稀土湿法冶金废水处理

合集下载

三种稀土废水处理方法与处理原则

三种稀土废水处理方法与处理原则

三种稀土废水处理方法与处理原则稀土废水是指含有稀土元素的废水,主要来自稀土冶炼、加工和利用过程中的废水排放。

稀土废水具有复杂的成分和高度的毒性,对环境和人体健康造成潜在威胁。

因此,稀土废水的处理变得至关重要。

三种常见的稀土废水处理方法如下:1.生物处理法:生物处理法是利用微生物的代谢活性来降解和转化稀土废水中的有机和无机污染物。

该方法具有操作简单、技术成熟、处理效果好的优点。

其中最常用的生物处理方法是活性污泥法和固定化生物膜法。

活性污泥法是将稀土废水与污泥接触,通过微生物的作用将有机物质降解为无机物质。

固定化生物膜法是在填料表面固定生物膜,稀土废水在填料上流动,通过生物膜的附着和生长,将有机和无机污染物转化为无害物质。

生物处理法的处理原则是通过活性微生物代谢和降解有机物质,达到净化废水的目的。

2.物化处理法:物化处理法通过物理和化学反应来净化稀土废水。

常用的物化处理方法包括沉淀法、吸附法、浮选法等。

沉淀法是通过混凝剂的添加使废水中的悬浮物和溶解物发生沉淀,从而达到净化水质的目的。

吸附法是利用吸附剂对废水中的污染物进行吸附,将其与吸附剂分离。

浮选法是利用气泡在废水中形成气泡团,将废水中微小的悬浮颗粒浮起,从而达到净化水质的目的。

物化处理法的处理原则是通过物质之间的作用力来达到废水净化的目的。

3.综合处理法:综合处理法将生物处理法和物化处理法结合起来,充分发挥各自的优势,以达到废水处理的最佳效果。

常见的综合处理方法有生物脱氮硝化法和化学-生物耦合法。

生物脱氮硝化法是通过生物膜法将废水中的氨氮转化为亚硝酸盐和硝酸盐,再通过物化处理方法去除硝酸盐。

化学-生物耦合法是通过在废水中加入化学剂,使废水中的有机物质和无机物质发生反应,然后再通过生物处理方法来净化废水。

综合处理法的处理原则是通过综合利用不同处理方法的优点,从而实现废水的高效净化。

处理稀土废水的原则包括以下几点:1.因地制宜:不同地区的稀土废水成分和特性不同,处理方法应根据具体情况进行选择和调整,以确保处理效果最佳。

稀土冶炼分离废水处理

稀土冶炼分离废水处理

稀土冶炼分离废水处理作者:于博赵军周菁杨洁来源:《智富时代》2019年第07期【摘要】研究了用不同方法处理稀土冶炼分离工艺中产生的废水,如:稀土精矿焙烧废气处理过程产生的沉渣废水(主要成分硫酸、少量的氢氟酸)、皂化过程产生的硫酸镁废水。

用氧化钙和电石灰渣分别中和上述废水,使其各项指标达到要求,计算氧化钙和电石灰渣的用量及处理成本。

【关键词】稀土冶炼;分离;废水处理1、废水处理在废水处理的工艺中,废水中的硫酸根的范围在45—73g/l的范围内,氟离子的范围在5—10g/l的范围内,酸的浓度在2—3mol/l之间。

试验主要用不同的方法使皂化废水中硫酸根1.1氧化钙沉淀1.1.1氧化钙沉淀原理:Ca2++SO42-=CaSO4↓ Ca2++2F-=CaF2↓1.1.2沉淀过程:根据废水中离子的含量计算沉淀剂的加入量,以不同的加入量分别与上述两种废水反应。

试验条件:相同的搅拌速度、搅拌时间、烘干时间、过滤时间。

1.2电石灰渣沉淀1.2.1电石灰渣沉淀原理:Ca2++SO42-=CaSO4↓ Ca2++2F-=CaF2↓1.1.2沉淀过程:根据废水中有害离子的含量计算沉淀剂的理论加入值,以不同的加入量分别与上述两种废水反应。

试验条件:相同的搅拌速度、搅拌时间、烘干时间、过滤时间1.3沉淀剂最合理的用量通过以上试验,可以得到处理废水时,不同沉淀剂的最合理用量:由表3,处理等量的废水时,沉淀剂的用量、造渣量均不同,则成本不同。

2、处理废水的成本分析沉淀剂的用量及造渣量不同,对废水处理成本有较大影响。

(氧化钙:160元/t、电石灰渣:60元/t、渣外运:120元/t)2.1废水处理成本比较(表4)通过试验成本分析可知:使用電石灰渣处理废水可以节约大量成本,为公司的节能减排、将本增效起到非常有效的作用。

【参考文献】[1] 彭志强,房丹,洪玲.稀土冶炼废水治理研究进展[J].湿法冶金,2015,34(2):96-99.。

稀土废水处理工艺流程

稀土废水处理工艺流程

稀土废水处理工艺流程一、组成我国稀土冶炼的方法主要有两种,湿法冶金和火法冶金,其中较常用的为湿法冶金。

根据选用稀土矿物种类和冶炼采用的工艺不同那个,稀土湿法冶金过程中所产生的废水也是多种多样,各不相同。

其中常见的污染物主要以酸碱物质、氨氮、氟离子及放射性物质等为主。

对于不同种类的污染物废水,可采取不同的治理方法。

二、来源1、稀土来源(1)废水物料,属于含盐废水,含盐量(主要是硝酸钠,含量8%),康景辉针对稀土生产废水的成分, 设计为列管式换热器,多效蒸发工艺。

(2)稀土废水项目主要是处理硝酸钠废水,将硝酸钠溶液从8%的浓度浓缩至50%,处理难度并不大,但由于环保要求,水中硝基氮含量需在10PPM以下。

2、废水来源(1)硝酸铵废水是稀土行业分离过程中,生产制备少氯或无氯单一稀土氧化物过程中产生的。

主要含硝酸铵,污染物为氨氮、硝酸盐氮。

(2)稀土分离产生的铵盐(氯化铵)废水,氯化铵废水产生于P507皂化、单一稀土分离及碳酸铵盐废水。

三、处理工艺流程1、三效蒸发系统的流程(1)原液进入预处理系统去除绝大部分COD后再进入预热系统预热。

(2)进入预热系统后,混合液和一效加热器的鲜蒸汽冷凝水预热。

(3)预热后的物料按三效顺流的工艺,进入一效。

(4)进入一效蒸发器系统的物料经过循环泵的作用,在加热室循环加热,然后在分离器蒸发分离,沸腾蒸发的蒸汽上升,浓缩液停留在系统内;当二效需要加料时,自控系统会自动把一效的浓缩液送入二效;当三效需要加料时,自控系统会自动把二效的浓缩液送入三效;当三效晶浆浓度达到设计值时排出分离器;晶浆进入稠厚器,然后进入离心机分离,得到固体产出,母液全外排。

2、二次蒸汽流程(1)一效加热器热源:外接饱和鲜蒸汽(2)二效加热器热源:一效二次蒸汽(3)三效加热器热源:二效二次蒸汽(4)蒸发产生的二次蒸汽夹带有少量的液滴,这些脏的二次蒸汽上升,进入除雾器,通过逆流洗涤,将二次蒸汽中夹带的微小液滴洗涤出来,重新进入料液。

稀土开采废水治理工程方案

稀土开采废水治理工程方案

稀土开采废水治理工程方案一、废水污染特点稀土开采废水具有以下主要特点:1. 含有丰富的重金属:稀土开采过程中产生的废水中,富含镧、铈、钕等重金属元素,而这些物质对环境和人体健康具有较大危害。

2. 酸性废水:由于稀土破碎、浸出等工艺的使用,使得废水酸性较强,对水体的生态环境造成直接伤害。

3. 大量固体颗粒物:稀土矿山开采过程中,大量的泥浆和矿石碎块会被携带到废水中,使得废水悬浮固体颗粒物丰富。

4. 高浓度:稀土废水中含有丰富的稀土元素,浓度较高,一旦泄漏或排放到水体中,对水生生物和生态环境造成重大影响。

二、稀土开采废水治理工程方案针对稀土开采废水的复杂特点,需要设计一套综合的废水治理工程方案,以最大程度地减少对环境的危害。

具体方案如下:1. 废水收集与预处理:在矿山开采现场,设置废水收集系统,对产生的废水进行集中收集。

在收集之后,进行预处理,包括去除悬浮固体颗粒物、调节废水的酸碱度等。

2. 生物处理工艺:将预处理后的废水引入生物处理系统,通过生物反应器中的微生物对有机物质和部分重金属进行降解和转化,达到减少废水中污染物浓度的效果。

同时,生物法对稀土废水的处理效果较为显著,且运行成本较低,是常用的处理手段。

3. 化学沉淀工艺:采用化学沉淀的工艺手段,对废水中的重金属离子进行沉淀处理,将废水中的镧、铈等重金属元素以沉淀的形式脱除。

4. 膜过滤工艺:通过膜过滤技术,对废水中的微小颗粒物和悬浮物进行过滤分离,使得废水澄清,减少固体颗粒物的含量。

5. 离子交换工艺:利用离子交换树脂,对废水中的重金属离子进行吸附和交换,达到净化废水的目的。

6. 深度处理工艺:对以上处理后的废水进行深度处理,包括消毒、过滤、再循环利用等,以确保废水的最终排放符合环保标准。

三、技术难点与解决思路在稀土开采废水治理工程中,存在以下技术难点:1. 稀土元素的高浓度处理问题:稀土矿山开采废水中含有大量的稀土元素,其浓度较高,如何有效地降低稀土元素的浓度,是一个亟需解决的问题。

稀土提炼中的废弃物处理与资源回收

稀土提炼中的废弃物处理与资源回收

稀土提炼中的废弃物处理与资源回收稀土是一类重要的战略资源,广泛应用于高科技产业、环境保护和新能源等领域。

然而,在稀土提炼过程中,会产生大量的废弃物,包括废水、废渣和废气等。

这些废弃物的处理与资源回收成为了一个亟待解决的问题。

本文将探讨稀土提炼中废弃物的处理方法和资源回收技术。

一、废水处理稀土提炼过程中产生的废水含有高浓度的稀土离子、盐类和有机物等。

直接排放废水不仅对环境造成污染,还会浪费稀土资源。

因此,有效的废水处理技术至关重要。

1. 沉淀法沉淀法是一种常见的废水处理方法,通过添加适当的沉淀剂,将废水中的稀土离子与杂质分离。

沉淀沉淀后,可以采用离心机或过滤器将沉淀物与废水分离。

然后,通过再次处理沉淀物,可以回收一部分稀土资源,并将废物作为固体废弃物进行处置。

2. 膜分离法膜分离法是一种利用半透膜的特性,将溶质从废水中分离出来的技术。

在稀土提炼中,可以使用反渗透膜或离子交换膜来过滤废水中的稀土离子和盐类。

通过适当调整操作参数,可以实现对废水中稀土资源的回收。

二、废渣处理稀土提炼过程中产生的废渣含有稀土离子、杂质和固体颗粒等。

对废渣进行合理的处理,可以实现稀土资源的回收和减少对环境的污染。

1. 磁选法磁选法是一种常用的废渣处理方法,通过磁性材料的吸附作用,将废渣中的稀土离子吸附到磁性材料上。

然后,可以通过磁场的作用,分离废渣和磁性材料,从而实现稀土资源的回收。

2. 焙烧法焙烧法是一种将废渣加热至高温,使其发生物理或化学变化,从而实现废渣的处理和稀土资源的回收的方法。

在焙烧过程中,可以实现废渣中有毒有害物质的分解和转化,并将稀土资源回收。

三、废气处理稀土提炼过程中产生的废气含有有害气体和颗粒物等,对环境和人体健康造成一定的危害。

因此,进行废气处理是稀土提炼过程中不可或缺的环节。

1. 吸附法吸附法是一种通过吸附剂吸附废气中的有害气体和颗粒物的技术。

在稀土提炼中,可以使用活性炭、分子筛等吸附剂吸附废气中的气体和颗粒物。

稀土提炼过程中的废水处理及资源化利用探索

稀土提炼过程中的废水处理及资源化利用探索

稀土提炼过程中的废水处理及资源化利用探索近年来,稀土资源的重要性逐渐凸显,而稀土提炼过程中产生的废水处理及资源化利用问题也备受关注。

本文将探索稀土提炼过程中废水处理及资源化利用的相关技术与案例,以期为稀土行业的可持续发展提供一定的指导。

一、稀土提炼过程中的废水特性在稀土提炼过程中,废水通常包含高浓度的氨水、酸性废水、重金属等有害物质。

这些废水具有以下特性:1. 高浓度和复杂性:稀土提炼废水中的氨水和酸性废水往往浓度较高,其中还含有多种成分,使废水处理难度增加。

2. 含有有害物质:稀土提炼过程中常常使用的溶剂酸和溶剂型萃取剂会在废水中残留,并且附带着重金属离子等有害物质。

3. 生化性难降解:稀土废水中的有机物质对生物降解难度较大,常规的生化处理方法难以满足处理要求。

二、稀土废水处理技术为了解决稀土提炼过程中产生的废水问题,研究人员提出了多种废水处理技术,以下介绍几种较为常见和有效的方法:1. 化学沉淀法:该方法通过加入适当的沉淀剂,使废水中的有害物质沉淀并去除。

例如,通过加入氢氧化钙可以使废水中的氨水转化为氢氧化钙沉淀物,从而去除氨气。

2. 膜分离技术:膜分离技术包括反渗透、超滤、纳滤等,通过膜的筛选作用,将废水中的有害物质和杂质分离出去,得到净化水。

该技术能够高效地去除废水中的溶解性有机物、重金属等。

3. 高级氧化技术:高级氧化技术采用氧化剂和一定的催化剂,将废水中的有机物质氧化分解,降低其对环境的危害性。

常用的高级氧化技术有臭氧氧化、过氧化氢氧化、Fenton氧化等。

4. 萃取回收法:稀土提炼过程中的有机萃取剂可以通过适当的方法回收和再利用。

例如,利用萃取剂的特性,在特定条件下将萃取剂从废水中以适当的方法回收。

三、稀土废水资源化利用废水的处理不仅仅是为了减少对环境的污染,还可以将其中有价值的成分进行回收和利用。

以下是几种废水资源化利用的实例:1. 重金属的回收:稀土废水中常含有大量的重金属,如钇、镱等稀土元素。

湿法冶金污染控制技术冶金废水1

湿法冶金污染控制技术冶金废水1
当投石灰进行中和处理时,Ca(OH)2还有凝聚作用,因此对杂质多、浓度高的酸性废水尤其适宜。
药剂投加方法
首先将石灰或石灰石粉碎成粒径为0.5mm的颗粒,然后通过电磁振荡投配器投加到反应槽中,混合反应1-2min,再进行沉渣分离。
缺点:劳动强度大、反应不完全
湿投法
首先将石灰消解为质量分数40%-50%的乳液,流入乳液槽,经搅拌均匀配制成5%-10%的乳化液,再送入槽内。
含磷工业废水。
危害:促进藻类等浮游生物的繁殖,破坏水体耗氧和复氧
平衡;使水质迅速恶化,危害水产资源。
有机磷包括磷酸甘油酸、磷肌酸等
磷酸盐:正磷酸盐(PO43-)、磷酸氢盐(HPO42-)、
磷酸二氢盐(H2PO4- )、偏磷酸盐(PO3-)
聚合磷酸盐:焦磷酸盐(P2O74-)、三磷酸盐(P3O105-)、
第一类污染物能在环境或在动植物体内积蓄,对人类健康产生长远的影响,规定含此类污染物的污水必须在车间或车间处理设施排放口处取样分析,同时其含量必须符合表1-1的规定。第二类污染物的长远影响小于第一类,规定的取样地点为排污单位的排出口,其最高允许徘放浓度要按地面水使用功能的要求和污水排放去向,分别执行表1-2中的一、二、三级标难。
生物性指标
生活污水:肠道传染病、肝炎病毒、SARS、
大肠菌群
大肠菌群的值可表明水样被粪便污染的程
度,间接表明有肠道病菌存在的可能性。
常以大肠菌群数/L计。
饮用水:<3个/L
城市排水:<10000个/L
游泳池:<1000个/L
含磷化合物
磷也是有机物中的一种主要元素,是仅次于氮的微生物生
长的重要元素。
磷主要来自:人体排泄物以及合成洗涤剂、牲畜饲养场及

浅议稀土湿法冶金废水治理方法

浅议稀土湿法冶金废水治理方法

浅议稀土湿法冶金废水治理方法林秀龙;郭连平;刘政磊【摘要】随着我国社会经济的飞速发展,我们对稀土资源的开发和利用不断提高,随之而来的是冶金工业必须面对和解决的\"三废\"问题,特别是\"废水\"问题的解决已经到了刻不容缓的地步.本文在作者多年处理废水经验基础上,对目前使用的稀土湿法冶金废水的处理问题进行了探讨.【期刊名称】《江西化工》【年(卷),期】2018(000)005【总页数】2页(P64-65)【关键词】稀土;冶金;废水;氟【作者】林秀龙;郭连平;刘政磊【作者单位】江西南方稀土高技术股份有限公司,江西赣州341000;江西南方稀土高技术股份有限公司,江西赣州341000;江西南方稀土高技术股份有限公司,江西赣州341000【正文语种】中文稀土是工业发展必不可少的重要资源,目前在世界上的储量大约只有一万吨左右。

而我国是世界上拥有稀土资源最多的国家,超过一半的稀土资源在我国境内,这为我国工业发展提供了有力保证。

工业发展使得对稀土的需求不断扩大,对稀土的冶炼分离产生的“三废”,即废气、废水、废渣,对环境的污染越来越严重。

在这三者当中,废水的污染问题尤其令人担忧。

由于稀土湿法冶炼过程中产生的废水成分复杂、污染有害物质种类众多、数量巨大等特点,若不能对其进行有效治理,对地表和地下水都会有严重的危害。

从近年来的报道来看,无论是北方的内蒙古,还是南方的广东和广西地区,都很重视对废水的治理,并做了很多行之有效的工作。

笔者以多年来治理冶金废水的经验为基础,对当前我国稀土行业使用的废水处理方法进行了探讨,并以某稀土生产企业产生的含有氨和镁的废水为例进行了论述。

1 废水的来源湿法冶炼和火法冶炼是目前我国稀土冶炼的主要的两种方法,相对来说湿法冶炼应用的更加广泛。

由于稀土矿物种类很多,采用的冶炼工艺也不尽相同,产生的废水也是种类繁多。

在稀土冶炼过程当中,使用较多的矿物有离子型稀土矿、混合型稀土矿以及独居石等,它们当中一般都含有镭、氟、铀等放射性元素,这些元素如果进入废水中,会对环境有很大的伤害。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

摘要:对稀土矿物氟碳铈矿、独居石和氟碳铈矿的混合矿湿法冶金分解和分离过程中所产生的废水进行了分类。

综述了不同的冶金工艺所采用的废水处理方法,认为对稀土冶金废水的处理应注意分类治理,回收副产品;以废治废,降低成本,提高废水回用率;开展清洁冶金工艺研究,从源头解决污染问题。

关键词:稀土;氟碳铈矿;独居石;湿法冶金;废水处理稀土湿法冶金过程中的废水污染问题受到各方面的关注。

我国稀土湿法冶金的原料主要是氟碳铈矿、氟碳铈矿和独居石的混合矿(以下简称混合稀土精矿)及广东、江西等地的离子吸附型稀土矿。

离子吸附型稀土矿采用原地浸矿、碳铰沉淀工艺制备碳酸稀土产品,氟碳铈矿主要采用氧化焙烧工艺分解,而混合稀土精矿主要采用浓硫酸高温焙烧分解(以下简称酸法分解工艺)和液碱法分解两种工艺制备碳酸稀土和氯化稀土初级产品,然后由初级产品再通过萃取分离生产不同纯度的单一稀土产品。

本文对稀土矿物的3种分解工艺及萃取分离制备单一稀土工艺等湿法冶金过程中的废水分类及研究现状作简单综述。

1 稀土湿法冶金过程废水的分类1.1 混合稀土精矿的分解1.1.1 酸法分解工艺混合稀土精矿浓硫酸高温焙烧分解工艺是以混合稀土精矿为原料的稀土企业的主体分解工艺。

该工艺在冶金过程中产生酸性废水A(ρ(F-)=2~5g/L,ρ(H2SO4)=15-25 g/L)和含硫酸铰的氨氮类废水 B(pH=7-8,ρ(NH4+)=5~18 g/L)。

初级产品碳酸稀土还可以进一步革取分离单一稀土产品并产生相应的废水。

1.1.2 液碱法分解工艺液碱法分解工艺是分解混合稀土精矿的另一个主要工艺,目前仍有少部分企业采用该工艺生产。

该工艺产生两种废水:酸性废水C(含钙镁离子和盐酸,盐酸浓度约l~2 mol/L)和碱性废水D(含NaOH,Na3PO4和NaF等,ρ(F-)=0.4~0.6 g/L,ρ(NaOH)=100~400g/L,ρ(Na2CO3)=20~30g/L,pH=10~11)。

初级产品氯化稀土还可以进一步苹取分离出单一稀士产品。

1.2 氟碳饰矿的分解——氧化焙烧分解工艺氧化焙烧分解工艺是四川氟碳钝矿的主要分解工艺,主要产生两种废水,一种是酸性废水E,ρ(F-)= 4~6 g/L,ρ(Fe2(SO4)3)=25~35 g/L,w(H2SO4)= 8%~10%和 Na2SO4 及少量的 P2O5等;一种为碱性废水F,主要是含Na2SO4,ρ(Na2SO4)=40~50 g/L,ρ(F-)=0.3~08 g/L,PH = 9~10,同时还有少量氟。

少柿氯化稀土还可以继续革取分离单一稀土产品。

1.3 萃取分离制备单一稀土产品工艺我国稀土企业分离单一稀土产品主要是苹取分离工艺,由于各企业的具体苹取工艺不同产生的废水种类较多,主要是大量的各种含氨氮类废水G,pH=3~5,ρ(NH4+)=8~15 g/L,氯化铰;少量酸性废水 H,c(HCI)= l.0~2.0 moL/L,ρ(H2C2O4)= 12~15 g/L;氨氮类废水 1,pH= 7~8,ρ(NW4+)= 8~15 g/L,氯化铵。

2 稀土湿法冶金过程废水处理的主要方法2.1 酸法分解工艺废水的处理硫酸法处理混合稀土精矿尾气喷淋吸收得到的二次酸性废水A,主要污染物是氟和硫酸,其中ρ(F-)为2~5g/L,ρ(H2SO4)为15~25g/L。

常规方法是采用熟石灰中和沉淀法处理,处理后废水可达标排放。

该法处理工艺简便易行,适合于小型企业,但成本较高,产生的大量废渣处理不当会造成二次污染。

文献[1]报道了在废水中加入SiO2和硫酸钠反应合成回收氟硅酸钠和硫酸,或加人SiO2、氢氧化铝和碳酸钠合成回收氟铝酸钠和硫酸,回收处理后的少量废水(约原废水量的10%)采用中和絮凝处理达标排放的综合回收利用的处理工艺。

该工艺在处理废水的同时回收氟硅酸钠或氟铝酸钠以及硫酸,既处理了废水又回收了其中的有价物质,当处理稀土精矿能力大于 5 000 t/a时采用该工艺处理废水具有一定的经济效益。

2.2 碱法分解工艺废水的处理碱性废水D的处理有比较成熟的工艺[2],可采用浓缩一苛化法,先浓缩使Na2CO4,Na3PO4和NaF结晶析出,过滤分离NaOH液和晶体,再以水溶解晶体,加人石灰进行苛化,过滤得到 NaOH,碱的总回收率达到96%以上。

回收的碱返回碱分解工序再利用。

酸性废水 C一般采用中和混凝沉淀处理[3],处理后的废水达标排放,已得到工业应用。

2.3 氧化焙烧分解工艺废水的处理对酸性废水E和碱性废水F,文献[4-5]报道了用铁屑反应-浓缩结晶法回收工业硫酸亚铁治理酸性废水E,浓缩结晶法回收工业Na2SO4 处理碱性废水F,处理后的酸性母液和碱性母液混合后加人硫酸铝回收冰晶石。

回收的硫酸亚铁和硫酸钠都是冶炼过程中需要的化工原材料,可用于再生产。

硫酸、硫酸钠和氟的回收率分别达到了75%,80%和86%,有较好的经济效益。

对于酸性废水E也可以采用中和混凝沉淀处理工艺使其达标排放[6],流程简单,处理效果稳定。

2.4 萃取分离工艺废水的处理革取分离工艺中主要产生各类氨氮废水,该类废水是稀土湿法冶金过程中产生的主要废水,占稀土企业废水总量的60%~70%,只要涉及稀土湿法冶金几乎都要产生氨氮废水。

氨氮废水的处理历来是污水处理的重点和难点,随氨氮废水的种类、氨氮含量的不同主要有物理化学法、化学法、生物法等多种处理工艺厂方[7-8]。

对于稀土企业含氨氮的废水目前尚无理想的处理工艺。

对该类废水的治理可以采用蒸发浓缩法、电渗析-蒸发浓缩法、碱性蒸氨法和化学沉淀法等。

①蒸发浓缩法:废水直接蒸发浓缩回收按盐,工艺简单,废水可以回用实现“零排放”,对各类氨氮废水均适用,但因能耗高,未见有企业应用的报道。

②电渗析一蒸发浓缩法[9]:是对蒸发浓缩法的改进,采用电渗析的方法使废水中的铰盐浓缩,处理后的废水可以直接回用,渗析得到的浓缩液经进一步蒸发浓缩回收铰盐。

该方法已完成了处理氨氮类废水G的工业实验,但该工艺对废水水质要求苛刻,对钙镁杂质较高的硫酸铵废水B不适用,且电渗析设备一次性投资高[10]。

③碱性蒸氨法:包括蒸汽吹脱法和空气吹脱法,其机理是高浓度氨氮在碱性条件下转变为游离氨,被气体由液相吹到气相而分离的方法。

蒸汽吹脱法氨氮去除效率高,可以回收氨水加以利用,空气吹脱法相对比较经济,操作方便,但氨氮去除效率比前者低,尤其是高浓度的氨氮废水不能够一次吹脱达到排放标准。

该工艺在北方地区冬季需保温厂房,增加了一次性投资。

未见工业应用报道。

④化学沉淀法:该法是上世纪90年代出现的处理氨氮废水的新方法,利用NH4+和Mg2+,PO43-在适当的pH值下可以生成MgNH4PO4沉淀而去除氨氮,经笔者对碳按沉淀工艺氯化铰废水I的研究表明,该法对氨氮的去除率可达98%以上,得到的MgNH4PO4是一种长效缓释复合肥,肥效利用率高,对作物无伤害,可做堆肥和花园土壤、也可以作为结构制品的阻燃剂或做耐火砖等。

处理后的水偏碱性,可用于酸性废水的中和、尾气喷淋吸收等。

该法对于稀土湿法冶金中产生的几类氨氮废水(硝酸铵除外)都可以适用,是一个比较好的处理方法,尚未工业应用。

另外:还有人研究了离子交换法[11],采用天然沸石做吸收剂吸附氨氮,对氨氮的去除率只有50%。

由于该法适合于低浓度的氨氮废水,对高浓度的稀土氨氮废水的处理不适用,可以作为一种辅助方法考虑使用。

稀土分离过程中草酸沉淀得到的酸性废水H,主要含 c(HCI)= 1.5~2.0 mol/L,ρ(H2C2O4)=12~15 g/L。

蔡英茂等[12]采用蒸馏冷凝、浓缩结晶的方法回收盐酸和草酸,盐酸和草酸的回收率分别为93%和98%,回收的盐酸和草酸再回用于生产中,有较好的经济效益和社会效益。

但对设备的耐腐蚀性要求比较高。

3 对稀土湿法过程中废水处理的建议稀土湿法冶金工业因生产工艺的不同、处理稀土原料的不同和产品结构的不同所产生的废水的种类是不同的,因此不可能有统一的废水处理模式,对不同的企业应该有不同的处理工艺来优化处理废水问题。

目前虽然有很多废水处理的研究和成熟的处理工艺,但大部分稀土企业只进行了部分处理,对环境造成了污染,不利于稀土工业的可持续发展,因此建议加强对稀土废水的处理:①分类治理,回收化工副产品综合利用。

②以废治废,降低成本,提高废水的回用率。

③开展清洁冶炼工艺研究,从源头解决污染问题。

参考文献:[1] 马克印,蔡隆九,聂永强,等.酸法稀土生产中酸性废水的治理及回收[J].包钢科技,1999,2:96-99.[2] 徐光宪.稀土[M].北京:冶金工业出版社,1995.[3] 刘祖文,唐敏康.采用混凝技术处理稀土冶炼废水[J」.南方冶金学院学报,2001,22(3):220-224.[4] 饶义平,杨丕坤.稀土湿法冶炼废水处理与资源化研究[J].环境科学,1999,20(4):80-82.[5] 唐文浩,饶义平,杨丕坤.湿法稀土清洁生产工艺研究[J].上海环境科学,1999,18(3):121-122.[6] 唐文浩,饶义平,刘强.稀土工业区性含氟废水处理研究[J].中国环境科学,1996,16(4):267—269.[7] 孙锦宜.含氮废水处理技术与应用[M].北京:化学工业出版社,2003.[8] 全武刚,王继江.高浓度氯氟废水治理技术[J].污染防治技术,2002,15(2):24-26.[9] 潘旗,陆晓华.电修析法处理氯化使废水的研究[J].湖北化工,2002,19(6):15—16.[10] 蔡英茂.稀土生产废水治理方案概述[J].稀土,2001 ,22(5):76—78.[11]董进忠,王利平,挂祥瑞.佛石处理稀土生产中纪氨氮废水的实验研究[J].稀土,2003,24(4):57-59.[12] 蔡英茂,张志强,王俊兰.稀土草沉废水回收利用实验[J].稀土,2002,23(l):68—70。

相关文档
最新文档