向量只规定大小没规定方向,则可分析求解.【详解】解:A 、左边得出的是a 的方向不是单位向量,故错误;B 、符合向量的长度及方向,正确;C 、由于单位向量只限制长度,不确定方向,故错误;D 、左边得出的是a 的方向,右边得出的是b 的方向,两者方向不一定相同,故错误.故选:B .【点睛】本题考查了向量的性质.二、填空题(本题包括8个小题)13.ABC ∆中,若6AB =,8BC =,120B ∠=︒,则ABC ∆的面积为________. 【答案】123【分析】过点A 作BC 边上的高交BC 的延长线于点D ,在Rt ABD △中,利用三角函数求出AD 长,再根据三角形面积公式求解即可.【详解】解:如图,作AD BC ⊥于点D ,则90ADB ︒∠=,120ABC ︒∠=18012060ABD ︒︒︒∴∠=-=在Rt ABD △中,3sin 60633AD AB ︒===1183312322ABC S BC AD ∴=⋅=⨯⨯=所以ABC ∆的面积为123 故答案为:123【点睛】本题主要考查了三角函数,灵活添加辅助线利用三角函数求出三角形的高是解题的关键.14.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是21,则每个支干长出_____.【答案】4个小支干.【分析】设每个支干长出x 个小支干,根据主干、支干和小分支的总数是21,即可得出关于x 的一元二次方程,解之取其正值即可得出结论.【详解】解:设每个支干长出x 个小支干,根据题意得:21x x 21++=,解得:1x 5(=-舍去),2x 4=.故答案为4个小支干.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.15.已知关于x 的方程230x x m +-=的一个解为3-,则m=_______.【答案】0【分析】把3x =-代入原方程得到关于m 的一元一次方程,解方程即可得到答案.【详解】解:把3x =-代入原方程得:()()23330,m ∴-+⨯--= 0.m ∴=故答案为:0.【点睛】本题考查的是一元二次方程的解的含义,掌握方程的解的含义是解题的关键.16.质检部门为了检测某品牌电器的质量,从同一批次共10000件产品中随机柚取100件进行检测,检测出次品5件,由此估计这一批产品中的次品件数是_____.【答案】500 【分析】次品率100%=⨯次品数产品总数,根据抽取的样本数求得该批产品的次品率之后再乘以产品总数即可求解.【详解】解:51005%÷=, 100005%500⨯=(件)【点睛】本题主要考查了数据样本与频率问题,亦可根据比例求解.17.如图,已知正方形OABC 的三个顶点坐标分别为A (2,0),B (2,2),C (0,2),若反比例函数(0)k y k x=>的图象与正方形OABC 的边有交点,请写出一个符合条件的k 值__________.【答案】1(满足条件的k 值的范围是0<k≤4)【分析】反比例函数上一点 向x 、y 轴分别作垂线,分别交于y 轴和x 轴,则围成的矩形的面积为|k|,据此进一步求解即可.【详解】∵反比例函数图像与正方形有交点,∴当交于B 点时,此时围成的矩形面积最大且为4,∴|k|最大为4,∵在第一象限,∴k 为正数,即0<k≤4,∴k 的取值可以为:1.故答案为:1(满足条件的k 值的范围是0<k≤4).【点睛】本题主要考查了反比例函数中比例系数的相关运用,熟练掌握相关概念是解题关键.18.将抛物线2(1)y x =+向右平移2个单位长度,则所得抛物线对应的函数表达式为______.【答案】2(1)y x =-【分析】利用顶点式根据平移不改变二次项系数可得新抛物线解析式. 【详解】2(1)y x =+的顶点为(−1,0),∴向右平移2个单位得到的顶点为(1,0),∴把抛物线2(1)y x =+向右平移2个单位,所得抛物线的表达式为2(1)y x =-.故答案为:2(1)y x =-.【点睛】本题考查了二次函数图象与几何变换,熟练掌握“左加右减,上加下减”的平移规则是解题的关键.三、解答题(本题包括8个小题)19.如图,已知Rt △ABC 中,∠ABC =90°,先把△ABC 绕点B 顺时针旋转90°至△DBE 后,再把△ABC 沿射线AB 平移至△FEG ,DE 、FG 相交于点H .判断线段DE 、FG 的位置关系,并说明理由.【答案】见解析【分析】根据旋转和平移可得∠DEB=∠ACB ,∠GFE=∠A ,再根据∠ABC=90°可得∠A+∠ACB=90°,进而得到∠DEB+∠GFE=90°,从而得到DE 、FG 的位置关系是垂直.【详解】解:DE ⊥FG .理由:由题知:Rt △ABC ≌Rt △BDE ≌Rt △FEG∴∠A=∠BDE=∠GFE∵∠BDE +∠BED=90°∴∠GFE +∠BED=90°,即DE ⊥FG .20.工艺商场按标价销售某种工艺品时,每件可获利45元;并且进价50件工艺品与销售40件工艺品的价钱相同.(1)该工艺品每件的进价、标价分别是多少元?(2)若每件工艺品按(1)中求得的进价进货,标价售出,工艺商场每天可售出该工艺品100件.若每件工艺品降价1元,则每天可多售出该工艺品4件.问每件工艺品降价多少元出售,每天获得的利润最大?获得的最大利润是多少元?【答案】(1)进价为180元,标价为1元,(2)当降价为10元时,获得最大利润为4900元.【分析】(1)设工艺品每件的进价为x 元,则根据题意可知标价为(x+45)元,根据进价50件工艺品与销售40件工艺品的价钱相同,列一元一次方程求解即可;(2)设每件应降价a 元出售,每天获得的利润为w 元,根据题意可得w 和a 的函数关系,利用函数的性质求解即可.【详解】设每件工艺品的进价为x 元,标价为(x+45)元,根据题意,得:50x=40(x+45),解得x=180,x+45=1.答:该工艺品每件的进价180元,标价1元.(2)设每件应降价a 元出售,每天获得的利润为w 元.则w=(45-a )(100+4a )=-4(a-10)2+4900,∴当a=10时,w 最大=4900元.【点睛】本题考查了二次函数的性质在实际生活中的应用.最大销售利润的问题常利用函数的增减性来解答,吃透题意,确定变量,建立函数模型是解题的关键.21.5G 网络比4G 网络的传输速度快10倍以上,因此人们对5G 产品充满期待.华为集团计划2020年元月开始销售一款5G 产品.根据市场营销部的规划,该产品的销售价格将随销售月份的变化而变化.若该产品第x 个月(x 为正整数)销售价格为y 元/台,y 与x 满足如图所示的一次函数关系:且第x 个月的销售数量p (万台)与x 的关系为1p x =+.(1)该产品第6个月每台销售价格为______元;(2)求该产品第几个月的销售额最大?该月的销售价格是多少元/台?(3)若华为董事会要求销售该产品的月销售额不低于27500万元,则预计销售部符合销售要求的是哪几个月?(4)若每销售1万台该产品需要在销售额中扣除m 元推广费用,当68x ≤≤时销售利润最大值为22500万元时,求m 的值.【答案】(1)4500元;(2)7,4000;(3)4、5、6、7、8、9、10;(4)90007. 【解析】(1)利用待定系数法将(2,6500),(4,5500)代入y=kx+b 求k,b 确定表达式,求当x=6时的y 值即可; (2)求销售额w 与x 之间的函数关系式,利用二次函数的最大值问题求解;(3)分三种情况讨论假设6月份,7月份,8月份的最大销售为22500万元时,求相应的m 值,再分别求出此时另外两月的总利润,通过比较作出判断.【详解】设y=kx+b,根据图象将(2,6500),(4,5500)代入得,2650045500k b k b , 解得,5007500k b ,∴y= -500x+7500,当x=6时,y= -500×6+7500=4500元;(2)设销售额为z 元,z=yp=( -500x+7500 )(x+1)= -500x 2+7000x+7500= -500(x-7)2+32000,∵z 与x 成二次函数,a= -500<0,开口向下,∴当x=7时,z 有最大值,当x=7时,y=-500×7+7500=4000元.答:该产品第7个月的销售额最大,该月的销售价格是4000元/台.(3)z 与x 的图象如图的抛物线当y=27500时,-500(x-7)2+32000=27500,解得,x 1=10,x 2=4∴预计销售部符合销售要求的是4,5,6,7,8,9,10月份.(4)设总利润为W= -500x 2+7000x+7500-m(x+1)= -500x 2+(7000-m)x+7500-m,第一种情况:当x=6时,-500×62+(7000-m) ×6+7500-m=22500,解得,m=90007 , 此时7月份的总利润为-500×72+(7000-90007) ×7+7500-90007≈17714<22500, 此时8月份的总利润为-500×82+(7000-90007) ×8+7500-90007≈19929<22500, ∴当m=90007时,6月份利润最大,且最大值为22500万元. 第二种情况:当x=7时,-500×72+(7000-m) ×7+7500-m=22500,解得,m=1187.5 ,此时6月份的总利润为-500×62+(7000-1187.5) ×6+7500-1187.5=23187.5>22500,∴当m=1187.5不符合题意,此种情况不存在.第三种情况:当x=8时,-500×82+(7000-m) ×8+7500-m=22500,解得,m=1000 ,此时7月份的总利润为-500×72+(7000-1000) ×7+7500-1000=24000>22500,∴当m=1000不符合题意,此种情况不存在.∴当68x ≤≤时销售利润最大值为22500万元时,此时m=90007. 【点睛】本题考查二次函数的实际应用,最大利润问题,利用二次函数的最值性质是解决实际问题的重要途径. 22.如图,AB 是O 的直径,点F C 、在O 上且BC CF =,连接,AC AF ,过点C 作CD AF ⊥交AF的延长线于点D .求证:CD 是O 的切线;【答案】见解析【分析】连结OC ,由FC BC =,根据圆周角定理得FAC BAC ∠=∠,而OAC OCA ∠=∠,则FAC OCA ∠=∠,可判断//OC AF ,由于CD AF ⊥,所以OC CD ⊥,然后根据切线的判定定理得到CD 是O 的切线;【详解】解:证明:连结OC ,如图,FC BC =,FAC BAC =∠∴∠,OA OC =,OAC OCA ∴∠=∠,FAC OCA ∴∠=∠,//OC AF ∴,CD AF ⊥,OC CD ∴⊥,CD ∴是O 的切线;【点睛】本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.23.孝感商场计划在春节前50天里销售某品牌麻糖,其进价为18元/盒.设第x 天的销售价格为y (元/盒),销售量为m (盒).该商场根据以往的销售经验得出以下的销售规律:①当130x ≤≤时,38y =;当3150x ≤≤时,y 与x 满足一次函数关系,且当36x =时,37y =;40x =时,35y =.②m 与x 的关系为330m x =+.(1)当3150x ≤≤时,y 与x 的关系式为 ;(2)x 为多少时,当天的销售利润W (元)最大?最大利润为多少?【答案】(1)1552y x =-+;(2)32, 2646元. 【分析】(1)设一次函数关系式为(0)y kx b k =+≠,将“当36x =时,37y =;40x =时,35y =”代入计算即可;(2)根据利润等于单件利润乘以销售量分段列出函数关系式,再根据一次函数及二次函数的性质得出最大利润即可.【详解】解:(1)设一次函数关系式为(0)y kx b k =+≠∵当36x =时,37y =;40x =时,35y =,即37363540k b k b =+⎧⎨=+⎩,解得:1255k b ⎧=-⎪⎨⎪=⎩ ∴1552y x =-+ (2)(18)W y m =-∴当130x ≤≤时,(3818)(330)60600W x x =-+=+ ∵60>0∴当x=30时,W 最大=2400(元)当3150x ≤≤时1(5518)(330)2W x x =-+-+ 239611102x x =-++ 23(32)26462x =--+ ∴当x=32时,当天的销售利润W 最大,为2646元.2646>2400∴故当x=32时,当天的销售利润W 最大,为2646元.【点睛】本题考查了二次函数的实际应用,根据题意列出函数关系式并熟知函数的基本性质是解题关键. 24.(1)解方程:234x x -=;(2)计算:2tan 60sin 452cos30︒+︒-︒【答案】(1)x 1=-1,x 2=4;(2)原式=12【分析】(1)按十字相乘的一般步骤,求方程的解即可;(2)把函数值直接代入,求出结果【详解】解:(1)234x x -=(x+1)(x-4)=0∴x 1=-1,x 2=4;(2)原式+22=12【点睛】本题考查了因式分解法解一元二次过程、特殊角的三角函数值及实数的运算,解决(1)的关键是掌握十字相乘的一般步骤;解决(2)的关键是记住特殊角的三角函数值.25.如图所示,已知AB 为⊙O 的直径,CD 是弦,且AB CD ⊥于点E ,连接AC 、OC 、BC . (1)求证:ACO BCD ∠=∠;(2)若9AE BE =,6CD =,求⊙O 的直径.【答案】(1)证明见解析;(2)10【分析】(1)先利用OA OC =得到ACO A ∠=∠,再利用直角三角形的两锐角互余即可求解;(2)利用垂径定理得到CE =DE=132CD =,再得到5OA OC OB BE ===,4OE OB BE BE =-=,在Rt OCE ∆中,利用222OE CE OC +=得到()()222435BE BE +=求出BE ,即可得到求解..【详解】(1)证明:∵OA OC =∴ACO A ∠=∠又∵AB 为直径,∴90A B ∠+∠=,又∵AB CD ⊥∴90BCD B ∠+∠=,∴A BCD ∠=∠∴ACO BCD ∠=∠(2)∵AB CD ⊥,AB 为直径∴CE DE =, ∴132CE CD == 又∵9AE BE =,∴10AB BE =,∴5OA OC OB BE ===,∴4OE OB BE BE =-=,∴在Rt OCE ∆中,222OE CE OC +=即()()222435BE BE +=,解得1BE =,∴1010AB BE ==.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了垂径定理.26.如图,在平面直角坐标系中,直线y=﹣x+3与抛物线y=﹣x2+bx+c交于A、B两点,点A在x轴上,点B的横坐标为﹣1.动点P在抛物线上运动(不与点A、B重合),过点P作y轴的平行线,交直线AB 于点Q,当PQ不与y轴重合时,以PQ为边作正方形PQMN,使MN与y轴在PQ的同侧,连结PM.设点P的横坐标为m.(1)求b、c的值.(2)当点N落在直线AB上时,直接写出m的取值范围.(3)当点P在A、B两点之间的抛物线上运动时,设正方形PQMN周长为c,求c与m之间的函数关系式,并写出c随m增大而增大时m的取值范围.(4)当△PQM与y轴只有1个公共点时,直接写出m的值.【答案】(1)b=1,c=6;(2)0<m<2或m<-1;(2)-1<m≤1且m≠0,(3)m的值为:1132+113-321+321-【分析】(1)求出A、点B的坐标代入二次函数表达式即可求解;(2)当0<m<2时,以PQ为边作正方形PQMN,使MN与y轴在PQ的同侧,此时,N点在直线AB上,同样,当m<-1,此时,N点也在直线AB上即可求解;(2)当-1<m<2且m≠0时,PQ=-m2+m+6-(-m+2)=-m2+2m+2,c=3PQ=-3m2+8m+12即可求解;(3)分-1<m≤2、m≤-1,两种情况求解即可.【详解】(1)把y=0代入y=-x+2,得x=2.∴点A的坐标为(0,2),把x=-1代入y=-x+2,得y=3.∴点B的坐标为(-1,3),把(0,2)、(-1,3)代入y=-x2+bx+c,解得:b=1,c=6;(2)当0<m<2时,以PQ为边作正方形PQMN,使MN与y轴在PQ的同侧,此时,N点在直线AB上,同样,当m<-1,此时,N点也在直线AB上,故:m的取值范围为:0<m<2或m<-1;(2)当-1<m <2且m≠0时,PQ=-m 2+m+6-(-m+2)=-m 2+2m+2,∴c=3PQ=-3m 2+8m+12;c 随m 增大而增大时m 的取值范围为-1<m≤1且m≠0,(3)点P (m ,-m 2+m+6),则Q (m ,-m+2),①当-1<m≤2时,当△PQM 与y 轴只有1个公共点时,PQ=x P ,即:-m 2+m+6+m-2=m ,解得:12m ±=(舍去负值); ②当m≤-1时,△PQM 与y 轴只有1个公共点时,PQ=-x Q ,即-m+2+m 2-m-6=-m ,整理得:m 2-m-2=0,解得:m =, ③m >2时,同理可得:m =(舍去负值); ④当-1<m <0时,PQ=-m ,解得:32m -=故m 32或32. 【点睛】 此题考查了待定系数法求解析式,还考查了三角形和正方形相关知识,本题解题的关键是通过画图确定正方形或三角形所在的位置,此题难度较大.27.如图,C 地在A 地的正东方向,因有大山阻隔,由A 地到C 地需要绕行B 地,已知B 地位于A 地北偏东67°方向,距离A 地520km ,C 地位于B 地南偏东30°方向,若打通穿山隧道,建成两地直达高铁,求A 地到C 地之间高铁线路的长(结果保留整数)(参考数据:sin67°≈0.92;cos67°≈0.38≈1.73)【答案】A地到C地之间高铁线路的长为592km.【分析】过点B作BD⊥AC于点D,利用锐角三角函数的定义求出AD及CD的长,进而可得出结论.【详解】过点B作BD⊥AC于点D,∵B地位于A地北偏东67°方向,距离A地520km,∴∠ABD=67°,∴AD=AB•sin67°=520×0.92=478.4km,BD=AB•cos67°=520×0.38=197.6km.∵C地位于B地南偏东30°方向,∴∠CBD=30°,∴CD=BD•tan30°=197.6×33≈113.9km,∴AC=AD+CD=478.4+113.9≈592(km).答:A地到C地之间高铁线路的长为592km.【点睛】考查了解直角三角形的应用-方向角问题,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,需要熟记锐角三角函数的定义.九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,点A在反比例函数y=3x(x>0)的图象上,过点A作AB⊥x轴,垂足为点B,点C在y轴上,则△ABC的面积为( )A.3 B.2 C.32D.1【答案】C【分析】连结OA,如图,利用三角形面积公式得到S△OAB=S△CAB,再根据反比例函数的比例系数k的几何意义得到S△OAB=12|k|,便可求得结果.【详解】解:连结OA,如图,∵AB⊥x轴,∴OC∥AB,∴S△OAB=S△CAB,而S△OAB=12|k|=32,∴S△CAB=32,故选C.【点睛】本题考查了反比例函数的比例系数k的几何意义:在反比例函数y=kx图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.2.如果关于x的一元二次方程x2+4x+a=0的两个不相等实数根x1,x2满足x1x2﹣2x1﹣2x2﹣5=0,那么a 的值为()A.3 B.﹣3 C.13 D.﹣13【答案】B【分析】【详解】∵x1,x2是关于x的一元二次方程x2+4x+a=0的两个不相等实数根,∴x1+x2=﹣4,x1x2=a.∴x1x2﹣2x1﹣2x2﹣5=x1x2﹣2(x1+x2)﹣5=a﹣2×(﹣4)﹣5=0,即a+1=0,解得,a=﹣1.故选B3.已知下列命题:①对角线互相平分的四边形是平行四边形;②内错角相等;③对角线互相垂直的四边形是菱形;④矩形的对角线相等,其中假命题有()A.1个B.2个C.3个D.4个【答案】B【分析】利用平行四边形的判定、平行线的性质、菱形的判定和矩形的性质分别对各命题进行判断即可.【详解】解:①根据平行四边形的判定定理可知,对角线互相平分的四边形是平行四边形,故①是真命题;②两直线平行,内错角相等,故②为假命题;③根据菱形的判定定理,对角线互相垂直且平分的四边形是菱形,故③是假命题;④根据矩形的性质,矩形的对角线相等,故④是真命题;故选:B.【点睛】本题考查了命题与定理的知识,解题的关键是熟悉平行四边形的判定、平行线的性质、菱形的判定及矩形的性质,难度不大.4.如图,在平面直角坐标系中,点A的坐标为()4,3,那么sinα的值是()A.34B.43C.45D.35【答案】D【分析】过A作AB⊥x轴于点B,在Rt△AOB中,利用勾股定理求出OA,再根据正弦的定义即可求解. 【详解】如图,过A作AB⊥x轴于点B,∵A的坐标为(4,3)∴OB=4,AB=3,在Rt△AOB中,2222OA=OB AB=43++∴AB3 sin==OA5α故选:D.【点睛】本题考查求正弦值,利用坐标求出直角三角形的边长是解题的关键.5.下列对抛物线y=-2(x-1)2+3性质的描写中,正确的是( )A.开口向上B.对称轴是直线x=1 C.顶点坐标是(-1,3) D.函数y有最小值【答案】B【分析】由抛物线的解析式可求得开口方向、对称轴及顶点坐标,再逐一进行判断即可.【详解】解:A、∵−2<0,∴抛物线的开口向下,故A错误,不符合题意;B、抛物线的对称轴为:x=1,故B正确,符合题意;C、抛物线的顶点为(1,3),故C错误,不符合题意;D、因为开口向下,故该函数有最大值,故D错误,不符合题意.故答案为:B.【点睛】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x−h)2+k中,顶点坐标为(h,k),对称轴为x=h.6.抛物线y=ax2+bx+c上部分点的横坐标x,纵坐标y的对应值如下表:x …-2 -1 0 1 2 …y …0 4 6 6 4 …观察上表,得出下面结论:①抛物线与x轴的一个交点为(3,0);②函数y=ax2+bx+C的最大值为6;③抛物线的对称轴是x=;④在对称轴左侧,y 随x 增大而增大.其中正确有( )A .1个B .2个C .3个D .4个【答案】C【解析】从表中可知,抛物线过(0,6),(1,6),所以可得抛物线的对称轴是x=,故③正确.当x=-2时,y=0,根据对称性当抛物线与x 轴的另一个交点坐标为x=×2+2=3.故①;当x=2时,y=4,所以在对称轴的右侧,随着x 增大,y 在减小,所以抛物线开口向下.故其在顶点处取得最大值,应大于6,故②错,④对.选C.7.下列事件中,必然发生的事件是( ) A .随意翻到一本书的某页,这页的页码是奇数 B .通常温度降到0℃以下,纯净的水结冰 C .地面发射一枚导弹,未击中空中目标 D .测量某天的最低气温,结果为-150℃ 【答案】B【解析】解:A . 随意翻到一本书的某页,这页的页码是奇数,是随机事件; B . 通常温度降到0℃以下,纯净的水结冰,是必然事件; C . 地面发射一枚导弹,未击中空中目标,是随机事件; D . 测量某天的最低气温,结果为-150℃,是不可能事件. 故选B .8.如图所示的中心对称图形中,对称中心是( )A .1OB .2OC .3OD .4O【答案】B【分析】直接利用中心对称图形的性质得出答案.【详解】解:如图所示的中心对称图形中,对称中心是O 1. 故选:B . 【点睛】本题考查中心对称图形,解题关键是熟练掌握中心对称图形的性质. 9.下列事件中,必然事件是( ) A .2a 一定是正数B .八边形的外角和等于360C.明天是晴天D.中秋节晚上能看到月亮【答案】B【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】A、a2一定是非负数,则a2一定是正数是随机事件;B、八边形的外角和等于360°是必然事件;C、明天是晴天是随机事件;D、中秋节晚上能看到月亮是随机事件;故选B.【点睛】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.10.已知一个单位向量e,设a、b是非零向量,那么下列等式中正确的是().A.1a ea=;B.e a a=;C.b e b=;D.11a ba b=.【答案】B【分析】长度不为0的向量叫做非零向量,向量包括长度及方向,而长度等于1个单位长度的向量叫做单位向量,注意单位向量只规定大小没规定方向,则可分析求解.【详解】解:A、左边得出的是a的方向不是单位向量,故错误;B、符合向量的长度及方向,正确;C、由于单位向量只限制长度,不确定方向,故错误;D、左边得出的是a的方向,右边得出的是b的方向,两者方向不一定相同,故错误.故选:B.【点睛】本题考查了向量的性质.11.如图,四边形ABCD是正方形,以BC为底边向正方形外部作等腰直角三角形BCE,连接AE,分别交BD,BC于点F,G,则下列结论:①△AFB∽△ABE;②△ADF∽△GCE;③CG=3BG;④AF=EF,其中正确的有().A.①③B.②④C.①②D.③④【答案】B【解析】连接AC,交BD于O,过点E作EH⊥BC于H,由正方形的性质及等腰直角三角形的性质可得∠ADF=∠ABD=∠BCE=∠CBE=45°,可得∠ABE=135°,根据外角性质可得∠AFD=∠FAB+∠ABF>45°,利用平角定义可得∠AFB<135°,即可证明∠AFB≠∠ABE,可对①进行判断;由EH⊥BC可证明EH//AB,根据平行线的性质可得∠HEG=∠FAB,根据角的和差关系可证明∠DAF=∠CEG,即可证明△ADF∽△GCE;可对②进行判断,由EH//AB可得△HEG∽△BAG,根据相似三角形的性质即可得出BG=2HG,根据等腰直角三角形性质可得CH=BH,进而可得CG=2BG,可对③进行判断;根据正方形的性质可得OA=BE,∠AOF=∠FBE=90°,利用AAS可证明△AOF≌△EBF,可得AF=EF,可对④进行判断;综上即可得答案.【详解】如图,连接AC,交BD于O,过点E作EH⊥BC于H,∵ABCD是正方形,△BCE是等腰直角三角形,∴∠ADF=∠ABD=∠BCE=∠CBE=45°,∴∠ABE=135°,∵∠AFD=∠BAF+∠ABF=∠BAF+45°>45°,∴∠AFB=180°-∠AFD<135°,∴∠AFB≠∠ABE,∴△AFB与△ABE不相似,故①错误,∵EH⊥BC,∠ABC=90°,∴EH//AB,∴∠HEG=∠FAB,∴∠AFD=∠FAB+∠ABD=45°+∠HEG=∠CEG,又∵∠ADB=∠GCE=45°,∴△ADF∽△GCE,故②正确,∵EH//AB,∴△HEG∽△BAG,∴EH HG AB BG,∵△BCE是等腰直角三角形,∴EH=CH=BH=12BC=12AB,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
8.如图, 内接于⊙ , , ,则⊙ 半径为()
A.4B.6C.8D.12
9.某中学篮球队12名队员的年龄情况如下:
年龄(单位:岁)
14
15
16
17
18
人数
1
5
3
2
1
则这个队队员年龄的众数和中位数分别是( )
A.15,16B.15,15C.15,15.5D.16,15
贵阳市十九中九年级上册期末数学试题(含答案)
一、选择题
1.有一组数据5,3,5,6,7,这组数据的众数为()
A.3B.6C.5D.7
2.如图,在□ABCD中,E、F分别是边BC、CD的中点,AE、AF分别交BD于点G、H,则图中阴影部分图形的面积与□ABCD的面积之比为()
A.7 : 12B.7 : 24C.13 : 36D.13 : 72
A. B. C. D.
5.函数y=mx2+2x+1的图像与x轴只有1个公共点,则常数m的值是()
A.1B.2C.0,1D.1,2
6.下列说法中,不正确的是( )
A.圆既是轴对称图形又是中心对称图形B.圆有无数条对称轴
C.圆的每一条直径都是它的对称轴D.圆的对称中心是它的圆心
7.若一元二次方程x2﹣2x+m=0有两个不相同的实数根,则实数m的取值范围是( )
A. B. C. D.
13.设A(﹣2,y1),B(1,y2),C(2,y3)是抛物线y=﹣(x+1)2+m上的三点,则y1,y2,y3的大小关系为( )
A.y3>y2>y1B.y1>y2>y3C.y1>y3>y2D.y2>y1>y3
14.若关于x的一元二次方程x2﹣2x+a﹣1=0没有实数根,则a的取值范围是( )
(2)估计鱼塘中该种鱼的总质量;
(3)设该种鱼每千克的售价为14元,求出售该种鱼的收入y(元)与出售该种鱼的质量x(kg)之间的函数关系,并估计自变量x的取值范围.
32.⊙O为△ABC的外接圆,请仅用无刻度的直尺,根据下列条件分别在图1,图2中画出一条弦,使这条弦将△ABC分成面积相等的两部分(保留作图痕迹,不写作法).
A.a<2B.a>2C.a<﹣2D.a>﹣2
15.如图,△ABC中AB两个顶点在x轴的上方,点C的坐标是(﹣1,0),以点C为位似中心,在x轴的下方作△ABC的位似图形△A′B′C′,且△A′B′C′与△ABC的位似比为2:1.设点B的对应点B′的横坐标是a,则点B的横坐标是( )
A. B. C. D.
3.某大学生创业团队有研发、管理和操作三个小组,各组的日工资和人数如下表所示.现从管理组分别抽调1人到研发组和操作组,调整后与调整前相比,下列说法中不正确的是()
A.团队平均日工资不变B.团队日工资的方差不变
C.团队日工资的中位数不变D.团队日工资的极差不变
4.在Rt△ABC中,∠C=90°,BC=4,AC=3,CD⊥AB于D,设∠ACD=α,则cosα的值为()
二、填空题
16.如图,点A、B、C是⊙O上的点,且∠ACB=40°,阴影部分的面积为2π,则此扇形的半径为______.
17.已知矩形ABCD,AB=3,AD=5,以点A为圆心,4为半径作圆,则点C与圆A的位置关系为__________.
18.在一块边长为30 cm的正方形飞镖游戏板上,有一个半径为10 cm的圆形阴影区域,则飞镖落在阴影区域内的概率为__________.
22.如图,由边长为1的小正方形组成的网格中,点 为格点(即小正方形的顶点), 与 相交于点 ,则 的长为_________.
23.已知一个圆锥底面圆的半径为6cm,高为8cm,则圆锥的侧面积为_____cm2.(结果保留π)
24.甲、乙两同学近期6次数学单元测试成绩的平均分相同,甲同学成绩的方差S甲2=6.5分2,乙同学成绩的方差S乙2=3.1分2,则他们的数学测试成绩较稳定的是____(填“甲”或“乙”).
25.圆锥的底面半径是4cm,母线长是6cm,则圆锥的侧面积是______cm2(结果保留π).
26.像 =x这样的方程,可以通过方程两边平方把它转化为2x+3=x2,解得x1=3,x2=﹣1.但由于两边平方,可能产生增根,所以需要检验,经检验,当x1=3时, =3满足题意;当x2=﹣1时, =﹣1不符合题意;所以原方程的解是x=3.运用以上经验,则方程x+ =1的解为_____.
10.一个扇形的半径为4,弧长为 ,其圆心角度数是()
A. B. C. D.
11.如图示,二次函数 的图像与 轴交于坐标原点和 ,若关于 的方程 ( 为实数)在 的范围内有解,则 的取值范围是()
A. B. C. D.
12.不透明袋子中有 个红球和 个蓝球,这些球除颜色外无其他差别,从袋子中随机取出 个球是红球的概率是( )
27.设 、 是关于 的方程 的两个根,则 __________.
28.如图,已知矩形ABCD的顶点A、D分别落在x轴、y轴,OD=2OA=6,AD:AB=3:1.则点B的坐标是_____.
29.某公园平面图上有一条长12cm的绿化带.如果比例尺为1:2000,那么这条绿化带的实际长度为_____.
(1)如图1,AC=BC;
(2)如图2,直线l与⊙O相切于点P,且l∥BC.
33.已知□ABCD边AB、AD的长是关于x的方程 =0的两个实数根.
(1)当m为何值时,四边形ABCD是菱形?
19.如图,Rt△ABC中,∠C=90°,AC=4,BC=3,点D是AB边上一点(不与A、B重合),若过点D的直线截得的三角形与△ABC相似,并且平分△ABC的周长,则AD的长为____.
20.关于x的方程 的解是 , (a,m,b均为常数, ),则关于x的方程 的解是________.
21.将抛物线y=﹣2x2+1向左平移三个单位,再向下平移两个单位得到抛物线________;
30.若关于x的一元二次方程 的一个根为1,则k的值为__________.
三、解答题
31.某鱼塘中养了某种鱼5000条,为了估计该鱼塘中该种鱼的总质量,从鱼塘中捕捞了3次,取得的数据如下:
数量/条
平均每条鱼的质量/kg
第1次捕捞
ቤተ መጻሕፍቲ ባይዱ20
1.6
第2次捕捞
15
2.0
第3次捕捞
15
1.8
(1)求样本中平均每条鱼的质量;