聚酰亚胺

合集下载

聚酰亚胺

聚酰亚胺

聚酰亚胺( PI)聚酰亚胺是综合性能最佳的有机高分子材料之一,耐高温达 400℃以上,长期使用温度范围-200~300℃,无明显熔点,高绝缘性能,103 赫下介电常数4.0,介电损耗仅0.004~0.007,属F至H 级绝缘材料。

聚酰亚胺是指主链上含有酰亚胺环(-CO-NH-CO-)的一类聚合物,其中以含有酞酰亚胺结构的聚合物最为重要。

性能:1.外观淡黄色粉末2.弯曲强度(20℃) ≥170MPa3.密度 1.38~1.43g/cm34.冲击强度(无缺口) ≥28kJ/m25.拉伸强度≥100 MPa6.维卡软化点 >270℃7.吸水性(25℃,24h)8.伸长率 >120%钛酸钡分子式:BaTiO3 分子量:233.1922性状白色粉末熔点1625℃相对密度 6.017溶解性:溶于浓硫酸、盐酸及氢氟酸,不溶于热的稀硝酸、水和碱。

熔点:1625℃钛酸钡是一致性熔融化合物,其熔点为1618℃。

在此温度以下,1460℃以上结晶出来的钛酸钡属于非铁电的六方晶系6/mmm点群。

此时,六方晶系是稳定的。

在1460~130℃之间钛酸钡转变为立方钙钛矿型结构。

在此结构中Ti4+(钛离子)居于O2-(氧离子)构成的氧八面体中央,Ba2+(钡离子)则处于八个氧八面体围成的空隙中(见右图)。

此时的钛酸钡晶体结构对称性极高,因此无偶极矩产生,晶体无铁电性,也无压电性。

随着温度下降,晶体的对称性下降。

当温度下降到130℃时,钛酸钡发生顺电-铁电相变。

在130~5℃的温区内,钛酸钡为四方晶系4mm点群,具有显著地铁电性,其自发极化强度沿c轴方向,即[001]方向。

钛酸钡从立方晶系转变为四方晶系时,结构变化较小。

从晶胞来看,只是晶胞沿原立方晶系的一轴(c轴)拉长,而沿另两轴缩短。

当温度下降到5℃以下,在5~-90℃温区内,钛酸钡晶体转变成正交晶系mm2点群,此时晶体仍具有铁电性,其自发极化强度沿原立方晶胞的面对角线[011]方向。

聚酰亚胺

聚酰亚胺

简述
聚酰亚胺是指主链上含有酰亚胺环(-CO-NH-CO-) 的一类聚合物,其中以含有酞酰亚胺结构的聚合物 最为重要。聚酰亚胺作为一种特种工程材料,已广 泛应用在航空、航天、微电子、纳米、液晶、分离 膜、激光等领域。上世纪60年代,各国都在将聚酰 亚胺的研究、开发及利用列入 21世纪最有希望的工 程塑料之一。聚酰亚胺,因其在性能和合成方面的 突出特点,不论是作为结构材料或是作为功能性材 料,其巨大的应用前景已经得到充分的认识,被称 为是"解决问题的能手"(protion solver),并认为" 没有聚酰亚胺就不会有今天的微电子技术"。
聚酰亚胺用途
• 由于上述聚酰亚胺在性能和合成化学上的特点,在众多的聚合物中, 聚酰亚 胺 • 很难找到如聚酰亚胺这样具有如此广泛的应用方面,而且在每一个方面都显 示了极为突出的性能。 • 1、薄膜:是聚酰亚胺最早的商品之一,用于电机的槽绝缘及电缆绕包材料。 主要产品有杜邦Kapton,宇部兴产的Upile,系列和钟渊Apical。透明的聚酰亚 胺薄膜可作为柔软的太阳能电池底板。 • 2. 涂料:作为绝缘漆用于电磁线,或作为耐高温涂料使用。 • 3.先进复合材料:用于航天、航空器及火箭部件。是最耐高温的结构材料之 一。例如美国的超音速客机计划所设计的速度为2.4M,飞行时表面温度为 177℃,要求使用寿命为60000h,据报道已确定50%的结构材料为以热塑型 聚酰亚胺为基体树脂的碳纤维增强复合材料,每架飞机的用量约为30t。 • 4.纤维:弹性模量仅次于碳纤维,作为高温介质及放射性物质的过滤材料和防 弹、防火织物。 • 5.泡沫塑料:用作耐高温隔热材料。 • 6. 工程塑料:有热固性也有热塑型,热塑型可以模压成型也可以用注射成型 或传递模塑。主要用于自润滑、密封、绝缘及结构材料。广成聚酰亚胺材料 已开始应用在压缩机旋片、活塞环及特种泵密封等机械部件上。

聚酰亚胺是什么材料

聚酰亚胺是什么材料

聚酰亚胺是什么材料
聚酰亚胺是一种高性能工程塑料,具有优异的物理和化学性能,被广泛应用于
航空航天、汽车、电子、化工等领域。

聚酰亚胺具有高温稳定性、耐腐蚀性、机械强度高等特点,因此备受工程师和设计师的青睐。

首先,聚酰亚胺的化学结构决定了其优异的性能。

聚酰亚胺分子中含有酰亚胺
基团,这种特殊的结构使得聚酰亚胺具有优异的热稳定性和耐化学腐蚀性。

在高温下,聚酰亚胺仍然能够保持其原有的性能,不会发生软化或变形,因此被广泛应用于高温环境下的零部件制造。

此外,聚酰亚胺还具有优异的电性能,因此在电子领域也有着重要的应用价值。

其次,聚酰亚胺的机械性能也非常优异。

聚酰亚胺具有高强度和刚性,同时又
具有较高的韧性和抗疲劳性,因此在航空航天和汽车领域被广泛应用于制造结构件和功能件。

与此同时,聚酰亚胺还具有较低的摩擦系数和良好的自润滑性能,使得其在摩擦磨损领域也有着重要的应用。

此外,聚酰亚胺还具有良好的耐化学腐蚀性和耐老化性。

在化工领域,聚酰亚
胺被广泛应用于制造耐腐蚀设备和管道,能够有效地抵抗酸碱等腐蚀介质的侵蚀,保证设备的长期稳定运行。

同时,聚酰亚胺还具有良好的耐紫外线性能和耐气候老化性能,能够在恶劣的户外环境下长期使用。

总的来说,聚酰亚胺作为一种高性能工程塑料,具有优异的物理和化学性能,
被广泛应用于航空航天、汽车、电子、化工等领域。

其优异的热稳定性、机械性能、耐化学腐蚀性和耐老化性能,使得其在各个领域都有着重要的应用价值。

随着科技的不断进步,相信聚酰亚胺在更多领域将会有着更广泛的应用。

聚酰亚胺树脂复合材料

聚酰亚胺树脂复合材料

PMR-Ⅱ聚酰亚胺旳合成与PMR-15 聚酰亚胺类 似,但因为二胺在醇溶剂中旳溶解度问题,PMRⅡ聚酰亚胺旳贮藏时间也比较短。同步使用了价 格昂贵旳含氟单体,所以,其价格也远远高于 PMR-15聚酰亚胺。
其他PMR型树脂
其 他 品 种 旳 PMR 型 聚 酰 亚 胺 树 脂 涉 及 : LaRCTM系列、V-CAP以及AFR-700等。
112
20
20
59
52
108
55
105
52
98
51
87
46
75.3
33.0
100
46
91
57
110
53
从上表中可看出,采用了刚性 分子链旳树脂玻璃化转变温度都较 高,但高温力学性能却普遍降低。 所以PMR-15型聚酰亚胺树脂作为综 合性能最佳旳基体树脂在实际应用 中依然占据着主要地位。
PMR型聚酰亚胺复合材料层合板力学性能
聚酰亚胺树脂 PMR型聚酰亚胺树脂及其复合材料 聚酰亚胺树脂复合材料旳应用
聚酰亚胺(PI/Polyimide)
聚酰亚胺是主链中具有酰亚胺基团旳 杂环聚合物旳总称,涉及体型旳热固性聚 酰亚胺和线型旳热塑性聚酰亚胺。它起 始发展于20世纪40、50年代初,经过近 50年旳发展,聚酰亚胺已经成为高分子 材料领域中一种相当活跃旳研究方向。 它旳性能优良,应用范围广,尤其是在 先进复合材料领域。但是,它旳合成和 制造成本较高。所以,在单体合成和聚 合措施上寻找降低成本旳途径成为今后 聚酰亚胺研究旳主要方向。
PMR措施最大旳优越性是为一大类热 氧化稳定性能好而工艺性差旳耐热聚合 物提供了制造低孔隙率、高质量复合材 料旳可能性。
第一代PMR聚酰亚胺/PMR-15

聚酰亚胺

聚酰亚胺
Text
A Group
B Group
Product_50%
Product_76%
Text
Text
Product_38% Product_24%
C Group
Text
D Group
LOGO
Diagram
Text
Text
Text
Add Your Text
Add Your Text
Add Your Text
37%
16%
Description of the contents
Text in here
Description of the contents
Text in here
Description of the contents
3-D Pie Chart
Add your text
Your Slogan here
LOGO
Diagram
01.Title • Add your text in here • Add your text in here • Add your text in here
ThemeGallery is a Design Digital Content & Contents mall developed by Guild Design Inc.
65.3
80 70 60 50 40 30 20 10 0 1st Qtr 25.4 50 66
75
Chart Title in here
LOGO
Diagram
Products
Description of the company’s products
Market

聚酰亚胺制备实验报告

聚酰亚胺制备实验报告

一、实验目的1. 了解聚酰亚胺的制备过程及其原理。

2. 掌握聚酰亚胺的合成方法及工艺。

3. 熟悉聚酰亚胺的性能及其应用。

二、实验原理聚酰亚胺(Polyimide,PI)是一种高性能的热塑性聚合物,具有优异的耐热性、耐化学性、力学性能和电绝缘性能。

其制备方法主要有二酐与二胺的缩聚反应和聚酰胺酸的酰亚胺化反应。

三、实验材料与仪器1. 实验材料:- 二酐:均苯四甲酸酐(PMDA)- 二胺:对苯二胺(ODA)- 碱性催化剂:氢氧化钠(NaOH)- 水浴锅- 烘箱- 抽滤装置- 蒸馏装置- 电子天平- 移液器- 烧杯- 玻璃棒- 胶头滴管2. 实验步骤:(1)称取一定量的PMDA和ODA,按照摩尔比1:1混合,放入烧杯中。

(2)加入适量的NaOH溶液,搅拌均匀,形成透明溶液。

(3)将烧杯放入水浴锅中,加热至70℃,保持恒温反应2小时。

(4)将反应液抽滤,去除未反应的二酐和二胺。

(5)将抽滤后的溶液进行蒸馏,去除水分,得到聚酰胺酸(PAA)。

(6)将PAA溶液加热至150℃,进行酰亚胺化反应,保持恒温反应2小时。

(7)将反应液抽滤,去除未反应的PAA。

(8)将抽滤后的溶液进行干燥,得到聚酰亚胺粉末。

四、实验结果与分析1. 实验结果:制备得到的聚酰亚胺粉末呈白色,具有一定的流动性。

2. 性能分析:(1)红外光谱分析:通过红外光谱检测,发现聚酰亚胺的特征吸收峰,证明成功制备了聚酰亚胺。

(2)热重分析:聚酰亚胺的热分解温度约为500℃,说明其具有优异的耐热性能。

(3)力学性能:聚酰亚胺的拉伸强度为60MPa,断裂伸长率为25%,表现出良好的力学性能。

五、实验总结本实验成功制备了聚酰亚胺,并对其性能进行了分析。

实验结果表明,聚酰亚胺具有优异的耐热性、力学性能和电绝缘性能,在航空航天、电子电气等领域具有广泛的应用前景。

在实验过程中,应注意以下几点:1. 控制反应温度和时间,以保证反应的顺利进行。

2. 严格控制实验条件,避免杂质对聚酰亚胺性能的影响。

聚酰亚胺 PI MSDS

聚酰亚胺 PI MSDS

聚酰亚胺 PI MSDS聚酰亚胺 (PI) MSDS1. 概述聚酰亚胺(Polyimide,简称PI)是一种高分子聚合物,具有优异的耐热性、耐化学性、机械性能和电绝缘性能。

本材料安全数据表(MSDS)提供了关于聚酰亚胺的安全信息和处理指南。

2. 成分/化学名聚酰亚胺(PI)的化学组成可能因生产工艺和具体品种而异。

一般而言,聚酰亚胺由二元酸和二元胺或其衍生物通过缩聚反应制得。

3. 物理/化学性质聚酰亚胺具有以下物理/化学性质:- 高热稳定性:聚酰亚胺能够在高温环境下保持稳定,其玻璃化转变温度(Tg)通常在200°C以上。

- 良好的化学稳定性:聚酰亚胺对大多数溶剂和化学品具有很好的抵抗力。

- 优秀的机械性能:聚酰亚胺具有较高的强度和模量,同时具有优异的柔韧性和耐磨性。

- 良好的电绝缘性能:聚酰亚胺具有极低的介电常数和介电损耗,适用于电子电气领域。

4. 健康风险聚酰亚胺本身通常不被认为是危险物质。

然而,在加工过程中,可能会产生有害物质,如单体、溶剂和副产物。

操作人员应采取适当的安全措施,以防止吸入、接触或摄入这些物质。

5. 安全措施在使用聚酰亚胺时,应遵循以下安全措施:- 避免吸入:操作时佩戴防尘口罩或空气呼吸器。

- 防止接触皮肤和眼睛:佩戴防护眼镜和手套。

- 避免摄入:工作期间勿进食、喝水或吸烟。

- 确保良好的通风:在封闭空间内操作时,确保空气流通。

6. 处理和存储聚酰亚胺粉末或颗粒应在干燥、通风的环境中储存,避免潮湿和高温。

在加工过程中,应确保充分通风,以防止吸入有害物质。

7. 应急处理如接触聚酰亚胺或其加工过程中产生的有害物质,请立即用大量清水冲洗受影响区域,并寻求医疗建议。

8. 法规遵从性本MSDS符合中华人民共和国相关法律法规要求。

9. 制造商信息制造商名称:[制造商名称]地址:[制造商地址]联系电话:[制造商联系电话]---以上为关于聚酰亚胺(PI)的MSDS文档,供您参考。

如需进一步修改或补充,请告知。

聚亚酰胺

聚亚酰胺

聚亚酰胺聚酰亚胺聚酰亚胺是综合性能最佳的有机高分子材料之一,耐高温达400℃以上,长期使用温度范围-200~300℃,无明显熔点,高绝缘性能,103 赫下介电常数4.0,介电损耗仅0.004~0.007,属F至H级绝缘材料概述聚酰亚胺:英文名Polyimide (简称PI)聚酰亚胺作为一种特种工程材料,已广泛应用在航空、航天、微电子、纳米、液晶、分离膜、激光等领域。

近来,各国都在将聚酰亚胺的研究、开发及利用列入21世纪最有希望的工程塑料之一。

聚酰亚胺,因其在性能和合成方面的突出特点,不论是作为结构材料或是作为功能性材料,其巨大的应用前景已经得到充分的认识,被称为是"解决问题的能手"(protion solver),并认为"没有聚酰亚胺就不会有今天的微电子技术"。

分类聚酰亚胺可分成缩聚型和加聚型两种。

(1)缩聚型聚酰亚胺缩聚型芳香族聚酰亚胺是由芳香族二元胺和芳香族二酐、芳香族四羧酸或芳香族四羧酸二烷酯反应而制得的。

由于缩聚型聚酰亚胺的合成反应是在诸如二甲基甲酰胺、N-甲基吡咯烷酮等高沸点质子惰性的溶剂中进行的,而聚酰亚胺复合材料通常是采用预浸料成型工艺,这些高沸点质子惰性的溶剂在预浸料制备过程中很难挥发干净,同时在聚酰胺酸环化(亚胺化)期间亦有挥发物放出,这就容易在复合材料制品中产生孔隙,难以得到高质量、没有孔隙的复合材料。

因此缩聚型聚酰亚胺已较少用作复合材料的基体树脂,主要用来制造聚酰亚胺薄膜和涂料。

(2)加聚型聚酰亚胺由于缩聚型聚酰亚胺具有如上所述的缺点,为克服这些缺点,相继开发出了加聚型聚酰亚胺。

目前获得广泛应用的主要有聚双马来酰亚胺和降冰片烯基封端聚酰亚胺。

通常这些树脂都是端部带有不饱和基团的低相对分子质量聚酰亚胺,应用时再通过不饱和端基进行聚合。

①聚双马来酰亚胺聚双马来酰亚胺是由顺丁烯二酸酐和芳香族二胺缩聚而成的。

它与聚酰亚胺相比,性能不差上下,但合成工艺简单,后加工容易,成本低,可以方便地制成各种复合材料制品。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(2)醚酐型聚酰亚胺
醚酐型聚酰亚胺由二苯醚四羧酸二酐(OPDA)与有机芳香二胺反应得到。由 醚酐和二胺基二苯醚制备的聚酰亚胺在270℃软化, 在300-400℃范围内成为粘 流态,可以热模压成型。在390℃于模中保持1h,并不失去其工艺性,可以模塑 多次。薄膜材料在250℃空气中保持500h,其拉伸强度和伸长率的损失都不大 10%。在210℃的空气中恒温热处理300h 的重量损失低于0.05%; 在沸水中24h 煮沸后,吸水率仅为0. 5%~0. 8%。这类聚合物具有优异的介电性能,室温下 的介电常数为3. 1- 3. 5, 损耗因数为l×10- 3- 3×10- 3。体积电阻率为 1014-l015 欧姆·米;表面电阻为1015- 1016 欧姆,200℃的体积电阻率为 2×1012 欧姆·米,电气强度100- 200MV/ m。
双马来酰亚胺(BMI)
5-降冰片烯-2,3-二甲酰亚胺
加聚型聚酰亚胺 双马来聚酰亚胺 BMI为例
由顺丁烯二酐与二元胺反应
O O CH 2 CH C O O HC HC C N C O R N C O CH O C CH C O + H 2N R NH2 HC C HC NH R NHC HOOC CH CH 2H 2O COOH O
BTDA结构式
加聚型聚酰亚胺(一般均为热固性聚合物) 加聚型聚酰亚胺: 由于缩聚型聚酰亚胺具有如上所述的缺点, 为克服这些缺点,相继开发出了加聚型聚酰亚胺。目前获得 广泛应用的主要有聚双马来酰亚胺和降冰片烯基封端聚酰亚 胺。通常这些树脂都是端部带有不饱和基团的低相对分子质 量聚酰亚胺,应用时再通过不饱和端基进行聚合 。
聚酰亚胺的发展史
追溯聚酰亚胺的发展史可以看到它是一类大有发展前途的高分子。早在 1908年,Bogert和Renshaw 就以4-氨基邻苯二甲酸酐或4-氨基邻苯二甲酸 二甲酯进行分子内缩聚反应制得了芳香族聚酰亚胺,但那时聚合物的本质 还未被充分认识,所以没有受到重视,直到20世纪40年代中期才有了一些 关于聚酰亚胺的专利出现。 20 世纪50 年代末期制得高分子量的芳族聚酰 亚胺。1961 年杜邦公司采用芳香族二胺和芳香族二配的缩合反应,用二步 法工艺合成了聚均苯四甲酰亚胺薄膜(Kapton),并于1961年正式实现了PI 的工业化。1964 年开发生产聚均苯四甲酰 亚胺模塑料(Vespel)。1965 年公开报道该聚合物的薄膜和塑料。继而,它 的粘合剂、涂料、泡沫和纤维相继出现。1964 年,Amoco 公司开发聚酰 胺-亚胺电器绝缘用清漆(AI) ,1972 年, 该公司开发了模制材料(Torlon), 1976 年Torlon 实现商品化。1969 年法国罗纳- 普朗克公司首先开发成功 双马来酰亚胺预聚体(Kerimid601),该聚合物在固化时不产生副产物气体, 容易成形加工,制品无气孔。
聚酰亚胺的分类 按聚合类型分: 缩聚型聚酰亚胺:
均苯型聚酰亚胺 可熔性聚酰亚胺
加聚型:(交联型聚酰亚胺,封端基型聚酰亚胺)
一般加聚型聚酰亚胺均为热固型,其分子链含有活性端基和亚胺环的低聚物。 成型加工过程中发生连锁聚合反应生成体型结构的PI 双马来聚酰亚胺 PMR型聚酰亚胺 乙炔端基聚酰亚胺
缩聚型聚酰亚胺 : 缩聚型芳香族聚酰亚胺是由芳香族二元胺和芳香族二酐、 芳香族四羧酸或芳香族四羧酸二烷酯反应而制得的。由于 缩聚型聚酰亚胺的合成反应是在诸如二甲基甲酰胺、N-甲 基吡咯烷酮等高沸点非质子惰性的溶剂中进行的,而聚酰 亚胺复合材料通常是采用预浸料成型工艺,这些高沸点非 质子惰性的溶剂在预浸料制备过程中很难挥发干净,同时 在聚酰胺酸环化(亚胺化)期间亦有挥发物放出,这就容 易在复合材料制品中产生孔隙,难以得到高质量、没有孔 隙的复合材料。因此缩聚型聚酰亚胺已较少用作复合材料 的基体树脂,主要用来制造聚酰亚胺薄膜和涂料。
O C 2 C O O H 3C + O HO C C O O C C H 3O H C O O C C O NH OH CH2 NH HO NH OH CH2 NH HO O C O C C O O C C O O C C O O C OCH3 OH OCH3 OH + 2 H 2N CH2 NH2
聚酰亚胺
聚酰亚胺(PI) 是一族聚合物的总称 , 理论上 它们可 以由任何一种二酐和二胺 ,在一种适宜的溶剂里合成; 分子特征为主链上含有酰亚胺环的一类聚合物,其中以 含有酞酰亚胺结构的聚合物最为重要。
聚酰亚胺材料的特性:
聚酰亚胺材料具有独特的化学、物理、力学和电学性能,包括:优异的耐热性能,可 在300 ~ 400℃的高温下使用。优良的力学性能,薄膜的拉伸强度和弯曲强度超 过100MPa ,伸长率超过10 %;耐辐射性能优良,在100rad 的射线或快速中子的 作用下,电性能和力学性能的变化都很小;耐低温性能好,在液氮甚至液氦温度下材 料的主要性能都无明显的劣化;化学稳定性好,抗有机溶剂和潮气的侵蚀;优良的电 绝缘性;优良的介电性能,介电常数:2. 8 —3. 5 ;介质损耗因数:0.01—0.002;纯 度高,钠离子含量可低于2 一3ppm ,氯离子含量低于3ppm ;对常用无机材料、金 属和介电材料的粘接性优良;可形成薄膜,也可形成厚膜;成型工艺简单、易行。 采用阶梯升温法,一次成型。 聚酰亚胺薄膜如下的性能特点: ①优良的电性能; ②较好的耐湿性; ③耐高温性; ④较好的尺寸稳定性; ⑤优良的耐化学性;
聚酰亚胺的发展史
为了改善以均苯四甲酸二酐(二酐)为原料制成的不熔性PI的成型加工性能及降低 成本,从1965年开始,美国、日本和法国等国开发了一系列可熔性PI。如以二 苯醚四酸二酐为原料的醚酐型PI,以及在PI分子中引入酰胺键、酯键、醚键等 制得的聚酰胺酸亚胺、聚醚酰亚胺和聚醚酸亚胺等。它们的耐热性虽然略低于 均苯型PI,但却提高了溶解性,并可熔融成型,成本也有所下将。 随着人们认识世界和改造世界的能力的提高,聚酰亚胺已经越来越受到人们的 认知和重视,几十年来,开发了一系列工业化和商品化的聚酰亚胺产品。1972 年,美国GE 公司开始研究开发聚醚酰亚胺(PEI),经过十年的试制和试用,于 1982年建成1 万吨/年生产装置,并正式以商品名Ultem在市场上销售。1978 年, 日本宇部兴产公司介绍了聚联苯四甲酰亚胺U pilex R,后又介绍了Upilexs。该 聚合物制备的薄膜其性能与Kapton 存在相当大的差异,特别是线胀系数小,可 以说是划时代的进步,它的线胀系数为12 ~20ppm, 而铜的线胀系数为 17ppm,因此非常适宜做覆铜箔薄膜,广泛用于柔性印刷线路板。1994 年,日 本三井东压化学公司报道了全新的热塑性聚酰亚胺(Aurum)注射和挤出成型用粒 料。该树脂的薄膜商品名为Regulus。
缩聚型聚酰亚胺:
按所用有机芳香族四酸二酐单体结构的不同,聚酰亚胺又可 分为均苯酐型、醚酐型、酮酐型和氟酐型聚酰亚胺等。 常用的聚合原料有:
(1)均苯酐型聚酰亚胺:
均苯酐型聚酰亚胺是最早实现商业化的聚酰亚胺,它是由均苯四甲酸二酐( 均酐 PMDA)与有机芳香族二胺反应,然后经亚胺化处理生成的不溶不熔的聚酰亚胺。该 类聚酰亚胺具有优异的耐热性,属于H 级以上的绝缘材料。该材料在500℃以上才 开始分解。在400℃下恒温热处理15 小时后,其重量损失只有1. 5%; 450℃时为3%, 500℃时为7%。该聚合物材料对于有机溶剂和油类都是惰性的,不受稀酸的影响, 但能溶于发烟硝酸和浓硫酸。在强碱的作用下,会使亚胺环断裂发生降解反应。它 的抗高能辐射性、电绝缘性、介电性能以及耐磨性能都很优良。聚酰胺酸溶液的储 存稳定性差,在室温下存放过程中易发生降解,粘度降低。另外,聚酰胺酸对铜等 活泼金属具有腐蚀作用。
聚酰亚胺的分类
聚酰亚胺主要分为脂肪族聚酰亚胺和芳香族聚酰亚胺。因为脂肪族聚酰亚胺实 用性差,因此通常所说的聚酰亚胺一般指芳香族聚酰亚胺按热稳定性可分为: 1.热塑性聚酰亚胺: 热塑性聚酰亚胺的主链上含有亚胺环和芳香环具有阶梯型的结构。这类聚 合物具有优异的耐热性和抗热氧性能,在- 200- 260℃范围内具有优异的机械 性能、介电和绝缘性能以及耐辐射性能。 2.热固性聚酰亚胺: 为了克服热塑性聚酰亚胺材料不易加工成型的缺点,研制开发成功了加工性 能优良的热固性聚酰亚胺材料,它不但具有热塑性材料所具有的各种优异性能, 而且克服了热塑性材料不易加工成型的缺点,融优良的加工成型性能和高性能 于一体,作为轻质、耐高温的结构材料和优良的绝缘介电材料在航天航空、电 子电力等领域得到了广泛运用;这种聚酰亚胺树脂为不透明固体,是不溶,不 熔性高分子聚合物,相对密度为1.50,在500℃以下无明显熔点以及玻璃化转 变温度。 (通常使用的均为热固性聚酰亚胺材料)。 热塑性聚酰亚胺在结构上与热固性聚酰亚胺很相似,但可含有柔性链节取 代基,他们是通过酰胺酸路线制的。由于是热塑性的,通常能溶于某些溶剂中, 与热固性聚酰亚胺相比,热塑性聚酰亚胺有较低的Tg ,其原因是降低热固性聚 酰亚胺分子的刚性,增加柔性,同时尽量保持热固性聚酰亚胺优异的力学性能和 热氧化稳定性,耐溶剂性等。
O C O C O C O O O C O
H 2N
O
NH2
OPDA
产物可熔
ODA
(3)氟酐型聚酰亚胺
氟酐型聚酰亚胺由六氟酐(6FDA) 和有机芳香二胺反应而得。六氟酐中 含有全氟代异丙基团,而无脂肪族氢原子,因此具有较高的耐热性能和抗热氧 化稳定性。这类聚酰亚胺是无定型的,且不会交联,这有助于聚合物的可熔性 和分子链的柔顺性。典型的产品如杜邦的NR- 150 系列材料。室温下机械强度 及300℃以上空气中的长期老化后的机械强度都很好。室温下介电常数为2.9, 损耗因数约为1×10- 3- 2×10- 3,即使在温度高达18℃时,这些数据也没有 较大的变化。材料的耐水解性好,易于加工,可用于制备层压制件、涂料和粘 合剂等。氟配型聚酰亚胺材料具有优良的性能,但该材料的单体成本偏高,这 在一定程度上阻碍了材料的大规模应用。
BMI的热稳定性低于芳香族PI,交联产 物性脆,故PMI很少单独使用,一般是 与其他组分共聚或共混进行改性后才有 使用价值
相关文档
最新文档