沸石吸附氨氮后解吸条件
氨氮去除解决方案(3篇)

第1篇一、引言随着工业生产和农业发展的不断推进,水体污染问题日益严重。
其中,氨氮污染是水体污染的重要来源之一。
氨氮是一种有机氮化合物,主要来源于生活污水、工业废水、养殖业废水等。
氨氮在水中容易转化成亚硝酸盐和硝酸盐,对水生生物产生毒害作用,影响水体的生态环境。
因此,研究氨氮去除技术具有重要的现实意义。
本文将针对氨氮去除问题,介绍几种常见的氨氮去除解决方案。
二、氨氮去除原理1. 物理法物理法是利用物理作用去除氨氮,主要包括沉淀法、吸附法、膜分离法等。
(1)沉淀法:利用氨氮与某些化学物质发生反应,生成难溶的沉淀物,从而实现氨氮的去除。
常见的沉淀剂有硫酸铝、硫酸铁、硫酸铜等。
(2)吸附法:利用吸附剂对氨氮进行吸附,达到去除氨氮的目的。
常见的吸附剂有活性炭、沸石、树脂等。
(3)膜分离法:利用膜的选择透过性,将氨氮从水中分离出来。
常见的膜分离技术有反渗透、纳滤、电渗析等。
2. 化学法化学法是利用化学反应去除氨氮,主要包括化学沉淀法、化学氧化法等。
(1)化学沉淀法:利用化学沉淀剂与氨氮反应,生成难溶的沉淀物,从而实现氨氮的去除。
常见的化学沉淀剂有硫酸铝、硫酸铁、硫酸铜等。
(2)化学氧化法:利用氧化剂将氨氮氧化成无害的氮气或亚硝酸盐,从而实现氨氮的去除。
常见的氧化剂有臭氧、氯气、高锰酸钾等。
3. 生物法生物法是利用微生物的代谢活动去除氨氮,主要包括硝化反硝化法、生物膜法等。
(1)硝化反硝化法:利用硝化菌将氨氮氧化成亚硝酸盐,再由反硝化菌将亚硝酸盐还原成氮气,从而实现氨氮的去除。
(2)生物膜法:利用生物膜上的微生物对氨氮进行转化,实现氨氮的去除。
三、氨氮去除解决方案1. 沉淀法(1)硫酸铝沉淀法:在废水处理过程中,加入适量的硫酸铝,使氨氮与硫酸铝发生反应,生成硫酸铝氨氮沉淀物,从而实现氨氮的去除。
(2)硫酸铁沉淀法:在废水处理过程中,加入适量的硫酸铁,使氨氮与硫酸铁发生反应,生成硫酸铁氨氮沉淀物,从而实现氨氮的去除。
4a沸石分子筛对氨氮的吸附

4a沸石分子筛对氨氮的吸附
摘要:
一、沸石分子筛概述
二、氨氮污染及其处理方法
三、沸石分子筛对氨氮的吸附性能
四、沸石分子筛在氨氮废水处理中的应用
五、结论
正文:
一、沸石分子筛概述
沸石分子筛是一种具有多孔性、高表面积和规则孔道结构的晶态材料,其主要成分为硅酸盐。
由于其独特的结构特性,沸石分子筛在吸附、分离、催化等领域具有广泛的应用。
二、氨氮污染及其处理方法
氨氮是指废水中以氨和氮化合物形式存在的氮,其主要来源于农业施肥、工业废水和生活污水等。
高浓度的氨氮废水对水环境具有极大的危害,因此必须进行处理。
目前,氨氮废水处理方法主要有生物脱氮法、化学脱氮法和物理吸附法等。
三、沸石分子筛对氨氮的吸附性能
沸石分子筛具有较高的孔容、孔径均匀和良好的吸附性能,因此被广泛应用于氨氮废水处理中。
研究发现,沸石分子筛对氨氮的吸附能力与其孔径、孔容、表面电荷等有关,且在特定条件下,沸石分子筛对氨氮的吸附效果优于其
他吸附材料。
四、沸石分子筛在氨氮废水处理中的应用
在氨氮废水处理过程中,沸石分子筛可以作为吸附剂,有效去除废水中的氨氮。
同时,沸石分子筛具有再生能力强、循环利用率高等优点,有利于降低处理成本。
此外,沸石分子筛与生物脱氮法、化学脱氮法等方法相结合,可实现氨氮废水的深度处理,提高处理效果。
五、结论
沸石分子筛作为一种高效吸附剂,在氨氮废水处理领域具有广泛的应用前景。
沸石去除水中氨氮的作用机理

沸石去除水中氨氮的作用机理沸石是由碱金属或碱土金属组成的含水网状铝硅酸盐物质,具有架状结构在其晶体内部分子像搭架子似地连在一起,中间形成很多空腔,通常情况下该空腔为水分子及金属阳离子所占据其化学通式为:MxDy[AL(X+2y)si(x+2y)O2]·mH2O,分子中的阳离子(SI,AL)和O一起构成四面体格架,称为结构阴离子。
在这种结构阴离子中,中心是Si(或AL)原子,每个Si(或AL)原子的周围有4个O原子,各个sI/O四面体通过处于四面体顶点的O原子互相连接起来,形成许多宽阔的孔穴和空道,使得沸石具有很大的比表面(通常为400-800㎡/g)。
通常情况下沸石空腔中的水分子、金属阳离子与沸石骨架离子的联系是松弛而微弱的。
这些水分子及阳离子可以自由地移动和出入孔道而不影响其骨架构造沸石这种格架结构决定了它具有较高的交换吸附性能。
沸石具有较大的比表面积孔穴和孔道结构的存在使得沸石可以吸附大量的分子或离子。
2沸石对氨氮去除机理沸石对氨氮的去除以物理吸附作用与离子交换作用为主,其,吸附作用具有“快速吸附缓慢平衡”的特点。
2.1吸附作用在沸石的组成结构中,sio4和alo4以共角顶的形式联成硅铝氧格架四在格架中形成了许多宽阔的孔穴和孔道(占晶体总体积的50%以上),使得天然沸石具有比表面积大(通常在440-1030㎡/g),天然沸石往往孔径均匀因而可以产生“超孔效应”,在沸石表面所具有的强大色散力作用下,沸石孔穴中分布的阳离子和部分架氧所具有的负电荷相互平衡,使得沸石又具有较强的色散力和静电力作用加之沸石所特有的分子结构而形成的较大静电引力使沸石具有相当大的引力场,由以上四种因素的综合作用使得沸石具有很强的吸附性与其他吸附剂相比,沸石具有吸附量大、高选择性和高效吸附等特点。
2.2离子交换作用离子交换是指沸石晶体内部阳离子与废水中NH4+进行交换的化学过程:在硅铝氧四面体基本单元中部分氧原子的价键未得到中和,使整个四面体基本单元带有部分的负电荷,为达到电性中和,该四面体基本单元中缺少的正电荷会由附近带正电的碱土金属离子阳离子(如K+、Na+、Ca2+、Mg2+)来补偿;废水中的Nh4+直径小于沸石的孔穴通道直径,通过沸石的吸附作用容易进入孔穴到达沸石表面,并与沸石晶格中碱土金属离子阳离子发生交换并将其置换下来,而且离子交换后的沸石并不发生结构变化,这使沸石具有离子交换特性。
沸石对溶液中氨氮的吸附实验研究

附量 。 采用 L a n g mu i r 公 式对 等 温 吸 附 实 验 数 据 进 行
2 . 1 氨 氮等温 吸 附实验
溶 液 ,向 l 0个 2 5 0 ml 具 塞 三 角 瓶 中 ,分 别 加 入 对
应 的上述 浓 度 的 溶 液 1 0 0 m l ,再 向每 瓶 中加 入 1 0 g
数 学拟 合 ,拟合 曲线如 图 2 。
沸 石 ,塞好玻 璃塞 ,放 入恒 温振 荡箱 中 ,设 置 温度 2 5 ℃ ,转 速 1 0 0 r / ai r n ,振 荡 。7 2 h后 取 出 ,抽 滤 后 测定 N H 4一N浓度 ,计 算 出沸石 的吸 附容量 。
膜 ,2 m l 注射 器 ,针 头 过 滤 器 ,7 2 2型 可 见 分 光 光 度计 ,氯 化 铵 ,沸 石 ( 直径 1 5 m m) ,氢 氧 化 钠 ,
碘化 汞 ,碘化 钾 ,酒石 酸钾钠 ,蒸 馏水 。
2 实验
所取溶液体积 ,m l ; 一填料用量 ,g 。 3 实验 结果 与分 析
( C 。 一C 。 )
恒温 振 荡 箱 ,万 分 之 一 天 平 ,具 塞 三 角 瓶
( 1 0 0 0 m l 、2 5 0 m1 ) , 容 量 瓶 (1 0 0 o ml 、5 0 0 ml 、
2 5 0 ml 、1 0 0 m 1 ) ,具 塞 玻 璃 磨 口 比 色 管 ( 5 0 m1 ) ,
分别配制 N H ;一 N浓度为 1 0 0 m g / L 、 2 0 0 m g / L 、
沸石处理氨氮废水

沸石处理氨氮废水沸石是一种广泛分布、开采量高且价格便宜的离子交换物质,被广泛用于处理废水中的氨氮。
吸附法是一种常用的脱氮处理方法,国内外已经提出了多种可行的工艺。
吸附剂的性质、再生方法和作用时间等因素都会影响氨氮的去除效果。
沸石、粉煤灰和膨润土等吸附剂都被广泛研究。
氨氮的去除原理主要包括非离子氨的吸附和离子氨的离子交换作用。
在废水处理实践中,有些废水经过二级处理后仍无法达到排放标准,需要进行深度脱氮处理。
吸附法也被用于这种情况。
沸石吸附法已经在美国和日本实现了工业化应用。
其主要使用固定床吸附柱,以斜发沸石为吸附剂,粒径为0.8-1.7mm,空速为5-10h-1,进水氨氮浓度为20mg/L,出水氨氮浓度小于1mg/L。
沸石是一种含水架状结构的多孔硅铝酸盐矿物质,具有空旷的骨架结构和大的比表面积。
其晶穴体积约为总体积的40%-50%,孔径大多在1nm以下。
沸石对极性、不饱和及易极化分子具有优先的选择吸附作用,并且具有耐酸、耐碱、热稳定等性能。
斜发沸石在离子交换和定量处理方面,对NH4+-N具有较好的选择性,因此可以用于污水脱除氨氮处理工艺,脱氮率可达90%-97%。
工业上沸石除氨装置较为简单,一般为一圆柱形滤器。
沸石的交换容量受到杂质的影响,纯度较高的沸石交换容量不大于200meq100g,一般为100-150meq100g。
斜发沸石在反复再生后对NH4+的吸附交换能力影响不大,但在污水中共存阳离子如Ca2+时,沸石的交换能力会呈不可逆性降低。
沸石的再生处理方法有利用NaOH或NaCl溶液的化学溶液再生和500℃-600℃的高温条件下将沸石中的NH4+转变为NH3气体的燃烧法再生。
沸石对氨氮的吸附及解吸效果研究

第一作者 :党鹏刚 (1985一),男 ,硕 士研究生 ,从事环保管理方面工作 。
第 44卷第 15期
党鹏刚 ,等 :沸石对氨氮 的吸附及解 吸效果研究
1O5
1.3 分析 方 法 氨氮 :纳 氏试剂 比色法。
2 结果与讨论
2.1 沸石 吸 附特性 研 究
石对氨氮 的吸 附量 可达 到 0.37 mg/g。张 曦 等人 在沸石 吸 附 性能研究 中发现在 5 g/L的氨氮溶 液 中,沸石 的最大 吸附量可 以达到 11.5 mg/g。可见沸石竽 、的删 吸熏附\蚓潜蓝能 是巨大的。
第 44卷第 15期 2016年 8月
广 州 化 工
Guangzhou Chemical Industry
VoI.44 No.15 Aug.2016
沸 石 对 氨 氮 的 吸 附 及 解 吸 效 果 研 究
党鹏刚 ,张 英
(1陕 西渭 河煤化 工 集 团有 限责任公 司 ,陕 西 西安限责 任公 司 ,陕西 西安 714000)
grave1.In different water ammonia nitrogen concentration,zeolite adsorption capacity can reach to 1.58 mgNH:-N/g.
W ith the increase of ammonia nitrogen concentration,the adsorption quantity increased, and under force or natural conditions,the desorp tion rate can reach to more than 70% .
浅谈沸石对水中氨氮的吸附112
浅谈沸石对水中氨氮的吸附摘要:本文从实验的材料和方法、实验结果与分析、然后对其分析讨论来研究沸石对水中氨氮的吸附,摸索出沸石吸附氨氮的最佳条件。
关键词:沸石;氨氮;吸附引言氨氮以游离氨或氨盐的形式存在于水中,二者的比例取决于水的pH 值。
游离氨对鱼类的毒害作用很大,目前对温水性鱼类的允许的高限值为0.06~ 0.12mg/mL,而对冷水性鱼类的安全浓度则更低。
离子氨相对是无毒的,但作为植物的营养盐,同样会引起水体的富营养化,造成水质的恶化。
沸石对水中的氨氮有较好的净化作用。
我国的天然沸石矿产丰富、价格低廉,溶出物和有毒元素含量均很低。
本文通过实验室内一些条件的模拟,研究各种操作条件对钠型沸石去除氨氮效果的影响。
摸索出钠型沸石对水中氨氮的较好的吸附条件,并初步探讨了其吸附机理,为沸石去除氨氮的可行性和实用性提供依据。
一、材料和方法1.1 仪器设备上海谱元紫外分光光度计;RephiLe超纯水器;恒温培养振荡器;测定仪;干燥器;移液枪。
1.2 实验材料选用河北的天然沸石为实验材料,密度2.05g•cm-3,硬度3~4,硅铝比4.15~5.15,孔隙率为30%~40%。
试验前将沸石洗净、干燥,氨氮溶液用NH4Cl 和超纯水配制,试验药品均为分析纯。
1.3 天然沸石的筛选选用孔隙不同的筛网,将选用的浙江缙云天然沸石放入筛网中,振荡筛选出0.5~1、1~2、2~3、3~5 mm和5~8 mm 的沸石,用超纯水将筛选出的沸石洗净,105 ℃烘干,然后放入干燥器中保存。
1.4钠化沸石的制备将沸石和饱和氯化钠溶液置于锥形瓶中,振荡12 h 后倒出上清液,并用去离子水洗涤,然后再加入饱和氯化钠溶液。
重复上述步骤,最后将沸石在105 ℃下烘干制得钠型沸石。
1.5吸附平衡实验溶液pH 值约为7.5 时,氨氮去除率高。
因此,调节氨氮水溶液pH 值,使其显中性。
向溶液中放入适量纳化沸石粉末,搅拌一段时间后静置片刻,用0.45 μm 微孔滤膜过滤,最后用纳氏试剂比色法测定滤液中氨氮含量。
天然沸石吸附氨氮实验注意事项
天然沸石吸附氨氮实验注意事项
天然沸石是一种常用的吸附剂,用于处理水中的氨氮,可以有效地去除水中的氨氮,但在实验过程中需要注意以下几点:
一、实验前的准备
1.选择合适的天然沸石:天然沸石的性质和吸附能力与来源、矿物组成、晶体结构等有关,因此需要选择合适的天然沸石。
2.样品的处理:样品应该经过过滤、调节pH值等处理,以保证实验结果的准确性。
二、实验过程中的注意事项
1.天然沸石的使用量:天然沸石的使用量应该根据实际情况进行调整,一般来说,使用量应该控制在一定范围内。
2.实验条件的控制:实验条件包括温度、pH值、接触时间等,这些条件的控制对实验结果有很大的影响,需要进行严格的控制。
3.实验设备的清洁:实验设备应该保持干净,避免对实验结果产生影响。
4.实验数据的记录:实验数据应该准确记录,以便后续的分析和处理。
三、实验后的处理
1.天然沸石的回收:实验后,天然沸石应该进行回收处理,以便后续的使用。
2.实验数据的分析:实验数据应该进行分析和处理,以便得出准确的结论。
以上是天然沸石吸附氨氮实验的注意事项,希望能够对实验的进行有所帮助。
沸石对氨氮的吸附行为研究
沸石对氨氮的吸附行为研究作者:符露来源:《丝路视野》2016年第20期【摘要】本文研究了斜发沸石对氨氮吸附行为,探讨了水力停留时间、pH值对吸附效果的影响,同时考察了吸附氨氮前后的沸石的性能及结构变化。
结果表明,准二级吸附动力学方程能够很好地描述沸石吸附氨氮的过程,沸石在1.0 g/L的氨氮溶液中的理论吸附值为8.69 mg·g-1。
沸石吸附氨氮的最佳水力停留时间为40min,最佳pH值为6,并且氨氮去除率随着浓度的升高而降低,随着沸石投加量的增加而升高。
沸石吸附氨氮前后形态及结构并未发生变化,比表面积、孔容、孔径则明显降低。
【关键词】斜发沸石;氨氮氨氮是水体中重要耗氧物质、是引起水体富营养化的污染物。
近年来,随着社会生产水平的提高,氨氮的排放量与日俱增。
由于水污染事件频繁发生,严重威胁着社会日常生产工作,对于水污染较严重的地区,逐渐实行更加严格的标准控制污水中氨氮的排放,不少污水处理厂面临标准提高的严峻现状。
因此,在兼顾经济的条件下提高处理效率,成为了研究的重点。
目前国内解决高浓度氨氮污染主要使用吹脱法、生物法、离子交换法。
其中吹脱法容易造成二次污染,生物法条件要求高、反应缓慢,而离子交换法较易控制。
天然沸石是一种含水的碱或碱土金属的铝硅酸盐矿物,是由硅氧四面体和铝氧四面体组成的架状硅酸盐,具有比表面积大,吸附性能好,离子交换能力强,化学性能稳定等特点。
沸石对氨氮的去除有着较好的效果,对浓度具有普适性,并且由于沸石资源在我国储量丰富、成本低廉,是一种具有前景的水处理方式,因此沸石吸附氨氮受到较多的关注。
一、材料与方法(一)实验装置静态吸附采用摇床,动态吸附采用沸石柱装置,如图1所示。
实验装置主要由PVC管、蠕动泵、水箱三部分组成,其中PVC管高为100cm,(二)动态吸附实验室温下,在不同的滤速下将含氨氮废水通过沸石吸附柱,每隔20分钟取水样并用0.4μm 滤膜过滤后测定氨氮的浓度。
沸石分子筛吸附污水中氨氮的研究进展
沸石分子筛吸附污水中氨氮的研究进展沸石分子筛吸附污水中氨氮的研究进展随着工农业的发展,污水处理成为了一项重要的环保任务。
氨氮是污水中常见的一种污染物,具有毒性和刺激性,对水环境和生态系统造成严重危害。
因此,研究高效、经济的氨氮去除技术成为了当前环境保护领域的热点。
沸石分子筛作为一种常用的吸附剂,受到了广泛关注,并在氨氮吸附领域取得了显著的研究进展。
沸石是一种富含硅酸盐的多孔矿物,具有较高的比表面积和丰富的通道系统。
由于其独特的化学结构和物理性质,沸石分子筛具备了良好的吸附能力,可以有效地吸附污水中的氨氮。
沸石分子筛吸附氨氮的机制主要包括离子交换和物理吸附两种方式。
在离子交换中,沸石分子筛表面的阳离子与氨氮中的氨离子发生交换反应,将氨离子固定在其孔隙结构中。
物理吸附则是通过静电力、范德华力等相互作用力,将氨氮吸附到沸石分子筛表面。
这两种吸附方式形成了丰富的吸附位点,大大提高了沸石分子筛对氨氮的吸附能力。
研究者们通过调控沸石分子筛的孔径、表面性质和晶体结构等参数,进一步提高了其对氨氮的吸附效果。
其中,改变孔径是一种较为常见的方法。
研究发现,较小孔径的沸石分子筛具有较高的氨氮吸附能力。
这是因为小孔径可以增加分子筛表面积与体积的比值,提高了吸附位点的密度,从而增强了吸附效果。
此外,研究者还通过改变分子筛表面的官能团,引入诸如羟基、胺基等亲水官能团,增加了分子筛与水中氨氮之间的亲和力,提高了吸附效果。
除了调控分子筛本身的性质外,研究者还通过改变吸附条件,进一步优化了吸附效果。
例如,调节溶液的pH值、温度和初始氨氮浓度等。
实验证明,酸性条件下沸石分子筛的吸附效果较好,这是因为在酸性环境中,氨氮更容易解离为氨离子,便于其与分子筛表面的阳离子发生离子交换反应。
另外,适当提高温度可以增加活化能,促进吸附过程的进行;而增大初始氨氮浓度可以增加吸附位点的利用率,提高吸附效果。
近年来,沸石分子筛在氨氮去除领域得到了广泛应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
沸石吸附氨氮后解吸条件
沸石是一种常用的吸附材料,可以用来吸附氨氮等有机物质。
解吸条件可以根据具体的实验目的和要求来确定,以下是一般情况下的解吸条件:
1. 温度:通常使用适当的温度可以促进解吸过程。
温度的选择应根据具体的实验条件和吸附剂的特性来确定。
2. pH值:溶液的pH值也会影响吸附和解吸过程。
在一些情况下,调整解吸液的pH值可以增加解吸效果。
3. 溶液浓度:解吸液的浓度可以影响解吸效果。
通常情况下,使用适当浓度的溶液可以提高解吸效率。
4. 时间:解吸的时间应根据实验需要来确定,一般情况下,较长的解吸时间可以增加解吸效果。
需要注意的是,以上条件只是一般情况下的建议,具体的解吸条件还需要根据实验目的、吸附剂的特性以及实验条件来确定。
实验前应进行充分的实验设计和前期试验,以确保实验结果的准确性和可重复性。