中国稀土湿法冶金.doc

合集下载

第一章 稀土冶金学

第一章 稀土冶金学

钕还应用于有色金属材料
2)在镁或铝合金中添加1.5~2.5%钕,可提高 合金的高温性能、气密性和耐腐蚀性,广泛用作 航空航天材料. 3)另外,掺钕的钇铝石榴石产生短波激光束,在 工业上广泛用于厚度在10mm以下薄型材料的 焊接和切削.在医疗上,掺钕钇铝石榴石激光器 代替手术刀用于摘除手术或消毒创伤口.钕也用 于玻璃和陶瓷材料的着色以及橡胶制品的添加 剂.随着科学技术的发展,稀土科技领域的拓展 和延伸,钕元素将会有更广阔的利用空间.
稀土冶金学
Hale Waihona Puke 主要内容 第一章 第二章 第三章 第四章 第五章 第六章 第七章 第八章 第九章 第十章 绪论 稀土元素矿物及其精矿的处理方法 溶剂萃取法分离稀土元素 离子交换色层法分离稀土元素 分离稀土元素的其他方法 稀土化合物的制备 稀土金属和合金的制取 稀土金属的提纯 火法冶炼生产稀土硅铁基合金 稀土生产过程的三废及处理
4.稀土元素的由来及用途
镧(La)lanthanum “镧”这个元素是1839年被命名的,当时有个叫 “莫桑德”的瑞典人发现铈土中含有其它元素, 他借用希腊语中“隐藏”一词把这种元素取名 为“镧”.从此,镧便登上了历史舞台. 镧的应用非常广泛,如应用于压电材料、电热材 料、热电材料、磁阻材料、发光材料(兰粉)、 贮氢材料、光学玻璃、激光材料、各种合金材 料等.她也应用到制备许多有机化工产品的催化 剂中,光转换农用薄膜也用到镧,在国外,科学家 把镧对作物的作用赋与“超级钙”的美称.
电子内迁移
镧系元素的最外层电子已填充到6s2,次外层5s25p6 也已填满,5d还空着或仅有一个电子,而处于内层的 4f电子却刚刚开始填充,从铈到镥充满共有14个电 子. 即镧系元素的最外层电子结构可以示为: 5s25p65d(0、1)6s2与钪、钇的最外层两层电子结构 3 s2 3p63d14s2和4s2 4p64d15s2相比较,可知结 构基本相同都是ns2(n—1)s2 (n—1)p6(n—1)d(0、 1)5s2,故使得17个元素的化学性质十分相近,用普 通的化学方法很难分离.

稀土冶金7

稀土冶金7

• 焙烧设备 影响精矿分解率的主要因素: 影响精矿分解率的主要因素: 酸矿比1.1~1.3、精矿品位 酸矿比 、 REO50~60%、投料量、焙烧温度 、投料量、 400~500 ℃ 、物料在窑内停留时间 1~2小时及窑尾负压 小时及窑尾负压30~50Pa。稀土 小时及窑尾负压 。 精矿分解率98%。 精矿分解率 。 • 处理 2(SO4)3净液的工艺路线: 处理RE 净液的工艺路线: A、萃取转型生产混合稀土氯化物; 、萃取转型生产混合稀土氯化物;
4.1.3 稀土的用途 (1)传统应用 传统应用(90%) 传统应用 • 冶金 机械。 冶金/机械 机械。 • 石油化工。 石油化工。 • 玻璃 陶瓷。 玻璃/陶瓷 陶瓷。 • 农业。 农业。 (2)高技术应用(10%) )高技术应用( ) • 荧光材料 • 永磁材料。 永磁材料。 • 特种玻璃。 特种玻璃。
REOCl + 2NH4Cl = RECl3 +2NH3 +H2O (4)工艺条件:氯化铵 工艺条件: 工艺条件 氯化铵20%,脱水周期 小 ,脱水周期36小 时。 • 无水稀土氟化物制取 (1)用氢氟酸从稀土溶液中沉淀析出 ) REF3·nH2O(n=0.5, 1); ; 气流中, (2)脱水(在HF气流中,温度 )脱水( 气流中 温度600℃) ℃ 避免形成REOF。 避免形成 。 (3) 也可以用稀土氧化物在氟化氢或氢氟 ) 酸铵中进行氟化处理,得到无水氟化稀土。 酸铵中进行氟化处理,得到无水氟化稀土。
(2)萃取分组,轻稀土再采用萃取法分 )萃取分组, 离出Nd2O3,同时得到少钕混合轻稀土化 离出 同时得到少钕混合轻稀土化 合物, 合物,分组时还得到中稀土及重稀土两 种富集物。 种富集物。
4.2.2 萃取转型生产混合稀土氯化物

湿法冶金发展的方向和方法

湿法冶金发展的方向和方法

高压浸出设备及浸出关注对象
卧式高压釜的材质 要求能承 受一定的温度及压力, 并耐 磨及抗腐蚀。工业上有单体釜及串 级釜之分。 串级釜 一般分成数个室, 矿浆连续溢流通过每个室, 每室有单独 的搅拌器。目前, 应 用在冶金工业中的高 压釜其工作温 度能达到 230 左右, 工作压力达到 2 . 8 M Pa。 高压浸 出是强化浸 出的重要方法之 一。过去, 由于设备( 高压 釜) 制造复杂 及材质腐 蚀 问题 不易 解决, 其发展遇到 了一定困难,而今天制造业的发展及耐腐蚀材 料的出 现, 上述困难大大减少, 高压浸出得到了快速发展。 目前高压浸出最受关注的是: ①硫化铜精矿的高压浸出;②硫化锌精矿的高压浸出; ③ 钨、 钼矿的高压浸出; ④镍、钴矿的高压浸出; ⑤铝土 矿 的高压 水化学法生产氧化铝;⑥铂族金属的加压浸出 及难处理金矿的加压浸出等。

湿法冶金中的新发展



湿法冶金主要工艺过程 包括:①矿石原料预处理; ②矿石原料浸出;③固液 分离; ④ 溶液净 化、富集及分 离;⑤从溶液中回收化合物或金属。 近些 年来, 湿 法冶金技术发展较快, 目前最为主要的新发展分述于下。 高压浸出 近年来, 一些采用高压 浸出的工厂相继开工或投产。据不完全统计, 从上 世纪 90 年代 到现在 已经投 产的高 压浸出厂至少超过 20 家, 其中包括 我 国第 1 个用 高压浸 出法处理高镍锍的工厂如新疆 阜康冶炼 厂。可以预料, 今后一段时间内, 高压浸出 工艺的应用领域还会不断扩大, 浸出工艺也会 得到不断完 善。 浸出速度一般 随温 度升 高而 明 显增 加, 某些 浸出 过程需在溶液沸点温 度以上进行。 对某些 有气体 参加的 浸出过程, 增大气体反应剂的 压力有 利于浸 出过程 的进行,这种在高温高压下的浸出称为高压浸出或压力溶出。高压浸出分为 高压氨浸、 高压碱浸、 高压酸浸。高压浸出在高压釜内进行, 高压釜的工 作 原理 及结 构与 机械 搅伴 浸出槽的相似, 但更耐高压, 密封良好。高压 釜有立式及卧式 2 种。

湿法冶金简介PPT课件

湿法冶金简介PPT课件
此法主要应用在低本位、难熔化或微粉状的矿石。 现在世界上有75%的锌和镉是采用焙烧-浸取-水溶液电解法制成的。这种方法已大部分代替了过去的火 法炼锌。其他难于分离的金属如镍-钴,锆-铪,钽-铌及稀土金属都采用湿法冶金的技术如溶剂萃取或离子交 换等新方法进行分离,取得显著的效果。湿法冶金在锌、铝、铜、铀等工业中占有重要地位,世界上全部的 氧化铝、氧化铀,大部分锌和部分铜都是用湿法生产的。 湿法冶金的优点在于对非常低品位矿石(金、铀)的适用性,对相似金属(铪与锆)难分离情况的适用 性;以及和火法冶金相比,材料的周转比较简单,原料中有价金属综合回收程度高,有利于环境保护,并且 生产过程较易实现连续化和自动化。
仰韶文化彩陶 公元前5000年至前3000年
铜器时代 公元前4000年至公元初年
5
6
湿法冶金
Chapter 2
冶金分类
2.冶金的分类
7
电冶金
电冶金是利用电能提取金属的方法。根据利用电能效应的不同,电冶金又分为电热冶金和电化冶金。 1、电热冶金是利用电能转变为热能进行冶炼的方法。 在电热冶金的过程中,按其物理化学变化的实质来说,与火法冶金过程差别不大,两者的主要区别只是冶炼 时热能来源不同。 2、电化冶金(电解和电积)是利用电化学反应,使金属从含金属盐类的溶液或熔体中析出。前者称为溶液 电解,如锕的电解精炼和锌的电积,可列入湿法冶金一类;后者称为熔盐电解,不仅利用电能的化学效应, 而且也利用电能转变为热能,借以加热金属盐类使之成为熔体,故也可列入火法冶金一类。从矿石或精矿中 提取金属的生产工艺流程,常常是既有火法过程,又有湿法过程,即使是以火法为主的工艺流程,比如,硫 化锅精矿的火法冶炼,最后还须要有湿法的电解精炼过程;而在湿法炼锌中,硫化锌精矿还需要用高温氧化 焙烧对原料进行炼前处理。

稀土冶金学

稀土冶金学

第一章稀土冶金学1.什么是稀土?稀土元素有哪些特征稀土就是化学元素周期表中镧系元素—镧La铈Ce镨Pr钕钷钐铕钆铽镝钬铒铥镱镥,以及与镧系的15个元素密切相关的两个—钪(Sc)和钇(Y)共17种元素,称为稀土元素.简称稀土RE 或r。

1)稀土元素是典型的金属元素.2)稀土易和氧、硫、铅等元素化合生成熔点高的化合物3)稀土元素具有未充满的4f电子层结构4)稀土离子与羟基、偶氮基或磺酸基等形成结合物5)稀土具有类似微量元素的性质2、稀土金属元素在钢铁中有哪些应用,概述其改善炼钢钢组织结构的机理。

稀土加入钢中,可起到脱氧、脱硫、改变夹杂物形态等净化和变质作用,在某些钢中还能有微合金化的作用,稀土能够提高钢的抗氧化能力,高温强度和塑性、疲劳寿命、耐腐蚀性及抗裂性等. 1)净化作用2)细化组织3)对夹杂物的形态控制4)在耐大气腐蚀钢中加入稀土,使钢的内锈层致密铸铁:变质作用净化作用改善铸造性能3、稀土在有色金属中有哪些应用,举例说明。

稀土具有很高的化学活性和较大的原子半径,加入到有色金属及其合金中,可细化晶粒、防止偏析、除气、除杂和净化以及改善金相组织等作用,从而达到改善机械性能、物理性能和加工性能等综合目的.由于稀土金属的净化、调质作用,对这些有色金属都能起到细化晶粒,提高再结晶温度,从而对铸造合金能显著地改善工艺性能,对变型合金能显著地提高加工性能;对镍、钴基的耐热合金能提高抗氧化和抗高温腐蚀的能力,对超硬合金可以改善韧性和耐磨性.高强度稀土铝合金电缆、6063稀土铝合金及应用、稀土锌铝热镀合金、稀土铜耐磨合金、稀土硬质合金第二章稀土矿物原料1、稀土矿物主要有哪些,各有何特征?独居石、铈硅石、铈铝石、黑稀金矿和磷酸钇矿。

轻稀土的主要矿物有:氟碳铈矿Ce(CO3)F 和独居石(CePO4)。

重稀土的主要矿物有:磷钇矿(YPO4),褐钇铌矿(YNbO4)独居石:又名磷铈镧矿。

化学成分及性质:(Ce,La,Y,Th)[PO4]。

离子型稀土矿除杂的方法

离子型稀土矿除杂的方法

离子型稀土矿除杂的方法一、方法概述本文离子型稀土矿除杂的方法,是研究湿法冶金稀土技术中浸出液除杂的新方法,特别是一种离子型稀土矿除杂的方法。

本方法包括以下步骤:A、浸出液的配制:将稀土浸出剂、抑杂剂酒石酸溶于水,充分混合搅拌溶解得到浸出液,浸出液中稀土浸出剂质量百分浓度为1—6%,酒石酸的质量百分浓度为0.01—1.0%,稀土浸出剂与酒石酸的质量比为2—100;B、浸出过程的控制:用配制好的浸出液对离子型稀土矿进行抑杂浸出,浸出液的流速为0.5—10ml/min,原矿含水质量百分比:0—20%,液固比为:0.6:1—1.4:1。

经过抑杂浸出后获得的浸出液中杂质离子的含量降低了90%以上,还具有能耗低、成本低、操作安全简单等优点。

二、方法原理目前离子型稀土矿在浸出过程中,浸出液中会含有大量的杂质离子。

如果直接用草酸或碳酸氢铵对浸出液进行沉淀稀土,则沉淀获得的稀土产品中的杂质含量较高;要想降低稀土产品中杂质的含量则必须在沉淀稀土之前进行除杂,否则就无法获得合格的稀土产品,但是除杂过程不但增加了作业工序,而且会损失部分稀土,增加生产成本、降低资源综合回收利用率和经济效益。

有研究报道离子型稀土矿浸矿除杂沉淀新工艺,它虽然在一定程度上降低了浸出液中杂质的含量,但是它所采用的部分除杂剂具有一定的毒性,因此其在应用过程中容易发生安全事故,也会对环境造成严重污染。

离子型稀土矿浸矿除杂沉淀的新方法,它虽然在一定程度上也达到了降低稀土氧化物中杂质的含量,但是其需要增加除杂这道工序。

另外的研究是提取风化壳淋积型稀土矿的除杂方法,但其采用的是物理方法来改变矿石的浸出,从而实现除杂目的,其实用性值得商榷,真正在矿山实际应用还有一定的困难。

三、技术方案本离子型稀土矿除杂的方法目的是针对离子型稀土矿浸出过程中获得的浸出液中杂质含量大,导致需经过复杂的后续除杂工作才能获得合格稀土产品的问题,提出了一种经济、适用、简单、清洁、环保、抑杂效果好的离子型稀土矿除杂的方法。

湿法冶金第五章

湿法冶金第五章

五、主要溶剂萃取体系及萃取机理 萃取体系至少包括三个组分,即水、有机溶剂和一种
溶质,关于萃取体系的分类很不统一,根剧萃取剂的特 性和萃取机理,可把萃取体系分成:中性络合萃取体系; 酸性络合萃取体系;碱性萃取剂的萃取体系;协同萃取 体系。
1、中性络合萃取体系 特点:萃取剂是中性有机化合物(如:TBP、P350、
KD
Ci (or ) Ci ( aq )
KD-分配系数,Ci(or)是溶质i 在有机相中浓度;Ci(aq)是
溶质i在水相中浓度。KD >1,萃取能进行;KD <1萃
取不利于进行。
浓度较大时,分配系数应以溶质i在两相中的活度比Ka表示:
Ka
ai(or ) ai ( aq )
C i(or ) i(or ) KD
在萃取中,要求有机相具有最小的水溶性,工业萃取剂使 用的有机酸,含碳在C7-C16范围内。
四、萃取剂、稀释剂 1.萃取剂的选择 溶剂萃取中,萃取剂的选择十分重要。选择萃取剂
的要求主要有: ① 至少有一个萃取官能团,通过官能团可与金属离子 形成萃合物,常见的萃取官能团有含O、S、C、P的基 团,如:-OH、-SO3H、-SH、 、=NOH等; ② 油溶性大、水溶性小、须具备相当长的碳氢链或苯 环,但碳原子数过多或分子量大于500也不宜; ③ 具有较高的选择性,分离系数大;
(3)螯合萃取剂 有两种官能团,即酸性官能团和配位官能团。和金属离子形成
螯合物进入有机相,金属离子与酸性官能团作用,置换出 氢离子,形成一个离子键,配位官能团又与金属离子形成 一个配位键。常用的螯合萃取剂有:LiX63、LiX64、LiX64N ① 螯合剂必须含有二个或二个以上的官能团 ② 被萃金属置换-OH或-SH上的氢并与碱性官能团配位 而形成稳定的五原子环或六原子环状化合物。参加反应的 二个官能团之间要间隔2-3个碳原子,否则不能生成五环或 六环络合物。 ③ 入支链,使空间位阻增大,可以增加选择性,但引入支 链过多或位置不当也不行。 ④ -OH或-SH基的酸性越强,则形成螯合物的趋势越大, 即能在很低的PH下萃取。

浅议稀土湿法冶金废水治理方法

浅议稀土湿法冶金废水治理方法

浅议稀土湿法冶金废水治理方法林秀龙;郭连平;刘政磊【摘要】随着我国社会经济的飞速发展,我们对稀土资源的开发和利用不断提高,随之而来的是冶金工业必须面对和解决的\"三废\"问题,特别是\"废水\"问题的解决已经到了刻不容缓的地步.本文在作者多年处理废水经验基础上,对目前使用的稀土湿法冶金废水的处理问题进行了探讨.【期刊名称】《江西化工》【年(卷),期】2018(000)005【总页数】2页(P64-65)【关键词】稀土;冶金;废水;氟【作者】林秀龙;郭连平;刘政磊【作者单位】江西南方稀土高技术股份有限公司,江西赣州341000;江西南方稀土高技术股份有限公司,江西赣州341000;江西南方稀土高技术股份有限公司,江西赣州341000【正文语种】中文稀土是工业发展必不可少的重要资源,目前在世界上的储量大约只有一万吨左右。

而我国是世界上拥有稀土资源最多的国家,超过一半的稀土资源在我国境内,这为我国工业发展提供了有力保证。

工业发展使得对稀土的需求不断扩大,对稀土的冶炼分离产生的“三废”,即废气、废水、废渣,对环境的污染越来越严重。

在这三者当中,废水的污染问题尤其令人担忧。

由于稀土湿法冶炼过程中产生的废水成分复杂、污染有害物质种类众多、数量巨大等特点,若不能对其进行有效治理,对地表和地下水都会有严重的危害。

从近年来的报道来看,无论是北方的内蒙古,还是南方的广东和广西地区,都很重视对废水的治理,并做了很多行之有效的工作。

笔者以多年来治理冶金废水的经验为基础,对当前我国稀土行业使用的废水处理方法进行了探讨,并以某稀土生产企业产生的含有氨和镁的废水为例进行了论述。

1 废水的来源湿法冶炼和火法冶炼是目前我国稀土冶炼的主要的两种方法,相对来说湿法冶炼应用的更加广泛。

由于稀土矿物种类很多,采用的冶炼工艺也不尽相同,产生的废水也是种类繁多。

在稀土冶炼过程当中,使用较多的矿物有离子型稀土矿、混合型稀土矿以及独居石等,它们当中一般都含有镭、氟、铀等放射性元素,这些元素如果进入废水中,会对环境有很大的伤害。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中国稀土湿法冶金、分离提纯技术的创新与发展 发布时间:2009-1-19 访问人数:413 稀土化学和湿法冶金专业委员会

一、起步 解放前,中国没有稀土工业,稀土产品依靠进口。1953年锦州石油六厂用硫酸法分解独居石生产硝酸钍,为石油工业提供催化剂。1957年由于汽灯纱罩用量增加,大量需要硝酸钍。上海永联化工厂开始采用碱法处理独居石,但生产硝酸钍时,稀土仅作为副产品堆存。20世纪50年代中期,中国科学院长春应用化学研究所钟焕邦等同志开始研究单一稀土的分离。北京有色金属研究总院1958年研究从独居石和褐钇钶矿中分离单一稀土,于当年7月制得了16个单一稀土氧化物。并于1960年在北京有色金属研究总院建立试验厂,采用离子交换法和半逆流萃取工艺试制单一稀土氧化物,为北京有色金属研究总院1962年完成16种单一稀土金属的制备创造了良好条件,也为稀土冶炼厂的建设提供了设计依据。20世纪60年代初,长沙602厂、上海跃龙化工厂,包钢8861厂相继建成投产,从此中国稀土工业由试验室走向工业化。

二、稀土矿冶炼与综合利用 1.包头白云鄂博稀土资源的综合利用 白云鄂博矿位于包头市区以北150公里的白云鄂博地区,是我国著名的以铁、稀土、铌等为主的特大型多金属共生矿床。工业有价元素多达二十多种,稀土元素工业储量为3500万吨。但由于该矿是由氟碳鈰矿和独居石两种稀土矿物组成的混合型矿种,选矿和冶炼难度很大。因此,开始所生产的稀土精矿中稀土含量只有20%~30%。

1966年北京有色金属研究总院、北京有色冶金设计总院、包头冶金研究所、上海跃龙化工厂、长春应用化学研究所和包钢稀土三厂等单位开展了碳酸钠焙烧-硫酸浸出-P204萃取提铈和高温氯化等工艺技术的半工业试验会战,试验结束后包钢稀土三厂使用半工业试验的工艺生产氯化稀土。 1972年北京有色金属研究总院采用回转窑浓硫酸焙烧法冶炼低品位包头稀土精矿(REO 20%~30%)生产氯化稀土(第一代酸法),在北京通县冶炼厂进行的工业试验获得了成功,较好地解决了低品位稀土精矿的湿法冶炼工艺。1974年包钢稀土三厂引进北京有色金属研究总院回转窑浓硫酸焙烧冶炼包头稀土精矿新工艺代替碳酸钠焙烧法生产氯化稀土,使稀土回收率由40%提高到70%。

1973~1979年间,哈尔滨火石厂、包钢稀土三厂和甘肃903厂先后采用北京有色金属研究总院第一代酸法工艺生产氯化稀土,使年生产能力猛增到10000吨以上,促进了稀土工业的发展。

1975年,广州有色金属研究院黄国平等同志研究成功了用羟肟酸为浮选药剂生产精矿,第一次从白云鄂博资源中生产出REO~60%的稀土精矿,这是包头矿选矿工艺的一个重大突破。于1976年在包钢稀土三厂进行了生产高品位(REO>60%)稀土精矿的浮选工业试验,获得了完全成功。1981年包钢利用该项工艺建成了两个年产5000吨高品位稀土精矿的选矿车间,使我国高品位稀土精矿的生产能力达到10000吨以上,标志着我国的稀土冶炼工业又进入了新的发展阶段。

1979年北京有色金属研究总院研究成功了硫酸强化焙烧-萃取法生产氯化稀土的新工艺(第二代酸法);上海跃龙化工厂和包头冶金研究所等单位协作研究成功的烧碱法;再加上高温加炭氯化法、硫酸法和碳酸钠焙烧法总称为五朵金花,形成了冶炼包头稀土精矿冶炼工艺的百花齐放,互相争艳,各放异彩的喜人局面。

十-届三中全会以采,我国稀土工业进入了一个蓬勃发展的时期,稀土产品市场由国内向国外发展。方毅同志从1978年至1986年先后七次到包头,亲自主持白云鄂博资源的综合利用会议。国家经委成立了全国稀土推广应用领导小组,并于1978年设立全国稀土推广应用办公室。1980年中国稀土学会成立。这一系列的有力措施促进了我国稀土工业的发展。

1980年甘肃稀土公司以30万元购买北京有色金属研究总院硫酸强化焙烧-萃取法生产氯化稀土的新技术(第二代酸法),更新旧工艺,提高经济效益。由北京有色金属研究总院张国成等同志为首与该公司有关同志组成设计组负责工艺设计;并由北京有色冶金设计研究总院负责主体设备设计,新建了一条年产六千吨氯化稀土生产线,1982年投入生产,氯化稀土回收率达到85%以上。这意味着我国包头稀土精矿的冶炼工业技术进入世界先进行列。

1985年,北京有色金属研究总院又研究成功了处理包头稀土精矿第三代酸法工艺,即硫酸焙烧-P204从硫酸体系中萃取分离稀土元素新工艺,该工艺流程简单,稀土回收率高,产品成本低,1985年至1993年相继转让给哈尔滨稀土材料厂、包钢稀土三厂(稀土高科)、包头202厂、甘肃稀土公司等厂,成为处理包头稀土矿的主流工艺。目前包头稀土矿90%以上均采用酸法工艺处理,后续分离提取工艺根据产品结构的不同有一些变化和改进 。

2.离子吸附型稀土矿的开发 1968年,江西908地质队和冶金勘探公司13队首次在江西龙南地区发现了世界上罕见的重稀土离子吸附型稀土矿,这是过去国内外从未报导过的稀土矿物。原矿中的稀土是以离子形式赋存在高岭土等粘土矿物上,砂粒风化矿体复盖很浅,有的裸露于地表,而且此种矿物用普通选矿方法得不到精矿。1970年10月,江西省有色冶金研究所进行龙南稀土矿物质成份和试选的研究,发现其中90%的稀土可以用电解质溶液以离子交换淋洗方式使其进入溶液,并首次命名为离子吸附型稀土矿。

1970~1973年,以江西有色冶金研究所为组长,江西908地质队、南昌603厂、九江806厂参加的联合实验组,研究成功了离子型稀土矿氯化钠浸取-草酸沉淀的混合稀土提取工艺(即第一代池浸工艺),解决了从离子吸附型矿物中提取稀土的工艺问题。并在龙南县工业局采用江西冶金研究所提供的工艺在足洞地区建立土法生产矿点,开始了对离子型矿物的开采提取利用。

1975年3~12月,江西有色冶金研究所和江西909地质队合作,在寻乌河岭完成年产稀土氧化物50吨的半工业试验。这是在国内首次用(NH4)2SO4浸矿成功,而且浸出液直接以P204萃取稀土并进行分组,从而使以轻稀土为主的寻乌稀土在国内外打开市场。

1981年,江西有色冶金研究所在赣县大埠稀土矿进行(NH4)2SO4浸矿工业试验获得成功。1985年,由赣州有色冶金研究所和江西大学共同完成了离子吸附型稀土矿稀土提取新工艺(即硫酸铵浸取-碳铵沉淀工艺),使稀土提取成本大大降低,被广泛应用于离子吸附型稀土矿的工业提取。 为了保护生态植被,赣州有色冶金研究所于1983年提出就地浸取开采离子型稀土矿工艺。1988年12月完成《离子型稀土矿就地浸取工艺研究》现场小试。1995年12月,全面完成《离子型稀土原地浸矿新工艺研究》国家八五攻关任务。其成果在龙南类型稀土矿山全面推广。新工艺应用面达到15%。

目前江西南方稀土高技术股份有限公司承担了《离子型稀土原地浸矿及直接萃取分离技术》国家重点项目,正在寻乌实施,将于2003年建成为国内一流的原地浸矿和从浸出液直接萃取富集和分离稀土的示范工程。

3.四川氟碳铈矿的冶炼 四川省地勘局109地质队于20世纪80年代中期发现四川冕宁稀土矿,它属于氟碳铈矿单一矿体,磷钛等杂质少,是我国第二大稀土资源。1989年开始开采,1993年开始建设稀土冶炼厂,经过近十年的开发,已形成了一套针对四川矿特点的冶炼分离技术。

(1)氧化焙烧-稀硫酸浸出-二次复盐沉淀法 20世纪60年代,北京有色金属研究总院研究了氧化焙烧-稀硫酸浸出工艺处理包头稀土精矿,发现铈几乎全部以四价状态进入浸出液,经过复盐沉淀可以提取纯铈。但由于包头矿中含有独居石,稀土无法全部分解浸出,导致稀土收率较低,所以该工艺不适宜处理包头混合型矿。而四川稀土矿与包头稀土矿相比,由于不含独居石,矿物组成单一,因此比较容易冶炼。1990年,包头稀土研究院进行了四川冕宁氟碳铈矿精矿氧化焙烧、稀硫酸浸出、复盐沉淀提取铈的研究,氧化铈的纯度大于99%,收率78%。该工艺于1992年转让给四川稀土材料厂。之后,经过多年生产实践,对该工艺进行了许多改进,氧化铈的纯度和稀土收率有较大提高,目前四川百分之七十左右的稀土冶炼厂采用该工艺生产。该工艺的特点是设备简单,建厂投资少,对化工原料要求不高,但不足的是工艺流程长,化工原料消耗大,三废排放量大,稀土回收率偏低,产品纯度较差。

(2)氧化焙烧-盐酸浸出工艺 该工艺是美国钼公司20世纪60年代开发的,浸出时四价铈留在渣中得到铈富集物(铈含量大于90%),可作为抛光粉的原料,也可作为提纯高纯铈的原料,其它三价稀土进入盐酸溶液,然后经过萃取分离。该工艺减去了两次复盐分离工序,大幅度缩短了工艺流程,降低了化工原料的消耗、三废的排放和生产成本,铈收率可提高5%以上。不足的是稳定生产2N的铈产品有一定的难度,并含有一定的放射性元素钍。

以上两种工艺虽然目前广泛应用于四川矿的冶炼,但还存在许多不足之处,并不是很满意的工艺,因此国内许多研究者一直在努力开发新工艺,希望用简单连续的萃取法工艺代替化学法工艺,因为四价铈与三价稀土分离系数非常大,因此直接萃取分离很容易得到高纯铈,萃余液再经过萃取分离其它三价稀土,但由于溶液中含有大量的氟、钍等杂质,在萃取过程中易产生乳化,影响萃取过程的顺利进行。目前国内已开发出直接萃取分离工艺流程,但都还未真正用于工业生产中。

三、稀土的分离与提纯 我国稀土科技工作者从20世纪50年代开始对溶剂萃取法分离稀土元素进行了大量的研究开发,取得了许多科研成果,并广泛应用于稀土工业生产。如1970年成功地在工业上采用N263萃取分离出纯度为99.99%的氧化钇,取代了离子交换法分离氧化钇工艺,成本不到离子交换法的十分之一;1970年采用P204萃取代替了经典的重结晶法制取轻稀土氧化物;用甲基二甲庚脂(P350)萃取取代了经典的分级结晶法制取氧化镧;20世纪70年代首先将氨化P507萃取分离稀土和用环烷酸萃取钇的工艺用于我国的稀土湿法冶金工业;萃取技术在我国稀土工业中的迅速发展是与中国科学院上海有机化学研究所袁承业等同志的辛勤劳动分不开的,他们研究成功的各种萃取剂(如P204、P350、P507等)均在工业中得到广泛的应用;北京大学徐光宪教授在20世纪70年代提出和推广的串级萃取理论,对我国的萃取分离技术起到了指导作用。同时提出了用串级萃取理论设计优化的分离工艺,并广泛应用在稀土萃取分离工业中。

40多年来,我国在稀土分离提纯领域取得了许多世人属目的成就。 20世纪60年代,北京有色金属研究总院研究成功锌粉还原碱度法生产高纯氧化铕工艺,为我国第一次生产出大于99.99%的产品,该法至今仍为全国各稀土工厂所沿用;上海跃龙化工厂和复旦大学、北京有色研究总院合作先使用萃取-离子交换流程,用P204富集N263萃取提纯制备得到99.95%纯度的氧化钇,1970年采用P204富集N263二次萃取提纯得到纯度大于99.99%的氧化钇。

相关文档
最新文档