2017-2018学年江苏省苏州市昆山市八年级(下)期中数学试卷

合集下载

江苏省苏州高新区2017-2018学年八年级下期中数学试卷(含答案)-精编

江苏省苏州高新区2017-2018学年八年级下期中数学试卷(含答案)-精编

苏州高新区第二中学2017-2018学年度第二学期期中测试卷八 年 级 数 学2018年4月(满分:100分 考试时间:100分钟)一、选择题(每题2分,共20分)1.下列电视台的台标,是中心对称图形的是A .B .C .D .2.对于反比例函数xy 2=,下列说法不正确的是 A .点(21)--,在它的图像上B .它的图像在第一、三象限C .当0x >时,y 随x 的增大而增大D .当0x <时,y 随x 的增大而减小3.为了解我市老年人的健康状况,下列抽样调查最合理的是A.在公园调查部分老年人的健康状况B.在医院调查部分老年人的健康状况C.利用户籍网调查部分老年人的健康状况D.在周围邻居中调查部分老年人的健康状况 4.下列性质中,菱形具有而矩形不一定具有的是A.对角线互相平分B.对角线互相垂直C.对边平行且相等D.对角线相等 5.在反比例函数2ky x-=的图像上有两点11(,)A x y 、22(,)B x y 。

若120x x <<,12y y >,则k 取值范围是A. k>0B.2k >C.k<0D.2k <6.有三个事件,事件A :若a 、b 是实数,则+a b b a +=;事件B :打开电视正在播广告;事件C :同时掷两枚质地均匀地标有数字1-6的骰子,向上一面的点数之和是为13.这三个事件的概率分别记为()()()P A P B P C 、、,则()()()P A P B P C 、、的大小关系正确的是A .()()()P C P A PB << B .()()()P B PC P A << C .()()()P C P B P A <<D .()()()P B P A P C <<7.一次函数y ax b =+与反比例函数a by x-=,其中0,,ab a b <为常数,它们在同一坐标系中的图像可以是8.如图,在ABC ∆中,BF 平分ABC ∠,AF BF ⊥于点F ,D 为AB 的中点,连接DF 延长交AC 于点E .若AB=6,BC=10,则线段EF 的长为A. 1B.2C.2.5D. 39.如图,菱形ABCD 中,AB=4,120A ∠=︒,点P 、Q 、K 分别为线段BC 、CD 、BD 上的任意一点,则PK QK +的最小值为A.4B.3D.10.如图,在平面直角坐标系中,点(1,4)P 、(,)Q m n 在函数 的图象上,当1m >时,过点P 分别作x 轴、y 轴的垂线,垂足为点A 、B ,过点Q 分别作x 轴、y 轴的垂线,垂足为点C 、D . QD 交PA 于点E ,随着m 的增大,四边形ACQE 的面积 A.减小 B.增大 C.先减小后增大 D.先增大后减小 二、填空题(每题3分,共24分) 11.反比例函数ky x=的图像经过点(1,6)和(,3)m -,则m = . 12.为了估计暗箱里白球的数量(箱内只有白球),将5个红球放进去,随机摸出一个球,记下颜色后放回,搅匀后再摸出一个球记下颜色,多次重复后发现红球出现的频率约为0.2,那么可以估计暗箱里白球的数量大约为 个.13.如图,E 是矩形ABCD 的对角线的交点,点F 在边AE 上,且DF DC =, 若∠ADF=240,则∠EDC= °.14.已知直线y =kx(k>0)与双曲线y =3x交于A(x 1,y 1)、B(x 2,y 2)两点,则x 1y 2+x 2y 1的值为_______.15.已知菱形的周长为16cm ,两邻角的比是1:3,则菱形的面积是_______16.有五张卡片(形状、大小、质地都相同),正面分别画有下列图形:①线段;②正三角形;③平行四边形;④圆;⑤菱形.将卡片背面朝上洗匀,从中抽k y x=取一张,其正面图形既是轴对称图形,又是中心对称图形的概率是________.17.如图,一次函数y kx b =+图象与反比例函数my x=的图象都经过点(2,6)A -和点(4,)B n .则不等式mkx b x+≤的解集为 . 18.如图,在正方形ABCD 中,E 、F 分别为BC 、CD 的中点,连接AE 、BF ,将B C F ∆ 沿BF 对折,得到BPF ∆,延长FP 交BA 的延长线于点Q .给出下列结论:①AE BF =;②AE BF ⊥;③BQF ∆是等边三角形;④若正方形ABCD 的边长为3,则线段AQ 的长为34其中,正确的结论有 .(把你认为正确的结论的序号都填上) 三、解答题19.(本题7分)某校为了解“阳光体育”活动的开展情况,从全校2000名学生中,随机抽取部分学生进行问卷调查(每名学生只能填写一项自己喜欢的活动项目),并将调查结果绘制成如下两幅不完整的统计图. 根据以上信息,解答下列问题:(1)被调查的学生共有_______人,并补全条形统计图;(2)在扇形统计图中___,___m n ==,表示区域C 的圆心角为____度;(3)全校学生中喜欢篮球的人数大约有多少?20.(本题7分)已知如图,在菱形ABCD 中,对角线AC 、BD 相交于点O ,DE∥AC ,AE ∥BD .(1)求证:四边形AODE 是矩形;(2)若AB=12,∠BCD=120°,求四边形AODE 的面积.21.(本题6分)如图,在平面直角坐标系中,菱形ABCD 的顶点C 与原点O 重合,点B 在y 轴的正半轴上,点A 在反比例函数y =(k >0,x >0)的图象上,点D 的坐标为(4,3). (1)求k 的值;(2)若将菱形ABCD 沿x 轴正方向平移,当菱形的顶点D 落在函数y = (k >0,x >0)的图象上时,求菱形ABCD 沿x 轴正方向平移的距离.22.(本题7分)环保局对某企业排污情况进行检测,结果显示:所排污水中硫化物的浓度超标,即硫化物的浓度超过最高允许的1.0mg/L.环保局要求该企业立即整改,在15天以内(含15天)排污达标.整改过程中,所排污水中硫化物的浓度y(mg/L)与时间x(天)的变化规律如图所示,其中线段AB表示前3天的变化规律,从第3天起,所排污水中硫化物的浓度y与时间x成反比例关系.(1)求整改过程中硫化物的浓度y与时间x的函数表达式;(2)该企业所排污水中硫化物的浓度能否在15天以内不超过最高允许的1. 0 mg/L?为什么?23.(本题7分)如图,已知一次函数y kx b =+的图像与反比例函数my x=的图像交于点 (4,)A n 和点1(,3)3B n +,与y 轴交于点C .(1)求反比例函数和一次函数的表达式.(2)若在x 轴上有一点D ,其横坐标是1,连接AD 、CD , 求ACD∆的面积.24.(本题满分7分)己知:如图,在四边形ABCD 中,3AB CD =,//AB CD ,//CE DA ,//DF CB .(1)求证:四边形CDEF 是平行四边形; (2)填空:①当四边形ABCD 必须满足条件 时,四边形CDEF 是矩形; ②当四边形ABCD 必须满足条件 时,四边形CDEF 是菱形.25.(本题7分)如图,在平面直角坐标系中,矩形OABC 的顶点A 、C 分别在x 、y 轴的正半轴上,顶点B 的坐标为(4,2).点M 是边BC 上的一个动点(不与B 、C 重合),反比例函数ky x=(0,0)k x >>的图象经过点M 且与边AB 交于点N ,连接MN .(1)当点M 是边BC 的中点时. ①求反比例函数的表达式; ②求OMN ∆的面积;(2)在点M 的运动过程中,试证明:MBNB是一个定值.26.(本题8分)如图1,正方形ABCD 顶点A 、B 在函数y=kx(k ﹥0)的图像上,点C 、D 分别在x 轴、y 轴的正半轴上,当k 的值改变时,正方形ABCD 的大小也随之改变. (1)若点A 的横坐标为5,求点D 的纵坐标;(2)如图2,当k =2时,分别求出正方形A ′B ′C ′D ′的顶点A ′、B ′ 两点的坐标;(3)当变化的正方形ABCD 与(2)中的正方形A ′B ′C ′D ′有重叠部分时,求k 的取值范围.初二数学答案1-10. ACCBB CCBDB11. -2 12. 20 13. 57 14. -6 15. 53 17. -2≦x<0或x>4 18.④19. (1)100 (2)30 10 144 (3)800 20. (1)略 (2)363 21. (1)32 (2)320 22. (1)y=-2x+10 y=x12(2)能 23. (1)y=x4 y=-43x+4 (2) 621 24. (1)略 (2) AD=BC AD ⊥BC 25. (1)y=x4 3 (2 ) 2 26. (1)5 (2) 621。

2017-2018学年江苏省苏州市吴中区八年级(下)期中数学试卷(解析版)

2017-2018学年江苏省苏州市吴中区八年级(下)期中数学试卷(解析版)

第1页,共25页2017-2018学年江苏省苏州市吴中区八年级(下)期中数学试卷一、选择题(本大题共10小题,共30.0分)分) 1. 如图图形中,中心对称图形是(如图图形中,中心对称图形是( )A.B.C.D.2. 若分式在实数范围内有意义,则实数x 的取值范围是( )A. B. C.D.3. 下列式子为最简二次根式的是(下列式子为最简二次根式的是( )A.B.C.D.4. 一只不透明的袋子中装有一些红球和白球,这些球除颜色外都相同.将球摇匀,从中任意摸出一个球,摸到红球是(中任意摸出一个球,摸到红球是( )A. 确定事件确定事件B. 必然事件必然事件C. 不可能事件不可能事件D. 随机事件随机事件5. 今年我市有近2万名考生参加中考,为了解这些考生的数学成绩,从中抽取1000名考生的数学成绩进行统计分析,以下说法正确的是(名考生的数学成绩进行统计分析,以下说法正确的是( )A. 这1000名考生是总体的一个样本名考生是总体的一个样本B. 近2万名考生是总体万名考生是总体C. 每位考生的数学成绩是个体每位考生的数学成绩是个体D. 1000名学生是样本容量名学生是样本容量 6. 如图,在▱ABCD 中,∠ODA =90°,AC =10cm ,BD =6cm ,则AD 的长为(的长为( )A. 4 cmB. 5 cmC. 6 cmD. 8 cm7. 下列性质中,菱形具有而矩形不一定具有的是(下列性质中,菱形具有而矩形不一定具有的是( )A. 对角线互相平分对角线互相平分B. 对角线互相垂直对角线互相垂直C. 对边平行且相等对边平行且相等D. 对角线相等对角线相等8. 在反比例函数y =的图象上有两点A (x 1,y 1),B (x 2,y 2).若x 1>x 2>0时,y 1>y 2,则k 取值范围是(取值范围是( )A.B.C.D.9. 如图,矩形纸片ABCD 中,AB =6cm ,BC =8cm ,现将其沿AE 对折,使得点B 落在边AD 上的点B 1处,折痕与边BC 交于点E ,则CE 的长为(的长为( )A. 6cmB. 4cmC. 2cmD. 1cm10. 如图,在平行四边形ABCD 中,AD =2AB ,F 是AD 的中点,作CE ⊥AB ,垂足E 在线段AB 上,连接EF 、CF ,则下列结论中一定成立的是(,则下列结论中一定成立的是( )①∠DCF =∠BCD ;②EF =CF ;③S △BEC =2S △CEF ;④∠DFE =3∠AEF .A. ①②B. ②③④C. ①②④D. ①②③④二、填空题(本大题共8小题,共24.0分)分) 11. =______. 12. 当x =______时,分式的值为零.的值为零. 13. “抛掷图钉实验”的结果如下:的结果如下:抛掷次数n100 200 300 400 600 800 1000 针尖不着地的频数m 64 118 189 252 360 488 610 针尖不着地的频数0.64 0.59 0.63 0.63 0.60 0.61 0.61由表可知,“针尖不着地的”的概率的估计值是______.14. 在▱ABCD 中,∠A +∠C =220°,则∠B =______°. 15. 菱形ABCD 的对角线AC =6cm ,BD =8cm ,则菱形ABCD 的面积S =______. 16. 某物质的密度ρ(kg /m 3)关于其体积V (m 3)的函数图象如图所示,那么ρ与V 之间的函数表达式是ρ=______.17. 如图,在四边形ABCD 中,P 是对角线BD 的中点,E 、F 分别是AB 、CD 的中点,AD =BC ,∠FPE =100°,则∠PFE 的度数是______.18. 如图,正方形ABCD 的边长为4,E 为BC 上一点,BE =1,F为AB 上一点,AF =2,P 为AC 上一点,则PF +PE 的最小值为______.三、计算题(本大题共1小题,共8.0分) 19. 计算:计算:(1); (2).四、解答题(本大题共9小题,共58.0分)20. 解方程:(1) ;(2) .21. 先化简,再求值: ,其中.22. 如图所示的正方形网格中,△ABC的顶点均在格点上,请在所给直角坐标系中按要求画图(1)以A点为旋转中心,将△ABC绕点A顺时针旋转90°得△AB1C1,画出△AB1C1;(2)作出△ABC关于坐标原点O成中心对称的△A2B2C2.23. 某中学为开拓学生视野,开展“课外读书周”活动,活动后期随机调查了八年级部分学生一周的课外阅读时间,学生一周的课外阅读时间,并将结果绘制成两幅不完整的统计图,并将结果绘制成两幅不完整的统计图,并将结果绘制成两幅不完整的统计图,请你根据统计图请你根据统计图的信息回答下列问题:的信息回答下列问题:(1)请你补全条形统计图;(2)在扇形统计图中,课外阅读时间为5小时的扇形的圆心角度数是______度; (3)若全校八年级共有学生900人,估计八年级一周课外阅读时间为6小时的学生有多少人?生有多少人? 24. 星期天,小明和小芳从同一小区门口同时出发,沿同一路线去离该小区1800米的少年宫参加活动,为响应“节能环保,绿色出行”的号召,两人都步行,已知小明的速度是小芳的速度的1.2倍,结果小明比小芳早6分钟到达,求小芳的速度.25. 已知:如图,在矩形ABCD 中,M ,N 分别是边AD ,BC的中点,E ,F 分别是线段BM ,CM 的中点. (1)求证:△ABM ≌△DCM ;(2)判断四边形MENF 是什么特殊四边形,并证明你的结论;结论;(3)当四边形MENF 是正方形时,求AD :AB 的值.26. 如图,在平面直角坐标系xOy中,直线y=x-2与y轴相交于点A,与反比例函数y=在第一象限内的图象相交于点B(m,2).(1)求该反比例函数关系式;(2)当1≤x≤4时,求y=的函数值的取值范围;(3)将直线y=x-2向上平移后与反比例函数在第一象限内的图象相交于点C,且△ABC的面积为18,求平移后的直线的函数关系式.27. 我们宅义:有一组对角相等而另一组对角不相等的凸四边形叫做等对角四边形.有一组对角相等而另一组对角不相等的凸四边形叫做等对角四边形.请请解决下列问题:(1)已知:如图1,四边形ABCD是等对角四边形,∠A≠∠C,∠A=60°,∠B=75°,则:∠C=______°,∠D=______°;4×44的正方形网格,线段AB,BC的端点均在网点上.按要(2)图①、图②均为4×求在图①、图②中以AB和BC为边各画一个等对角四边形ABCD.(要求:四边形ABCD的顶点D在格点上,所画的两个四边形不全等)(3)已知:在等对角四边形ABCD中,∠DAB=60°,∠ABC=90°,AB=2,CD=1,求BC的长.(在直角三角形中,30°角所对直角边等于斜边的一半).28. 如图1,已知直线y =2x 分别与双曲线y =,y =交于第一象限内P ,Q 两点,且OQ =PQ .(1)则P 点坐标是______;k =______.(2)如图2,若点A 是双曲线y =在第一象限图象上的动点,AB ∥x 轴,AC ∥y 轴,分别交双曲线y =于点B ,C ;①连接BC ,请你探索在点A 运动过程中,△ABC 的面积是否变化,若不变,请求出△ABC 的面积;若改变,请说明理由;②若点D 是直线y =2x 上的一点,请你进一步探索在点A 运动过程中,以点A ,B ,C ,D 为顶点的四边形能否为平行四边形?若能,求出此时点A 的坐标;若不能,请说明理由.答案和解析1.【答案】C【解析】解:A、不是中心对称图形,不符合题意;B、不是中心对称图形,不符合题意;C、是中心对称图形,符合题意;D、不是中心对称图形,不符合题意.故选:C.根据中心对称图形的概念即可求解.本题考查了中心对称图形,掌握好中心对称图形,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.【答案】D【解析】解:∵代数式在实数范围内有意义,∴x+2≠0,x≠-2-2.解得:x≠故选:D.直接利用分式有意义的条件分析得出答案.此题主要考查了分式有意义的条件,正确把握定义是解题关键.3.【答案】A【解析】解:A、符合最简二次根式的定义,故本选项正确;B、被开方数4=22,即被开方数含能开得尽方的因数,不是最简二次根式,故本选项错误;8=2×222,即被开方数含能开得尽方的因数,不是最简二次根式,C、被开方数8=2×故本选项错误;D、被开方数含有分母,不是最简二次根式,故本选项错误;故选:A.判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是. 本题考查最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.4.【答案】D【解析】解:一只不透明的袋子中装有一些红球和白球,这些球除颜色外都相同.将球摇匀,从中任意摸出一个球,摸到红球是随机事件,故选:D.根据事件发生的可能性大小判断相应事件的类型即可.本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.5.【答案】C【解析】解:A、这1000名考生的数学成绩是总体的一个样本,故此选项错误;B、近2万名考生的数学成绩是总体,故此选项错误;C、每位考生的数学成绩是个体,故此选项正确;D、1000是样本容量,故此选项错误;故选:C.根据总体、个体、样本、样本容量的定义对各选项判断即可.本题考查了总体、个体、样本和样本容量的知识,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.6.【答案】A【解析】解:∵四边形ABCD是平行四边形,AC=10cm,BD=6cm∴OA=OC=AC=5cm,OB=OD=BD=3cm,∵∠ODA=90°,∴AD==4cm.故选:A.由平行四边形ABCD,根据平行四边形的对角线互相平分,可得OA=OC,OB=OD,又由∠ODA=90°,根据勾股定理,即可求得AD的长.此题考查了平行四边形的性质:平行四边形的对角线互相平分,解题时还要注意勾股定理的应用.7.【答案】B【解析】解:A、对角线互相平分,菱形和矩形都具有;B、对角线互相垂直是菱形具有而矩形不一定具有的性质;C、对边平行且相等,菱形和矩形都具有;D、对角线相等,菱形不一定具有的性质;故选:B.菱形的性质有:四边形相等,两组对边分别平行,对角相等,邻角互补,对角线互相垂直且平分,且每一组对角线平分一组对角.矩形的性质有:两组对边分别相等,两组对边分别平行,四个内角都是直角,对角线相等且平分.本题考查菱形与矩形的性质,需要同学们对各种平行四边形的性质熟练掌握并区分.8.【答案】D【解析】解:∵x1>x2>0时,y1>y2,∴k-2<0,∴k<2,故选:D.根据题意可得在图象的每一支上y随x的增大而增大,因此k-2<0,再解即可. 此题主要噢反比例函数图象上点的坐标特点,以及反比例函数的性质,关键是掌握反比例函数y=(k≠0)的性质,当k<0时,在图象的每一支上y随x的增大而增大.9.【答案】C【解析】【分析】本题考查了矩形的性质,正方形的判定与性质,翻折变换的性质,判断出四边形ABEB1是正方形是解题的关键.根据翻折的性质可得∠B=∠AB1E=90°,AB=AB1,然后求出四边形ABEB1是正方形,再根据正方形的性质可得BE=AB,然后根据CE=BC-BE,代入数据进行计算即可得解.【解答】解:∵沿AE对折点B落在边AD上的点B1处,∴∠B=∠AB1E=90°,AB=AB1,又∵∠BAD=90°,∴四边形ABEB1是正方形,∴BE=AB=6cm,∴CE=BC-BE=8-6=2cm.故选:C.10.【答案】C【解析】解:①∵F是AD的中点,∴AF=FD,∵在▱ABCD中,AD=2AB,∴AF=FD=CD,∴∠DFC=∠DCF,∵AD∥BC,∴∠DFC=∠FCB,∴∠DCF=∠BCF,∴∠DCF=∠BCD,故此选项正确;②延长EF,交CD延长线于M,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠A=∠MDF,∵F 为AD 中点,∴AF=FD ,在△AEF 和△DFM 中,,∴△AEF ≌△DMF (ASA ), ∴FE=MF ,∠AEF=∠M , ∵CE ⊥AB ,∴∠AEC=90°,∴∠AEC=∠ECD=90°,∵FM=EF ,∴FC=FM ,故②正确; ③∵EF=FM ,∴S △EFC =S △CFM ,∵MC >BE ,∴S △BEC <2S △EFC故S △BEC =2S △CEF 错误;④设∠FEC=x ,则∠FCE=x ,∴∠DCF=∠DFC=90°DFC=90°-x -x ,∴∠EFC=180°EFC=180°-2x -2x ,∴∠EFD=90°EFD=90°-x+180°-x+180°-x+180°-2x=270°-2x=270°-2x=270°-3x -3x ,∵∠AEF=90°AEF=90°-x -x ,∴∠DFE=3∠AEF ,故此选项正确.故选:C .由在平行四边形ABCD 中,AD=2AB ,F 是AD 的中点,易得AF=FD=CD ,继而证得①∠DCF=∠BCD ;然后延长EF ,交CD 延长线于M ,分别利用平行四边形的性质以及全等三角形的判定与性质得出△AEF ≌△DMF (ASA ),得出对应线段之间关系进而得出答案.此题主要考查了平行四边形的性质以及全等三角形的判定与性质等知识,得出△AEF ≌△DME 是解题关键.11.【答案】2【解析】解:∵222=4,∴=2.故答案为:2如果一个数x的平方等于a,那么x是a的算术平方根,由此即可求解.此题主要考查了学生开平方的运算能力,比较简单.12.【答案】1【解析】解:根据题意,得x-1=0,x2+1≠0,解得x=1.故答案为:1.根据分式的值等于0,分子等于0,分母不等于0列式求解即可.本题考查了分式的值为0的条件,分子等于0,分母不等于0时,分式的值为0,特别注意,分母不等于0不能忘.13.【答案】0.61【解析】解:由表可知,随着抛掷次数的增加,频率逐渐稳定在0.61附近,∴“针尖不着地的”的概率的估计值是0.61,故答案为:0.61.由表中数据可判断频率在0.61左右摆动,于是利于频率估计概率即可判断. 本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确. 14.【答案】70【解析】【分析】本题考查了平行四边形的性质;熟练掌握平行四边形的对角相等,邻角互补是解决问题的关键.由平行四边形的性质得出∠A=∠C,∠A+∠B=180°,再由已知条件求出∠A,即可得出∠B.【解答】解:∵四边形ABCD是平行四边形,∴∠A=∠C,∠A+∠B=180°,∵∠A+∠C=220°,∴∠A=110°,∴∠B=70°.故答案为70.15.【答案】24cm2【解析】解:∵菱形ABCD的对角线AC=6cm,BD=8cm,∴菱形ABCD的面积为:AC•BD=×6×6×8=24cm8=24cm2.故答案为:24cm2.由菱形ABCD的对角线AC=6cm,BD=8cm,根据菱形的面积等于其对角线积的一半,即可求得菱形ABCD的面积.此题考查了菱形的性质.解此题的关键是掌握菱形的面积等于其对角线积的一半定理的应用.16.【答案】【解析】解:设物质的密度p(kg/m3)关于其体积V(m3)的函数关系式为p=,∵函数图象经过(6,2),∴k=6×2=12,k=6×2=12∴p=,故答案为:.根据图象可得物质的密度p(kg/m33)关于其体积V(m33)的函数关系式为反比例函数形式,设p=,再把(6,2)代入函数关系式可得k的值,进而得到反比函数关系式.此题主要考查了用待定系数法求反比例函数的解析式,关键是掌握步骤: (1)设出含有待定系数的反比例函数解析式y=(k为常数,k≠0);(2)把已知条件(自变量与函数的对应值)代入解析式,得到待定系数的方程; (3)解方程,求出待定系数; (4)写出解析式.17.【答案】40°【解析】解:∵P 是对角线BD 的中点,E 是AB 的中点,∴EP=AD ,同理,FP=BC ,∵AD=BC ,∴PE=PF , ∵∠FPE=100°,∴∠PFE=40°,故答案为:40°.根据三角形中位线定理得到EP=AD ,FP=BC ,得到PE=PF ,根据等腰三角形的性质、三角形内角和定理计算即可.本题考查的是三角形中位线定理的应用,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.18.【答案】【解析】解:作E 关于直线AC 的对称点E′,连接E′F ,则E′F 即为所求,过F 作FG ⊥CD 于G ,在Rt △E′FG 中,GE′=CD GE′=CD-BE-BF=4-1-2=1-BE-BF=4-1-2=1,GF=4,所以E′F=.故答案为:. 作E 关于直线AC 的对称点E′,连接E′F ,则E′F 即为所求,过F 作FG ⊥CD 于G ,在Rt △E′FG 中,利用勾股定理即可求出E′F 的长.本题考查的是最短线路问题,熟知两点之间线段最短是解答此题的关键.19.【答案】解:(1)原式=1+2 -1=2;(2)原式= -= -= .【解析】(1)先计算绝对值、化简二次根式、零指数幂,再计算加减可得; (2)先约分,再根据分式的减法法则计算可得.本题主要考查实数和分式的混合运算,解题的关键是掌握实数和分式的混合运算顺序和运算法则.20.【答案】解:(1) ;x -5=2x -5,x -2x =-5+5,x =0,经检验:当x =0时,2x -5=--5=-5≠05≠0, 故原方程的解是x =0;(2), (x +1)(x +2)=x (x -2),x 2+3x +2=x 2-2x ,5x =-2,x =-, 经检验:当x =-时,(x +1)(x -2)≠0,故原方程的解是x =- .【解析】(1)①去分母;②求出整式方程的解;③检验;④得出结论.(2)①去分母;②求出整式方程的解;③检验;④得出结论.考查了解分式方程,解分式方程时,去分母后所得整式方程的解有可能使原方程中的分母为0,所以应如下检验:①将整式方程的解代入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解.②将整式方程的解代入最简公分母,如果最简公分母的值为0,则整式方程的解不是原分式方程的解.所以解分式方程时,一定要检验.21.【答案】解:当a=时,原式=÷=•=-==【解析】根据分式的运算法则即可求出答案.本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.22.【答案】解:(1)△AB 1C 1如图所示;如图所示;(2)△A 2B 2C 2如图所示.【解析】(1)依据△ABC绕点A顺时针旋转90°,即可得到△AB1C1;(2)依据中心对称的性质进行作图,即可得到△ABC关于坐标原点O成中心对称的△A2B2C2.本题主要考查了利用旋转变换进行作图,解题时注意:旋转作图有自己独特的特点,决定图形位置的因素有旋转角度、旋转方向、旋转中心,任意不同,位置就不同,但得到的图形全等.23.【答案】144【解析】解:(1)∵本次调查的学生总数为=50人,∴课外阅读4小时的人数是32%×32%×50=1650=16,∴男生人数=16-8=8(人);∴课外阅读6小时的男生人数=50-6-4-8-8-8-12-3=1(人),如图所示.(2)∵课外阅读5小时的人数是20人,∴×360°=144°.360°=144°故答案为:144;(3)900×=72(人),答:估计八年级一周课外阅读时间为6小时的学生有72人.(1)根据统计图可知,课外阅读达3小时的共10人,占总人数的20%,由此可得出总人数;求出课外阅读时间4小时与6小时男生的人数,补全条形统计图即可;(2)求出课外阅读时间为5小时的人数,再求出其人数与总人数的比值即可得出扇形的圆心角度数;(3)求出总人数与课外阅读时间为6小时的学生人数的百分比的积即可.本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.24.【答案】解:设小芳的速度是x米/分钟,则小明的速度是1.2x米/分钟,根据题意得:-=6,解得:x=50,经检验x=50是原方程的解,答:小芳的速度是50米/分钟.【解析】设小芳的速度是x米/分钟,则小明的速度是1.2x米/分钟,根据路程÷速度=时间,列出方程,再求解即可.此题主要考查了分式方程的应用,掌握行程问题中速度、时间和路程的关系:速度×时间=路程,路程÷时间=速度,路程÷速度=时间是解题的关键.25.【答案】(1)证明:∵四边形ABCD是矩形,∴AB=CD,∠A=∠D=90°,又∵M是AD的中点,∴AM=DM.在△ABM和△DCM中,,∴△ABM≌△DCM;(2)解:四边形MENF是菱形.∵E,F,N分别是BM,CM,CB的中点,的中点, ∴NE∥MF,NE=MF,∴四边形MENF是平行四边形.由(1),得BM=CM,∴ME=MF,∴四边形MENF是菱形;是菱形;(3)解:∵四边形MENF是正方形.∴EN=NF,NE⊥BM,NF⊥MC,又∵N 是BC 的中点,∴BN =NC ,在Rt △BEN 和Rt △CFN 中,中,,∴Rt △BEN ≌Rt △CFN ,∴∠ENB =∠FNC =45°,∴∠ABM =45°∴AB =AM ,又∵M 是AD 的中点,∴AD :AB =2.【解析】(1)根据矩形的性质得到AB=CD ,∠A=∠D=90°,利用SAS 定理证明△ABM ≌△DCM ;(2)证明ME=MF ,根据邻边相等的平行四边形是菱形证明;(3)证明Rt △BEN ≌Rt △CFN ,得到∠ENB=∠FNC=45°,∠ABM=45°,得到AB=AM ,计算即可.本题考查的是正方形的性质、全等三角形的判定和性质,掌握正方形的四条边相等、对角线互相垂直平分是解题的关键.26.【答案】解:(1)把B (m ,2)代入y =x -2得:m -2=2,解得:m =4,所以B (4,2),把B 点坐标代入y =得:k =8, 所以反比例函数关系式是y =;(2)把x =1代入y = 得:y =8, 把x =4代入y =得:y =2,由图象可知:当1≤x ≤4时,y = 的函数值的取值范围是2≤y ≤8;(3)过点C 作CD ∥y 轴,交线段AB 与点D ,设平移后的直线的解析式是y =x +b ,∵点C 在直线y =x +b 上,D 在直线y =x -2上,∴可设C (t ,t +b ),则D (t ,t -2),则CD =(t +b )-(t -2)=b +2,∵S △ABC =S △ACD +S △ADB , ∴18=(b +2)×4,解得:b =7,∴平移后的直线的函数关系式是y =x +7.【解析】(1)先求出B 点的坐标,即可求出答案;(2)分别把x=1和x=4代入函数解析式,求出对应的y 值,即可得出答案; (3)先设出C 、D 的坐标,求出CD ,再根据三角形面积公式求出b 值,即可求出答案.本题考查了三角形的面积,平移的性质,用待定系数法求出反比例函数的解析式和函数图象上点的坐标特征等知识点,能综合运用知识点进行计算是解此题的关键.27.【答案】150;75【解析】(1)解:∵四边形ABCD 是“等对角四边形”,∠A≠∠C ,∠A=60°,∠B=75°,∴∠D=∠B=75°,∴∠C=360°C=360°-75°-75°-75°-75°-75°-75°-60°-60°-60°=150°=150°;故答案为150,75.(2)如图所示:(3)解:分两种情况:①当∠ADC=∠ABC=90°时,延长AD ,BC 相交于点E ,如图3所示: ∵∠ABC=90°,∠DAB=60°,AB=5,∴∠E=30°,∴AE=2AB=4,BE=2 ∵∠EDC=90°,∠E=30°,CD=1∴CE=2CD=2,∴BC=BE-CE=2-2.②当∠BCD=∠DAB=60°时,过点D 作DM ⊥AB 于点M ,DN ⊥BC 于点N ,如图4所示:则∠AMD=90°,四边形BNDM 是矩形,在Rt △CDN 中,∵CD=1,∠CDN=30°,∴CN=CD=,DN=CN=,在Rt△ADM中,DM=AM=(2-)=2-,∴BN=DM=2-,∴BC=CN+BN=2-1,综上所述:BC的长为2-2或2-1.(1)根据四边形ABCD是“等对角四边形”得出∠D=∠B=75°,根据多边形内角和定理求出∠C即可;(2)根据等对角四边形的定义画出图形即可求解;(3)分两种情况:①当∠ADC=∠ABC=90°时,延长AD,BC相交于点E,先用含30°角的直角三角形的性质求出BE,再用三角函数求出CE即可解决问题;②当∠BCD=∠DAB=60°时,过点D作DM⊥AB于点M,DN⊥BC于点N,则∠AMD=90°,四边形BNDM是矩形,解直角三角形即可解决问题;本题是四边形综合题目,考查了新定义、四边形内角和定理、等腰三角形的判定与性质、勾股定理、三角函数、矩形的判定与性质等知识;本题难度较大,综合性强,特别是(3)中,需要进行分类讨论,通过作辅助线运用三角函数和勾股定理才能得出结果.28.【答案】(2,4);2【解析】解:(1)过点Q作QE⊥x轴,垂足为E,过点P作PF⊥x轴,垂足为F,如图1,联立,解得:或.∵x>0,∴点P的坐标为(2,4).∴OF=2,PF=4.∵QE⊥x轴,PF⊥x轴,∴QE∥PF.∴△OEQ∽△OFP.∴==.∵OQ=PQ∴OF=2OE=2,PF=2EQ=4.∴OE=1,EQ=2.∴点Q的坐标为(1,2).∵点Q(1,2)在双曲线y=上,∴k=1×2=2.k=1×2=2∴k的值为2.故答案为(2,4),2.(2)①如图2,设点A的坐标为(a,b),∵点A(a,b)在双曲线y=上,∴b=.∵.AB∥x轴,AC∥y轴,∴x C=x A=a,y B=y A=b=.∵点B、C在双曲线y=上,∴x B==,y C=.∴点B的坐标为(,),点C的坐标为(a,).∴AB=a-=,AC=-=.∴S△ABC=•AB•AC=××=.∴在点A运动过程中,△ABC的面积不变,始终等于. ②当AC为平行四边形的一边,Ⅰ.当点B在点Q的右边时,如图3,∵四边形ACBD是平行四边形,∴AC∥BD,AC=BD.∴xD =xB=.∴y D=2x D=.∴DB=-.∵AC=-=,∴=-.解得:a=±a=±22.经检验:a=±a=±22是该方程的解.∵a>0,∴a=2.∴b==.∴点A的坐标为(2,).Ⅱ.当点B在点Q的左边且点C在点Q的右边时,如图4, ∵四边形ACDB是平行四边形,∴AC∥BD,AC=BD.∴x D=x B=a.∴y D=2x D=.∴DB=-.∵AC=,∴=-,解得:a=±a=±22.经检验:a=±a=±22是该方程的解.∵a>0,∴a=2.∴b==4.∴点A的坐标为(2,4).当AC为平行四边形的对角线,此时点B、点C都在点Q的左边,如图5,∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD.∴y D=y C=.∴x D==.∴CD=-a.∵AB=a-=,∴=-a.解得:a=±.经检验:a=±是该方程的解.∵a>0,∴a=.∴b==4.∴点A的坐标为(,4).综上所述:当点A、B、C、D为顶点的四边形为平行四边形时,此时点A的坐标为(2,)或(2,4)或(,4).(1)先求出点P的坐标,再从条件OQ=PQ出发,构造相似三角形,求出点Q的坐标,就可求出k的值.(2)①设点A的坐标为(a,b),易得b=,结合条件可用a的代数式表示点B、点C的坐标,进而表示出线段AB、AC的长,就可算出△BAC的面积是一个定值.②以点A、B、C、D为顶点的四边形为平行四边形可分成两类:当AC为平行四边形的一边,当AC为平行四边形的对角线;然后利用平行四边形的性质建立关于a的方程,即可求出a的值,从而求出点A的坐标.本题考查了反比例函数图象与一次函数图象的交点、用待定系数法求反比例函数的解析式、相似三角形的判定与性质、解分式方程等知识,还考查了分类讨论的思想,有一定的综合性.。

2017-2018学年江苏省苏州市吴中区八年级(下)期中数学试卷(解析版)

2017-2018学年江苏省苏州市吴中区八年级(下)期中数学试卷(解析版)

2017-2018学年江苏省苏州市吴中区八年级(下)期中数学试卷一、选择题(本大题共10小题,共30.0分)1.如图图形中,中心对称图形是()A. B. C. D.2.若分式在实数范围内有意义,则实数x的取值范围是()A. B. C. D.3.下列式子为最简二次根式的是()A. B. C. D.4.一只不透明的袋子中装有一些红球和白球,这些球除颜色外都相同.将球摇匀,从中任意摸出一个球,摸到红球是()A. 确定事件B. 必然事件C. 不可能事件D. 随机事件5.今年我市有近2万名考生参加中考,为了解这些考生的数学成绩,从中抽取1000名考生的数学成绩进行统计分析,以下说法正确的是()A. 这1000名考生是总体的一个样本B. 近2万名考生是总体C. 每位考生的数学成绩是个体D. 1000名学生是样本容量6.如图,在▱ABCD中,∠ODA=90°,AC=10cm,BD=6cm,则AD的长为()A. 4 cmB. 5 cmC. 6 cmD. 8 cm7.下列性质中,菱形具有而矩形不一定具有的是()A. 对角线互相平分B. 对角线互相垂直C. 对边平行且相等D. 对角线相等8.在反比例函数y=的图象上有两点A(x1,y1),B(x2,y2).若x1>x2>0时,y1>y2,则k取值范围是()A. B. C. D.9.如图,矩形纸片ABCD中,AB=6cm,BC=8cm,现将其沿AE对折,使得点B落在边AD上的点B1处,折痕与边BC交于点E,则CE的长为()A. 6cmB. 4cmC. 2cmD. 1cm10.如图,在平行四边形ABCD中,AD=2AB,F是AD的中点,作CE⊥AB,垂足E在线段AB上,连接EF、CF,则下列结论中一定成立的是()①∠DCF=∠BCD;②EF=CF;③S△BEC=2S△CEF;④∠DFE=3∠AEF.A. ①②B. ②③④C. ①②④D. ①②③④二、填空题(本大题共8小题,共24.0分)11.=______.12.当x=______时,分式的值为零.13.由表可知,针尖不着地的的概率的估计值是.14.在▱ABCD中,∠A+∠C=220°,则∠B=______°.15.菱形ABCD的对角线AC=6cm,BD=8cm,则菱形ABCD的面积S=______.16.某物质的密度ρ(kg/m3)关于其体积V(m3)的函数图象如图所示,那么ρ与V之间的函数表达式是ρ=______.17.如图,在四边形ABCD中,P是对角线BD的中点,E、F分别是AB、CD的中点,AD=BC,∠FPE=100°,则∠PFE的度数是______.18.如图,正方形ABCD的边长为4,E为BC上一点,BE=1,F为AB上一点,AF=2,P为AC上一点,则PF+PE的最小值为______.三、计算题(本大题共1小题,共8.0分)19.计算:(1);(2).四、解答题(本大题共9小题,共58.0分)20.解方程:(1);(2).21.先化简,再求值:,其中.22.如图所示的正方形网格中,△ABC的顶点均在格点上,请在所给直角坐标系中按要求画图(1)以A点为旋转中心,将△ABC绕点A顺时针旋转90°得△AB1C1,画出△AB1C1;(2)作出△ABC关于坐标原点O成中心对称的△A2B2C2.23.某中学为开拓学生视野,开展“课外读书周”活动,活动后期随机调查了八年级部分学生一周的课外阅读时间,并将结果绘制成两幅不完整的统计图,请你根据统计图的信息回答下列问题:(1)请你补全条形统计图;(2)在扇形统计图中,课外阅读时间为5小时的扇形的圆心角度数是______度;(3)若全校八年级共有学生900人,估计八年级一周课外阅读时间为6小时的学生有多少人?24.星期天,小明和小芳从同一小区门口同时出发,沿同一路线去离该小区1800米的少年宫参加活动,为响应“节能环保,绿色出行”的号召,两人都步行,已知小明的速度是小芳的速度的1.2倍,结果小明比小芳早6分钟到达,求小芳的速度.25.已知:如图,在矩形ABCD中,M,N分别是边AD,BC的中点,E,F分别是线段BM,CM的中点.(1)求证:△ABM≌△DCM;(2)判断四边形MENF是什么特殊四边形,并证明你的结论;(3)当四边形MENF是正方形时,求AD:AB的值.26.如图,在平面直角坐标系xOy中,直线y=x-2与y轴相交于点A,与反比例函数y=在第一象限内的图象相交于点B(m,2).(1)求该反比例函数关系式;(2)当1≤x≤4时,求y=的函数值的取值范围;(3)将直线y=x-2向上平移后与反比例函数在第一象限内的图象相交于点C,且△ABC的面积为18,求平移后的直线的函数关系式.27.我们宅义:有一组对角相等而另一组对角不相等的凸四边形叫做等对角四边形.请解决下列问题:(1)已知:如图1,四边形ABCD是等对角四边形,∠A≠∠C,∠A=60°,∠B=75°,则:∠C=______°,∠D=______°;(2)图①、图②均为4×4的正方形网格,线段AB,BC的端点均在网点上.按要求在图①、图②中以AB和BC为边各画一个等对角四边形ABCD.(要求:四边形ABCD的顶点D在格点上,所画的两个四边形不全等)(3)已知:在等对角四边形ABCD中,∠DAB=60°,∠ABC=90°,AB=2,CD=1,求BC的长.(在直角三角形中,30°角所对直角边等于斜边的一半).28.如图1,已知直线y=2x分别与双曲线y=,y=交于第一象限内P,Q两点,且OQ=PQ.(1)则P点坐标是______;k=______.(2)如图2,若点A是双曲线y=在第一象限图象上的动点,AB∥x轴,AC∥y轴,分别交双曲线y=于点B,C;①连接BC,请你探索在点A运动过程中,△ABC的面积是否变化,若不变,请求出△ABC的面积;若改变,请说明理由;②若点D是直线y=2x上的一点,请你进一步探索在点A运动过程中,以点A,B,C,D为顶点的四边形能否为平行四边形?若能,求出此时点A的坐标;若不能,请说明理由.答案和解析1.【答案】C【解析】解:A、不是中心对称图形,不符合题意;B、不是中心对称图形,不符合题意;C、是中心对称图形,符合题意;D、不是中心对称图形,不符合题意.故选:C.根据中心对称图形的概念即可求解.本题考查了中心对称图形,掌握好中心对称图形,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.【答案】D【解析】解:∵代数式在实数范围内有意义,∴x+2≠0,解得:x≠-2.故选:D.直接利用分式有意义的条件分析得出答案.此题主要考查了分式有意义的条件,正确把握定义是解题关键.3.【答案】A【解析】解:A、符合最简二次根式的定义,故本选项正确;B、被开方数4=22,即被开方数含能开得尽方的因数,不是最简二次根式,故本选项错误;C、被开方数8=2×22,即被开方数含能开得尽方的因数,不是最简二次根式,故本选项错误;D、被开方数含有分母,不是最简二次根式,故本选项错误;故选:A.判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.本题考查最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.4.【答案】D【解析】解:一只不透明的袋子中装有一些红球和白球,这些球除颜色外都相同.将球摇匀,从中任意摸出一个球,摸到红球是随机事件,故选:D.根据事件发生的可能性大小判断相应事件的类型即可.本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.5.【答案】C【解析】解:A、这1000名考生的数学成绩是总体的一个样本,故此选项错误;B、近2万名考生的数学成绩是总体,故此选项错误;C、每位考生的数学成绩是个体,故此选项正确;D、1000是样本容量,故此选项错误;故选:C.根据总体、个体、样本、样本容量的定义对各选项判断即可.本题考查了总体、个体、样本和样本容量的知识,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.6.【答案】A【解析】解:∵四边形ABCD是平行四边形,AC=10cm,BD=6cm∴OA=OC=AC=5cm,OB=OD=BD=3cm,∵∠ODA=90°,∴AD==4cm.故选:A.由平行四边形ABCD,根据平行四边形的对角线互相平分,可得OA=OC,OB=OD,又由∠ODA=90°,根据勾股定理,即可求得AD的长.此题考查了平行四边形的性质:平行四边形的对角线互相平分,解题时还要注意勾股定理的应用.7.【答案】B【解析】解:A、对角线互相平分,菱形和矩形都具有;B、对角线互相垂直是菱形具有而矩形不一定具有的性质;C、对边平行且相等,菱形和矩形都具有;D、对角线相等,菱形不一定具有的性质;故选:B.菱形的性质有:四边形相等,两组对边分别平行,对角相等,邻角互补,对角线互相垂直且平分,且每一组对角线平分一组对角.矩形的性质有:两组对边分别相等,两组对边分别平行,四个内角都是直角,对角线相等且平分.本题考查菱形与矩形的性质,需要同学们对各种平行四边形的性质熟练掌握并区分.8.【答案】D【解析】解:∵x1>x2>0时,y1>y2,∴k-2<0,∴k<2,故选:D.根据题意可得在图象的每一支上y随x的增大而增大,因此k-2<0,再解即可.此题主要噢反比例函数图象上点的坐标特点,以及反比例函数的性质,关键是掌握反比例函数y=(k≠0)的性质,当k<0时,在图象的每一支上y随x的增大而增大.9.【答案】C【解析】【分析】本题考查了矩形的性质,正方形的判定与性质,翻折变换的性质,判断出四边形ABEB1是正方形是解题的关键.根据翻折的性质可得∠B=∠AB1E=90°,AB=AB1,然后求出四边形ABEB1是正方形,再根据正方形的性质可得BE=AB,然后根据CE=BC-BE,代入数据进行计算即可得解.【解答】解:∵沿AE对折点B落在边AD上的点B1处,∴∠B=∠AB1E=90°,AB=AB1,又∵∠BAD=90°,∴四边形ABEB1是正方形,∴BE=AB=6cm,∴CE=BC-BE=8-6=2cm.故选:C.10.【答案】C【解析】解:①∵F是AD的中点,∴AF=FD,∵在▱ABCD中,AD=2AB,∴AF=FD=CD,∴∠DFC=∠DCF,∵AD∥BC,∴∠DFC=∠FCB,∴∠DCF=∠BCF,∴∠DCF=∠BCD,故此选项正确;②延长EF,交CD延长线于M,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠A=∠MDF,∵F为AD中点,∴AF=FD,在△AEF和△DFM中,,∴△AEF≌△DMF(ASA),∴FE=MF,∠AEF=∠M,∵CE⊥AB,∴∠AEC=90°,∴∠AEC=∠ECD=90°,∵FM=EF,∴FC=FM,故②正确;③∵EF=FM,∴S△EFC=S△CFM,∵MC>BE,∴S△BEC<2S△EFC故S△BEC=2S△CEF错误;④设∠FEC=x,则∠FCE=x,∴∠DCF=∠DFC=90°-x,∴∠EFC=180°-2x,∴∠EFD=90°-x+180°-2x=270°-3x,∵∠AEF=90°-x,∴∠DFE=3∠AEF,故此选项正确.故选:C.由在平行四边形ABCD中,AD=2AB,F是AD的中点,易得AF=FD=CD,继而证得①∠DCF=∠BCD;然后延长EF,交CD延长线于M,分别利用平行四边形的性质以及全等三角形的判定与性质得出△AEF≌△DMF(ASA),得出对应线段之间关系进而得出答案.此题主要考查了平行四边形的性质以及全等三角形的判定与性质等知识,得出△AEF≌△DME是解题关键.11.【答案】2【解析】解:∵22=4,∴=2.故答案为:2如果一个数x的平方等于a,那么x是a的算术平方根,由此即可求解.此题主要考查了学生开平方的运算能力,比较简单.12.【答案】1【解析】解:根据题意,得x-1=0,x2+1≠0,解得x=1.故答案为:1.根据分式的值等于0,分子等于0,分母不等于0列式求解即可.本题考查了分式的值为0的条件,分子等于0,分母不等于0时,分式的值为0,特别注意,分母不等于0不能忘.13.【答案】0.61【解析】解:由表可知,随着抛掷次数的增加,频率逐渐稳定在0.61附近,∴“针尖不着地的”的概率的估计值是0.61,故答案为:0.61.由表中数据可判断频率在0.61左右摆动,于是利于频率估计概率即可判断.本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.14.【答案】70【解析】【分析】本题考查了平行四边形的性质;熟练掌握平行四边形的对角相等,邻角互补是解决问题的关键.由平行四边形的性质得出∠A=∠C,∠A+∠B=180°,再由已知条件求出∠A,即可得出∠B.【解答】解:∵四边形ABCD是平行四边形,∴∠A=∠C,∠A+∠B=180°,∵∠A+∠C=220°,∴∠A=110°,∴∠B=70°.故答案为70.15.【答案】24cm2【解析】解:∵菱形ABCD的对角线AC=6cm,BD=8cm,∴菱形ABCD的面积为:AC•BD=×6×8=24cm2.故答案为:24cm2.由菱形ABCD的对角线AC=6cm,BD=8cm,根据菱形的面积等于其对角线积的一半,即可求得菱形ABCD的面积.此题考查了菱形的性质.解此题的关键是掌握菱形的面积等于其对角线积的一半定理的应用.16.【答案】【解析】解:设物质的密度p(kg/m3)关于其体积V(m3)的函数关系式为p=,∵函数图象经过(6,2),∴k=6×2=12,∴p=,故答案为:.根据图象可得物质的密度p(kg/m3)关于其体积V(m3)的函数关系式为反比例函数形式,设p=,再把(6,2)代入函数关系式可得k的值,进而得到反比函数关系式.此题主要考查了用待定系数法求反比例函数的解析式,关键是掌握步骤:(1)设出含有待定系数的反比例函数解析式y=(k为常数,k≠0);(2)把已知条件(自变量与函数的对应值)代入解析式,得到待定系数的方程;(3)解方程,求出待定系数;(4)写出解析式.17.【答案】40°【解析】解:∵P是对角线BD的中点,E是AB的中点,∴EP=AD,同理,FP=BC,∵AD=BC,∴PE=PF,∵∠FPE=100°,∴∠PFE=40°,故答案为:40°.根据三角形中位线定理得到EP=AD,FP=BC,得到PE=PF,根据等腰三角形的性质、三角形内角和定理计算即可.本题考查的是三角形中位线定理的应用,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.18.【答案】【解析】解:作E关于直线AC的对称点E′,连接E′F,则E′F即为所求,过F作FG⊥CD于G,在Rt△E′FG中,GE′=CD-BE-BF=4-1-2=1,GF=4,所以E′F=.故答案为:.作E关于直线AC的对称点E′,连接E′F,则E′F即为所求,过F作FG⊥CD于G,在Rt△E′FG中,利用勾股定理即可求出E′F的长.本题考查的是最短线路问题,熟知两点之间线段最短是解答此题的关键.19.【答案】解:(1)原式=1+2-1=2;(2)原式=-=-=.【解析】(1)先计算绝对值、化简二次根式、零指数幂,再计算加减可得;(2)先约分,再根据分式的减法法则计算可得.本题主要考查实数和分式的混合运算,解题的关键是掌握实数和分式的混合运算顺序和运算法则.20.【答案】解:(1);x-5=2x-5,x-2x=-5+5,x=0,经检验:当x=0时,2x-5=-5≠0,故原方程的解是x=0;(2),(x+1)(x+2)=x(x-2),x2+3x+2=x2-2x,5x=-2,x=-,经检验:当x=-时,(x+1)(x-2)≠0,故原方程的解是x=-.【解析】(1)①去分母;②求出整式方程的解;③检验;④得出结论.(2)①去分母;②求出整式方程的解;③检验;④得出结论.考查了解分式方程,解分式方程时,去分母后所得整式方程的解有可能使原方程中的分母为0,所以应如下检验:①将整式方程的解代入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解.②将整式方程的解代入最简公分母,如果最简公分母的值为0,则整式方程的解不是原分式方程的解.所以解分式方程时,一定要检验.21.【答案】解:当a=时,原式=÷=•=-==【解析】根据分式的运算法则即可求出答案.本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.22.【答案】解:(1)△AB1C1如图所示;(2)△A2B2C2如图所示.【解析】(1)依据△ABC绕点A顺时针旋转90°,即可得到△AB1C1;(2)依据中心对称的性质进行作图,即可得到△ABC关于坐标原点O成中心对称的△A2B2C2.本题主要考查了利用旋转变换进行作图,解题时注意:旋转作图有自己独特的特点,决定图形位置的因素有旋转角度、旋转方向、旋转中心,任意不同,位置就不同,但得到的图形全等.23.【答案】144【解析】解:(1)∵本次调查的学生总数为=50人,∴课外阅读4小时的人数是32%×50=16,∴男生人数=16-8=8(人);∴课外阅读6小时的男生人数=50-6-4-8-8-8-12-3=1(人),如图所示.(2)∵课外阅读5小时的人数是20人,∴×360°=144°.故答案为:144;(3)900×=72(人),答:估计八年级一周课外阅读时间为6小时的学生有72人.(1)根据统计图可知,课外阅读达3小时的共10人,占总人数的20%,由此可得出总人数;求出课外阅读时间4小时与6小时男生的人数,补全条形统计图即可;(2)求出课外阅读时间为5小时的人数,再求出其人数与总人数的比值即可得出扇形的圆心角度数;(3)求出总人数与课外阅读时间为6小时的学生人数的百分比的积即可.本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.24.【答案】解:设小芳的速度是x米/分钟,则小明的速度是1.2x米/分钟,根据题意得:-=6,解得:x=50,经检验x=50是原方程的解,答:小芳的速度是50米/分钟.【解析】设小芳的速度是x米/分钟,则小明的速度是1.2x米/分钟,根据路程÷速度=时间,列出方程,再求解即可.此题主要考查了分式方程的应用,掌握行程问题中速度、时间和路程的关系:速度×时间=路程,路程÷时间=速度,路程÷速度=时间是解题的关键.25.【答案】(1)证明:∵四边形ABCD是矩形,∴AB=CD,∠A=∠D=90°,又∵M是AD的中点,∴AM=DM.在△ABM和△DCM中,,∴△ABM≌△DCM;(2)解:四边形MENF是菱形.∵E,F,N分别是BM,CM,CB的中点,∴NE∥MF,NE=MF,∴四边形MENF是平行四边形.由(1),得BM=CM,∴ME=MF,∴四边形MENF是菱形;(3)解:∵四边形MENF是正方形.∴EN=NF,NE⊥BM,NF⊥MC,又∵N是BC的中点,∴BN=NC,在Rt△BEN和Rt△CFN中,,∴Rt△BEN≌Rt△CFN,∴∠ENB=∠FNC=45°,∴∠ABM=45°∴AB=AM,又∵M是AD的中点,∴AD:AB=2.【解析】(1)根据矩形的性质得到AB=CD,∠A=∠D=90°,利用SAS定理证明△ABM≌△DCM;(2)证明ME=MF,根据邻边相等的平行四边形是菱形证明;(3)证明Rt△BEN≌Rt△CFN,得到∠ENB=∠FNC=45°,∠ABM=45°,得到AB=AM,计算即可.本题考查的是正方形的性质、全等三角形的判定和性质,掌握正方形的四条边相等、对角线互相垂直平分是解题的关键.26.【答案】解:(1)把B(m,2)代入y=x-2得:m-2=2,解得:m=4,所以B(4,2),把B点坐标代入y=得:k=8,所以反比例函数关系式是y=;(2)把x=1代入y=得:y=8,把x=4代入y=得:y=2,由图象可知:当1≤x≤4时,y=的函数值的取值范围是2≤y≤8;(3)过点C作CD∥y轴,交线段AB与点D,设平移后的直线的解析式是y=x+b,∵点C在直线y=x+b上,D在直线y=x-2上,∴可设C(t,t+b),则D(t,t-2),则CD=(t+b)-(t-2)=b+2,∵S△ABC=S△ACD+S△ADB,∴18=(b+2)×4,解得:b=7,∴平移后的直线的函数关系式是y=x+7.【解析】(1)先求出B点的坐标,即可求出答案;(2)分别把x=1和x=4代入函数解析式,求出对应的y值,即可得出答案;(3)先设出C、D的坐标,求出CD,再根据三角形面积公式求出b值,即可求出答案.本题考查了三角形的面积,平移的性质,用待定系数法求出反比例函数的解析式和函数图象上点的坐标特征等知识点,能综合运用知识点进行计算是解此题的关键.27.【答案】150;75【解析】(1)解:∵四边形ABCD是“等对角四边形”,∠A≠∠C,∠A=60°,∠B=75°,∴∠D=∠B=75°,∴∠C=360°-75°-75°-60°=150°;故答案为150,75.(2)如图所示:(3)解:分两种情况:①当∠ADC=∠ABC=90°时,延长AD,BC相交于点E,如图3所示:∵∠ABC=90°,∠DAB=60°,AB=5,∴∠E=30°,∴AE=2AB=4,BE=2∵∠EDC=90°,∠E=30°,CD=1∴CE=2CD=2,∴BC=BE-CE=2-2.②当∠BCD=∠DAB=60°时,过点D作DM⊥AB于点M,DN⊥BC于点N,如图4所示:则∠AMD=90°,四边形BNDM是矩形,在Rt△CDN中,∵CD=1,∠CDN=30°,∴CN=CD=,DN=CN=,在Rt△ADM中,DM=AM=(2-)=2-,∴BN=DM=2-,∴BC=CN+BN=2-1,综上所述:BC的长为2-2或2-1.(1)根据四边形ABCD是“等对角四边形”得出∠D=∠B=75°,根据多边形内角和定理求出∠C即可;(2)根据等对角四边形的定义画出图形即可求解;(3)分两种情况:①当∠ADC=∠ABC=90°时,延长AD,BC相交于点E,先用含30°角的直角三角形的性质求出BE,再用三角函数求出CE即可解决问题;②当∠BCD=∠DAB=60°时,过点D作DM⊥AB于点M,DN⊥BC于点N,则∠AMD=90°,四边形BNDM是矩形,解直角三角形即可解决问题;本题是四边形综合题目,考查了新定义、四边形内角和定理、等腰三角形的判定与性质、勾股定理、三角函数、矩形的判定与性质等知识;本题难度较大,综合性强,特别是(3)中,需要进行分类讨论,通过作辅助线运用三角函数和勾股定理才能得出结果.28.【答案】(2,4);2【解析】解:(1)过点Q作QE⊥x轴,垂足为E,过点P作PF⊥x轴,垂足为F,如图1,联立,解得:或.∵x>0,∴点P的坐标为(2,4).∴OF=2,PF=4.∵QE⊥x轴,PF⊥x轴,∴QE∥PF.∴△OEQ∽△OFP.∴==.∵OQ=PQ∴OF=2OE=2,PF=2EQ=4.∴OE=1,EQ=2.∴点Q的坐标为(1,2).∵点Q(1,2)在双曲线y=上,∴k=1×2=2.∴k的值为2.故答案为(2,4),2.(2)①如图2,设点A的坐标为(a,b),∵点A(a,b)在双曲线y=上,∴b=.∵.AB∥x轴,AC∥y轴,∴x C=x A=a,y B=y A=b=.∵点B、C在双曲线y=上,∴x B==,y C=.∴点B的坐标为(,),点C的坐标为(a,).∴AB=a-=,AC=-=.∴S△ABC=•AB•AC=××=.∴在点A运动过程中,△ABC的面积不变,始终等于.②当AC为平行四边形的一边,Ⅰ.当点B在点Q的右边时,如图3,∵四边形ACBD是平行四边形,∴AC∥BD,AC=BD.∴x D=x B=.∴y D=2x D=.∴DB=-.∵AC=-=,∴=-.解得:a=±2.经检验:a=±2是该方程的解.∵a>0,∴a=2.∴b==.∴点A的坐标为(2,).Ⅱ.当点B在点Q的左边且点C在点Q的右边时,如图4,∵四边形ACDB是平行四边形,∴AC∥BD,AC=BD.∴x D=x B=a.∴y D=2x D=.∴DB=-.∵AC=,∴=-,解得:a=±2.经检验:a=±2是该方程的解.∵a>0,∴a=2.∴b==4.∴点A的坐标为(2,4).当AC为平行四边形的对角线,此时点B、点C都在点Q的左边,如图5,∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD.∴y D=y C=.∴x D==.∴CD=-a.∵AB=a-=,∴=-a.解得:a=±.经检验:a=±是该方程的解.∵a>0,∴a=.∴b==4.∴点A的坐标为(,4).综上所述:当点A、B、C、D为顶点的四边形为平行四边形时,此时点A的坐标为(2,)或(2,4)或(,4).(1)先求出点P的坐标,再从条件OQ=PQ出发,构造相似三角形,求出点Q的坐标,就可求出k的值.(2)①设点A的坐标为(a,b),易得b=,结合条件可用a的代数式表示点B、点C的坐标,进而表示出线段AB、AC的长,就可算出△BAC的面积是一个定值.②以点A、B、C、D为顶点的四边形为平行四边形可分成两类:当AC为平行四边形的一边,当AC为平行四边形的对角线;然后利用平行四边形的性质建立关于a的方程,即可求出a的值,从而求出点A的坐标.本题考查了反比例函数图象与一次函数图象的交点、用待定系数法求反比例函数的解析式、相似三角形的判定与性质、解分式方程等知识,还考查了分类讨论的思想,有一定的综合性.。

江苏省苏州市吴中区20172018学年八年级数学下学期期中试题苏科版

江苏省苏州市吴中区20172018学年八年级数学下学期期中试题苏科版

江苏省苏州市吴中区2021-2021学年八年级数学放学期期中试题本卷须知:本试卷总分值130分,考试时间120分钟;2. 答卷前将密封线内的工程填写清楚,全部解答均须写在答题卷上,在本试卷上答题无效.一、选择题(本大题共 10小题,每题3分,共30分.每题只有一个选项是正确的,把正确选项前的字母填涂在答题卷相应地点上.)以下列图形中,中心对称图形是2.假定代数式在实数范围内存心义,那么实数x的取值范围是x2A.x2B.x2C.x2D.x2以下式子为最简二次根式的是A.7B.4C.81 D.34 .一只不透明的袋子中装有一些白球和红球,这些球除颜色外都同样.将球摇匀,从中随意摸出一个球,摸到红球是A.不行能事佚B.必定事件 C.确立事件 D.随机事件5 .昨年我市有约7万名考生参加中考,为认识这些考生的数学成绩,从中抽取1000名考生的数学成绩进行统计剖析,以下说法正确的选项是A.这1000名考生是整体的一个样本 B.约7万名考生是整体C.每位考生的数学成绩是个体D.1000名学生是样本容量6.如图,在YABCD中,ODA90,AC10cm,BD6cm,那么AD的长为A.4cm B.5cmC.6cmD.8cm以下性质中,菱形拥有而矩形不必定拥有的是A.对角线相互均分B.对角线相互垂直C.对边平行且相等D.对角线相等18.在反比率函数k2A(x1,y1),B(x2,y2).假定x1x20时,y1y2, y的图像上有两点x那么k取值范围是A.k2B.k2C.k2D.k2如图,矩形纸片ABCD中,AB=6cm,BC=8cm,现将其沿AE对折,使得点B落在边AD上的点B1处,折痕与边BC 交于点E,那么CE的长为A.6cmB.4cmC.2cmD.1cm10.如图,在YABCD中,AD2AB,F是AD的中点,作CE AB,垂足E在线段AB上,连结EF,CF,那么以下结论中必定建立的是①BCD2DCF;②EFCF;③S BEC2S CEF;④DFE3AEF.A.①②③B.①③④C.①②④D.②③④二、填空题:(本大题共8小题,每题3分,共24分.把答案直接填在答题卡相应地点上.)11.化简:4=.12.当x=时,分式x 1的值为零.x2113.“投掷图钉实验〞的结果以下:由表可知,“针尖不着地的〞的概率的预计值是.(精准到0.01)14.在YABCD中,A C220,那么B=.15.菱形ABCD的对角线AC=6cm,BD=8cm,那么菱形ABCD的面积是cm2.16.某物质的密度(kg/m3)对于其体积V(m3)的函数图像以下列图,那么与V之间的函数表达式是=.217.如图,在四边形ABCD中,P是对角线BD的中点,E,F分别是AB,CD的中点,ADBC,FPE100,那么PFE=°.18.如图,正方形ABCD的边长为 4.E为BC上一点,BE1,F为AB上一点,AF2,P为AC上一点,那么PF PE的最小值为.三、解答题:(本大题共10小题,共76分.把解答过程写在答题卡相应地点上,解答时应写出必需的计算过程、推演步骤或文字说明.作图时用2B铅笔或黑色,墨水署名笔.)19.计算:(本题总分值8分,每题4分)(1)18(3)0(2)a1a2a;a1a21.解方程:(本题总分值8分,每题4分)(1)x51;(2)x2x.2x552x x2x121.(本题总分值6分)先化简,再求值:3a(a25),此中a1.2a4a2222.(本题总分值6分)以下列图,在平面直角坐标系中,方格纸中的每个小正方形的边长为1个单位,己知A(1,0),B(2,2),C(4,1),请按要求绘图:(1)以A点为旋转中心,将ABC绕点A顺时针旋转90°得AB1C1,画出AB1C1;(2)作出ABC对于坐标原点O成中心对称的A2B2C2.323.(本题总分值6分)某中学为开辟学生视线,展开“课外念书周〞活动,活动后期随机检查了八年级局部学生一周的课外阅读时间,并将结果绘制成两幅不完好的统计图,请你依据统计图的信息回答以下问题:请你补全条形统计图;(2)在扇形统计图中,课外阅读时间为5小时的扇形的圆心角度数是度;(3)假定全校八年级共有学生900人,预计八年级一周课外阅读时间为6小时的学生有多少人?24.(本题总分值6分)礼拜天,小明和小芳从同一小区门口同时出发,沿同一路线去离该小区1800米的少年宫参加活动,为响应“节能环保,绿色出行〞的呼吁,两人都步行,己知小明的速度是小芳速度的倍,结果小明比小芳早6分钟抵达,求小芳的速度.4BM,CM的中点.(1)判断四边形MENF是什么特别四边形,并证明你的结论;(2)假定四边形MENF是正方形,求AD:AB的值.26.(本题总分值9分)如图,在平面直角坐标系xoy中,直线y x2与y轴订交于点A,与反比率函数y kB(m,2).在第一象限内的图象订交于点x求该反比率函数关系式;(2)当1x4时,求y k的函数值的取值范围; x(3)将直线y x2向上平移后与反比率函数在第一象限内的图象订交于点C,且ABC的面积为18,求平移后的直线的函数关系式.5请解决以下问题:(1):如图1,四边形ABCD是等对角四边形,AC,A60,B75,那么:C=°,D=°;(2)图①、图②均为4×4的正方形网格,线段AB,BC的端点均在网点上.按要求在图①、图②中以AB和BC为边各画一个等对角四边形ABCD.(要求:四边形ABCD的极点D在格点上,所画的两个四边形不全等) (3) :在等对角四边形ABCD中,DAB 60, ABC 90,AB 2,CD1,求BC的长.(在直角三角形中,30°角所对直角边等于斜边的一半).28.(本题总分值10分)如图1,直线y2x分别与双曲线y8,yk交于第一象限内P,Q两x x点,且OQ PQ.(1)那么P点坐标是;k=.(2)如图2,假定点A是双曲线y 8AB//x轴,AC//y轴,在第一象限图像上的动点,k x分别交双曲线y于点B,C;x①连结BC,请你探究在点A运动过程中,ABC的面积能否变化,假定不变,恳求出ABC的面积;假定改变,请说明原因;②假定点D是直线y2x上的一点,请你进一步探究在点A运动过程中,以点A,B,C,D为极点的四边形可否为平行四边形,假定能,求出此时点A的坐标;假定不可以,请说明原因.67精选文档8910精选文档精选文档11精选文档精选文档12精选文档精选文档1321。

苏州市常熟市2017-2018学年度初二下数学期中试题(有答案).docx

苏州市常熟市2017-2018学年度初二下数学期中试题(有答案).docx
k
y=(k>0,x>0)与OA边交于点E,连接OP.
(1)如图1,若点A的坐标为(3,4),点B的坐标为(5,0),且△OPB的面积为5,求直线AB和反比例函数的解析式;
(2)如图2,若∠AOB=60°,过P作PC∥OA,与OB交于点C,若PC=1OE,并且△OPC的面积为3
3,求
2
2
OE的长.
(3)在(2)的条件下,过点P作PQ∥OB,交OA于点Q,点M是直线PQ上的一个动点,若△OEM是以OE为直角
边的直角三角形,则点M的坐标为.
5
6
7
8
1000名学生的数学成绩,
下列说法正确的是(

)
A. 2016年苏州市九年级学生是总体
B.每一名九年级学生是个体
C. 1000名九年级学生是总体的一个样本
D.样本容量是1000
4.反比例函数,y
6

)
的图像在(
x
A.一、二象限
B一、三象限
C.二、三象限
D.二、四象限
5、下列判断正确的是(
▲)
A一组对边平行且另一组对边相等的四边形是平行四边形
(▲
)
A.4 cm
B.6 cm
C.8 cm
D.10 cm
1
第8题第9题第10题
10.如图,在平面直角坐标系中,直线y=-3x+3与x轴、y轴分别交于A、B两点,以AB为边在第一象限作正
方形ABCD,顶点D恰好落在双曲线y=k.若将正方形沿x轴向左平移b个单位长度后, 点C恰好落在该双
x
曲线上,则b的值为(▲)

-
-
-
-
-

-
-

2017-2018学年江苏省苏州市太仓市八年级(下)期中数学试卷

2017-2018学年江苏省苏州市太仓市八年级(下)期中数学试卷

2017-2018学年江苏省苏州市太仓市八年级(下)期中数学试卷一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的,把正确答案填在答题卡相应的位里上)1.(3分)若分式品的值为零,则x 的值是()A. 0B. 1C. - 1D. - 22.(3分)若反比例函数的图象经过点(3,2),则该反比例函数的解析式是()3.a 2p 6B・ y=—3x (3分)若3x - 2y=0,则玉+1等于y A. 2B.旦32(3分)如图,在矩形ABCD 中, C.3 y=— xD.53对角线AC 、BD 相交于点0,C.D._ 5_7若 ZACB=30°,4.3C. D.y =2x - 4())2125.(3分)化简』 m —3高的结果是()A. m+36. (3 分)若 abVO,m-3irrt-3则正比例函数y=ax 和反比例函数y=D 在同一坐标系中的大XB. m - 3C. D.M3m-3)7. (3分)如图,点D 、E 、F 分别是^ABC 三边的中点,则下列判断错误的是()A.四边形AEDF-定是平行四边形B.若ZA=90°,则四边形AEDF是矩形C.若AD平分ZA,则四边形AEDF是正方形D.若ADXBC,则四边形AEDF是菱形8.(3分)如图,0为坐标原点,菱形OABC的顶点A的坐标为(-4,3),顶点C在x轴的负半轴上,函数y=k(x<0)的图象经过顶点B,则k的值为()A.-12B.-27C.-32D.-369.(3分)如图,正方形ABCD的边长为4,点E在对角线BD上,且ZBAE=22.5°,EF±AB,垂足为F,则EF的长为(C.4-2^2D.3扼-410.(3分)如图,边长为6的正方形ABCD内部有一点P,BP=4,ZPBC=60°,点Q为正方形边上一动点,且△PBQ是等腰三角形,则符合条件的Q点有B.5个C.6个D.7个二、填空题(本大题共8小题,每小题3分,共24分,请将答案填在答题卡相应的位置上)11.(3分)要使里分式有意义,x应满足的条件是.x-312.(3分)已知a+b=5,ab=3,则_L+L=.a b13.(3分)已知反比例函数的图象上两点A(a2+l,yD,B(a2+2,y2),X且yi>y2,则常数m的取值范围是.14.(3分)如图,在RtAABC中,ZACB=90°,D、E、F分别是AB、BC、CA的中点,若CD=6cm,则EF=cm.15.(3分)如图,在平面直角坐标系中,直线y=-kx+m与双曲线y=E(x>0)X 交于A、B两点,点A的横坐标为1,点B的横坐标为4,则不等式-kx+m>旦的解集为•16.(3分)已知关于x的方程-一=_i的解大于1,贝IJ实数m的取值范围x-22-x是.17.(3分)如图,在四边形ABCD中,AB=AD,CB=CD,对角线AC,BD相交于点0,下列结论中:①ZABC=ZADC;② A C与BD相互平分;③A C,BD分别平分四边形ABCD的两组对角;④四边形ABCD的面积S=L c・BD.2正确的是(填写所有正确结论的序号)18.(3分)如图,在菱形ABCD中,ZBAD=60°,且AB=6,点F为对角线AC的动点,点E为AB上的动点,则FB+EF的最小值为.三、解答题(本大题共76分.解答时应写出必要的计算或说明过程,并把解答过程填写在答题卡相应的位置上)19.(6分)解分式方程:———+—=-^-.x2-2x x x-2220.(6分)先化简:*+x:(2-1),再从-2VxV3的范围内选取一个x2-2x+1 x-1x你喜欢的X值代入求值.21.(6分)如图,在平行四边形ABCD中,ZABC的平分线交AD于E,AB=4,22.(6分)用A、B两种机器人搬运大米,A型机器人比B型机器人每小时多搬运20袋大米,A型机器人搬运700袋大米与B型机器人搬运500袋大米所用时间相等.求A、B型机器人每小时分别搬运多少袋大米.23.(6分)如图,等腰梯形ABCD放置在平面直角坐标系中,已知A(-2,0)、B(6,0)、D(0,3),反比例函数的图象经过点C.(1)求点C坐标和反比例函数的解析式;(2)将等腰梯形ABCD向上平移m个单位后,使点B恰好落在双曲线上,求m 的值.24.(8分)已知:如图,在四边形ABCD中,对角线AC、BD相交于0,且AC=BD,E、F分别是AB、CD的中点,E、F分别是AB、CD的中点,EF分别交BD、AC于点G、H.求证:0G=0H.25.(8分)如图,矩形0ABC的顶点A、C分别在X、y轴的正半轴上,点D为BC边上的点,AB=BD,反比例函数y=K(k尹0)在第一象限内的图象经过点XD(m,2)和AB边上的点E(n,2).3(1)求m、n的值和反比例函数的表达式.(2)求四边形OEBD的面积.26.(8分)如图,矩形ABCD中,AB=6,BC=4,过对角线BD中点。

江苏省苏州市吴中区2017-2018年八年级下学期期中考试数学试题(解析版)

2017-2018学年江苏省苏州市吴中区八年级(下)期中数学试卷一、选择题(本大题共10小题,每小题3分,共30分.每小题只有一个选项是正确的,把正确选项前的字母填涂在答题卷相应位置上.)1.如图图形中,中心对称图形是()A.B.C.D.2.若分式在实数范围内有意义,则实数x的取值范围是()A.x>﹣2B.x<﹣2C.x=﹣2D.x≠﹣23.下列式子为最简二次根式的是()A.B.C.D.4.一只不透明的袋子中装有一些红球和白球,这些球除颜色外都相同.将球摇匀,从中任意摸出一个球,摸到红球是()A.确定事件B.必然事件C.不可能事件D.随机事件5.今年我市有近2万名考生参加中考,为了解这些考生的数学成绩,从中抽取1000名考生的数学成绩进行统计分析,以下说法正确的是()A.这1000名考生是总体的一个样本B.近2万名考生是总体C.每位考生的数学成绩是个体D.1000名学生是样本容量6.如图,在▱ABCD中,∠ODA=90°,AC=10cm,BD=6cm,则AD的长为()A.4 cm B.5 cm C.6 cm D.8 cm7.下列性质中,菱形具有而矩形不一定具有的是()A.对角线互相平分B.对角线互相垂直C.对边平行且相等D.对角线相等8.在反比例函数y=的图象上有两点A(x1,y1),B(x2,y2).若x1>x2>0时,y1>y2,则k 取值范围是( ) A .k ≥2B .k >2C .k ≤2D .k <29.如图,矩形纸片ABCD 中,AB =6cm ,BC =8cm ,现将其沿AE 对折,使得点B 落在边AD 上的点B 1处,折痕与边BC 交于点E ,则CE 的长为( )A .6cmB .4cmC .2cmD .1cm10.如图,在平行四边形ABCD 中,AD =2AB ,F 是AD 的中点,作CE ⊥AB ,垂足E 在线段AB 上,连接EF 、CF ,则下列结论中一定成立的是( )①∠DCF =∠BCD ;②EF =CF ;③S △BEC =2S △CEF ;④∠DFE =3∠AEF .A .①②B .②③④C .①②④D .①②③④二、填空题:(本大题共8小题,每小题3分,共24分.把答案直接填在答题卡相应位置上.) 11.= .12.当x = 时,分式的值为零.13.“抛掷图钉实验”的结果如下:抛掷次数n 100 200 300 400 600 800 1000 针尖不着地的频数m 64118189252360488610 针尖不着地的频数0.64 0.59 0.63 0.63 0.60 0.610.61由表可知,“针尖不着地的”的概率的估计值是 . 14.在▱ABCD 中,∠A +∠C =220°,则∠B = °.15.菱形ABCD 的对角线AC =6cm ,BD =8cm ,则菱形ABCD 的面积S = .16.某物质的密度ρ(kg /m 3)关于其体积V (m 3)的函数图象如图所示,那么ρ与V 之间的函数表达式是ρ= .17.如图,在四边形ABCD中,P是对角线BD的中点,E、F分别是AB、CD的中点,AD=BC,∠FPE=100°,则∠PFE的度数是.18.如图,正方形ABCD的边长为4,E为BC上一点,BE=1,F为AB上一点,AF=2,P为AC 上一点,则PF+PE的最小值为.三、解答题:(本大题共10小题,共76分.把解答过程写在答题卡相应位置上,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B铅笔或黑色,墨水签字笔.)19.(8分)计算:(1);(2).20.(8分)解方程:(1);(2).21.(6分)先化简,再求值:,其中.22.(6分)如图所示的正方形网格中,△ABC的顶点均在格点上,请在所给直角坐标系中按要求画图(1)以A点为旋转中心,将△ABC绕点A顺时针旋转90°得△AB1C1,画出△AB1C1;(2)作出△ABC关于坐标原点O成中心对称的△A2B2C2.23.(6分)某中学为开拓学生视野,开展“课外读书周”活动,活动后期随机调查了八年级部分学生一周的课外阅读时间,并将结果绘制成两幅不完整的统计图,请你根据统计图的信息回答下列问题:(1)请你补全条形统计图;(2)在扇形统计图中,课外阅读时间为5小时的扇形的圆心角度数是度;(3)若全校八年级共有学生900人,估计八年级一周课外阅读时间为6小时的学生有多少人?24.(6分)星期天,小明和小芳从同一小区门口同时出发,沿同一路线去离该小区1800米的少年宫参加活动,为响应“节能环保,绿色出行”的号召,两人都步行,已知小明的速度是小芳的速度的1.2倍,结果小明比小芳早6分钟到达,求小芳的速度.25.(8分)已知:如图,在矩形ABCD中,M,N分别是边AD,BC的中点,E,F分别是线段BM,CM的中点.(1)求证:△ABM≌△DCM;(2)判断四边形MENF是什么特殊四边形,并证明你的结论;(3)当四边形MENF是正方形时,求AD:AB的值.26.(9分)如图,在平面直角坐标系xOy中,直线y=x﹣2与y轴相交于点A,与反比例函数y=在第一象限内的图象相交于点B(m,2).(1)求该反比例函数关系式;(2)当1≤x≤4时,求y=的函数值的取值范围;(3)将直线y=x﹣2向上平移后与反比例函数在第一象限内的图象相交于点C,且△ABC的面积为18,求平移后的直线的函数关系式.27.(9分)我们宅义:有一组对角相等而另一组对角不相等的凸四边形叫做等对角四边形.请解决下列问题:(1)已知:如图1,四边形ABCD是等对角四边形,∠A≠∠C,∠A=60°,∠B=75°,则:∠C=°,∠D=°;(2)图①、图②均为4×4的正方形网格,线段AB,BC的端点均在网点上.按要求在图①、图②中以AB和BC为边各画一个等对角四边形ABCD.(要求:四边形ABCD的顶点D在格点上,所画的两个四边形不全等)(3)已知:在等对角四边形ABCD中,∠DAB=60°,∠ABC=90°,AB=2,CD=1,求BC 的长.(在直角三角形中,30°角所对直角边等于斜边的一半).28.(10分)如图1,已知直线y=2x分别与双曲线y=,y=交于第一象限内P,Q两点,且OQ=PQ.(1)则P点坐标是;k=.(2)如图2,若点A是双曲线y=在第一象限图象上的动点,AB∥x轴,AC∥y轴,分别交双曲线y=于点B,C;①连接BC,请你探索在点A运动过程中,△ABC的面积是否变化,若不变,请求出△ABC的面积;若改变,请说明理由;②若点D是直线y=2x上的一点,请你进一步探索在点A运动过程中,以点A,B,C,D为顶点的四边形能否为平行四边形?若能,求出此时点A的坐标;若不能,请说明理由.2017-2018学年江苏省苏州市吴中区八年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.每小题只有一个选项是正确的,把正确选项前的字母填涂在答题卷相应位置上.)1.【分析】根据中心对称图形的概念即可求解.【解答】解:A、不是中心对称图形,不符合题意;B、不是中心对称图形,不符合题意;C、是中心对称图形,符合题意;D、不是中心对称图形,不符合题意.故选:C.【点评】本题考查了中心对称图形,掌握好中心对称图形,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.【分析】直接利用分式有意义的条件分析得出答案.【解答】解:∵代数式在实数范围内有意义,∴x+2≠0,解得:x≠﹣2.故选:D.【点评】此题主要考查了分式有意义的条件,正确把握定义是解题关键.3.【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答】解:A、符合最简二次根式的定义,故本选项正确;B、被开方数4=22,即被开方数含能开得尽方的因数,不是最简二次根式,故本选项错误;C、被开方数8=2×22,即被开方数含能开得尽方的因数,不是最简二次根式,故本选项错误;D、被开方数含有分母,不是最简二次根式,故本选项错误;故选:A.【点评】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.4.【分析】根据事件发生的可能性大小判断相应事件的类型即可.【解答】解:一只不透明的袋子中装有一些红球和白球,这些球除颜色外都相同.将球摇匀,从中任意摸出一个球,摸到红球是随机事件,故选:D.【点评】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.5.【分析】根据总体、个体、样本、样本容量的定义对各选项判断即可.【解答】解:A、这1000名考生的数学成绩是总体的一个样本,故此选项错误;B、近2万名考生的数学成绩是总体,故此选项错误;C、每位考生的数学成绩是个体,故此选项正确;D、1000是样本容量,故此选项错误;故选:C.【点评】本题考查了总体、个体、样本和样本容量的知识,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.6.【分析】由平行四边形ABCD,根据平行四边形的对角线互相平分,可得OA=OC,OB=OD,又由∠ODA=90°,根据勾股定理,即可求得AD的长.【解答】解:∵四边形ABCD是平行四边形,AC=10cm,BD=6cm∴OA=OC=AC=5cm,OB=OD=BD=3cm,∵∠ODA=90°,∴AD==4cm.故选:A.【点评】此题考查了平行四边形的性质:平行四边形的对角线互相平分,解题时还要注意勾股定理的应用.7.【分析】菱形的性质有:四边形相等,两组对边分别平行,对角相等,邻角互补,对角线互相垂直且平分,且每一组对角线平分一组对角.矩形的性质有:两组对边分别相等,两组对边分别平行,四个内角都是直角,对角线相等且平分.【解答】解:A、对角线互相平分,菱形和矩形都具有;B、对角线互相垂直是菱形具有而矩形不一定具有的性质;C、对边平行且相等,菱形和矩形都具有;D、对角线相等,菱形不一定具有的性质;故选:B.【点评】本题考查菱形与矩形的性质,需要同学们对各种平行四边形的性质熟练掌握并区分.8.【分析】根据题意可得在图象的每一支上y随x的增大而增大,因此k﹣2<0,再解即可.【解答】解:∵x1>x2>0时,y1>y2,∴k﹣2<0,∴k<2,故选:D.【点评】此题主要噢反比例函数图象上点的坐标特点,以及反比例函数的性质,关键是掌握反比例函数y=(k≠0)的性质,当k<0时,在图象的每一支上y随x的增大而增大.9.【分析】根据翻折的性质可得∠B=∠AB1E=90°,AB=AB1,然后求出四边形ABEB1是正方形,再根据正方形的性质可得BE=AB,然后根据CE=BC﹣BE,代入数据进行计算即可得解.【解答】解:∵沿AE对折点B落在边AD上的点B1处,∴∠B=∠AB1E=90°,AB=AB1,又∵∠BAD=90°,∴四边形ABEB1是正方形,∴BE=AB=6cm,∴CE=BC﹣BE=8﹣6=2cm.故选:C.【点评】本题考查了矩形的性质,正方形的判定与性质,翻折变换的性质,判断出四边形ABEB1是正方形是解题的关键.10.【分析】由在平行四边形ABCD中,AD=2AB,F是AD的中点,易得AF=FD=CD,继而证得①∠DCF=∠BCD;然后延长EF,交CD延长线于M,分别利用平行四边形的性质以及全等三角形的判定与性质得出△AEF≌△DMF(ASA),得出对应线段之间关系进而得出答案.【解答】解:①∵F是AD的中点,∴AF=FD,∵在▱ABCD中,AD=2AB,∴AF=FD=CD,∴∠DFC=∠DCF,∵AD∥BC,∴∠DFC=∠FCB,∴∠DCF=∠BCF,∴∠DCF=∠BCD,故此选项正确;②延长EF,交CD延长线于M,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠A=∠MDF,∵F为AD中点,∴AF=FD,在△AEF和△DFM中,,∴△AEF≌△DMF(ASA),∴FE=MF,∠AEF=∠M,∵CE⊥AB,∴∠AEC=90°,∴∠AEC=∠ECD=90°,∵FM=EF,∴FC=FM,故②正确;③∵EF=FM,∴S△EFC =S△CFM,∵MC>BE,∴S△BEC <2S△EFC故S△BEC =2S△CEF错误;④设∠FEC=x,则∠FCE=x,∴∠DCF=∠DFC=90°﹣x,∴∠EFC=180°﹣2x,∴∠EFD=90°﹣x+180°﹣2x=270°﹣3x,∵∠AEF=90°﹣x,∴∠DFE=3∠AEF,故此选项正确.故选:C.【点评】此题主要考查了平行四边形的性质以及全等三角形的判定与性质等知识,得出△AEF≌△DME是解题关键.二、填空题:(本大题共8小题,每小题3分,共24分.把答案直接填在答题卡相应位置上.)11.【分析】如果一个数x的平方等于a,那么x是a的算术平方根,由此即可求解.【解答】解:∵22=4,∴=2.故答案为:2【点评】此题主要考查了学生开平方的运算能力,比较简单.12.【分析】根据分式的值等于0,分子等于0,分母不等于0列式求解即可.【解答】解:根据题意,得x﹣1=0,x2+1≠0,解得x=1.故答案为:1.【点评】本题考查了分式的值为0的条件,分子等于0,分母不等于0时,分式的值为0,特别注意,分母不等于0不能忘.13.【分析】由表中数据可判断频率在0.61左右摆动,于是利于频率估计概率即可判断.【解答】解:由表可知,随着抛掷次数的增加,频率逐渐稳定在0.61附近,∴“针尖不着地的”的概率的估计值是0.61,故答案为:0.61.【点评】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.14.【分析】由平行四边形的性质得出∠A=∠C,∠A+∠B=180°,再由已知条件求出∠A,即可得出∠B.【解答】解:∵四边形ABCD是平行四边形,∴∠A=∠C,∠A+∠B=180°,∵∠A+∠C=220°,∴∠A=110°,∴∠B=70°.故答案为:70.【点评】本题考查了平行四边形的性质;熟练掌握平行四边形的对角相等,邻角互补是解决问题的关键.15.【分析】由菱形ABCD的对角线AC=6cm,BD=8cm,根据菱形的面积等于其对角线积的一半,即可求得菱形ABCD的面积.【解答】解:∵菱形ABCD的对角线AC=6cm,BD=8cm,∴菱形ABCD的面积为:AC•BD=×6×8=24cm2.故答案为:24cm2.【点评】此题考查了菱形的性质.解此题的关键是掌握菱形的面积等于其对角线积的一半定理的应用.16.【分析】根据图象可得物质的密度p(kg/m3)关于其体积V(m3)的函数关系式为反比例函数形式,设p=,再把(6,2)代入函数关系式可得k的值,进而得到反比函数关系式.【解答】解:设物质的密度p(kg/m3)关于其体积V(m3)的函数关系式为p=,∵函数图象经过(6,2),∴k=6×2=12,∴p=,故答案为:.【点评】此题主要考查了用待定系数法求反比例函数的解析式,关键是掌握步骤:(1)设出含有待定系数的反比例函数解析式y=(k为常数,k≠0);(2)把已知条件(自变量与函数的对应值)代入解析式,得到待定系数的方程;(3)解方程,求出待定系数;(4)写出解析式.17.【分析】根据三角形中位线定理得到EP=AD,FP=BC,得到PE=PF,根据等腰三角形的性质、三角形内角和定理计算即可.【解答】解:∵P是对角线BD的中点,E是AB的中点,∴EP=AD,同理,FP=BC,∵AD=BC,∴PE=PF,∵∠FPE=100°,∴∠PFE=40°,故答案为:40°.【点评】本题考查的是三角形中位线定理的应用,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.18.【分析】作E关于直线AC的对称点E′,连接E′F,则E′F即为所求,过F作FG⊥CD于G,在Rt△E′FG中,利用勾股定理即可求出E′F的长.【解答】解:作E关于直线AC的对称点E′,连接E′F,则E′F即为所求,过F作FG⊥CD于G,在Rt△E′FG中,GE′=CD﹣BE﹣BF=4﹣1﹣2=1,GF=4,所以E′F=.故答案为:.【点评】本题考查的是最短线路问题,熟知两点之间线段最短是解答此题的关键.三、解答题:(本大题共10小题,共76分.把解答过程写在答题卡相应位置上,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B铅笔或黑色,墨水签字笔.)19.【分析】(1)先计算绝对值、化简二次根式、零指数幂,再计算加减可得;(2)先约分,再根据分式的减法法则计算可得.【解答】解:(1)原式=1+2﹣1=2;(2)原式=﹣=﹣=.【点评】本题主要考查实数和分式的混合运算,解题的关键是掌握实数和分式的混合运算顺序和运算法则.20.【分析】(1)①去分母;②求出整式方程的解;③检验;④得出结论.(2)①去分母;②求出整式方程的解;③检验;④得出结论.【解答】解:(1);x﹣5=2x﹣5,x﹣2x=﹣5+5,x=0,经检验:当x=0时,2x﹣5=﹣5≠0,故原方程的解是x=0;(2),(x+1)(x+2)=x(x﹣2),x2+3x+2=x2﹣2x,5x=﹣2,x=﹣,经检验:当x=﹣时,(x+1)(x﹣2)≠0,故原方程的解是x=﹣.【点评】考查了解分式方程,解分式方程时,去分母后所得整式方程的解有可能使原方程中的分母为0,所以应如下检验:①将整式方程的解代入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解.②将整式方程的解代入最简公分母,如果最简公分母的值为0,则整式方程的解不是原分式方程的解.所以解分式方程时,一定要检验.21.【分析】根据分式的运算法则即可求出答案.【解答】解:当a=时,原式=÷=•=﹣==【点评】本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.22.【分析】(1)依据△ABC绕点A顺时针旋转90°,即可得到△AB1C1;(2)依据中心对称的性质进行作图,即可得到△ABC关于坐标原点O成中心对称的△A2B2C2.【解答】解:(1)△AB1C1如图所示;(2)△A2B2C2如图所示.【点评】本题主要考查了利用旋转变换进行作图,解题时注意:旋转作图有自己独特的特点,决定图形位置的因素有旋转角度、旋转方向、旋转中心,任意不同,位置就不同,但得到的图形全等.23.【分析】(1)根据统计图可知,课外阅读达3小时的共10人,占总人数的20%,由此可得出总人数;求出课外阅读时间4小时与6小时男生的人数,补全条形统计图即可;(2)求出课外阅读时间为5小时的人数,再求出其人数与总人数的比值即可得出扇形的圆心角度数;(3)求出总人数与课外阅读时间为6小时的学生人数的百分比的积即可.【解答】解:(1)∵本次调查的学生总数为=50人,∴课外阅读4小时的人数是32%×50=16,∴男生人数=16﹣8=8(人);∴课外阅读6小时的男生人数=50﹣6﹣4﹣8﹣8﹣8﹣12﹣3=1(人),如图所示.(2)∵课外阅读5小时的人数是20人,∴×360°=144°.故答案为:144;(3)900×=72(人),答:估计八年级一周课外阅读时间为6小时的学生有72人.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.24.【分析】设小芳的速度是x米/分钟,则小明的速度是1.2x米/分钟,根据路程÷速度=时间,列出方程,再求解即可.【解答】解:设小芳的速度是x米/分钟,则小明的速度是1.2x米/分钟,根据题意得:﹣=6,解得:x=50,经检验x=50是原方程的解,答:小芳的速度是50米/分钟.【点评】此题主要考查了分式方程的应用,掌握行程问题中速度、时间和路程的关系:速度×时间=路程,路程÷时间=速度,路程÷速度=时间是解题的关键.25.【分析】(1)根据矩形的性质得到AB=CD,∠A=∠D=90°,利用SAS定理证明△ABM≌△DCM;(2)证明ME=MF,根据邻边相等的平行四边形是菱形证明;(3)证明Rt△BEN≌Rt△CFN,得到∠ENB=∠FNC=45°,∠ABM=45°,得到AB=AM,计算即可.【解答】(1)证明:∵四边形ABCD是矩形,∴AB=CD,∠A=∠D=90°,又∵M是AD的中点,∴AM=DM.在△ABM和△DCM中,,∴△ABM≌△DCM;(2)解:四边形MENF是菱形.∵E,F,N分别是BM,CM,CB的中点,∴NE∥MF,NE=MF,∴四边形MENF是平行四边形.由(1),得BM=CM,∴ME=MF,∴四边形MENF是菱形;(3)解:∵四边形MENF是正方形.∴EN=NF,NE⊥BM,NF⊥MC,又∵N是BC的中点,∴BN=NC,在Rt△BEN和Rt△CFN中,,∴Rt△BEN≌Rt△CFN,∴∠ENB=∠FNC=45°,∴∠ABM=45°∴AB=AM,又∵M是AD的中点,∴AD:AB=2.【点评】本题考查的是正方形的性质、全等三角形的判定和性质,掌握正方形的四条边相等、对角线互相垂直平分是解题的关键.26.【分析】(1)先求出B点的坐标,即可求出答案;(2)分别把x=1和x=4代入函数解析式,求出对应的y值,即可得出答案;(3)先设出C、D的坐标,求出CD,再根据三角形面积公式求出b值,即可求出答案.【解答】解:(1)把B(m,2)代入y=x﹣2得:m﹣2=2,解得:m=4,所以B(4,2),把B点坐标代入y=得:k=8,所以反比例函数关系式是y=;(2)把x=1代入y=得:y=8,把x=4代入y=得:y=2,由图象可知:当1≤x≤4时,y=的函数值的取值范围是2≤y≤8;(3)过点C作CD∥y轴,交线段AB与点D,设平移后的直线的解析式是y=x+b,∵点C在直线y=x+b上,D在直线y=x﹣2上,∴可设C(t,t+b),则D(t,t﹣2),则CD=(t+b)﹣(t﹣2)=b+2,∵S△ABC =S△ACD+S△ADB,∴18=(b+2)×4,解得:b=7,∴平移后的直线的函数关系式是y=x+7.【点评】本题考查了三角形的面积,平移的性质,用待定系数法求出反比例函数的解析式和函数图象上点的坐标特征等知识点,能综合运用知识点进行计算是解此题的关键.27.【分析】(1)根据四边形ABCD是“等对角四边形”得出∠D=∠B=75°,根据多边形内角和定理求出∠C即可;(2)根据等对角四边形的定义画出图形即可求解;(3)分两种情况:①当∠ADC=∠ABC=90°时,延长AD,BC相交于点E,先用含30°角的直角三角形的性质求出BE,再用三角函数求出CE即可解决问题;②当∠BCD=∠DAB=60°时,过点D作DM⊥AB于点M,DN⊥BC于点N,则∠AMD=90°,四边形BNDM是矩形,解直角三角形即可解决问题;【解答】(1)解:∵四边形ABCD是“等对角四边形”,∠A≠∠C,∠A=60°,∠B=75°,∴∠D=∠B=75°,∴∠C=360°﹣75°﹣75°﹣60°=150°;故答案为150,75.(2)如图所示:(3)解:分两种情况:①当∠ADC=∠ABC=90°时,延长AD,BC相交于点E,如图3所示:∵∠ABC=90°,∠DAB=60°,AB=5,∴∠E=30°,∴AE=2AB=4,BE=2∵∠EDC=90°,∠E=30°,CD=1∴CE=2CD=2,∴BC=BE﹣CE=2﹣2.②当∠BCD=∠DAB=60°时,过点D作DM⊥AB于点M,DN⊥BC于点N,如图4所示:则∠AMD=90°,四边形BNDM是矩形,在Rt△CDN中,∵CD=1,∠CDN=30°,∴CN=CD=,DN=CN=,在Rt△ADM中,DM=AM=(2﹣)=2﹣,∴BN=DM=2﹣,∴BC=CN+BN=2﹣1,综上所述:BC的长为2﹣2或2﹣1.【点评】本题是四边形综合题目,考查了新定义、四边形内角和定理、等腰三角形的判定与性质、勾股定理、三角函数、矩形的判定与性质等知识;本题难度较大,综合性强,特别是(3)中,需要进行分类讨论,通过作辅助线运用三角函数和勾股定理才能得出结果.28.【分析】(1)先求出点P的坐标,再从条件OQ=PQ出发,构造相似三角形,求出点Q的坐标,就可求出k的值.(2)①设点A的坐标为(a,b),易得b=,结合条件可用a的代数式表示点B、点C的坐标,进而表示出线段AB、AC的长,就可算出△BAC的面积是一个定值.②以点A、B、C、D为顶点的四边形为平行四边形可分成两类:当AC为平行四边形的一边,当AC为平行四边形的对角线;然后利用平行四边形的性质建立关于a的方程,即可求出a的值,从而求出点A的坐标.【解答】解:(1)过点Q作QE⊥x轴,垂足为E,过点P作PF⊥x轴,垂足为F,如图1,联立,解得:或.∵x>0,∴点P的坐标为(2,4).∴OF=2,PF=4.∵QE⊥x轴,PF⊥x轴,∴QE∥PF.∴△OEQ∽△OFP.∴==.∵OQ=PQ∴OF=2OE=2,PF=2EQ=4.∴OE=1,EQ=2.∴点Q的坐标为(1,2).∵点Q(1,2)在双曲线y=上,∴k=1×2=2.∴k的值为2.故答案为(2,4),2.(2)①如图2,设点A的坐标为(a,b),∵点A(a,b)在双曲线y=上,∴b=.∵.AB∥x轴,AC∥y轴,∴x C=x A=a,y B=y A=b=.∵点B、C在双曲线y=上,∴x B==,y C=.∴点B的坐标为(,),点C的坐标为(a,).∴AB=a﹣=,AC=﹣=.=•AB•AC∴S△ABC=××=.∴在点A运动过程中,△ABC的面积不变,始终等于.②当AC为平行四边形的一边,Ⅰ.当点B在点Q的右边时,如图3,∵四边形ACBD是平行四边形,∴AC∥BD,AC=BD.∴x D=x B=.∴y D=2x D=.∴DB=﹣.∵AC=﹣=,∴=﹣.解得:a=±2.经检验:a=±2是该方程的解.∵a>0,∴a=2.∴b==.∴点A的坐标为(2,).Ⅱ.当点B在点Q的左边且点C在点Q的右边时,如图4,∵四边形ACDB是平行四边形,∴AC∥BD,AC=BD.∴x D=x B=a.∴y D=2x D=.∴DB=﹣.∵AC=,∴=﹣,解得:a=±2.经检验:a=±2是该方程的解.∵a>0,∴a=2.∴b==4.∴点A的坐标为(2,4).当AC为平行四边形的对角线,此时点B、点C都在点Q的左边,如图5,∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD.∴y D=y C=.∴x D==.∴CD=﹣a.∵AB=a﹣=,∴=﹣a.解得:a=±.经检验:a=±是该方程的解.∵a>0,∴a=.∴b==4.∴点A的坐标为(,4).综上所述:当点A、B、C、D为顶点的四边形为平行四边形时,此时点A的坐标为(2,)或(2,4)或(,4).【点评】本题考查了反比例函数图象与一次函数图象的交点、用待定系数法求反比例函数的解析式、相似三角形的判定与性质、解分式方程等知识,还考查了分类讨论的思想,有一定的综合性.。

2017-2018学年江苏省苏州市太仓市八年级(下)期中数学试卷

2017-2018学年江苏省苏州市太仓市八年级(下)期中数学试卷一、单选题1 . 若分式的值为零,则 x的值是A.0B.1C.D.2 . 若反比例函数的图象经过点,则该反比例函数的解析式是A.B.C.D.3 . 若,则等于()A.B.C.D.-4 . 如图,在矩形 ABCD中,对角线 AC、 BD相交于点 O,若∠ ACB=30°, AB=2,则 BD的长为()A.4B.3C.2D.15 . 化简的结果是()A.m+3B.m﹣3C.D.6 . 若,则正比例函数和反比例函数在同一坐标系中的大致图象可能是A.B.C.D.7 . 如图,点D、E、F分别是△ABC三边的中点,则下列判断错误的是( )A. 四边形AEDF一定是平行四边形B. 若∠A=90°,则四边形AEDF是矩形C. 若AD平分∠A,则四边形AEDF是正方形D. 若AD⊥BC,则四边形AEDF是菱形8 . 如图, O为坐标原点,菱形 OABC的顶点 A的坐标为,顶点 C在 x轴的负半轴上,函数的图象经过顶点 B,则 k的值为A.B.C.D.9 . 如图,正方形 ABCD的边长为4,点 E在对角线 BD上,且∠ BAE=22.5°, EF⊥ AB,垂足为F,则 EF的长为()A.1B.C.4-2D.3-410 . 如图,边长为6的正方形 ABCD内部有一点 P,,,点 Q为正方形边上一动点,且是等腰三角形,则符合条件的 Q点有A.4个B.5个C.6个D.7个二、填空题11 . 要使分式有意义, x应满足的条件是______.12 . 已知,,则_______.13 . 已知反比例函数的图象上两点,,且,则常数 m的取值范围是______.14 . 如图,在中,, D、 E、 F分别是 AB、 BC、 CA的中点,若,则______ cm.15 . 如图,在平面直角坐标系中,直线与双曲线交于A、B两点,点 A的横坐标为1,点 B的横坐标为4,则不等式的解集为______.16 . 已知关于 x的方程的解大于1,则实数 m的取值范围是______.17 . 如图,在菱形 ABCD中,,且,点 F为对角线 AC的动点,点 E为 AB上的动点,则的最小值为______.三、解答题18 . 如图,在四边形 ABCD中, AB= AD, CB= CD,对角线 AC, BD相交于点 O,下列结论中:①∠ ABC=∠ ADC;② AC与 BD相互平分;③ AC, BD分别平分四边形 ABCD的两组对角;④四边形 ABCD的面积 S= AC• BD.正确的是________(填写所有正确结论的序号)19 . 如图,等腰梯形 ABCD放置在平面直角坐标系中,已知、、,反比例函数的图象经过点 C.求点 C坐标和反比例函数的解析式;将等腰梯形 ABCD向上平移 m个单位后,使点 B恰好落在双曲线上,求 m的值.20 . 解分式方程:.21 . 先化简:,再从的范围内选取一个你喜欢的 x值代入求值.22 . 如图,在平行四边形 ABCD中,的平分线交 AD于 E,,,求 DE的长.23 . 用A、B两种机器人搬运大米,A型机器人比B型机器人每小时多搬运20袋大米,A型机器人搬运700袋大米与B型机器人搬运500袋大米所用时间相等.求A、B型机器人每小时分别搬运多少袋大米.24 . 已知:如图,在四边形 ABCD中,对角线 AC、 BD相交于 O,且, E、 F分别是AB、 CD的中点, E、 F分别是 AB、 CD的中点, EF分别交 BD、 AC于点 G、求证:.25 . 如图,矩形 OABC的顶点 A、 C分别在 x、 y轴的正半轴上,点 D为 BC边上的点,,反比例函数在第一象限内的图象经过点和 AB边上的点求 m、 n的值和反比例函数的表达式.26 . 如图,矩形 ABCD中, AB=6, BC=4,过对角线 BD中点 O的直线分别交 AB, CD边于点 E,F.(1)求证:四边形 BEDF是平行四边形;(2)当四边形 BEDF是菱形时,求 EF的长.27 . 如图,正方形 ABCD中,,点 E在 CD上,且,将沿 AE对折至,延长 EF交 BC于点 G,连接 AG、 CF.求证:≌;求 BG的长;求的面积.28 . 如图,函数与图象的交于点 A,若点 A的坐标为.点 B的坐标为______;若点 P为第一象限内双曲线上不同于点 B的任意一点.设直线 PA交 x轴于点 M,直线 PB交 x轴于点 N,求证;当 P的坐标为时,连结 PO延长交于 C,求证四边形 PACB为矩形.。

2017-2018学年八年级下期中数学试卷含答案

2017-2018学年八年级下期中数学试卷含答案一、选择题1.把函数y=﹣2x的图象向下平移1个单位,所得图象的函数解析式为()A.y=﹣2x+1 B.y=﹣2x﹣1 C.y=﹣2(x﹣1)D.y=﹣2(x+1)2.四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是()A.AB∥DC,AD∥BC B.AB=DC,AD=BC C.AO=CO,BO=DO D.AB∥DC,AD=BC3.下列各式从左到右的变形正确的是()A.=x+y B.=C.﹣=D.=4.已知点P(1﹣2a,a﹣2)关于原点的对称点在第一象限内,且a为整数,则关于x的分式方程=2的解是()A.5 B.1 C.3 D.不能确定5.在平面直角坐标系中,有A(0,1),B(﹣1,0),C(1,0)三点,若点D与A,B,C三点构成平行四边形,则点D的坐标不可能是()A.(0,﹣1)B.(﹣2,1)C.(﹣2,﹣1)D.(2,1)6.甲、乙两人赛跑,所跑路程与时间的关系如图(实线为甲的路程与时间的关系图象,虚线为乙的路程与时间的关系图象),小王根据图象得到如下四条信息,其中错误的是()A.这是一次1500m赛跑B.甲、乙同时起跑C.甲、乙两人中先到达终点的是乙D.甲在这次赛跑中的速度为5m/s7.如图,双曲线y=﹣的一个分支为()A.① B.② C.③ D.④8.函数y=﹣ax+a与(a≠0)在同一坐标系中的图象可能是()A.B.C.D.二、填空题9.﹣(﹣1)2016﹣(﹣)0+(﹣)﹣2﹣|﹣3|+=.10.如图,在▱ABCD中,AE⊥BC,AF⊥CD,E,F为垂足,若∠EAF=59°,则∠B=度.11.纳米是一种长度单位,1纳米等于10亿分之一米,1根头发丝直径是62000纳米,则一根头发丝的直径用科学记数法表示为米.12.在函数y=(k为常数)的图象上有三个点(﹣2,y1),(﹣1,y2),(,y3),在函数值y1,y2,y3中最大的为.13.如图,点A是反比例函数的图象上的一点,过点A作▱ABCD,使点B、C在x轴上,点D在y轴上,则▱ABCD的面积为.14.如图,已知直线y=﹣2x+b与直线y=ax﹣1相交于点(2,﹣2),由图象可得不等式﹣2x+b>ax﹣1的解集是.15.如图,▱ABCD的周长为60cm,△AOB的周长比△BOC大8cm,则AB=,BC=.三、解答题16.(1)先化简,再求值:÷(﹣)+,其中x=2﹣1﹣20160(2)阅读理解【提出问题】已知===k,求分式的值.【分析问题】本题已知条件是连等式,因此可用设参数法,即设出参数k,得出x,y,z与k的关系,然后再代入待求的分式化简即可.【解决问题】设===k,则x=4k,y=3k,z=2k,将它们分别代入中并化简,可得分式的值为.【拓展应用】已知=﹣=,求分式的值.17.如图,在正方形ABCD中,E是BC延长线上一点,且AC=EC,求∠DAE的度数.18.已知直线y=2x+6,解答下列问题:(1)在直角坐标系中,画出该直线;(2)求直线与坐标轴所围成的三角形的面积;(3)根据图象直接写出,当x取什么值时,函数值y>0?19.某校准备在甲、乙两家公司为毕业班制作一批VCD光盘作为毕业留念.甲公司提出:每个光盘收材料费5元,另收设计和制作费1500元;乙公司提出:每个光盘收材料费8元,不收设计费.(1)请写出制作VCD光盘的个数x与甲公司的收费y1(元)的函数关系式;(2)请写出制作VCD光盘的个数x与乙公司的收费y2(元)的函数关系式;(3)如果学校派你去甲、乙两家公司订做纪念光盘,你会选择哪家公司.20.如图1,已知双曲线y=(k>0)与直线y=k′x交于A、B两点,点A在第一象限,试解答下列问题:(1)若点A的坐标为(3,1),则点B的坐标为;当x满足:时,≤k′x;(2)过原点O作另一条直线l,交双曲线y=(k>0)于P,Q两点,点P在第一象限,如图2所示.①四边形APBQ一定是;②若点A的坐标为(3,1),点P的横坐标为1,求四边形APBQ的面积.21.如图,在▱ABCD中,DE平分∠ADC交AB于点G,交CB延长线于E,BF平分∠ABC交AD的延长线于F.(1)若AD=5,AB=8,求GB的长.(2)求证:∠E=∠F.22.甲、乙两人在某标准游泳池相邻泳道进行100米自由泳训练,如图是他们各自离出发点的距离y(米)与他们出发的时间x(秒)的函数图象.根据图象,解决如下问题.(注标准泳池单向泳道长50米,100米自由泳要求运动员在比赛中往返一次;返回时触壁转身的时间,本题忽略不计)(1)直接写出点A坐标,并求出线段OC的解析式;(2)他们何时相遇?相遇时距离出发点多远?(3)若甲、乙两人在各自游完50米后,返回时的速度相等;则快者到达终点时领先慢者多少米?23.我县万德隆商场有A、B两种商品的进价和售价如表:已知:用2400元购进A种商品的数量与用3000元购进B种商品的数量相同.(1)求m的值;(2)该商场计划同时购进的A、B两种商品共200件,其中购进A种商品x件,实际进货时,生产厂家对A 种商品的出厂价下调a(50<a<70)元出售,若商场保持同种商品的售价不变,商场售完这200件商品的总利润为y元.①求y关于x的函数关系式;②若限定A种商品最多购进120件最少购进100件,请你根据以上信息,设计出使该商场获得最大利润的进货方案.参考答案与试题解析一、选择题1.把函数y=﹣2x的图象向下平移1个单位,所得图象的函数解析式为()A.y=﹣2x+1 B.y=﹣2x﹣1 C.y=﹣2(x﹣1)D.y=﹣2(x+1)【考点】一次函数图象与几何变换.【分析】根据“上加下减”的平移原理,结合原函数解析式即可得出结论.【解答】解:根据“上加下减”的原理可得:函数y=﹣2x的图象向下平移1个单位后得出的图象的函数解析式为y=﹣2x﹣1.故选B.【点评】本题考查了一次函数图象与几何变换,解题的关键是根据平移原理找出平移后的函数解析式.本题属于基础题,难度不大,解决该题型题目时,依据“上加下减”的平移原理找出函数图象平移后的函数解析式是关键.2.四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是()A.AB∥DC,AD∥BC B.AB=DC,AD=BC C.AO=CO,BO=DO D.AB∥DC,AD=BC【考点】平行四边形的判定.【分析】根据平行四边形判定定理进行判断.【解答】解:A、由“AB∥DC,AD∥BC”可知,四边形ABCD的两组对边互相平行,则该四边形是平行四边形.故本选项不符合题意;B、由“AB=DC,AD=BC”可知,四边形ABCD的两组对边相等,则该四边形是平行四边形.故本选项不符合题意;C、由“AO=CO,BO=DO”可知,四边形ABCD的两条对角线互相平分,则该四边形是平行四边形.故本选项不符合题意;D、由“AB∥DC,AD=BC”可知,四边形ABCD的一组对边平行,另一组对边相等,据此不能判定该四边形是平行四边形.故本选项符合题意;故选D.【点评】本题考查了平行四边形的判定.(1)两组对边分别平行的四边形是平行四边形.(2)两组对边分别相等的四边形是平行四边形.(3)一组对边平行且相等的四边形是平行四边形.(4)两组对角分别相等的四边形是平行四边形.(5)对角线互相平分的四边形是平行四边形.3.下列各式从左到右的变形正确的是()A.=x+y B.=C .﹣=D.=【考点】分式的基本性质.【分析】根据分式的分子分母都乘以或除以同一个不为零的数或者同一个整式,分式的值不变.【解答】解:A、分子与分母除的数不是同一个数,故A错误;B、分子分母的一部分乘以10,故B错误;C、分子、分母、分式改变其中两个的符号,分式的值不变,故C错误;D、分子分母都乘以2,故D正确;故选:D.【点评】本题考查了分式的基本性质,分式的分子分母都乘以或除以同一个不为零的数或者同一个整式,分式的值不变.4.已知点P(1﹣2a,a﹣2)关于原点的对称点在第一象限内,且a为整数,则关于x的分式方程=2的解是()A.5 B.1 C.3 D.不能确定【考点】解分式方程;关于原点对称的点的坐标.【专题】计算题.【分析】根据P关于原点对称点在第一象限,得到P横纵坐标都小于0,求出a的范围,确定出a的值,代入方程计算即可求出解.【解答】解:∵点P(1﹣2a,a﹣2)关于原点的对称点在第一象限内,且a为整数,∴,解得:<a<2,即a=1,当a=1时,所求方程化为=2,去分母得:x+1=2x﹣2,解得:x=3,经检验x=3是分式方程的解,则方程的解为3.故选:C【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.5.在平面直角坐标系中,有A(0,1),B(﹣1,0),C(1,0)三点,若点D与A,B,C三点构成平行四边形,则点D的坐标不可能是()A.(0,﹣1)B.(﹣2,1)C.(﹣2,﹣1)D.(2,1)【考点】平行四边形的判定;坐标与图形性质.【分析】根据两组对边分别平行的四边形是平行四边形可得到D点坐标的三种情况:①当AB∥CD,AD∥BC 时;②当AB∥CD,AC∥BD时;③当AD∥BC,AC∥BD时;分别求出D的坐标即可.【解答】解:如图所示∵两组对边分别平行的四边形是平行四边形∴可以分以下三种情况分别求出D点的坐标:如图所示:①当AB∥CD,AD∥BC时,D点的坐标为(2,1);②当AB∥CD,AC∥BD时,D点的坐标为(0,﹣1);③当AD∥BC,AC∥BD时,D点的坐标为(﹣2,1).故选:C.【点评】本题主要考查了平行四边形的判定,要求学生掌握平行四边形的判定并会灵活运用,注意分类讨论.6.甲、乙两人赛跑,所跑路程与时间的关系如图(实线为甲的路程与时间的关系图象,虚线为乙的路程与时间的关系图象),小王根据图象得到如下四条信息,其中错误的是()A.这是一次1500m赛跑B.甲、乙同时起跑C.甲、乙两人中先到达终点的是乙D.甲在这次赛跑中的速度为5m/s【考点】函数的图象.【专题】数形结合.【分析】根据函数图象对各选项分析判断后利用排除法求解.【解答】解:A、路程为1500m后不在增加,所以,这是一次1500m赛跑,正确,故本选项错误;B、加起跑后一段时间乙开始起跑,错误,故本选项正确;C、乙计时283秒到达终点,甲计时300秒到达终点,正确,故本选项错误;D、甲在这次赛跑中的速度为=5m/s,正确,故本选项错误.故选B.【点评】本题考查了函数图象,读函数的图象时首先要理解横、纵坐标表示的含义.7.如图,双曲线y=﹣的一个分支为()A.① B.② C.③ D.④【考点】反比例函数的图象.【分析】根据函数图象上图象经过的点的,利用待定系数法即可求得函数的解析式,即k的值,从而判断.【解答】解:A、反比例函数进过点(﹣3,4),代入函数解析式得k=﹣12,故选项正确;B、反比例函数进过点(﹣3,2),代入函数解析式得k=﹣6,故选项错误;C、反比例函数进过点(1,4),代入函数解析式得k=4,故选项错误;D、反比例函数进过点(2,4),代入函数解析式得k=8,故选项错误.故选A.【点评】本题考查了待定系数求函数的解析式,是一个基础题.8.函数y=﹣ax+a与(a≠0)在同一坐标系中的图象可能是()A.B.C.D.【考点】反比例函数的图象;一次函数的图象.【专题】压轴题.【分析】根据反比例函数与一次函数的图象特点解答即可.【解答】解:a>0时,﹣a<0,y=﹣ax+a在一、二、四象限,(a≠0)在二、四象限,只有A符合;a<0时,﹣a>0,y=﹣ax+a在一、三、四象限,(a≠0)在一、三象限,无选项符合.故选A.【点评】本题主要考查了反比例函数的图象性质和一次函数的图象性质,关键是由a的取值确定函数所在的象限.二、填空题9.﹣(﹣1)2016﹣(﹣)0+(﹣)﹣2﹣|﹣3|+=2+1.【考点】立方根;零指数幂;负整数指数幂.【专题】计算题.【分析】首先将二次根式、幂运算、绝对值、立方根进行化简求值,然后根据实数的运算法则进行运算即可.【解答】解:﹣(﹣1)2016﹣(﹣)0+(﹣)﹣2﹣|﹣3|+,=2﹣1﹣1+4﹣3+2,=2+1.故答案为:2+1.【点评】题目考查了二次根式化简、幂运算、绝对值的运算、立方根的运算等知识点,考察知识较多,对学生要求较高,解决本题的关键是掌握各种运算法则,题目难易程度整体适中,适合课后训练.10.如图,在▱ABCD中,AE⊥BC,AF⊥CD,E,F为垂足,若∠EAF=59°,则∠B=59度.【考点】平行四边形的性质.【分析】直接利用垂直的定义结合平行四边形的性质得出∠BAE的度数,进而得出答案.【解答】解:∵在▱ABCD中,AE⊥BC,AF⊥CD,∴∠AEB=∠AFC=90°,AB∥DC,∴∠BAF=90°,∵∠EAF=59°,∴∠BAE=31°,∴∠B=59°.故答案为:59.【点评】此题主要考查了平行四边形的性质,根据题意得出∠BAE的度数是解题关键.11.纳米是一种长度单位,1纳米等于10亿分之一米,1根头发丝直径是62000纳米,则一根头发丝的直径用科学记数法表示为 6.2×10﹣6米.【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:62000纳米=62000×10﹣10m=6.2×10﹣6m,故答案为:6.2×10﹣6.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12.在函数y=(k为常数)的图象上有三个点(﹣2,y1),(﹣1,y2),(,y3),在函数值y1,y2,y3中最大的为y2.【考点】反比例函数图象上点的坐标特征.【分析】首先可判定函数y=(k为常数)的系数﹣k2﹣2<0,即可知此函数在二、四象限,然后画出图象,确定各点的位置,即可求得答案.【解答】解:∵函数y=(k为常数)的系数﹣k2﹣2<0,∴此函数在二、四象限,如图∴函数值y1,y2,y3中最大的为y2.故答案为:y2.【点评】此题考查了反比例函数图象上点的坐标特征.注意结合图象求解比较简单.13.如图,点A是反比例函数的图象上的一点,过点A作▱ABCD,使点B、C在x轴上,点D在y轴上,则▱ABCD的面积为6.【考点】反比例函数系数k的几何意义;平行四边形的性质.【专题】计算题.【分析】连结OA、CA,根据反比例函数y=(k≠0)中比例系数k的几何意义得到S△OAD=|k|=×6=3,再利用平行四边形的性质得BC∥AD,所以S△CAD=S△OAD=3,然后根据▱ABCD的面积=2S△CAD进行计算.【解答】解:连结OA、CA,如图,则S△OAD=|k|=×6=3,∵四边形ABCD为平行四边形,∴BC∥AD,∴S△CAD=S△OAD=3,∴▱ABCD的面积=2S△CAD=6.故答案为6.【点评】本题考查了反比例函数y=(k≠0)中比例系数k的几何意义:过反比例函数图象上任意一点分别作x轴、y轴的垂线,则垂线与坐标轴所围成的矩形的面积为|k|.也考查了平行四边形的性质.14.如图,已知直线y=﹣2x+b与直线y=ax﹣1相交于点(2,﹣2),由图象可得不等式﹣2x+b>ax﹣1的解集是x<2.【考点】一次函数与一元一次不等式.【分析】以交点(2,﹣2)为分界,交点的坐标,y=﹣2x+b的图象在直线y=ax﹣1的上边,故不等式的解集为x<2.【解答】解:根据图象可得不等式﹣2x+b>ax﹣1的解集是x<2,故答案为:x<2.【点评】此题主要考查了一次函数与一元一次不等式的关系,关键是正确从图象中得到信息.15.如图,▱ABCD的周长为60cm,△AOB的周长比△BOC大8cm,则AB=19cm,BC=11cm.【考点】平行四边形的性质.【分析】根据平行四边形的性质可知,平行四边形的对角线互相平分,由于△AOB的周长比△BOC的周长多8cm,则AB比BC大8cm,继而可求出AB、BC的长度.【解答】解:∵▱ABCD的周长为60cm,∴BC+AB=30cm,①又∵△AOB的周长比△BOC的周长大8cm,∴AB﹣BC=8cm,②由①②得:AB=19cm,BC=11cm.故答案为:19cm,11cm.【点评】此题主要考查平行四边的性质:平行四边形的两组对边分别相等且平行四边形的对角线互相平分.三、解答题16.(1)先化简,再求值:÷(﹣)+,其中x=2﹣1﹣20160(2)阅读理解【提出问题】已知===k,求分式的值.【分析问题】本题已知条件是连等式,因此可用设参数法,即设出参数k,得出x,y,z与k的关系,然后再代入待求的分式化简即可.【解决问题】设===k ,则x=4k ,y=3k ,z=2k ,将它们分别代入中并化简,可得分式的值为 .【拓展应用】已知=﹣=,求分式的值.【考点】分式的化简求值;分式的值;零指数幂;负整数指数幂.【分析】(1)先根据分式混合运算的法则把原式进行化简,再求出x 的值代入进行计算即可; (2)【解决问题】把x=4k ,y=3k ,z=2k 代入进行计算即可;【拓展应用】令=﹣==k ,则x=3k ,y=﹣2k ,z=4k ,再代入分式进行计算即可.【解答】解:(1)原式=÷+=÷+=÷+=•+=+= =,当x=2﹣1﹣20160=﹣1=﹣时,原式===.(2)【解决问题】把x=4k ,y=3k ,z=2k 代入得,原式===.故答案为:;【拓展应用】令=﹣==k ,则x=3k ,y=﹣2k ,z=4k ,原式====.【点评】本题考查的是分式的化简求值,在解答此类题目时要注意,当条件是连等式,因此可用设参数法,即设出参数k,得出x,y,z与k的关系,然后再代入待求的分式化简即可.17.如图,在正方形ABCD中,E是BC延长线上一点,且AC=EC,求∠DAE的度数.【考点】正方形的性质.【分析】根据正方形的对角线平分一组对角可得∠DAC=∠ACB=45°,再根据等边对等角可得∠E=∠EAC,然后根据三角形的一个外角等于与它不相邻的两个内角的和列式求出∠EAC,再根据∠DAE=∠DAC﹣∠EAC代入数据进行计算即可得解.【解答】解:∵四边形ABCD为正方形,∴∠DAC=∠ACB=45°,∵AC=CE,∴∠E=∠EAC,∵2∠EAC=∠E+∠EAC=∠ACB=45°,∴∠EAC=22.5°,∴∠DAE=∠DAC﹣∠EAC=45°﹣22.5°=22.5°.【点评】本题考查了正方形的性质,主要利用了正方形的对角线平分一组对角,等边对等角的性质,三角形的外角性质,是基础题,熟记各性质是解题的关键.18.已知直线y=2x+6,解答下列问题:(1)在直角坐标系中,画出该直线;(2)求直线与坐标轴所围成的三角形的面积;(3)根据图象直接写出,当x取什么值时,函数值y>0?【考点】一次函数的图象;一次函数图象上点的坐标特征.【分析】(1)首先求出图象与坐标轴交点,进而画出图象;(2)直接利用(1)中所求,结合直角三角形面积求法得出答案;(3)利用函数图象得出不等式的解.【解答】解:(1)当x=0,则y=6;当y=0,则x=﹣3,如图所示:(2)直线与坐标轴所围成的三角形的面积为:×3×6=9;(3)如图所示:当x>﹣3时,函数值y>0.【点评】此题主要考查了一次函数图象以及三角形面积求法,正确求出一次函数与坐标轴交点是解题关键.19.某校准备在甲、乙两家公司为毕业班制作一批VCD光盘作为毕业留念.甲公司提出:每个光盘收材料费5元,另收设计和制作费1500元;乙公司提出:每个光盘收材料费8元,不收设计费.(1)请写出制作VCD光盘的个数x与甲公司的收费y1(元)的函数关系式;(2)请写出制作VCD光盘的个数x与乙公司的收费y2(元)的函数关系式;(3)如果学校派你去甲、乙两家公司订做纪念光盘,你会选择哪家公司.【考点】一次函数的应用.【专题】应用题.【分析】根据题意,y1与x是一次函数关系,y2与x成正比例,可直接写出它们的关系式y1=5x+1500,y2=8x;若要选择公司订做光盘,则要看学校订做纪念光盘的数量,当甲、乙两家公司的收费相等时,即y1=y2时可计算出订做的光盘数,再与学校订做的光盘数相比较,就可做出选择.【解答】解:(1)y1=5x+1500,(2)y2=8x;(3)当y1=y2时,即5x+1500=8x,解得x=500,当光盘为500个是同样合算,当光盘少于500个时选乙公司合算,当光盘多于500个时选甲公司合算.【点评】此题不难,关键要仔细审题,懂得计算两家公司收费相等时的光盘数,再与学校需订的数量相比较.20.如图1,已知双曲线y=(k>0)与直线y=k′x交于A、B两点,点A在第一象限,试解答下列问题:(1)若点A的坐标为(3,1),则点B的坐标为(﹣3,﹣1);当x满足:﹣3<x<0或x>3时,≤k′x;(2)过原点O作另一条直线l,交双曲线y=(k>0)于P,Q两点,点P在第一象限,如图2所示.①四边形APBQ一定是平行四边形;②若点A的坐标为(3,1),点P的横坐标为1,求四边形APBQ的面积.【考点】反比例函数综合题.【分析】(1)根据双曲线关于原点对称求出点B的坐标,结合图象得到≤k′x时,x的取值范围;(2)①根据对角线互相平分的四边形是平行四边形证明即可;②过点A、B分别作y轴的平行线,过点P、Q分别作x轴的平行线,分别交于C、D、E、F,根据正方形的面积公式和三角形的面积公式计算即可.【解答】解:(1)∵双曲线y=关于原点对称,点A的坐标为(3,1),∴点B的坐标为(﹣3,﹣1),由图象可知,当﹣3<x<0或x>3时,≤k′x,故答案为:(﹣3,﹣1);﹣3<x<0或x>3;(2)①∵双曲线y=关于原点对称,∴OA=OB,OP=OQ,∴四边形APBQ一定是平行四边形,故答案为:平行四边形;②∵点A的坐标为(3,1),∴k=3×1=3,∴反比例函数的解析式为y=,∵点P的横坐标为1,∴点P的纵坐标为3,∴点P的坐标为(1,3),由双曲线关于原点对称可知,点Q的坐标为(﹣1,﹣3),点B的坐标为(﹣3,﹣1),如图2,过点A、B分别作y轴的平行线,过点P、Q分别作x轴的平行线,分别交于C、D、E、F,则四边形CDEF是矩形,CD=6,DE=6,DB=DP=4,CP=CA=2,则四边形APBQ的面积=矩形CDEF的面积﹣△ACP的面积﹣△PDB的面积﹣△BEQ的面积﹣△AFQ的面积=36﹣2﹣8﹣2﹣8=16.【点评】本题考查的是反比例函数的图形和性质、反比例函数图象上点的坐标特征、中心对称图形的概念和性 质以及平行四边形的判定,掌握双曲线是关于原点的中心对称图形、平行四边形的判定定理是解题的关键.21.如图,在▱ ABCD 中,DE 平分∠ADC 交 AB 于点 G,交 CB 延长线于 E,BF 平分∠ABC 交 AD 的延长线 于 F. (1)若 AD=5,AB=8,求 GB 的长. (2)求证:∠E=∠F.【考点】平行四边形的性质. 【分析】(1)直接利用平行四边形的性质结合角平分线的性质得出∠2=∠AGD,进而得出 AD=AG,得出答 案即可; (2)首先证明∠CDE=∠ABF,再证明 ED∥FB,然后再根据平行四边形的性质可得 AF∥CE,根据两组对边 分别平行的四边形是平行四边形可得四边形 BFDE 是平行四边形,进而得出答案. 【解答】(1)解:∵在▱ ABCD 中,DE 平分∠ADC 交 AB 于点 G,BF 平分∠ABC 交 AD 的延长线于 F, ∴∠1=∠2,∠3=∠4,AB∥DC, ∴∠2=∠AGD, ∴∠1=∠AGD, ∴AD=AG=5, ∵AB=8, ∴BG=8﹣5=3;(2)证明:∵四边形 ABCD 是平行四边形, ∴∠ADC=∠ABC,DC∥AB,AD∥BC, ∵DE 平分∠ADC, ∴∠CDE= ∠ADC, ∵BF 平分∠ABC, ∴∠ABF= ∠ABC, ∴∠CDE=∠ABF, ∵DC∥AB, ∴∠AGD=∠CDE, ∴∠AGD=∠FBA, ∴ED∥FB, ∵AF∥CE, ∴四边形 BFDE 是平行四边形, ∴∠E=∠F.【点评】此题主要考查了平行四边形的性质和判定,关键是掌握平行四边形两组对边分别平行,两组对边分别 平行的四边形是平行四边形.22.甲、乙两人在某标准游泳池相邻泳道进行 100 米自由泳训练,如图是他们各自离出发点的距离 y(米)与 他们出发的时间 x(秒)的函数图象.根据图象,解决如下问题.(注标准泳池单向泳道长 50 米,100 米自由 泳要求运动员在比赛中往返一次;返回时触壁转身的时间,本题忽略不计) (1)直接写出点 A 坐标,并求出线段 OC 的解析式; (2)他们何时相遇?相遇时距离出发点多远? (3)若甲、乙两人在各自游完 50 米后,返回时的速度相等;则快者到达终点时领先慢者多少米?【考点】一次函数的应用. 【专题】综合题. 【分析】(1)由图得点 A(30,50),C(40,50),用待定系数法,即可求出解析式;(2) 用待定系数法可求出, 线段 AB 的解析式为 y2=﹣ x+100, (30≤x≤60) , 然后, 联立方程组,解出即可; (3)甲乙两人在各自游完 50 米后,在返程中的距离保持不变,把 x=30 与 40 分别代入 y1 和 y2,解出即可解 答; 【解答】解:(1)由图得点 A(30,50),C(40,50), 设线段 OC 的解析式为:y1=k1x, 把点 C(40,50)代入得,k1= , ∴线段 OC 的解析式为:y1= x(0≤x≤40);(2)设线段 AB 的解析式为 y2=k2x+b, 把点 A(30,50)、点 B(60,0)代入可知: ,解得,,∴线段 AB 的解析式为 y2=﹣ x+100,(30≤x≤60);解方程组,解得,,∴线段 OC 与线段 AB 的交点为(,),即出发秒后相遇,相遇时距离出发点米;(3)∵甲乙两人在各自游完 50 米后,在返程中的距离保持不变, 把 x=30 代入 y1= x,得 y1= 米, 米, = 米.把 x=40 代入 y2=﹣ x+100,得 y2= ∴快者到达终点时,领先慢者 50﹣【点评】本题主要考查了一次函数的应用,考查了学生获取信息的能力,读懂图是解答的关键.23.我县万德隆商场有 A、B 两种商品的进价和售价如表: 商品 A 价格 进价(元/件) 售价(元/件) m 160 m+20 240 B已知:用 2400 元购进 A 种商品的数量与用 3000 元购进 B 种商品的数量相同. (1)求 m 的值;(2)该商场计划同时购进的 A、B 两种商品共 200 件,其中购进 A 种商品 x 件,实际进货时,生产厂家对 A 种商品的出厂价下调 a(50<a<70)元出售,若商场保持同种商品的售价不变,商场售完这 200 件商品的总 利润为 y 元. ①求 y 关于 x 的函数关系式; ②若限定 A 种商品最多购进 120 件最少购进 100 件,请你根据以上信息,设计出使该商场获得最大利润的进 货方案. 【考点】一次函数的应用. 【分析】(1)根据等量关系:用 2400 元购进 A 种商品的数量与用 3000 元购进 B 种商品的数量相同,列出方 程即可解决问题. (2)①根据总利润=A 商品利润+B 商品利用计算即可解决问题. ②分 50<a<60,60<a<70,a=60 三种情形,根据一次函数的性质讨论即可解决问题. 【解答】解:(1)由题意 解得:m=88. ∴m=80. (2)①y=[160﹣(80﹣a)]x+(240﹣100)(200﹣x)=(a﹣60)x+28000.(0<x<200) ②∵y=(a﹣60)x+28000,100≤x≤120, ∴当 50<a<60 时,a﹣60<0,y 随 x 增大而减小, ∴x=100 时,y 有最大值, 此时进货方案是购买 100 件 A 种商品,100 件 B 种商品利润最大. 当 60<a<70 时,y 随 x 增大而增大, ∴x=120 时,y 有最大值, 此时进货方案是购买 120 件 A 种商品,80 件 B 种商品利润最大. 当 a=60 时, 利润是定值为 28000 元, 此时进货方案是购买 m 件 A 种商品, (200﹣m) 件 B 种商品 (100≤m≤120) . 【点评】本题考查一次函数的应用,一元一次不等式等知识,解题的关键是连接题意,学会利用不等式解决实 际问题,学会利用一次函数的性质解决实际问题中最值问题,属于中考常考题型. =。

2017-2018学年人教版八年级(下)期中数学试卷(有答案和解析)(3)

2017-2018学年八年级(下)期中数学试卷一.选择题(共10小题,满分40分,每小题4分)1.下列二次根式中,属于最简二次根式的是()A.B.C.D.2.下列各数中,最小的数是()A.0B.﹣2C.1D.﹣3.下列计算错误的是()A.+=B.×=C.÷=3D.(2)2=84.正方形面积为36,则对角线的长为()A.6B.C.9D.5.直角三角形两条直角边长分别是6和8,则斜边上的中线长为()A.3B.4C.5D.66.下列条件中,不能判断△ABC是直角三角形的是()A.a:b:c=3:4:5B.∠A:∠B:∠C=3:4:5C.∠A+∠B=∠C D.a:b:c=1:2:7.矩形具有而平行四边形不一定具有的性质是()A.对角线互相垂直B.对角线相等C.对角线互相平分D.对角相等8.如图,在底边BC为2,腰AB为2的等腰三角形ABC中,DE垂直平分AB于点D,交BC于点E,则△ACE的周长为()A.2+B.2+2C.4D.39.如图,以正方形ABCD的边CD为边向正方形ABCD外作等边△CDE,AC与BE交于点F,则∠AFE的度数是()A.135°B.120°C.60°D.45°10.如图,在Rt△ABC中,AC=3,BC=4,D为斜边AB上一动点,DE⊥BC,DF⊥AC,垂足分别为E、F.则线段EF的最小值为()A.B.C.D.二.填空题(共6小题,满分24分,每小题4分)11.若式子有意义,则x的取值范围是.12.将一张等腰直角三角形纸片沿如图所示的中位线剪开,两块纸片可以拼出不同形状的四边形,请你写出其中两种不同的四边形名称.13.一个多边形的内角和与外角和的比是4:1,则它的边数是.14.如图,分别以直角三角形的三边为边长向外作正方形,然后分别以三个正方形的中心为圆心,正方形边长的一半为半径作圆,记三个圆的面积分别为S1,S2,S3,则S1,S2,S3之间的关系是.15.已知一个菱形的两条对角线的长分别为10和24,则这个菱形的周长为.16.如图,已知A1(1,0)、A2(1,1)、A3(﹣1,1)、A4(﹣1,﹣1)、A5(2,﹣1)、….则点A2019的坐标为.三.解答题(共9小题,满分86分)17.计算(1)先化简,再求值+÷,其中a=+1.(2)已知x=2﹣,求代数式(7+4)x2+(2+)x+的值.18.如图,在▱ABCD中,点E、F分别在边CB、AD的延长线上,且BE=DF,EF分别与AB、CD 交于点G、H.求证:AG=CH.19.如图,某中学有一块四边形的空地ABCD,学校计划在空地上种植草皮,经测量∠A=90°,AB =3m,BC=12m,CD=13m,DA=4m,若每平方米草皮需要200元,问学校需要投入多少资金买草皮?20.如图,菱形ABCD的对角线AC、BD相交于点O,BE∥AC,CE∥DB.求证:四边形OBEC是矩形.21.(1)定义:直角三角形两直角边的平方和等于斜边的平方.如:直角三角形的直角边分别为3、4,则斜边的平方=32+42=25.已知:Rt△ABC中,∠C=90°,AC=8,AB=10,直接写出BC2=.(2)应用:已知正方形ABCD的边长为4,点P为AD边上的一点,AP=AD,请利用“两点之间线段最短”这一原理,在线段AC上画出一点M,使MP+MD最小,并直接写出最小值的平方为.22.在学习了二次根式的相关运算后,我们发现一些含有根号的式子可以表示成另一个式子的平方,如:3+2=2+2+1=()2+2+1=(+1)2;5+2=2+2+3=()2+2××+()2=(+)2(1)请仿照上面式子的变化过程,把下列各式化成另一个式子的平方的形式:①4+2;②6+4(2)若a+4=(m+n)2,且a,m,n都是正整数,试求a的值.23.正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫做格点,以格点为顶点,(1)在图①中,画一个面积为10的正方形;(2)在图②、图③中,分别画两个不全等的直角三角形,使它们的三边长都是无理数.24.如图,已知矩形纸片ABCD,AD=2,AB=4,将纸片折叠,使顶点A与边CD上的点E重合,折痕FG分别与AB、CD交于点G、F,AE与FG交于点O.(1)如图1,求证:A、G、E、F四点围成的四边形是菱形;(2)如图2,点N是线段BC的中点,且ON=OD,求折痕FG的长.25.(1)如图1,在矩形ABCD中,对角线AC与BD相交于点O,过点O作直线EF⊥BD,且交AD于点E,交BC于点F,连接BE,DF,且BE平分∠ABD.①求证:四边形BFDE是菱形;②直接写出∠EBF的度数.(2)把(1)中菱形BFDE进行分离研究,如图2,G,I分别在BF,BE边上,且BG=BI,连接GD,H为GD的中点,连接FH,并延长FH交ED于点J,连接IJ,IH,IF,IG.试探究线段IH与FH之间满足的关系,并说明理由;(3)把(1)中矩形ABCD进行特殊化探究,如图3,矩形ABCD满足AB=AD时,点E是对角线AC上一点,连接DE,作EF⊥DE,垂足为点E,交AB于点F,连接DF,交AC于点G.请直接写出线段AG,GE,EC三者之间满足的数量关系.2017-2018学年八年级(下)期中数学试卷参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分)1.下列二次根式中,属于最简二次根式的是()A.B.C.D.【分析】根据最简二次根式的定义逐一判断即可得.【解答】解:A、==,此选项不符合题意;B、是最简二次根式,符合题意;C、==,此选项不符合题意;D、=3,次选县不符合题意;故选:B.【点评】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.2.下列各数中,最小的数是()A.0B.﹣2C.1D.﹣【分析】根据正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,进行比较.【解答】解:最小的数是﹣2,故选:B.【点评】此题主要考查了比较实数的大小,要熟练掌握任意两个实数比较大小的方法.(1)正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.(2)利用数轴也可以比较任意两个实数的大小,即在数轴上表示的两个实数,右边的总比左边的大,在原点左侧,绝对值大的反而小.3.下列计算错误的是()A.+=B.×=C.÷=3D.(2)2=8【分析】根据二次根式的运算法则逐一计算即可得出答案.【解答】解:A、、不是同类二次根式,不能合并,此选项错误;B、×==,此选项正确;C、÷===3,此选项正确;D、(2)2=8,此选项正确;故选:A.【点评】本题主要考查二次根式的混合运算,解题的关键是熟练掌握二次根式的运算法则.4.正方形面积为36,则对角线的长为()A.6B.C.9D.【分析】根据对角线互相垂直的四边形的面积等于对角线乘积的一半,且正方形对角线相等,列方程解答即可.【解答】解:设对角线长是x.则有x2=36,解得:x=6.故选:B.【点评】本题考查了正方形的性质,注意结论:对角线互相垂直的四边形的面积等于对角线乘积的一半.此题也可首先根据面积求得正方形的边长,再根据勾股定理进行求解.5.直角三角形两条直角边长分别是6和8,则斜边上的中线长为()A.3B.4C.5D.6【分析】利用勾股定理求出斜边,再根据直角三角形斜边上的中线等于斜边的一半解答.【解答】解:∵直角三角形两条直角边长分别是6和8,∴斜边==10,∴斜边上的中线长=×10=5.故选:C.【点评】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,勾股定理,熟记性质是解题的关键.6.下列条件中,不能判断△ABC是直角三角形的是()A.a:b:c=3:4:5B.∠A:∠B:∠C=3:4:5C.∠A+∠B=∠C D.a:b:c=1:2:【分析】根据勾股定理的逆定理、三角形的内角和为180度进行判定即可.【解答】解:A、正确,因为a:b:c=3:4:5,所以设a=3x,b=4x,c=5x,则(3x)2+(4x)2=(5x)2,故为直角三角形;B、错误,因为∠A:∠B:∠C=3:4:5,所以设∠A=3x,则∠B=4x,∠C=5x,故3x+4x+5x=180°,解得x=15°,3x=15×3=45°,4x=15×4=60°,5x=15×5=75°,故此三角形是锐角三角形.C、正确,因为∠A+∠B=∠C,∠A+∠B+∠C=180°,则∠C=90°,故为直角三角形;D、正确,12+()2=22符合勾股定理的逆定理,故成立;故选:B.【点评】此题考查了解直角三角形的相关知识,根据勾股定理的逆定理、三角形的内角和定理结合解方程是解题的关键.7.矩形具有而平行四边形不一定具有的性质是()A.对角线互相垂直B.对角线相等C.对角线互相平分D.对角相等【分析】矩形的对角线互相平分且相等,而平行四边形的对角线互相平分,不一定相等.【解答】解:矩形的对角线相等,而平行四边形的对角线不一定相等.故选:B.【点评】本题考查矩形的性质,矩形具有平行四边形的性质,又具有自己的特性,要注意运用矩形具备而一般平行四边形不具备的性质.如,矩形的对角线相等.8.如图,在底边BC为2,腰AB为2的等腰三角形ABC中,DE垂直平分AB于点D,交BC于点E,则△ACE的周长为()A.2+B.2+2C.4D.3【分析】根据线段垂直平分线的性质得到BE=AE,可得AE+EC=BC=2,即可得到结论【解答】解:∵DE垂直平分AB,∴BE=AE,∴AE+CE=BC=2,∴△ACE的周长=AC+AE+CE=AC+BC=2+2,故选:B.【点评】本题考查了线段垂直平分线性质,等腰三角形的性质等知识点,主要考查运用性质进行推理的能力.9.如图,以正方形ABCD的边CD为边向正方形ABCD外作等边△CDE,AC与BE交于点F,则∠AFE的度数是()A.135°B.120°C.60°D.45°【分析】易得△ABF与△ADF全等,∠AFD=∠AFB,因此只要求出∠AFB的度数即可.【解答】解:∵四边形ABCD是正方形.∴AB=AD,∠BAF=∠DAF.∴△ABF与△ADF全等.∴∠AFD=∠AFB.∵CB=CE,∴∠CBE=∠CEB.∵∠BCE=∠BCD+∠DCE=90°+60°=150°,∴∠CBE=15°.∵∠ACB=45°,∴∠AFB=∠ACB+∠CBE=60°.∴∠AFE=120°.故选:B.【点评】此题考查正方形的性质,熟练掌握正方形及等边三角形的性质,会运用其性质进行一些简单的转化.10.如图,在Rt△ABC中,AC=3,BC=4,D为斜边AB上一动点,DE⊥BC,DF⊥AC,垂足分别为E、F.则线段EF的最小值为()A.B.C.D.【分析】连接CD,判断出四边形CEDF是矩形,再根据矩形的对角线相等可得EF=CD,然后根据垂线段最短可得CD⊥AB时线段EF的长最小,进而解答即可.【解答】解:如图,连接CD,∵DE⊥BC,DF⊥AC,∠ACB=90°,∴四边形CEDF是矩形,∴EF=CD,由垂线段最短可得CD⊥AB时线段EF的长最小,∵AC=3,BC=4,∴AB=,∵四边形CEDF是矩形,∴CD=EF=,故选:D.【点评】本题考查了矩形的判定与性质,垂线段最短的性质,熟记性质与判定方法并确定出EF 最短时的位置是解题的关键.二.填空题(共6小题,满分24分,每小题4分)11.若式子有意义,则x的取值范围是1≤x≤2.【分析】直接根据二次根式的意义建立不等式组即可得出结论.【解答】解:根据二次根式的意义,得,∴1≤x≤2,故答案为1≤x≤2.【点评】此题主要考查了二次根式的意义,解不等式组,建立不等式组是解本题的关键.12.将一张等腰直角三角形纸片沿如图所示的中位线剪开,两块纸片可以拼出不同形状的四边形,请你写出其中两种不同的四边形名称矩形,平行四边形,等腰梯形等.【分析】根据题意画出图形便可直观解答.【解答】解:如图:可拼成以上三种图形:等腰梯形、矩形、平行四边形或等腰梯形、平行四边形.【点评】解答此类题目的关键是根据题意画出图形再解答.13.一个多边形的内角和与外角和的比是4:1,则它的边数是10.【分析】多边形的外角和是360度,内角和与外角和的比是4:1,则内角和是1440度.n边形的内角和是(n﹣2)•180°,如果已知多边形的内角和,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.【解答】解:根据题意,得(n﹣2)•180=1440,解得:n=10.则此多边形的边数是10.故答案为:10.【点评】本题考查了多边形内角和定理和外角和定理:多边形内角和为(n﹣2)•180°,外角和为360°.14.如图,分别以直角三角形的三边为边长向外作正方形,然后分别以三个正方形的中心为圆心,正方形边长的一半为半径作圆,记三个圆的面积分别为S1,S2,S3,则S1,S2,S3之间的关系是S1+S2=S3.【分析】分别计算大圆的面积S3,两个小圆的面积S1,S2,根据直角三角形中大圆小圆直径(2r3)2=(2r 1)2+(2r 2)2的关系,可以求得S 1+S 2=S 3.【解答】解:设大圆的半径是r 3,则S 3=πr 32;设两个小圆的半径分别是r 1和r 2,则S 1=πr 12,S 2=πr 22.由勾股定理,知(2r 3)2=(2r 1)2+(2r 2)2,得r 32=r 12+r 22.所以S 1+S 2=S 3.故答案为S 1+S 2=S 3.【点评】本题考查了勾股定理的正确运算,在直角三角形中直角边与斜边的关系,本题中巧妙地运用勾股定理求得:(2r 3)2=(2r 1)2+(2r 2)2是解题的关键.15.已知一个菱形的两条对角线的长分别为10和24,则这个菱形的周长为 52 .【分析】根据菱形的对角线互相垂直平分,可知AO 和BO 的长,再根据勾股定理即可求得AB 的值,由菱形的四个边相等,继而求出菱形的周长.【解答】解:已知AC =10,BD =24,菱形对角线互相垂直平分,∴AO =5,BO =12cm ,∴AB ==13,∴BC =CD =AD =AB =13,∴菱形的周长为4×13=52.故答案是:52.【点评】本题考查了菱形对角线互相垂直平分的性质,考查了菱形各边长相等的性质,考查了勾股定理在直角三角形中的运用,根据勾股定理求AB 的值是解题的关键.16.如图,已知A 1(1,0)、A 2(1,1)、A 3(﹣1,1)、A 4(﹣1,﹣1)、A 5(2,﹣1)、….则点A 2019的坐标为 (﹣505,505) .的坐标为(﹣n,n)(n为正【分析】观察图形,由第二象限点的坐标的变化可得出“点A4n﹣1整数)”,再结合2019=4×505﹣1,即可求出点A2019的坐标.【解答】解:观察图形,可知:点A3的坐标为(﹣1,1),点A7的坐标为(﹣2,2),点A11的坐标为(﹣3,3),…,的坐标为(﹣n,n)(n为正整数).∴点A4n﹣1又∵2019=4×505﹣1,∴点A2019的坐标为(﹣505,505).故答案为:(﹣505,505).的坐标【点评】本题考查了规律型:点的坐标,根据点的坐标的变化,找出变化规律“点A4n﹣1为(﹣n,n)(n为正整数)”是解题的关键.三.解答题(共9小题,满分86分)17.计算(1)先化简,再求值+÷,其中a=+1.(2)已知x=2﹣,求代数式(7+4)x2+(2+)x+的值.【分析】(1)先根据分式的混合运算顺序和运算法则计算可得;(2)根据x的值,可以求得题目中所求式子的值.【解答】解:(1)原式=+•=+=,当a=+1时,原式==1+;(2)∵x=2﹣,∴x2=(2﹣)2=7﹣4,∴(7+4)x2+(2+)x+=(7+4)(7﹣4)+(2+)(2﹣)+=1+1+=2+.【点评】本题考查分式与二次根式的化简求值,解答本题的关键是明确分式与二次根式化简求值的方法.18.如图,在▱ABCD中,点E、F分别在边CB、AD的延长线上,且BE=DF,EF分别与AB、CD 交于点G、H.求证:AG=CH.【分析】利用平行四边形的性质得出AF=EC,再利用全等三角形的判定与性质得出答案.【解答】证明:∵四边形ABCD是平行四边形,∴AD=BC,∠A=∠C,AD∥BC,∴∠E=∠F,∵BE=DF,∴AF=EC,在△AGF和△CHE中,∴△AGF≌△CHE(ASA),∴AG=CH.【点评】此题主要考查了平行四边形的性质以及全等三角形的判定与性质,正确掌握平行线的性质是解题关键.19.如图,某中学有一块四边形的空地ABCD,学校计划在空地上种植草皮,经测量∠A=90°,AB =3m,BC=12m,CD=13m,DA=4m,若每平方米草皮需要200元,问学校需要投入多少资金买草皮?【分析】仔细分析题目,需要求得四边形的面积才能求得结果.连接BD ,在直角三角形ABD 中可求得BD 的长,由BD 、CD 、BC 的长度关系可得三角形DBC 为一直角三角形,DC 为斜边;由此看,四边形ABCD 由Rt △ABD 和Rt △DBC 构成,则容易求解.【解答】解:连接BD ,在Rt △ABD 中,BD 2=AB 2+AD 2=32+42=52,在△CBD 中,CD 2=132,BC 2=122,而122+52=132,即BC 2+BD 2=CD 2,∴∠DBC =90°,S 四边形ABCD =S △BAD +S △DBC =•AD •AB +DB •BC ,=×4×3+×12×5=36.所以需费用36×200=7200(元).【点评】本题考查的是勾股定理在实际生活中的运用,解答此类题目的关键是构造出直角三角形,再利用勾股定理解答.20.如图,菱形ABCD 的对角线AC 、BD 相交于点O ,BE ∥AC ,CE ∥DB .求证:四边形OBEC 是矩形.【分析】先证四边形OCED 是平行四边形,然后根据菱形的对角线互相垂直,得到∠BOC =90°,根据矩形的定义即可判定四边形OCDE是矩形.【解答】证明:∵BE∥AC,CE∥DB,∴四边形OBEC是平行四边形,又∵四边形ABCD是菱形,且AC、BD是对角线,∴AC⊥BD,∴∠BOC=90°,∴平行四边形OBEC是矩形.【点评】此题综合考查了菱形的性质与矩形的判定方法.矩形的判定定理有:(1)有一个角是直角的平行四边形是矩形;(2)有三个角是直角的四边形是矩形;(3)对角线互相平分且相等的四边形是矩形.21.(1)定义:直角三角形两直角边的平方和等于斜边的平方.如:直角三角形的直角边分别为3、4,则斜边的平方=32+42=25.已知:Rt△ABC中,∠C=90°,AC=8,AB=10,直接写出BC2=36.(2)应用:已知正方形ABCD的边长为4,点P为AD边上的一点,AP=AD,请利用“两点之间线段最短”这一原理,在线段AC上画出一点M,使MP+MD最小,并直接写出最小值的平方为17.【分析】(1)根据直角三角形两直角边的平方和等于斜边的平方计算即可;(2)如图,连接BM,PB.因为PM+MD=PM+BM≥PB,推出PM+DM的最小值为PB的长,由此即可解决问题;【解答】解:(1)在Rt△ABC中,∵∠ACB=90°,AC=8,AB=10,∴BC2=AB2﹣AC2=100﹣64=36,故答案为36(2)如图,连接BM,PB.∵四边形ABCD是正方形,∴∠BAP=90°,B、D关于AC对称,∴MD=MB,∴PM+MD=PM+BM≥PB,∴PM+DM的最小值为PB的长,在Rt△ABP中,PB2=AB2+PA2=42+12=17,故答案为17.【点评】本题考查轴对称、正方形的性质、直角三角形的性质等知识,解题的关键是学会用转化的思想思考问题,属于中考常考题型.22.在学习了二次根式的相关运算后,我们发现一些含有根号的式子可以表示成另一个式子的平方,如:3+2=2+2+1=()2+2+1=(+1)2;5+2=2+2+3=()2+2××+()2=(+)2(1)请仿照上面式子的变化过程,把下列各式化成另一个式子的平方的形式:①4+2;②6+4(2)若a+4=(m+n)2,且a,m,n都是正整数,试求a的值.【分析】(1)根据完全平方公式求出即可;(2)先根据完全平方公式展开,再求出m、n的值,再求出a即可.【解答】解:(1)4+2=3+2+1=()2+2×+12=(+1)2;6+4=4+4+2=22+2×2×+()2=(2+)2;(2)∵a+4=(m+n)2,∴a+4=m2+2mn+3n2,∴a=m2+3n2,2mn=4,∴mn=2,∵m,n都是正整数,∴m=2,n=1或m=1,n=2;当m=2,n=1时,a=22+3×12=7;当m=1,n=2时,a=12+3×22=13;即a的值是7或13.【点评】本题考查了完全平方公式和求代数式的值、二次根式的混合运算,能熟记完全平方公式是解此题的关键,还培养了学生的阅读能力和计算能力.23.正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫做格点,以格点为顶点,(1)在图①中,画一个面积为10的正方形;(2)在图②、图③中,分别画两个不全等的直角三角形,使它们的三边长都是无理数.【分析】(1)根据正方形的面积为10可得正方形边长为,画一个边长为正方形即可;(2)①画一个边长为,2,的直角三角形即可;②画一个边长为,,的直角三角形即可;【解答】解:(1)如图①所示:(2)如图②③所示.【点评】此题主要考查了利用勾股定理画图,关键是计算出所画图形的边长是直角边长为多少的直角三角形的斜边长.24.如图,已知矩形纸片ABCD,AD=2,AB=4,将纸片折叠,使顶点A与边CD上的点E重合,折痕FG分别与AB、CD交于点G、F,AE与FG交于点O.(1)如图1,求证:A、G、E、F四点围成的四边形是菱形;(2)如图2,点N是线段BC的中点,且ON=OD,求折痕FG的长.【分析】(1)根据折叠的性质判断出AG=GE,∠AGF=∠EGF,再由CD∥AB得出∠EFG=∠AGF,从而判断出EF=AG,得出四边形AGEF是平行四边形,继而结合AG=GE,可得出结论.(2)连接ON,得出ON是梯形ABCE的中位线,在RT△ADE中,利用勾股定理可解出x,继而可得出折痕FG的长度.【解答】(1)证明:由折叠的性质可得,GA=GE,∠AGF=∠EGF,∵DC∥AB,∴∠EFG=∠AGF,∴∠EFG=∠EGF,∴EF=EG=AG,∴四边形AGEF是平行四边形(EF∥AG,EF=AG),又∵AG=GE,∴四边形AGEF是菱形.(2)解:连接ON,∵O,N分别是AE,CB的中点,故ON是梯形ABCE的中位线,设CE=x,则ED=4﹣x,2ON=CE+AB=x+4,在Rt△AED中,AE=2OE=2ON=x+4,AD2+DE2=AE2,∴22+(4﹣x)2=(4+x)2,得x=,OE==,∵△FEO∽△AED,∴=,解得:FO=,∴FG=2FO=.故折痕FG的长是.【点评】此题考查了翻折变换的知识,涉及了菱形的判定、含30°角的直角三角形的性质,关键在于得出△FEO∽△AED,求出=.25.(1)如图1,在矩形ABCD中,对角线AC与BD相交于点O,过点O作直线EF⊥BD,且交AD于点E,交BC于点F,连接BE,DF,且BE平分∠ABD.①求证:四边形BFDE是菱形;②直接写出∠EBF的度数.(2)把(1)中菱形BFDE进行分离研究,如图2,G,I分别在BF,BE边上,且BG=BI,连接GD,H为GD的中点,连接FH,并延长FH交ED于点J,连接IJ,IH,IF,IG.试探究线段IH与FH之间满足的关系,并说明理由;(3)把(1)中矩形ABCD进行特殊化探究,如图3,矩形ABCD满足AB=AD时,点E是对角线AC上一点,连接DE,作EF⊥DE,垂足为点E,交AB于点F,连接DF,交AC于点G.请直接写出线段AG,GE,EC三者之间满足的数量关系.【分析】(1)①由△DOE≌△BOF,推出EO=OF,∵OB=OD,推出四边形EBFD是平行四边形,再证明EB=ED即可.②先证明∠ABD=2∠ADB,推出∠ADB=30°,延长即可解决问题.(2)IH=FH.只要证明△IJF是等边三角形即可.(3)结论:EG2=AG2+CE2.如图3中,将△ADG绕点D逆时针旋转90°得到△DCM,先证明△DEG≌△DEM,再证明△ECM是直角三角形即可解决问题.【解答】(1)①证明:如图1中,∵四边形ABCD是矩形,∴AD∥BC,OB=OD,∴∠EDO=∠FBO,在△DOE和△BOF中,,∴△DOE≌△BOF,∴EO=OF,∵OB=OD,∴四边形EBFD是平行四边形,∵EF⊥BD,OB=OD,∴EB=ED,∴四边形EBFD是菱形.②∵BE平分∠ABD,∴∠ABE=∠EBD,∵EB=ED,∴∠EBD=∠EDB,∴∠ABD=2∠ADB,∵∠ABD+∠ADB=90°,∴∠ADB=30°,∠ABD=60°,∴∠ABE=∠EBO=∠OBF=30°,∴∠EBF=60°.(2)结论:IH=FH.理由:如图2中,延长BE到M,使得EM=EJ,连接MJ.∵四边形EBFD是菱形,∠B=60°,∴EB=BF=ED,DE∥BF,∴∠JDH=∠FGH,在△DHJ和△GHF中,,∴△DHJ≌△GHF,∴DJ=FG,JH=HF,∴EJ=BG=EM=BI,∴BE=IM=BF,∵∠MEJ=∠B=60°,∴△MEJ是等边三角形,∴MJ=EM=NI,∠M=∠B=60°在△BIF和△MJI中,,∴△BIF≌△MJI,∴IJ=IF,∠BFI=∠MIJ,∵HJ=HF,∴IH⊥JF,∵∠BFI+∠BIF=120°,∴∠MIJ+∠BIF=120°,∴∠JIF=60°,∴△JIF是等边三角形,在Rt△IHF中,∵∠IHF=90°,∠IFH=60°,∴∠FIH=30°,∴IH=FH.(3)结论:EG2=AG2+CE2.理由:如图3中,将△ADG绕点D逆时针旋转90°得到△DCM,∵∠FAD+∠DEF=90°,∴AFED四点共圆,∴∠EDF=∠DAE=45°,∠ADC=90°,∴∠ADF+∠EDC=45°,∵∠ADF=∠CDM,∴∠CDM+∠CDE=45°=∠EDG,在△DEM和△DEG中,,∴△DEG≌△DEM,∴GE=EM,∵∠DCM=∠DAG=∠ACD=45°,AG=CM,∴∠ECM=90°∴EC2+CM2=EM2,∵EG=EM,AG=CM,∴GE2=AG2+CE2.【点评】本题考查四边形综合题、矩形的性质、正方形的性质、菱形的判定和性质,等边三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形,学会转化的思想思考问题,属于中考压轴题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017-2018学年江苏省苏州市昆山市八年级(下)期中数学试卷一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)若分式的值为零,则x的值是()A.0B.1C.﹣1D.﹣22.(3分)若反比例函数的图象经过点(3,2),则该反比例函数的解析式是()A.B.C.D.y=2x﹣4 3.(3分)若3x﹣2y=0,则+1等于()A.B.C.D.﹣4.(3分)如图,在矩形ABCD中,对角线AC、BD相交于点O,若∠ACB=30°,AB=2,则BD的长为()A.4B.3C.2D.15.(3分)化简﹣的结果是()A.m+3B.m﹣3C.D.6.(3分)若ab<0,则正比例函数y=ax和反比例函数y=在同一坐标系中的大致图象可能是()A.B.C.D.7.(3分)如图,点D、E、F分别是△ABC三边的中点,则下列判断错误的是()A.四边形AEDF一定是平行四边形B.若∠A=90°,则四边形AEDF是矩形C.若AD平分∠A,则四边形AEDF是正方形D.若AD⊥BC,则四边形AEDF是菱形8.(3分)如图,O为坐标原点,菱形OABC的顶点A的坐标为(﹣4,3),顶点C在x轴的负半轴上,函数y=(x<0)的图象经过顶点B,则k的值为()A.﹣12B.﹣27C.﹣32D.﹣369.(3分)如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为F,则EF的长为()A.1B.C.4﹣2D.3﹣4 10.(3分)如图,边长为6的正方形ABCD内部有一点P,BP=4,∠PBC=60°,点Q为正方形边上一动点,且△PBQ是等腰三角形,则符合条件的Q点有()A.4个B.5个C.6个D.7个二、填空题(本大题共8小题,每小题3分,共24分)11.(3分)要使分式有意义,x应满足的条件是.12.(3分)已知a+b=5,ab=3,则+=.13.(3分)已知反比例函数y=的图象上两点A(a2+1,y1),B(a2+2,y2),且y1>y2,则常数m的取值范围是.14.(3分)如图,在Rt△ABC中,∠ACB=90°,D、E、F分别是AB、BC、CA的中点,若CD=6cm,则EF=cm.15.(3分)如图,在平面直角坐标系中,直线y=﹣kx+m与双曲线y=(x>0)交于A、B两点,点A的横坐标为1,点B的横坐标为4,则不等式﹣kx+m>的解集为.16.(3分)已知关于x的方程的解大于1,则实数m的取值范围是.17.(3分)如图,在四边形ABCD中,AB=AD,CB=CD,对角线AC,BD相交于点O,下列结论中:①∠ABC=∠ADC;②AC与BD相互平分;③AC,BD分别平分四边形ABCD的两组对角;④四边形ABCD的面积S=AC•BD.正确的是(填写所有正确结论的序号)18.(3分)如图,在菱形ABCD中,∠BAD=60°,且AB=6,点F为对角线AC的动点,点E为AB上的动点,则FB+EF的最小值为.三、解答题(本大题共76分.解答时应写出必要的计算或说明过程,并把解答过程填写在答题卡相应的位置上)19.(6分)解分式方程:+=.20.(6分)先化简:÷(﹣),再从﹣2<x<3的范围内选取一个你喜欢的x值代入求值.21.(6分)如图,在平行四边形ABCD中,∠ABC的平分线交AD于E,AB=4,BC=6,求DE的长.22.(6分)用A、B两种机器人搬运大米,A型机器人比B型机器人每小时多搬运20袋大米,A型机器人搬运700袋大米与B型机器人搬运500袋大米所用时间相等.求A、B型机器人每小时分别搬运多少袋大米.23.(6分)如图,等腰梯形ABCD放置在平面直角坐标系中,已知A(﹣2,0)、B(6,0)、D(0,3),反比例函数的图象经过点C.(1)求点C坐标和反比例函数的解析式;(2)将等腰梯形ABCD向上平移m个单位后,使点B恰好落在双曲线上,求m的值.24.(8分)已知:如图,在四边形ABCD中,对角线AC、BD相交于O,且AC=BD,E、F分别是AB、CD的中点,E、F分别是AB、CD的中点,EF分别交BD、AC于点G、H.求证:OG=OH.25.(8分)如图,矩形OABC的顶点A、C分别在x、y轴的正半轴上,点D为BC边上的点,AB=BD,反比例函数y=(k≠0)在第一象限内的图象经过点D(m,2)和AB边上的点E(n,).(1)求m、n的值和反比例函数的表达式.(2)求四边形OEBD的面积.26.(8分)如图,矩形ABCD中,AB=6,BC=4,过对角线BD中点O的直线分别交AB,CD边于点E,F.(1)求证:四边形BEDF是平行四边形;(2)当四边形BEDF是菱形时,求EF的长.27.(10分)如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE,将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF.(1)求证:△ABG≌AFG;(2)求BG的长;(3)求△FEC的面积.28.(12分)如图,函数y=x与y=图象的交于点A,B.若点A的坐标为(﹣k,﹣1).(1)点B的坐标为;(2)若点P为第一象限内双曲线上不同于点B的任意一点.①设直线PA交x轴于点M,直线PB交x轴于点N,求证PM=PN;②当P的坐标为(1,k)(k≠1)时,连结PO延长交y=于C,求证四边形PACB为矩形.2017-2018学年江苏省苏州市昆山市八年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)若分式的值为零,则x的值是()A.0B.1C.﹣1D.﹣2【分析】分式的值是0的条件是:分子为0,分母不为0,则可得x﹣1=0且x+2≠0,从而解决问题.【解答】解:∵x﹣1=0且x+2≠0,∴x=1.故选:B.【点评】此题考查的是分式的值为零的条件,分式是0的条件中特别需要注意的是分母不能是0,这是经常考查的知识点.2.(3分)若反比例函数的图象经过点(3,2),则该反比例函数的解析式是()A.B.C.D.y=2x﹣4【分析】设y=(k≠0),直接把点(3,2)代入即可求解.【解答】解:设反比例函数的解析式为y=(k≠0),由图象可知,函数经过点(3,2),则k=3×(2)=6,故反比例函数解析式为y=,故选:B.【点评】本题考查了待定系数法求函数解析式的知识,比较简单,待定系数法求函数的解析式,是中学阶段的重点,同学们要注意掌握.3.(3分)若3x﹣2y=0,则+1等于()A.B.C.D.﹣【分析】根据等式的性质,可得,根据有理数的加法,可得答案.【解答】解:由题意,得3x=2y.两边都除以3y,得=.+1=+1=,故选:C.【点评】本题考查了比例的性质,利用等式的性质得出=是解题关键.4.(3分)如图,在矩形ABCD中,对角线AC、BD相交于点O,若∠ACB=30°,AB=2,则BD的长为()A.4B.3C.2D.1【分析】根据直角三角形30°角所对的直角边等于斜边的一半可得AC=2AB,再根据矩形的对角线相等解答.【解答】解:在矩形ABCD中,∠ABC=90°,∵∠ACB=30°,AB=2,∴AC=2AB=2×2=4,∵四边形ABCD是矩形,∴BD=AC=4.故选:A.【点评】本题考查了矩形的性质,直角三角形30°角所对的直角边等于斜边的一半的性质,熟记各性质是解题的关键.5.(3分)化简﹣的结果是()A.m+3B.m﹣3C.D.【分析】原式利用同分母分式的减法法则计算,约分即可得到结果.【解答】解:原式===m+3.故选:A.【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.6.(3分)若ab<0,则正比例函数y=ax和反比例函数y=在同一坐标系中的大致图象可能是()A.B.C.D.【分析】根据ab<0及正比例函数与反比例函数图象的特点,可以从a>0,b<0和a<0,b>0两方面分类讨论得出答案.【解答】解:∵ab<0,∴a、b为异号,分两种情况:(1)当a>0,b<0时,正比例函数y=ax数的图象过原点、第一、三象限,反比例函数图象在第二、四象限,无此选项;(2)当a<0,b>0时,正比例函数的图象过原点、第二、四象限,反比例函数图象在第一、三象限,选项C符合.故选:C.【点评】本题主要考查了反比例函数的图象性质和正比例函数的图象性质,要掌握它们的性质才能灵活解题.7.(3分)如图,点D、E、F分别是△ABC三边的中点,则下列判断错误的是()A.四边形AEDF一定是平行四边形B.若∠A=90°,则四边形AEDF是矩形C.若AD平分∠A,则四边形AEDF是正方形D.若AD⊥BC,则四边形AEDF是菱形【分析】一组对边平行且相等的四边形是平行四边形;有一个角是直角的平行四边形是矩形;对角线互相垂直的平行四边形是菱形.【解答】解:A、∵点D、E、F分别是△ABC三边的中点,∴DE、DF为△ABC得中位线,∴ED∥AC,且ED=AC=AF;同理DF∥AB,且DF=AB=AE,∴四边形AEDF一定是平行四边形,正确.B、若∠A=90°,则四边形AEDF是矩形,正确;C、若AD平分∠A,如图,延长AD到M,使DM=AD,连接CM,由于BD=CD,DM=AD,∠ADB=∠CDM,(SAS)∴△ABD≌△MCD∴CM=AB,又∵∠DAB=∠CAD,∠DAB=∠CMD,∴∠CMD=∠CAD,∴CA=CM=AB,因AD平分∠A∴AD⊥BC,则△ABD≌△ACD;AB=AC,AE=AF,结合(1)四边形AEDF是菱形,因为∠A不一定是直角∴不能判定四边形AEDF是正方形;D、若AD⊥BC,则△ABD≌△ACD;AB=AC,AE=AF,结合(1)四边形AEDF是菱形,正确.故选:C.【点评】本题考查三角形中位线定理和平行四边形、矩形、正方形、菱形的判定定理.8.(3分)如图,O为坐标原点,菱形OABC的顶点A的坐标为(﹣4,3),顶点C在x轴的负半轴上,函数y=(x<0)的图象经过顶点B,则k的值为()A.﹣12B.﹣27C.﹣32D.﹣36【分析】根据A点坐标可得AO长,再根据菱形的性质可得CO长,进而可得B 点坐标,再把B点坐标代入反比例函数y=中可得k的值.【解答】解:∵A(﹣4,3),∴OA==5,∵菱形OABC,∴AO=OC=5,则点B的横坐标为﹣3﹣4=﹣9,故B的坐标为:(﹣9,3),将点B的坐标代入y=得,3=,解得:k=﹣27.故选:B.【点评】此题主要考查了反比例函数图象上点的坐标特点,以及菱形的性质,关键是掌握反比例函数图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.9.(3分)如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为F,则EF的长为()A.1B.C.4﹣2D.3﹣4【分析】根据正方形的对角线平分一组对角可得∠ABD=∠ADB=45°,再求出∠DAE 的度数,根据三角形的内角和定理求∠AED,从而得到∠DAE=∠AED,再根据等角对等边的性质得到AD=DE,然后求出正方形的对角线BD,再求出BE,最后根据等腰直角三角形的直角边等于斜边的倍计算即可得解.【解答】解:在正方形ABCD中,∠ABD=∠ADB=45°,∵∠BAE=22.5°,∴∠DAE=90°﹣∠BAE=90°﹣22.5°=67.5°,在△ADE中,∠AED=180°﹣45°﹣67.5°=67.5°,∴∠DAE=∠AED,∴AD=DE=4,∵正方形的边长为4,∴BD=4,∴BE=BD﹣DE=4﹣4,∵EF⊥AB,∠ABD=45°,∴△BEF是等腰直角三角形,∴EF=BE=×(4﹣4)=4﹣2.故选:C.【点评】本题考查了正方形的性质,主要利用了正方形的对角线平分一组对角,等角对等边的性质,正方形的对角线与边长的关系,等腰直角三角形的判定与性质,根据角的度数的相等求出相等的角,再求出DE=AD是解题的关键,也是本题的难点.10.(3分)如图,边长为6的正方形ABCD内部有一点P,BP=4,∠PBC=60°,点Q为正方形边上一动点,且△PBQ是等腰三角形,则符合条件的Q点有()A.4个B.5个C.6个D.7个【分析】分别以点B、P为圆心,以BP的长度为半径画圆,与正方形的边的交点即为所求的点Q,再作出BP的垂直平分线,与正方形的边的交点也符合点Q的要求.【解答】解:如图所示,符合条件的Q点有5个.故选B.【点评】本题考查了正方形的性质,等腰三角形的判定,考虑利用圆的半径相等和线段垂直平分线上的点到线段两端点的距离相等的性质作图,利用数形结合的思想求解更形象直观.二、填空题(本大题共8小题,每小题3分,共24分)11.(3分)要使分式有意义,x应满足的条件是x≠3.【分析】本题主要考查分式有意义的条件:分母不能为0.【解答】解:∵x﹣3≠0,∴x≠3,故答案是:x≠3.【点评】本题考查的是分式有意义的条件,当分母不为0时,分式有意义.12.(3分)已知a+b=5,ab=3,则+=.【分析】先将分式化简,再将a+b=5,ab=3代入其中即可.【解答】解:∵a+b=5,ab=3,∴原式==.故答案为.【点评】本题的关键是利用已知条件求值,所以分式中的一些特殊求值题并非是一味的化简,代入,求值.许多问题还需运用到常见的数学思想,如化归思想(即转化)、整体思想等.13.(3分)已知反比例函数y=的图象上两点A(a2+1,y1),B(a2+2,y2),且y1>y2,则常数m的取值范围是m>1.【分析】根据题意可得每个象限内y随x的增大而减小,再结合反比例函数的性质可得m﹣1>0,再解不等式即可.【解答】解:∵a2+1<a2+2,y1>y2,∴y随x的增大而减小,∴m﹣1>0,∴m>1,故答案为:m>1.【点评】此题主要考查了反比例函数图象上点的坐标特点,关键是掌握反比例函数y=(k≠0)的性质,当k>0时,图象的两个分支在第一三象限,在图象的每一支上y随x的增大而减小.14.(3分)如图,在Rt△ABC中,∠ACB=90°,D、E、F分别是AB、BC、CA的中点,若CD=6cm,则EF=6cm.【分析】首先根据在直角三角形中,斜边上的中线等于斜边的一半可得AB=2CD=12cm,再根据中位线的性质可得EF=AB=6cm.【解答】解:∵∠ACB=90°,D为AB中点,∴AB=2CD,∵CD=6cm,∴AB=12cm,∵E、F分别是BC、CA的中点,∴EF=AB=6cm,故答案为:6.【点评】此题主要考查了三角形中位线的性质以及直角三角形的性质,关键是掌握在直角三角形中,斜边上的中线等于斜边的一半.三角形中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半.15.(3分)如图,在平面直角坐标系中,直线y=﹣kx+m与双曲线y=(x>0)交于A、B两点,点A的横坐标为1,点B的横坐标为4,则不等式﹣kx+m>的解集为1<x<4.【分析】由1<x<4时,一次函数图象在反比例函数象上方.【解答】解:由函数图象知,当1<x<4时,一次函数图象在反比例函数图象上方,即不等式﹣kx+m>的解集为1<x<4,故答案为:1<x<4.【点评】本题主要考查反比例函数与一次函数的交点问题,解题的关键是掌握数形结合思想的运用.16.(3分)已知关于x的方程的解大于1,则实数m的取值范围是m<0,且m≠﹣2.【分析】先解方程,再利用方程的解大于1,且x≠2求解即可.【解答】解:方程两边乘x﹣2得:x+m=2﹣x,移项得:2x=2﹣m,系数化为1得:x=,∵方程的解大于1,∴>1,且≠2,解得m<0,且m≠﹣2.故答案为:m<0,且m≠﹣2.【点评】本题主要考查了分式方程的解,解题的关键是不要漏掉分式方程有意义的条件.17.(3分)如图,在四边形ABCD中,AB=AD,CB=CD,对角线AC,BD相交于点O,下列结论中:①∠ABC=∠ADC;②AC与BD相互平分;③AC,BD分别平分四边形ABCD的两组对角;④四边形ABCD的面积S=AC•BD.正确的是①④(填写所有正确结论的序号)【分析】①证明△ABC≌△ADC,可作判断;②③由于AB与BC不一定相等,则可知此两个选项不一定正确;④根据面积和求四边形的面积即可.【解答】解:①在△ABC和△ADC中,∵,∴△ABC≌△ADC(SSS),∴∠ABC=∠ADC,故①结论正确;②∵△ABC≌△ADC,∴∠BAC=∠DAC,∵AB=AD,∴OB=OD,AC⊥BD,而AB与BC不一定相等,所以AO与OC不一定相等,故②结论不正确;③由②可知:AC平分四边形ABCD的∠BAD、∠BCD,而AB与BC不一定相等,所以BD不一定平分四边形ABCD的对角;故③结论不正确;④∵AC ⊥BD ,∴四边形ABCD 的面积S=S △ABD +S △BCD =BD•AO +BD•CO=BD•(AO +CO )=AC•BD .故④结论正确;所以正确的有:①④;故答案为:①④.【点评】本题考查了全等三角形的判定和性质、等腰三角形的性质,掌握全等三角形的判定方法是解题的关键,结论①可以利用等边对等角,由等量加等量和相等来解决.18.(3分)如图,在菱形ABCD 中,∠BAD=60°,且AB=6,点F 为对角线AC 的动点,点E 为AB 上的动点,则FB +EF 的最小值为 3 .【分析】连接BD 、DF ,作DH ⊥AB 于H .由B 、D 关于AC 对称,推出BF=DF ,推出BF +FE=DF +FE ,根据垂线段最短可知,当D 、F 、E 共线,且与DH 重合时,BF +FE 的值最小,最小值为DH 的长;【解答】解:连接BD 、DF ,作DH ⊥AB 于H .∵四边形ABCD 是菱形,∴AD=AB ,∵∠BAD=60°,∴△ADB 是等边三角形,∵B、D关于AC对称,∴BF=DF,∴BF+FE=DF+FE,根据垂线段最短可知,当D、F、E共线,且与DH重合时,BF+FE的值最小,最小值为DH的长,在Rt△ADH中,DH=AD•sin60°=3,故答案为3.【点评】本题考查轴对称﹣最短问题、菱形的性质、勾股定理、垂线段最短等知识,解题的关键是学会添加常用辅助线,学会利用垂线段最短解决最短问题.三、解答题(本大题共76分.解答时应写出必要的计算或说明过程,并把解答过程填写在答题卡相应的位置上)19.(6分)解分式方程:+=.【分析】方程两边都乘最简公分母,可把分式方程转换为整式方程求解.【解答】解:方程两边都乘x(x﹣2),得:4+(x﹣2)=3x解得:x=1.检验:当x=1时,x(x﹣2)≠0.所以原方程的解是x=1.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.20.(6分)先化简:÷(﹣),再从﹣2<x<3的范围内选取一个你喜欢的x值代入求值.【分析】先化简分式,再把x=2代入进行计算即可.【解答】解:原式=÷=•=,当x=2时,原式==4.【点评】本题考查了分式的化简求值,掌握因式分解是解题的关键.21.(6分)如图,在平行四边形ABCD中,∠ABC的平分线交AD于E,AB=4,BC=6,求DE的长.【分析】由在平行四边形ABCD中,∠ABC的平分线交AD于点E,易证得△ABE 是等腰三角形,即可得AB=AE,继而求得DE的长.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC=6,∴∠AEB=∠CBE,∵AD是∠ABC的平分线,∴∠ABE=∠CBE,∴∠ABE=∠AEB,∴AE=AB=4,∴DE=AD﹣AE=2.【点评】此题考查了平行四边形的性质以及等腰三角形的判定与性质.此题难度不大,注意掌握数形结合思想的应用.22.(6分)用A、B两种机器人搬运大米,A型机器人比B型机器人每小时多搬运20袋大米,A型机器人搬运700袋大米与B型机器人搬运500袋大米所用时间相等.求A、B型机器人每小时分别搬运多少袋大米.【分析】工作效率:设A型机器人每小时搬大米x袋,则B型机器人每小时搬运(x﹣20)袋;工作量:A型机器人搬运700袋大米,B型机器人搬运500袋大米;工作时间就可以表示为:A型机器人所用时间=,B型机器人所用时间=,由所用时间相等,建立等量关系.【解答】解:设A型机器人每小时搬大米x袋,则B型机器人每小时搬运(x﹣20)袋,依题意得:=,解这个方程得:x=70经检验x=70是方程的解,所以x﹣20=50.答:A型机器人每小时搬大米70袋,则B型机器人每小时搬运50袋.【点评】本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.23.(6分)如图,等腰梯形ABCD放置在平面直角坐标系中,已知A(﹣2,0)、B(6,0)、D(0,3),反比例函数的图象经过点C.(1)求点C坐标和反比例函数的解析式;(2)将等腰梯形ABCD向上平移m个单位后,使点B恰好落在双曲线上,求m 的值.(1)过点C作CE⊥AB于点E,根据HL证Rt△AOD≌Rt△BEC,求出OA=BE=2,【分析】即可求出C的坐标,代入反比例函数的解析式求出k即可;(2)得出B′的坐标是(6,m),代入反比例函数的解析式,即可求出答案.【解答】解:(1)过点C作CE⊥AB于点E,∵四边形ABCD是等腰梯形,∴AD=BC,DO=CE,∵∠DOA=∠CEO=90°,在Rt△AOD和Rt△BEC中∵,∴Rt△AOD≌Rt△BEC(HL),∴AO=BE=2,∵BO=6,∴DC=OE=4,∴C(4,3),∵设反比例函数的解析式y=,根据题意得:3=,解得k=12,∴反比例函数的解析式;答:点C坐标是(4,3),反比例函数的解析式是y=.(2)将等腰梯形ABCD向上平移m个单位后得到梯形A′B′C′D′,∴点B′(6,m),∵点B′(6,m)恰好落在双曲线y=上,∴当x=6时,y==2,即m=2.【点评】本题考查了用待定系数法求反比例函数的解析式,反比例函数图象上点的坐标特征,全等三角形的性质和判定,等腰梯形的性质的应用,通过做此题培养学生运用性质进行计算的能力,题型较好,难度也适中.24.(8分)已知:如图,在四边形ABCD中,对角线AC、BD相交于O,且AC=BD,E、F分别是AB、CD的中点,E、F分别是AB、CD的中点,EF分别交BD、AC于点G、H.求证:OG=OH.【分析】取BC边的中点M,连接EM,FM,则根据三角形的中位线定理,即可证得△EMF是等腰三角形,根据等边对等角,即可证得∠MEF=∠MFE,然后根据平行线的性质证得∠OGH=∠OHG,根据等角对等边即可证得.【解答】解:取BC边的中点M,连接EM,FM,∵M、F分别是BC、CD的中点,∴MF∥BD,MF=BD,同理:ME∥AC,ME=AC,∵AC=BD∴ME=MF∴∠MEF=∠MFE,∵MF∥BD,∴∠MFE=∠OGH,同理,∠MEF=∠OHG,∴∠OGH=∠OHG∴OG=OH.【点评】本题考查了三角形的中位线定理,正确证明△EMF是等腰三角形是关键.25.(8分)如图,矩形OABC的顶点A、C分别在x、y轴的正半轴上,点D为BC边上的点,AB=BD,反比例函数y=(k≠0)在第一象限内的图象经过点D(m,2)和AB边上的点E(n,).(1)求m、n的值和反比例函数的表达式.(2)求四边形OEBD的面积.【分析】(1)根据题意得出,解方程即可求得m、n的值,然后根据待定系数法即可求得反比例函数的解析式;(2)连接OD,OE.根据S=S矩形OABC﹣S△OCD﹣S△OAE计算即可;四边形ODBE【解答】解:(1)∵D(m,2),E(n,),∴AB=BD=2,∴n=m+2,∴,解得,∴D(1,2),∴k=2,∴反比例函数的表达式为y=;(2)连接OD,OE.=S△AOE==1,∵S△ODC=6﹣2=4.∴S四边形OEBD【点评】本题考查反比例函数系数k的几何意义,矩形的性质,待定系数法等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.26.(8分)如图,矩形ABCD中,AB=6,BC=4,过对角线BD中点O的直线分别交AB,CD边于点E,F.(1)求证:四边形BEDF是平行四边形;(2)当四边形BEDF是菱形时,求EF的长.【分析】(1)根据平行四边形ABCD的性质,判定△BOE≌△DOF(ASA),得出四边形BEDF的对角线互相平分,进而得出结论;(2)在Rt△ADE中,由勾股定理得出方程,解方程求出BE,由勾股定理求出BD,得出OB,再由勾股定理求出EO,即可得出EF的长.【解答】(1)证明:∵四边形ABCD是矩形,O是BD的中点,∴∠A=90°,AD=BC=4,AB∥DC,OB=OD,∴∠OBE=∠ODF,在△BOE和△DOF中,,∴△BOE≌△DOF(ASA),∴EO=FO,∴四边形BEDF是平行四边形;(2)解:当四边形BEDF是菱形时,BD⊥EF,设BE=x,则DE=x,AE=6﹣x,在Rt△ADE中,DE2=AD2+AE2,∴x2=42+(6﹣x)2,解得:x=,∵BD==2,∴OB=BD=,∵BD⊥EF,∴EO==,∴EF=2EO=.【点评】本题主要考查了矩形的性质,菱形的性质、勾股定理、全等三角形的判定与性质,熟练掌握矩形的性质和勾股定理,证明三角形全等是解决问的关键.27.(10分)如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE,将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF.(1)求证:△ABG≌AFG;(2)求BG的长;(3)求△FEC的面积.【分析】(1)根据翻折变换的性质和正方形的性质可证Rt△ABG≌Rt△AFG;(2)在直角△ECG中,根据勾股定理即可得出结论;(3)结合(1)和(2)求出△CEG的面积,最后用同高的两三角形的面积的比等于底的比,即可得出结论.【解答】解:(1)∵△AFE是由△ADE折叠得到,∴AF=AD,∠AFE=∠AFG=∠D=90°,又∵四边形ABCD是正方形,∴AB=AD,∠B=∠D,∴AB=AF,∠B=∠AFG=90°,在Rt△ABG和Rt△AFG中,∴Rt△ABG≌Rt△AFG(HL),(2)∵正方形ABCD中,AB=6,CD=3DE,∵EF=DE=CD=2,设BG=FG=x,则CG=6﹣x.在直角△ECG中,根据勾股定理,得(6﹣x)2+42=(x+2)2,解得x=3.∴BG=3;(3)由(2)知,EF=2,BG=3,由(1)知,Rt△ABG≌Rt△AFG,∴FG=BG=3,∴EG=EF+FG=5,由(2)知,CG=6﹣x=3,CE=CD﹣DE=4,=CG•CE=×3×4=6,∴S△CEG∴S=S△CEG=.△FEC【点评】此题属于四边形的综合题.考查了翻折变换的性质和正方形的性质,全等三角形的判定与性质,勾股定理等知识.注意折叠中的对应关系,注意掌握方程思想的应用是解此题的关键.28.(12分)如图,函数y=x与y=图象的交于点A,B.若点A的坐标为(﹣k,﹣1).(1)点B的坐标为(k,1);(2)若点P为第一象限内双曲线上不同于点B的任意一点.①设直线PA交x轴于点M,直线PB交x轴于点N,求证PM=PN;②当P的坐标为(1,k)(k≠1)时,连结PO延长交y=于C,求证四边形PACB为矩形.【分析】(1)利用对称性即可解决问题;(2)①设P(m,),求出直线PA和PB的解析式,可得点M、N的坐标,作PH⊥MN于H,求出MH、HN即可解决问题;②首先证明四边形PACB是平行四边形,再证明∠APB=90°即可解决问题;【解答】解:(1)∵函数y=x与y=图象的交于点A,B,∴A、B关于原点对称,∵A(﹣k,﹣1),∴B(k,1),故答案为(k,1).(2)①设P(m,),直线PA的解析式为y=ax+b,则有,解得,∴直线PA的解析式为y=x+,令y=0,得到x=m﹣k,设直线PB的解析式为y=cx+d,则有,解得,∴直线PB的解析式为y=﹣x+,令y=0,得到x=k+m,作PH⊥MN于H.则H(m,0),∴HM=m﹣(m﹣k)=k,NH=k+m﹣m=k,∴MH=HN,∴PM=PN.②∵P(1,k),∴C(﹣1,﹣k),∵OP=OC,OA=OB,∴四边形PACB是平行四边形,∵PH=k,MH=k,HN=k,∴PH=HM=HN,∴∠MPN=90°,∴四边形PACB是矩形.【点评】本题考查反比例函数综合题、矩形的判定、一次函数的应用等知识,解题的关键是学会利用参数解决问题,学会构建一次函数确定关键点的坐标,属于中考压轴题.第31页(共31页)。

相关文档
最新文档