2018年高考数学全国卷II理科(word版)

合集下载

2018年高考数学卷(全国卷3)答案

2018年高考数学卷(全国卷3)答案

据函数的解析式通过图象变换直接作图,另一个角度就是从
研究函数的性质入手去判断,常从函数的定义域、值域、特殊
点、函数的单调性、奇偶性等角度去研究识别 .
8.B 【解题思路】本题考查二项分布的概率、方差的计算 .由已
{ 知得
10p(1-p)=2.4 C410p4(1-p)6<C6 10p6(1-p)4
①,解 ②,
线的位置关系 .根据题意设直线 AB的方程为 y=k(x-1)
{ y=k(x-1),
(k≠0),联 立 抛 物 线 方 程 得 y2=4x, 消 元 并 整 理 得
( ) ( ) y2- 4ky-4=0,设 A y421,y1 ,B y422,y2 ,则 y1+y2=
( ) 4k,y1·y2 = -4 ①,由 于 →MA· M→B =
3.A 【解题思路】本题考查三视图 .由题知当咬合时,进入木构 件内部的部分看不见,需用虚线表示,且由直观图中凸出部分
的位置知 A是正确的,故选 A.
4.B 【解题思路】本题考查二倍角公式的应用 .因为 cos2α =1-
( ) 2sin2α=1-2×
1 3


7 9,故选
B.
5.C 【解题思路】本题考查二项展开式的通项公式的应用 .由于
12.B 【解题思路】本题考查对数的运算、不等式 .由于 a+b=
log0.20.3+log20.3=log0.130.2+log10.32=l lo og g00..330 0. .2 2+ ×l lo og g00..332 2=
log0.3lo0g.02.3×0.lo4g0.32,因为 log0.30.4>0,log0.30.2>0,log0.32<0,

2019年高考数学理科试题解析版(全国卷II)共8页word资料

2019年高考数学理科试题解析版(全国卷II)共8页word资料

2019年普通高等学校招生全国统一考试(全国卷II )(数学理)【教师简评】按照“保持整体稳定,推动改革创新,立足基础考查,突出能力立意”命题指导思想,本套试卷的总体印象是:题目以常规题为主,难度较前两年困难,得高分需要扎扎实实的数学功底.1.纵观试题,小题起步较低,难度缓缓上升,除了选择题11、12、16题有一定的难度之外,其他题目难度都比较平和.2.解答题中三角函数题较去年容易,立体几何难度和去年持平,数列题的难度较去年有所提升,由去年常见的递推数列题型转变为今年的数列求极限、数列不等式的证明,不易拿满分,概率题由去年背景是“人员调配”问题,转变为今年的与物理相关的电路问题,更体现了学科之间的联系.两道压轴题以解析几何和导数知识命制,和去年比较更有利于分步得分.3.要求考生有比较强的计算能力,例如立体几何问题,题目不难,但需要一定的计算技巧和能力.不管题目难度如何变化,“夯实双基(基础知识、基本方法)”,对大多数考生来说,是以不变应万变的硬道理.(1)复数231i i -⎛⎫= ⎪+⎝⎭(A )34i -- (B )34i -+ (C )34i - (D )34i +【答案】A【命题意图】本试题主要考查复数的运算. 【解析】231i i -⎛⎫= ⎪+⎝⎭22(3)(1)(12)342i i i i --⎡⎤=-=--⎢⎥⎣⎦. (2).函数1ln(1)(1)2x y x +-=>的反函数是 (A ) 211(0)x y ex +=-> (B )211(0)x y e x +=+> (C )211(R)x y ex +=-∈ (D )211(R)x y e x +=+∈【答案】D【命题意图】本试题主要考察反函数的求法及指数函数与对数函数的互化。

【解析】由原函数解得,即,又;∴在反函数中,故选D. (3).若变量,x y 满足约束条件1,,325x y x x y -⎧⎪⎨⎪+⎩≥≥≤,则2z x y =+的最大值为(A )1 (B )2 (C )3 (D )4【答案】C【命题意图】本试题主要考查简单的线性规划问题.【解析】可行域是由A(1,1),B(1,4),C(1,1)---构成的三角形,可知目标函数过C 时最大,最大值为3,故选C.(4).如果等差数列{}n a 中,34512a a a ++=,那么127...a a a +++=(A )14 (B )21 (C )28 (D )35【答案】C【命题意图】本试题主要考查等差数列的基本公式和性质. 【解析】173454412747()312,4,7282a a a a a a a a a a a +++===∴+++=== (5)不等式2601x x x --->的解集为 (A ){}2,3x x x -<或> (B ){}213x x x -<,或<<(C ) {}213x x x -<<,或> (D ){}2113x x x -<<,或<<【答案】C【命题意图】本试题主要考察分式不等式与高次不等式的解法.【解析】利用数轴穿根法解得-2<x <1或x >3,故选C (6)将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中.若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的方法共有(A )12种 (B )18种 (C )36种 (D )54种【答案】B【命题意图】本试题主要考察排列组合知识,考察考生分析问题的能力.【解析】标号1,2的卡片放入同一封信有种方法;其他四封信放入两个信封,每个信封两个有种方法,共有种,故选B.(7)为了得到函数sin(2)3y x π=-的图像,只需把函数sin(2)6y x π=+的图像 (A )向左平移4π个长度单位 (B )向右平移4π个长度单位(C )向左平移2π个长度单位 (D )向右平移2π个长度单位 【答案】B【命题意图】本试题主要考查三角函数图像的平移.【解析】s i n (2)6y x π=+=sin 2()12x π+,sin(2)3y x π=-=sin 2()6x π=-,所以将s i n (2)6y x π=+的图像向右平移4π个长度单位得到sin(2)3y x π=-的图像,故选B. (8)ABC V 中,点D 在AB 上,CD 平方ACB ∠.若C B a =u u r ,CA b =uu r ,1a =,2b =,则CD =uu u r(A )1233a b + (B )2133a b + (C )3455a b + (D )4355a b + 【答案】B【命题意图】本试题主要考查向量的基本运算,考查角平分线定理.【解析】因为CD 平分ACB ∠,由角平分线定理得AD CA 2=DB CB 1=,所以D 为AB 的三等分点,且22AD AB (CB CA)33==-,所以2121CD CA+AD CB CA a b 3333==+=+,故选B.(9)已知正四棱锥S ABCD -中,SA =,那么当该棱锥的体积最大时,它的高为(A )1 (B (C )2 (D )3【答案】C【命题意图】本试题主要考察椎体的体积,考察告辞函数的最值问题.【解析】设底面边长为a ,则高所以体积, 设,则,当y 取最值时,,解得a=0或a=4时,体积最大,此时,故选C. (10)若曲线12y x -=在点12,a a -⎛⎫ ⎪⎝⎭处的切线与两个坐标围成的三角形的面积为18,则a =(A )64 (B )32 (C )16 (D )8【答案】A【命题意图】本试题主要考查求导法则、导数的几何意义、切线的求法和三角形的面积公式,考查考生的计算能力.. 【解析】332211',22y x k a --=-∴=-,切线方程是13221()2y a a x a ---=--,令0x =,1232y a -=,令0y =,3x a =,∴三角形的面积是121331822s a a -=⋅⋅=,解得64a =.故选A.(11)与正方体1111ABCD A B C D -的三条棱AB 、1CC 、11A D 所在直线的距离相等的点(A )有且只有1个 (B )有且只有2个(C )有且只有3个 (D )有无数个【答案】D【解析】直线上取一点,分别作垂直于于则分别作,垂足分别为M ,N ,Q ,连PM ,PN ,PQ ,由三垂线定理可得,PN ⊥PM ⊥;PQ ⊥AB ,由于正方体中各个表面、对等角全等,所以,∴PM=PN=PQ ,即P 到三条棱AB 、CC 1、A 1D 1.所在直线的距离相等所以有无穷多点满足条件,故选D.(12)已知椭圆2222:1(0)x y C a b a b+=>>F 且斜率为(0)k k >的直线与C 相交于A B 、两点.若3AF FB =,则k =(A )1 (B (C (D )2【答案】B【命题意图】本试题主要考察椭圆的性质与第二定义.【解析】设直线l 为椭圆的有准线,e 为离心率,过A ,B 分别作AA 1,BB 1垂直于l ,A 1,B 为垂足,过B 作BE 垂直于AA 1与E ,由第二定义得,,由,得,∴即k=,故选B. 第Ⅱ卷注意事项:1.用0.5毫米的黑色字迹签字笔在答题卡上作答。

2019年高考全国2卷理科数学及答案(可编辑修改word版)

2019年高考全国2卷理科数学及答案(可编辑修改word版)

M 2M 1M 2 2M 13M 2 3M 1M 233M 1+= 绝密★启用前2019 年普通高等学校招生全国统一考试理科数学一、选择题:本题共 12 小题,每小题 5 分,共 60 分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设集合 A ={x |x 2-5x +6>0},B ={ x |x -1<0},则 A ∩B = A .(-∞,1) B .(-2,1) C .(-3,-1) D .(3,+∞)2.设 z =-3+2i ,则在复平面内 z 对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限 3.已知 =(2,3), =(3,t ), =1,则 =AB AC BC AB ⋅ BCA .-3B .-2C .2D .34.2019 年 1 月 3 日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就,实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系.为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日 L 2 点的轨道运行.L 2 点是平衡点,位于地月连线的延长线上.设地球质量为 M 1,月球质量为 M 2,地月距离为 R ,L 2 点到月球的距离为 r ,根据牛顿运动定律和万有引力定律,r 满足方程:M 1+M 2= (R + r ) M1 .=r(R + r )2r 2 R 333 + 34 +5≈3设,由于 的值很小,因此在近似计算中R(1+)23 ,则 r 的近似值为A.R B.R C.RD.R5.演讲比赛共有 9 位评委分别给出某选手的原始评分,评定该选手的成绩时,从 9 个原始评分中去掉 1 个最高分、1 个最低分,得到 7 个有效评分.7 个有效评分与 9 个原始评分相比,不变的数字特征是 A .中位数 B .平均数C .方差D .极差 6.若 a >b ,则A .ln(a −b )>0B .3a <3bC .a 3−b 3>0D .│a │>│b │7. 设 α,β 为两个平面,则 α∥β 的充要条件是A .α 内有无数条直线与 β 平行B .α 内有两条相交直线与 β 平行C .α,β 平行于同一条直线D .α,β 垂直于同一平面x28.若抛物线 y 2=2px (p >0)的焦点是椭圆y 2 1 的一个焦点,则 p =3 ppA .2B .3C .4D .89.下列函数中,以 π 为周期且在区间( π , π )单调递增的是 242A .f (x )=│cos 2x │B .f (x )=│sin 2x │C .f (x )=cos│x │D .f (x )= sin│x │532 3 , ] , ] , ] , ] 10. 已知 α∈(0, π ),2sin 2α=cos 2α+1,则 sin α=2A .1 B . C . D .2 55535x 2 y 211. 设 F 为双曲线 C : - a 2 b 2 = 1(a > 0,b > 0) 的右焦点, O 为坐标原点,以OF 为直径的圆与圆x 2 + y 2 = a 2 交于 P ,Q 两点.若 PQ = OF ,则 C 的离心率为A.B .C .2D . 12. 设函数 f (x ) 的定义域为 R ,满足 f (x + 1) = 2 f (x ) ,且当 x ∈(0,1] 时, f (x ) = x (x -1) .若对任意x ∈(-∞, m ] ,都有 f (x ) ≥ - 8,则 m 的取值范围是9A . (-∞ 9 4B . (-∞ 7 3C . (-∞ 5 2D . (-∞ 83二、填空题:本题共 4 小题,每小题 5 分,共 20 分。

2018年高考真题—— (江苏卷)+ word版含解析

2018年高考真题—— (江苏卷)+ word版含解析

2018年普通高等学校招生全国统一考试(江苏卷)数 学注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

参考公式: 锥体的体积,其中是锥体的底面积,是锥体的高.一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上......... 1. 已知集合,,那么________.2. 若复数满足,其中i 是虚数单位,则的实部为________.3. 已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为________.4. 一个算法的伪代码如图所示,执行此算法,最后输出的S 的值为________.5. 函数的定义域为________.6. 某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为 ________.7. 已知函数的图象关于直线对称,则的值是________.8. 在平面直角坐标系中,若双曲线的右焦点到一条渐近线的距离为,则其离心率的值是________.9. 函数满足,且在区间上, 则的值为________.10. 如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为________.11. 若函数在内有且只有一个零点,则在上的最大值与最小值的和为________. 12. 在平面直角坐标系中,A 为直线上在第一象限内的点,,以AB 为直径的圆C 与直线l 交于另一点D .若,则点A 的横坐标为________.13. 在中,角所对的边分别为,,的平分线交于点D ,且,则的最小值为________.14. 已知集合,.将的所有元素从小到大依次排列构成一个数列.记为数列的前n 项和,则使得成立的n 的最小值为________.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 15. 在平行六面体中,.此卷只装订不密封班级 姓名 准考证号 考场号 座位号求证:(1);(2).16. 已知为锐角,,.(1)求的值;(2)求的值.17. 某农场有一块农田,如图所示,它的边界由圆O的一段圆弧(P为此圆弧的中点)和线段MN构成.已知圆O的半径为40米,点P到MN的距离为50米.现规划在此农田上修建两个温室大棚,大棚Ⅰ内的地块形状为矩形ABCD ,大棚Ⅱ内的地块形状为,要求均在线段上,均在圆弧上.设OC 与MN 所成的角为.(1)用分别表示矩形和的面积,并确定的取值范围;(2)若大棚Ⅰ内种植甲种蔬菜,大棚Ⅱ内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为.求当为何值时,能使甲、乙两种蔬菜的年总产值最大.18. 如图,在平面直角坐标系中,椭圆C 过点,焦点,圆O的直径为.(1)求椭圆C及圆O的方程;(2)设直线l与圆O相切于第一象限内的点P.①若直线l与椭圆C有且只有一个公共点,求点P的坐标;②直线l 与椭圆C 交于两点.若的面积为,求直线l的方程.19. 记分别为函数的导函数.若存在,满足且,则称为函数与的一个“S点”.(1)证明:函数与不存在“S点”;(2)若函数与存在“S点”,求实数a的值;(3)已知函数,.对任意,判断是否存在,使函数与在区间内存在“S点”,并说明理由.20. 设是首项为,公差为d 的等差数列,是首项为,公比为q的等比数列.(1)设,若对均成立,求d的取值范围;(2)若,证明:存在,使得对均成立,并求的取值范围(用表示).数学Ⅱ(附加题)【选做题】本题包括四小题,请选定其中两小题,并在相应的答题区域内作答......................若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤.21. [选修4—1:几何证明选讲]如图,圆O的半径为2,AB为圆O的直径,P为AB延长线上一点,过P作圆O的切线,切点为C .若,求BC的长.22. [选修4—2:矩阵与变换]已知矩阵.(1)求的逆矩阵;(2)若点P 在矩阵对应的变换作用下得到点,求点P的坐标.23. [选修4—4:坐标系与参数方程]在极坐标系中,直线l的方程为,曲线C的方程为,求直线l被曲线C截得的弦长.24. [选修4—5:不等式选讲]若x,y,z为实数,且x+2y+2z=6,求的最小值.【必做题】两题,每题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.25. 如图,在正三棱柱ABC-A1B1C1中,AB=AA1=2,点P,Q分别为A1B1,BC 的中点.(1)求异面直线BP与AC1所成角的余弦值;(2)求直线CC1与平面AQC1所成角的正弦值.26. 设,对1,2,···,n的一个排列,如果当s<t 时,有,则称是排列的一个逆序,排列的所有逆序的总个数称为其逆序数.例如:对1,2,3的一个排列231,只有两个逆序(2,1),(3,1),则排列231的逆序数为2.记为1,2,···,n的所有排列中逆序数为k 的全部排列的个数.(1)求的值;(2)求的表达式(用n表示).2018年普通高等学校招生全国统一考试(江苏卷)数 学 答 案1.【答案】{1,8}【解析】分析:根据交集定义求结果.详解:由题设和交集的定义可知:.点睛:本题考查交集及其运算,考查基础知识,难度较小. 2.【答案】2【解析】分析:先根据复数的除法运算进行化简,再根据复数实部概念求结果. 详解:因为,则,则的实部为.点睛:本题重点考查复数相关基本概念,如复数的实部为、虚部为、模为、对应点为、共轭复数为.3.【答案】90【解析】分析:先由茎叶图得数据,再根据平均数公式求平均数.点睛:的平均数为.4.【答案】8【解析】分析:先判断是否成立,若成立,再计算,若不成立,结束循环,输出结果.详解:由伪代码可得,因为,所以结束循环,输出点睛:本题考查伪代码,考查考生的读图能力,难度较小. 5.【答案】[2,+∞)【解析】分析:根据偶次根式下被开方数非负列不等式,解对数不等式得函数定义域.详解:要使函数有意义,则,解得,即函数的定义域为.点睛:求给定函数的定义域往往需转化为解不等式(组)的问题.6.【答案】【解析】分析:先确定总基本事件数,再从中确定满足条件的基本事件数,最后根据古典概型概率公式求概率.详解:从5名学生中抽取2名学生,共有10种方法,其中恰好选中2名女生的方法有3种,因此所求概率为点睛:古典概型中基本事件数的探求方法 (1)列举法.(2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法.(3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化.(4)排列组合法(理科):适用于限制条件较多且元素数目较多的题目. 7.【答案】【解析】分析:由对称轴得,再根据限制范围求结果.详解:由题意可得,所以,因为,所以点睛:函数(A >0,ω>0)的性质:(1);(2)最小正周期;(3)由求对称轴;(4)由求增区间; 由求减区间.8.【答案】2【解析】分析:先确定双曲线的焦点到渐近线的距离,再根据条件求离心率.点睛:双曲线的焦点到渐近线的距离为b ,焦点在渐近线上的射影到坐标原点的距离为a . 9.【答案】【解析】分析:先根据函数周期将自变量转化到已知区间,代入对应函数解析式求值,再代入对应函数解析式求结果.详解:由得函数的周期为4,所以因此点睛:(1)求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现的形式时,应从内到外依次求值.(2)求某条件下自变量的值,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记代入检验,看所求的自变量的此卷只装订不密封班级 姓名 准考证号 考场号 座位号值是否满足相应段自变量的取值范围.10.【答案】【解析】分析:先分析组合体的构成,再确定锥体的高,最后利用锥体体积公式求结果.详解:由图可知,该多面体为两个全等正四棱锥的组合体,正四棱锥的高为1,底面正方形的边长等于,所以该多面体的体积为点睛:解决本类题目的关键是准确理解几何体的定义,真正把握几何体的结构特征,可以根据条件构建几何模型,在几何模型中进行判断;求一些不规则几何体的体积时,常用割补法转化成已知体积公式的几何体进行解决.11.【答案】–3【解析】分析:先结合三次函数图象确定在上有且仅有一个零点的条件,求出参数a ,再根据单调性确定函数最值,即得结果.详解:由得,因为函数在上有且仅有一个零点且,所以,因此从而函数在上单调递增,在上单调递减,所以,点睛:对于函数零点个数问题,可利用函数的单调性、草图确定其中参数取值条件.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等.12.【答案】3【解析】分析:先根据条件确定圆方程,再利用方程组解出交点坐标,最后根据平面向量的数量积求结果.详解:设,则由圆心为中点得易得,与联立解得点D 的横坐标所以.所以,由得或,因为,所以点睛:以向量为载体求相关变量的取值或范围,是向量与函数、不等式、三角函数、曲线方程等相结合的一类综合问题.通过向量的坐标运算,将问题转化为解方程或解不等式或求函数值域,是解决这类问题的一般方法.13.【答案】9【解析】分析:先根据三角形面积公式得条件、再利用基本不等式求最值.详解:由题意可知,,由角平分线性质和三角形面积公式得,化简得,因此当且仅当时取等号,则的最小值为.点睛:在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.14.【答案】27【解析】分析:先根据等差数列以及等比数列的求和公式确定满足条件的项数的取值范围,再列不等式求满足条件的项数的最小值.详解:设,则由得所以只需研究是否有满足条件的解,此时,,为等差数列项数,且.由得满足条件的最小值为.点睛:本题采用分组转化法求和,将原数列转化为一个等差数列与一个等比数列的和.分组转化法求和的常见类型主要有分段型(如),符号型(如),周期型(如).15.【答案】答案见解析【解析】分析:(1)先根据平行六面体得线线平行,再根据线面平行判定定理得结论;(2)先根据条件得菱形ABB1A1,再根据菱形对角线相互垂直,以及已知垂直条件,利用线面垂直判定定理得线面垂直,最后根据面面垂直判定定理得结论.详解:证明:(1)在平行六面体ABCD-A1B1C1D1中,AB∥A1B1.因为AB平面A1B1C,A1B1平面A1B1C,所以AB∥平面A1B1C.(2)在平行六面体ABCD-A1B1C1D1中,四边形ABB1A1为平行四边形.又因为AA1=AB,所以四边形ABB1A1为菱形,因此AB1⊥A1B.又因为AB1⊥B1C1,BC∥B1C1,所以AB1⊥BC.又因为A1B∩BC=B,A1B平面A1BC,BC平面A1BC,所以AB1⊥平面A1BC.因为AB1平面ABB1A1,所以平面ABB1A1⊥平面A1BC.点睛:本题可能会出现对常见几何体的结构不熟悉导致几何体中的位置关系无法得到运用或者运用错误,如柱体的概念中包含“两个底面是全等的多边形,且对应边互相平行,侧面都是平行四边形”,再如菱形对角线互相垂直的条件,这些条件在解题中都是已知条件,缺少对这些条件的应用可导致无法证明.16.【答案】(1)(2)【解析】分析:先根据同角三角函数关系得,再根据二倍角余弦公式得结果;(2)先根据二倍角正切公式得,再利用两角差的正切公式得结果.详解:解:(1)因为,,所以.因为,所以,因此,.(2)因为为锐角,所以.又因为,所以,因此.因为,所以,因此,.点睛:应用三角公式解决问题的三个变换角度(1)变角:目的是沟通题设条件与结论中所涉及的角,其手法通常是“配凑”.(2)变名:通过变换函数名称达到减少函数种类的目的,其手法通常有“切化弦”、“升幂与降幂”等.(3)变式:根据式子的结构特征进行变形,使其更贴近某个公式或某个期待的目标,其手法通常有:“常值代换”、“逆用变用公式”、“通分约分”、“分解与组合”、“配方与平方”等.17.【答案】(1)矩形ABCD的面积为800(4sinθcosθ+cosθ)平方米,△CDP的面积为1600(cosθ–sinθcos θ),sinθ的取值范围是[,1).(2)当θ=时,能使甲、乙两种蔬菜的年总产值最大【解析】分析:(1)先根据条件求矩形长与宽,三角形的底与高,再根据矩形面积公式以及三角形面积公式得结果,最后根据实际意义确定的取值范围;(2)根据条件列函数关系式,利用导数求极值点,再根据单调性确定函数最值取法.详解:解:(1)连结PO并延长交MN于H,则PH⊥MN,所以OH=10.过O作OE⊥BC于E,则OE∥MN,所以∠COE=θ,故OE=40cosθ,EC=40sinθ,则矩形ABCD的面积为2×40cosθ(40sinθ+10)=800(4sinθcosθ+cosθ),△CDP的面积为×2×40cosθ(40–40sinθ)=1600(cosθ–sinθcosθ).过N作GN⊥MN,分别交圆弧和OE的延长线于G 和K,则GK=KN=10.令∠GOK =θ0,则sinθ0=,θ0∈(0,).当θ∈[θ0,)时,才能作出满足条件的矩形ABCD,所以sinθ的取值范围是[,1).答:矩形ABCD的面积为800(4sinθcosθ+cosθ)平方米,△CDP的面积为1600(cosθ–sinθcosθ),sinθ的取值范围是[,1).(2)因为甲、乙两种蔬菜的单位面积年产值之比为4∶3,设甲的单位面积的年产值为4k,乙的单位面积的年产值为3k(k>0),则年总产值为4k×800(4sinθcosθ+cosθ)+3k×1600(cosθ–sinθcosθ)=8000k(sinθcosθ+cosθ),θ∈[θ0,).设f(θ)= sinθcos θ+cosθ,θ∈[θ0,),则.令,得θ=,当θ∈(θ0,)时,,所以f(θ)为增函数;当θ∈(,)时,,所以f(θ)为减函数,因此,当θ=时,f(θ)取到最大值.答:当θ=时,能使甲、乙两种蔬菜的年总产值最大.点睛:解决实际应用题的步骤一般有两步:一是将实际问题转化为数学问题;二是利用数学内部的知识解决问题.18.【答案】(1)椭圆C的方程为;圆O的方程为(2)①点P 的坐标为;②直线l的方程为【解析】分析:(1)根据条件易得圆的半径,即得圆的标准方程,再根据点在椭圆上,解方程组可得a ,b ,即得椭圆方程;(2)第一问先根据直线与圆相切得一方程,再根据直线与椭圆相切得另一方程,解方程组可得切点坐标.第二问先根据三角形面积得三角形底边边长,再结合①中方程组,利用求根公式以及两点间距离公式,列方程,解得切点坐标,即得直线方程.详解:解:(1)因为椭圆C的焦点为,可设椭圆C 的方程为.又点在椭圆C上,所以,解得因此,椭圆C 的方程为.因为圆O的直径为,所以其方程为.(2)①设直线l与圆O 相切于,则,所以直线l的方程为,即.由,消去y,得.(*)因为直线l与椭圆C有且只有一个公共点,所以.因为,所以.因此,点P的坐标为.②因为三角形OAB的面积为,所以,从而.设,由(*)得,所以.因为,所以,即,解得舍去),则,因此P的坐标为.综上,直线l的方程为.点睛:直线与椭圆的交点问题的处理一般有两种处理方法:一是设出点的坐标,运用“设而不求”思想求解;二是设出直线方程,与椭圆方程联立,利用韦达定理求出交点坐标,适用于已知直线与椭圆的一个交点的情况.19.【答案】(1)证明见解析(2)a的值为(3)对任意a>0,存在b>0,使函数f(x)与g(x)在区间(0,+∞)内存在“S点”.【解析】分析:(1)根据题中“S点”的定义列两个方程,根据方程组无解证得结论;(2)同(1)根据“S点”的定义列两个方程,解方程组可得a的值;(3)通过构造函数以及结合“S点”的定义列两个方程,再判断方程组是否有解即可证得结论.详解:解:(1)函数f(x)=x,g(x)=x2+2x-2,则f′(x)=1,g′(x)=2x+2.由f(x)=g(x)且f′(x)= g′(x ),得,此方程组无解,因此,f(x)与g(x)不存在“S”点.(2)函数,,则.设x0为f(x)与g(x)的“S”点,由f(x 0)与g(x0)且f ′(x 0)与g′(x0),得,即,(*)得,即,则.当时,满足方程组(*),即为f (x)与g(x)的“S”点.因此,a 的值为.(3)对任意a>0,设.因为,且h(x)的图象是不间断的,所以存在∈(0,1),使得,令,则b>0.函数,则.由f(x)与g (x)且f′(x)与g′(x),得,即(**)此时,满足方程组(**),即是函数f(x)与g(x)在区间(0,1)内的一个“S点”.因此,对任意a>0,存在b>0,使函数f(x)与g(x)在区间(0,+∞)内存在“S点”.点睛:涉及函数的零点问题、方程解的个数问题、函数图象交点个数问题,一般先通过导数研究函数的单调性、最大值、最小值、变化趋势等,再借助函数的大致图象判断零点、方程根、交点的情况,归根到底还是研究函数的性质,如单调性、极值,然后通过数形结合的思想找到解题的思路.20.【答案】(1)d的取值范围为.(2)d的取值范围为,证明见解析。

2010年高考数学全国卷(II)理(word版含答案)

2010年高考数学全国卷(II)理(word版含答案)

3 14.若 ( x ) 的展开式中 x 的系数是 84 ,则 a= __________.
9
a x
15.已知抛物线 C : y 2 2 px( p 0) 的准线为 l ,过 M(1,0)且斜率为 3 的直线与 l 相 交于点 A,与 C 的一个交点为 B,若 AM MB ,则 p _______. 16.已知球 O 的半径为 4,圆 M 与圆 N 为该球的两个小圆,AB 为圆 M 与圆 N 的公共弦,
1 2 a b 3 3
B.
2 1 a b 3 3
C.
3 4 a b 5 5
D.
4 3 a b 5 5
9.已知正四棱锥 S ABCD 中, SA 2 3 ,那么当该棱锥的体积最大时,它的高为 A. 1 10.若曲线 y x A. 64
1 2
B. 3
1
C. 2
D. 3
(a,a 2) 在点 处的切线与两个坐标轴围成的三角形的面积为 18,则 a=
B. 32 C.16 D .8
AB 、CC 1 、 A1D1 所在直线的距离相等的点 11.与正方体 ABCD A 1B 1C1D 1 的三条棱
A.有且只有 1 个 12.已知椭圆 C : B.有且只有 2 个 C.有且只有 3 个 D.有无数个
x2 y 2 3 2 1(a b 0) 的离心率为 ,过右焦点 F 且斜率为 k (k 0) 的 2 a b 2
其中 R 表示球的半径
一、选择题 1.复数 (
3i 2 ) 1 i
B. 3 4i C. 3 4i D. 3 4i
A. 3 4i 2. 函数 y A. y e C. y e
1 ln( x 1) ( x 1) 的反函数是 2

2018年高考全国1卷理科数学试题与答案解析

2018年高考全国1卷理科数学试题与答案解析

WORD格式整理绝密★启用前2017年普通高等学校招生全国统一考试理科数学本试卷5页,23小题,满分150分。

考试用时120分钟。

注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。

用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。

将条形码横贴在答题卡右上角“条形码粘贴处”。

2.作答选择题时,选出每小题答案后,用2B铅笔在答题卡上对应题目选项的答案信息点涂黑;如需要改动,用橡皮擦干净后,再选涂其他答案。

答案不能答在试卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

4.考生必须保证答题卡的整洁。

考试结束后,将试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

x1.已知集合A={x|x<1},B={x|3 1},则A.A B{x|x0}B.A B RC.A B{x|x1}D.A B2.如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是1πA.B.48C.12D.π43.设有下面四个命题p:若复数z满足11zR,则z R;p:若复数z满足22z R,则z R;p:若复数z1,z2满足z1z2R,则z1z2;3专业技术参考资料WORD 格式整理p :若复数z R,则z R.4其中的真命题为A.p1, p3 B.p1, p4 C.p2 , p3 D.p2, p44.记S为等差数列{ a n} 的前n项和.若a4 a5 24 ,S6 48 ,则{ a n} 的公差为nA.1 B.2 C.4 D. 85.函数 f (x) 在( , ) 单调递减,且为奇函数.若 f (1) 1,则满足 1 f (x2) 1的x 的取值范围是A.[ 2,2] B.[ 1,1] C.[0,4] D.[1,3]6.16(1 )(1 x)2x展开式中 2x 的系数为A.15 B.20 C.30 D.357.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形. 该多面体的各个面中有若干个是梯形,这些梯形的面积之和为A.10 B.12 C.14 D.168.右面程序框图是为了求出满足 3n- 2n>1000 的最小偶数n,那么在和两个空白框中,可以分别填入A.A>1 000 和n=n+1B.A>1 000 和n=n+2C.A 1 000 和n=n+1D.A 1 000 和n=n+29.已知曲线C1:y=cos x,C2:y=sin (2 x+ 2π) ,则下面结论正确的是3专业技术参考资料WORD 格式整理A.把C1 上各点的横坐标伸长到原来的 2 倍,纵坐标不变,再把得到的曲线向右平移π个单位长度,得6到曲线C2B.把C1 上各点的横坐标伸长到原来的 2 倍,纵坐标不变,再把得到的曲线向左平移π个单位长度,得12到曲线C2C.把C1 上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π个单位长度,得6到曲线C2D.把C1 上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π个单位长度,得12到曲线C210.已知 F 为抛物线C:y2=4x 的焦点,过F作两条互相垂直的直线l2=4x 的焦点,过F作两条互相垂直的直线l 1,l 2,直线l 1 与C交于A、B两点,直线l 2 与C交于D、E两点,则|AB|+| DE| 的最小值为A.16 B.14 C.12 D.10x y z11.设x yz 为正数,且 2 3 5 ,则A.2x<3y<5z B.5z<2x<3y C.3y<5z<2x D.3y<2x<5z12.几位大学生响应国家的创业号召,开发了一款应用软件. 为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,⋯,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N:N>100 且该数列的前N项和为 2 的整数幂.那么该款软件的激活码是A.440 B.330 C.220 D.110二、填空题:本题共 4 小题,每小题 5 分,共20 分。

2019年高考理科数学全国2卷(附答案)(可编辑修改word版)

2019年高考理科数学全国2卷(附答案)(可编辑修改word版)

C.2
D. 5
12.设函数 f (x) 的定义域为 R,满足 f (x 1) 2 f (x) ,且当
x (0,1] 时, f (x) x(x 1) .若对任意 x (, m] ,都有
f (x) 8 9 ,则 m 的取值范围是
A.
,
9 4
B.
,
7 3
-4-
Hale Waihona Puke 12B-SX-0000020
M2 R A. M1
M2 R B. 2M1
3 3M 2 R C. M1
3 M2 R D. 3M1
5.演讲比赛共有 9 位评委分别给出某选手的原始评分,评定该选手的成绩时,
从 9 个原始评分中去掉 1 个最高分、1 个最低分,得到 7 个有效评分.7 个有效
评分与 9 个原始评分相比,不变的数字特征是
延长线上.设地球质量为 M1,月球质量为 M2,地月距离为 R, L2 点到月球
的距离为 r,根据牛顿运动定律和万有引力定律,r 满足方程:
M1 M2 (R r) M1
(R r)2 r2
R3 .

r R
,由于
3 3 3 4 5 的值很小,因此在近似计算中 (1 )2
3 3
,则
r 的近似值为
三、解答题:共 70 分。解答应写出文字说明、解答过程或演算步骤。第 17~21 题为必考题,每个试题考生都必须作答。第 22、23 题为选考题,考生根据要求作 答。
(一)必考题:共 60 分。
14.已知 f (x) 是奇函数,且当 x 0 时, f (x) eax .若 f (ln 2) 8 ,则
C.
,
5 2
D.
,
8 3

2020年高考全国卷二理科数学试题(word版+详细解析版)

2020年高考全国卷二理科数学试题(word版+详细解析版)

2020年高考全国卷二理科数学一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合U ={−2,−1,0,1,2,3},A ={−1,0,1},B ={1,2},则()U A B =A .{−2,3}B .{−2,2,3}C .{−2,−1,0,3}D .{−2,−1,0,2,3} 答案:A解析:{1,0,1,2}A B =-,所以(){23},U A B =-,故选A2.若α为第四象限角,则A .cos 2α>0B .cos 2α<0C .sin 2α>0D .sin 2α<0答案:D解析:α为第四象限角,所以32222πk παk ππ+<<+(k ∈Z ),所以43244k ππαk ππ+<<+,所以sin 20α<,故选D3.在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压.为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05,志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者A .10名B .18名C .24名D .32名答案:B解析:预计需要志愿者完成超过500+1600-1200=900份的概率为0.05,则需要志愿者完成不超过900份的概率为0.95,9005018÷=,故至少需要18名志愿者,故选B4.北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层,上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块,下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块,已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)A .3699块B .3474块C .3402块D .3339块答案:C解析:设共有3n 环,则从上到下每一环的石板数构成一个首项为9,公差d 为9的等差数列{}n a ,设下层石板数之和为S 下,中层石板数之和为S 中,则2131()2n n S a a n +=+下,121()2n n S a a n +=+中,所以221(121)92S S n n d n d n -=+-==下中,所以29729n =,故9n =,故共有石板数为12726272792713934022a d ⨯+=⨯+⨯⨯=.故选C 5.若过点(2,1)的圆与两坐标轴都相切,则圆心到直线230x y --=的距离为A .55B .255C .355D .455答案:B解析:设圆的半径为r ,圆心的坐标为(,)a b ,则||a r =,||b r =,222(2)(1)a b r -+-=,所以24250a a b --+=,若b a =-,则2250a a -+=,此一元二次方程无解,故只能b a =,这时有2650a a -+=,解得a=1或a=5,故圆心到直线230x y --=的距离为25555===,故选B. 6.数列{}n a 中,12a =,m n m n a a a +=,若155121022k k k a a a ++++++=-,则k =A .2B .3C .4D .5答案:C解析:在m n m n a a a +=中,令1m =,可得112n n n a a a a +==,所以数列{}n a 是首项为2,公比为2的等比数列,所以2n n a =,()101011051210121(21)2(21)2k k k k k a a a a ++++++++=-=-=-,所以4k =,故选C.7.右图是一个多面体的三视图,这个多面体某条棱的一个端点在正视图中对应的点为M ,在俯视图中对应的点为N ,则该端点在侧视图中对应的点为A .EB .FC .GD .H答案:A解析:根据三视图可得到多面体的直观图如下图所示,从图中可见,点A 对应于侧视图中的E ,故选AA8.设O 为坐标原点,直线x a =与双曲线2222:1(0,0)x y C a b a b-=>>的两条渐近线分别交于,D E 两点,若ODE △的面积为8,则C 的焦距的最小值为A .4B .8C .16D .32答案:B。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绝密★启用前
2018年普通高等学校招生全国统一考试
理科数学

注意事项:
1. 答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2. 作答时,将答案写在答题卡上。写在本试卷及草稿纸上无效。
3. 考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,
只有一项是符合题目要求的。
1.1212ii()

A.4355i B.4355i C.3455i D.3455i
2.已知集合223AxyxyxyZZ,≤,,,则A中元素的个数为()
A.9 B.8 C.5 D.4
3.函数2xxeefxx的图象大致为()
4.已知向量a,b满足||1a,1ab,则(2)aab
A.4 B.3 C.2 D.0
5.双曲线22221(0,0)xyabab的离心率为3,则其渐近线方程为

A.2yx B.3yx C.22yx D.32yx
6.在ABC△中,5cos25C,1BC,5AC,则AB
A.42 B.30 C.29
7.为计算11111123499100S,设计了右侧的程
序框

图,则在空白框中应填入
A.1ii

开始
0,0NT

SNT
S输出

1i
100i
1
NNi

1
1TTi

结束

是否
B.2ii
C.3ii
D.4ii

8.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜
想是“每个大于2的偶数可以表示为两个素数的和”,如30723.在不超过30的
素数中,随机选取两个不同的数,其和等于30的概率是
A.112 B.114 C.115 D.118
9.在长方体1111ABCDABCD中,1ABBC,13AA,则异面直线1AD与1DB所成角的余
弦值为
A.15 B.56 C.55 D.22
10.若()cossinfxxx在[,]aa是减函数,则a的最大值是
A.π4 B.π2 C.3π4 D.π
11.已知()fx是定义域为(,)的奇函数,满足(1)(1)fxfx.若(1)2f,
则(1)(2)(3)(50)ffff
A.50 B.0 C.2 D.50
12.已知1F,2F是椭圆22221(0)xyCabab:的左,右焦点,A是C的左顶点,点P在过
A

且斜率
为36的直线上,12PFF△为等腰三角形,12120FFP,则C的离心率为
A.23 B.12 C.13 D.14
二、填空题:本题共4小题,每小题5分,共20分。
13.曲线2ln(1)yx在点(0,0)处的切线方程为__________.
14.若,xy满足约束条件250,230,50,xyxyx≥≥≤则zxy的最大值为__________.
15.已知sincos1αβ,cossin0αβ,则sin()αβ__________.
16.已知圆锥的顶点为S,母线SA,SB所成角的余弦值为78,SA与圆锥底面所成角为
45°,若SAB△的面积为515,则该圆锥的侧面积为__________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。第17~21题
为必考题,每个试题考生都必须作答。第22、23为选考题。考生根据要求作答。
(一)必考题:共60分。
17.(12分)
记nS为等差数列{}na的前n项和,已知17a,315S.
(1)求{}na的通项公式;
(2)求nS,并求nS的最小值.

18.(12分)
下图是某地区2000年至2016年环境基础设施投资额y(单位:亿元)的折线图.
为了预测该地区2018年的环境基础设施投资额,建立了y与时间变量t的两个线
性回归模型.根据2000年至2016年的数据(时间变量t的值依次为1,2,,17)建立模
型①:ˆ30.413.5yt;根据2010年至2016年的数据(时间变量t的值依次为1,2,,7)
建立模型②:ˆ9917.5yt.
(1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值;
(2)你认为用哪个模型得到的预测值更可靠并说明理由.
19.(12分)
设抛物线24Cyx:的焦点为F,过F且斜率为(0)kk的直线l与C交于A,B两点,
||8AB

(1)求l的方程;
(2)求过点A,B且与C的准线相切的圆的方程.
20.(12分)

P

A
O
C

B
M
如图,在三棱锥PABC中,22ABBC,
4PAPBPCAC,O为AC
的中点.
(1)证明:PO平面ABC;
(2)若点M在棱BC上,且二面角MPAC为30,求PC与平面PAM所成角的正弦
值.
21.(12分)
已知函数2()exfxax.
(1)若1a,证明:当0x≥时,()1fx≥;
(2)若()fx在(0,)只有一个零点,求a.
(二)选考题:共10分。请考生在第22、23题中任选一题作答。如果多做,则按
所做的第一题计分。
22.[选修4-4:坐标系与参数方程](10分)
在直角坐标系xOy中,曲线C的参数方程为2cos,4sin,xθyθ(θ为参数),直线l的参数方

程为1cos,2sin,xtαytα(t为参数).
(1)求C和l的直角坐标方程;
(2)若曲线C截直线l所得线段的中点坐标为(1,2),求l的斜率.
23.[选修4-5:不等式选讲](10分)
设函数()5|||2|fxxax.
(1)当1a时,求不等式()0fx≥的解集;
(2)若()1fx≤,求a的取值范围.

相关文档
最新文档