(三年模拟一年创新)2016届高考数学复习 第十章 第四节 古典概型与几何概型 理

合集下载

高考数学 17.2 古典概型与几何概型

高考数学 17.2  古典概型与几何概型

17、概率17.2 古典概型与几何概型【知识网络】1. 理解古典概型,掌握古典概型的概率计算公式;会用枚举法计算一些随机事件所含的基本事件数及事件发生的概率。

2. 了解随机数的概念和意义,了解用模拟方法估计概率的思想;了解几何概型的基本概念、特点和意义;了解测度的简单含义;理解几何概型的概率计算公式,并能运用其解决一些简单的几何概型的概率计算问题。

【典型例题】[例1](1)如图所示,在两个圆盘中,指针在本圆盘每个数所在区域的机会均等,那么两个指针同时落在奇数所在区域的概率是 ( )A .49B .29C .23D .13(2)先后抛掷两枚均匀的正方体骰子(它们的六个面分别标有点数1、2、3、4、5、6),骰子朝上的面的点数分别为X 、Y ,则1log 2 Y X 的概率为 ( )A .61B .365 C .121 D .21 (3)在长为18cm 的线段AB 上任取一点M ,并以线段AM 为边作正方形,则这个正方形的面积介于36cm 2与81cm 2之间的概率为()A .56B .12C .13D .16(4)向面积为S 的△ABC 内任投一点P ,则随机事件“△PBC 的面积小于3S”的概率为 .(5)任意投掷两枚骰子,出现点数相同的概率为 .[例2]考虑一元二次方程x 2+mx+n=0,其中m ,n 的取值分别等于将一枚骰子连掷两次先后出现的点数,试求方程有实根的概率。

[例3]甲、乙两人约定于6时到7时之间在某地会面,并约定先到者应等候另一个人一刻钟,过时即可离去.求两人能会面的概率.[例4]抛掷骰子,是大家非常熟悉的日常游戏了.某公司决定以此玩抛掷(两颗)骰子的游戏,来搞一个大型的促销活动——“轻轻松松抛骰子,欢欢乐乐拿礼券”.方案1:总点数是几就送礼券几十元.方案2:总点数为中间数7时的礼券最多,为120元;以此为基准,总点数每减少或增加1,礼券减少20元.方案3 总点数为2和12时的礼券最多,都为120元;点数从2到7递增或从12到7递减时,礼券都依次减少20元.如果你是该公司老总,你准备怎样去选择促销方案?请你对以上三种方案给出裁决.【课内练习】1. 某班共有6个数学研究性学习小组,本学期初有其它班的3名同学准备加入到这6个小组中去,则这3名同学恰好有2人安排在同一个小组的概率是 ()A .15 B .524C .1081D .512 2. 盒中有1个红球和9个白球,它们除颜色不同外,其他方面没有什么差别.现由10人依次摸出1个球,设第1个人摸出的1个球是红球的概率为P 1,第8个人摸出红球的概率是P 8,则()A .P 8=18P 1B .P 8=45P 1 C .P 8=P 1 D .P 8=0 3. 如图,A 、B 、C 、D 、E 、F 是圆O 的六个等分点,则转盘指针不落在阴影部分的概率为( )A .12 B .13C .23D .144. 两根相距3m 的木杆上系一根拉直的绳子,并在绳子上挂一彩珠,则彩珠与两端距离都大于1m 的概率为()A .12B .13C .14D .235. 一次有奖销售中,购满100元商品得1张奖卷,多购多得.每1000张卷为一个开奖单位,设特等奖1个,一等奖5个,二等奖100个.则任摸一张奖卷中奖的概率为 .6. 某学生做两道选择题,已知每道题均有4个选项,其中有且只有一个正确答案,该学生随意填写两个答案,则两个答案都选错的概率为 . 7. 在圆心角为150°的扇形AOB 中,过圆心O 作射线交AB 于P ,则同时满足:∠AOP ≥45°且∠BOP ≥75°的概率为 .8. 某招呼站,每天均有3辆开往首都北京的分为上、中、下等级的客车.某天小曹准备在该招呼站乘车前往北京办事,但他不知道客车的车况,也不知道发车顺序.为了尽可能乘上上等车,他将采取如下决策:先放过第一辆,如果第二辆比第一辆好则上第二辆,否则上第三辆.(1)共有多少个基本事件?(2)小曹能乘上上等车的概率为多少?9.设A 为圆周上一定点,在圆周上等可能的任取一点P 与A 连结,第3题图倍的概率.10.正面体ABCD的体积为V,P是正四面体ABCD的内部的点.①设“V P-ABC≥14V”的事件为X,求概率P(X);②设“V P-ABC≥14V且V P-BCD≥14V”的事件为Y,求概率P(Y).17、概率17.2 古典概型与几何概型A 组1. 取一个正方形及其它的外接圆,随机向圆内抛一粒豆子,则豆子落入正方形外的概率为 ( )A .2π B .2ππ- C D .4π2. 甲、乙、丙三人随意坐下一排座位,乙正好坐中间的概率为 ( )A .12B .13C .14D .163. 已知椭圆22221x y a b+=(a >b >0)及内部面积为S=πab ,A 1,A 2是长轴的两个顶点,B 1,B 2是短轴的两个顶点,点P 是椭圆及内部的点,下列命题正确的个数是 ( ) ①△PA 1A 2为钝角三角形的概率为1; ②△PB 1B 2为直角三角形的概率为0;③△PB 1B 2为钝角三角形的概率为ba ;④△PA 1A 2为钝角三角形的概率为ba ;⑤△PB 1B 2为锐角三角形的概率为a ba-。

三年高考(2014-2016)数学(理)试题分项版解析 专题10立体几何(选择填空)解析版 Word版含解析

三年高考(2014-2016)数学(理)试题分项版解析 专题10立体几何(选择填空)解析版 Word版含解析

三年高考(2014-2016)数学(理)试题分项版解析第十章 立体几何一、选择题1. 【2014高考北京理第8题】如图,正方体ABCD —A 1B 1C 1D 1的棱长为2,动点E ,F 在棱A 1B 1上,动点P ,Q 分别在棱AD ,CD 上.若EF =1,A 1E =x ,DQ =y ,DP =z (x ,y ,z 大于零),则四面体P —EFQ 的体积( )A .与x ,y ,z 都有关B .与x 有关,与y ,z 无关C .与y 有关,与x ,z 无关D .与z 有关,与x ,y 无关 【答案】D考点:点到面的距离;锥体的体积.【名师点睛】本题考查空间下几何体中相应点的坐标以及四面体的体积,点到面的距离,本题属于基础题,要准确确定三角形的底和高,利用锥体的体积求出多面体的体积.2.【2014高考北京理第7题】在空间直角坐标系Oxyz 中,已知(2,0,0)(2,2,0),,2,0),(1,1,2)A B C D .若123,,S S S 分别是三棱锥D A B C 在,,xOy yOz zOx 坐标平面上的正投影图形的面积,则( )A .123S S S ==B .21S S =且23S S ≠C .31S S =且32S S ≠D .32S S =且31S S ≠ 【答案】D 【解析】试题分析:三棱锥ABC D -在平面xoy 上的投影为ABC ∆,所以21=S ,设D 在平面yoz 、zox 平面上的投影分别为2D 、1D ,则ABC D -在平面yoz 、zox 上的投影分别为2OCD ∆、1OAD ∆,因为)2,1,0(1D ,)2,0,1(2D ,所以212=-S S , 故选D.考点:三棱锥的性质,空间中的投影,难度中等.【名师点睛】本题考查空间直角坐标系下几何体的位置和相应点的坐标以及正投影的概念,正投影的位置、形状和面积,本题属于基础题,要准确写出点的坐标,利用坐标求出三角形的面积.3. 【2016高考新课标1卷】如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是283π,则它的表面积是( ) (A )17π (B )18π (C )20π (D )28π【答案】A 【解析】试题分析: 该几何体直观图如图所示:是一个球被切掉左上角的18,设球的半径为R ,则37428V R 833ππ=⨯=,解得R 2=,所以它的表面积是78的球面面积和三个扇形面积之和2271=42+32=1784S πππ⨯⨯⨯⨯故选A . 考点:三视图及球的表面积与体积【名师点睛】由于三视图能有效的考查学生的空间想象能力,所以以三视图为载体的立体几何题基本上是高考每年必考内容,高考试题中三视图一般常与几何体的表面积与体积交汇.由三视图还原出原几何体,是解决此类问题的关键.4. 【2014高考广东卷.理.7】若空间中四条直线两两不同的直线1l .2l .3l .4l ,满足12l l ⊥,23//l l ,34l l ⊥,则下列结论一定正确的是( )A .14l l ⊥B .14//l lC .1l .4l 既不平行也不垂直D .1l .4l 的位置关系不确定 【答案】D【解析】如下图所示,在正方体1111ABCD A BC D -中,取1AA 为2l ,1BB 为3l ,取AD 为1l ,BC 为4l ,D 1C 1B 1A 1DCBA14//l l ;取AD 为1l ,AB 为4l ,则14l l ⊥;取AD 为1l ,11A B 为4l ,则1l 与4l 异面,因此1l .4l 的位置关系不确定,故选D .【考点定位】本题考查空间中直线的位置关系的判定,属于中等题.【名师点晴】本题主要考查的是空间点、线、面的位置关系,属于中等题.解题时一定要注意选“正确”还是选“错误”, 否则很容易出现错误.解决空间点、线、面的位置关系这类试题时一定要万分小心,除了作理论方面的推导论证外,利用特殊图形进行检验,也可作必要的合情推理.5.【2016高考新课标2理数】下图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( )(A )20π (B )24π (C )28π (D )32π 【答案】C 【解析】试题分析:由题意可知,圆柱的侧面积为122416S ππ=⋅⋅=,圆锥的侧面积为2122482S ππ=⋅⋅⋅=,圆柱的底面面积为2324S ππ=⋅=,故该几何体的表面积为12328S S S S π=++=,故选C.考点: 三视图,空间几何体的体积. 【名师点睛】由三视图还原几何体的方法:5.【 2013湖南7】已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积不可能...等于A .1BC .2D .2【答案】 C【解析】试题分析: 由题知,正方体的棱长为1,水平放置的正方体,当正视图为正方形时,其面积最小为1;因此满足棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积的范围为. 【考点定位】三视图【名师点睛】本题主要考查了简单空间图形的三视图,解决问题的关键是正确求出满足条件的该正方体的正视图的面积的范围为是解题的关键.6.【 2014湖南7】一块石材表示的几何体的三视图如图2所示,将该石材切削、打磨、加工成球,则能得到的最大球的半径等于( ) A.1 B.2 C.3 D.4【答案】B【考点定位】三视图 内切圆 球 三棱柱【名师点睛】解决有关三视图的题目,主要是根据三视图首先得到几何体的空间结构图形,然后运用有关立体几何的知识进行发现计算即可,问题在于如何正确的判定几何体的空间结构,主要是根据“长对正,高平齐,宽相等”进行判断.7.【2015高考山东,理7】在梯形ABCD 中,2ABC π∠=,//,222AD BC BC AD AB === .将梯形ABCD 绕AD 所在的直线旋转一周而形成的曲面所围成的几何体的体积为( )(A )23π (B )43π (C )53π (D )2π 【答案】C【解析】直角梯形ABCD 绕AD 所在的直线旋转一周而形成的曲面所围成的几何体是一个底面半径为1,母线长为2的圆柱挖去一个底面半径同样是1、高为1的圆锥后得到的组合体,所以该组合体的体积为:2215121133V V V πππ=-=⨯⨯-⨯⨯⨯=圆柱圆锥 故选C.【考点定位】1、空间几何体的结构特征;2、空间几何体的体积.【名师点睛】本题考查了空间几何体的结构特征及空间几何体的体积的计算,重点考查了圆柱、圆锥的结构特征和体积的计算,体现了对学生空间想象能力以及基本运算能力的考查,此题属中档题.8. 【2016年高考北京理数】某三棱锥的三视图如图所示,则该三棱锥的体积为()A.16 B.13 C.12D.1 【答案】A 【解析】试题分析:分析三视图可知,该几何体为一三棱锥P ABC -,其体积111111326V =⋅⋅⋅⋅=,故选A.考点:1.三视图;2.空间几何体体积计算.【名师点睛】解决此类问题的关键是根据几何体的三视图判断几何体的结构特征.常见的有以下几类:①三视图为三个三角形,对应的几何体为三棱锥;②三视图为两个三角形,一个四边形,对应的几何体为四棱锥;③三视图为两个三角形,一个圆,对应的几何体为圆锥;④三视图为一个三角形,两个四边形,对应的几何体为三棱柱;⑤三视图为三个四边形,对应的几何体为四棱柱;⑥三视图为两个四边形,一个圆,对应的几何体为圆柱.9.【2014高考陕西版理第5题】已知底面边长为1在同一个球面上,则该球的体积为( )32.3A π .4B π .2C π 4.3D π【答案】D 【解析】试题分析:根据正四棱柱的几何特征得:该球的直径为正四棱柱的体对角线,故22R ==,即得1R =,所以该球的体积224441333V R πππ===,故选D .考点:正四棱柱的几何特征;球的体积.【名师点晴】本题主要考查的是正四棱柱的几何特征;球的体积,属于容易题.解题时一定要注意正四棱柱的几何特征(实际上是一个特殊的长方体),求出球的直径,进而得到半径,然后利用球的体积公式直接运算即可10. 【2015高考陕西,理5】一个几何体的三视图如图所示,则该几何体的表面积为( )A .3πB .4πC .24π+D .34π+【答案】D【解析】由三视图知:该几何体是半个圆柱,其中底面圆的半径为1,母线长为2,所以该几何体的表面积是()1211222342ππ⨯⨯⨯++⨯=+,故选D . 【考点定位】1、三视图;2、空间几何体的表面积.【名师点晴】本题主要考查的是三视图和空间几何体的表面积,属于容易题.解题时要看清楚是求表面积还是求体积,否则很容易出现错误.本题先根据三视图判断几何体的结构特征,再计算出几何体各个面的面积即可.11. 【2016高考新课标3理数】如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为( )(A )18+(B )54+(C )90 (D )81 【答案】B 【解析】试题分析:由三视图该几何体是以侧视图为底面的斜四棱柱,所以该几何体的表面积2362332354S =⨯⨯+⨯⨯+⨯⨯=+,故选B .考点:空间几何体的三视图及表面积.【技巧点拨】求解多面体的表面积及体积问题,关键是找到其中的特征图形,如棱柱中的矩形,棱锥中的直角三角形,棱台中的直角梯形等,通过这些图形,找到几何元素间的关系,建立未知量与已知量间的关系,进行求解.基本性质及推论,线面平行、线面垂直的判定与性质,考查了学生的空间想象和思维能力,是中档题.12. 【2015高考新课标2,理6】一个正方体被一个平面截去一部分后,剩余部分的三视图如右图,则截去部分体积与剩余部分体积的比值为( ) A .1B .1C .61D .51【答案】D【解析】由三视图得,在正方体1111ABCD A BC D -中,截去四面体111A A B D -,如图所示,,设正方体棱长为a ,则11133111326A A B D V a a -=⨯=,故剩余几何体体积为3331566a a a -=,所以截去部分体积与剩余部分体积的比值为51,故选D .A1【考点定位】三视图.【名师点睛】本题以正方体为背景考查三视图、几何体体积的运算,要求有一定的空间想象能力,关键是能从三视图确定截面,进而求体积比,属于中档题.13. 【2014新课标,理6】如图,网格纸上正方形小格的边长为1(表示1cm ),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm ,高为6cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( ) A. 1727 B. 59 C. 1027 D. 13【答案】C【考点定位】1.三视图;2.简单几何体的体积.【名师点睛】本题考查了三视图,直观图,组合体的体积,属于中档题,注意由三视图还原几何体的解题的关键,注意计算的准确性.14. 【2015高考新课标2,理9】已知A,B 是球O 的球面上两点,∠AOB=90,C 为该球面上的动点,若三棱锥O-ABC 体积的最大值为36,则球O 的表面积为( ) A .36π B.64π C.144π D.256π 【答案】C【解析】如图所示,当点C 位于垂直于面AOB 的直径端点时,三棱锥O ABC -的体积最大,设球O 的半径为R ,此时2311136326O ABC C AOB V V R R R --==⨯⨯==,故6R =,则球O 的表面积为24144S R ππ==,故选C .【考点定位】外接球表面积和椎体的体积.【名师点睛】本题以球为背景考查空间几何体的体积和表面积计算,要明确球的截面性质,正确理解四面体体积最大时的情形,属于中档题.15. 【2014新课标,理11】直三棱柱ABC-A 1B 1C 1中,∠BCA=90°,M ,N 分别是A 1B 1,A 1C 1的中点,BC=CA=CC 1,则BM 与AN 所成的角的余弦值为( ) A. 110 B. 25C.D.【答案】C【解析】以C 为原点,直线CA 为x 轴,直线CB 为y 轴,直线1CC 为z 轴,则设CA=CB=1,则(0,1,0)B ,11(,,1)22M ,A (1,0,0),1(0,1)2N ,故11(,,1)22BM =-uuu r ,1(,0,1)2AN =-uuu r ,所以cos ,||||BM AN BM AN BM AN ⋅==⋅uuu r uuu ruuu r uuu r uuu r uuur 3=C. 【考点定位】异面直线所成的角.【名师点睛】本题考查了空间几何体棱柱的性质,异面直线所成角,空间直角坐标,空间向量的数量积,本题属于中档题,要求学生根据根据已知建立空间直角坐标系,然后利用空间向量的知识求异面直线所成角的余弦值,注意由已知准确写出所需点的坐标.16. 【2016高考山东理数】一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为( )(A )1233+π (B )13+ (C )13+ (D )1+ 【答案】C 【解析】试题分析:由三视图可知,上面是半径为2的半球,体积为311423V π=⨯⨯=⎝⎭下面是底面积为1,高为1的四棱锥,体积2111133V =⨯⨯=,故选C.考点:1.三视图;2.几何体的体积.【名师点睛】本题主要考查三视图及几何体的体积计算,本题涉及正四棱锥及球的体积计算,综合性较强,较全面的考查考生的视图用图能力、空间想象能力、数学基本计算能力等.17. 【2014四川,理8】如图,在正方体1111ABCD A BC D -中,点O 为线段BD 的中点.设点P 在线段1CC 上,直线OP 与平面1A BD 所成的角为α,则s i n α的取值范围是( )A .3B .[3C .[33D .[3【答案】B【考点定位】空间直线与平面所成的角.【名师点睛】通过证明直线与平面垂直,构造得到直线与平面所成角的平面角,利用解三角形的知识计算得到其正弦值.本题属于中等题,主要考查学生基本的运算能力以及空间想象能力,考查学生空间问题转化为平面问题的转化与化归能力.18【2016高考浙江理数】已知互相垂直的平面αβ,交于直线l .若直线m ,n 满足,m n αβ∥⊥,则( ) A .m ∥l B .m ∥n C .n ⊥l D .m ⊥n 【答案】C 【解析】试题分析:由题意知,l l αββ=∴⊂ ,,n n l β⊥∴⊥ .故选C . 考点:空间点、线、面的位置关系.【思路点睛】解决这类空间点、线、面的位置关系问题,一般是借助长方体(或正方体),能形象直观地看出空间点、线、面的位置关系.19. 【2015高考新课标1,理6】《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺。

2016届高三数学一轮总复习课件:第十章 计数原理、概率、随机变量及其分布10-5理、-2文

2016届高三数学一轮总复习课件:第十章 计数原理、概率、随机变量及其分布10-5理、-2文

【规律方法】 (1)求古典概型概率的基本步骤 ①算出所有基本事件的个数 n. ②求出事件 A 包含的所有基本事件数 m. ③代入公式 P(A)=mn ,求出 P(A). (2)基本事件个数的确定方法 ①列举法:此法适合于基本事件较少的古典概型. ②列表法:此法适合于从多个元素中选定两个元素的试验, 也可看成是坐标法.
记事件 D:“抽取的这 2 件商品来自相同地区”,
第二十三页,编辑于星期五:二十点 十四分。
则事件 D 包含的基本事件有{B1,B2},{B1,B3},{B2,B3}, {C1,C2},共 4 个.
所以 P(D)=145,即这 2 件商品来自相同地区的概率为145.
第二十四页,编辑于星期五:二十点 十四分。
A.0
B.1
C.2
D.3
解析 古典概型有两大特点:一是有限性,二是等可能性, 所以只有③是古典概型.
答案 B
第十页,编辑于星期五:二十点 十四分。
2.一个家庭有两个小孩,则所有可能的基本事件有( ) A.(男,女),(男,男),(女,女) B.(男,女),(女,男) C.(男,男),(男,女),(女,男),(女,女) D.(男,男),(女,女) 解析 由于两个孩子出生有先后之分,所以基本事件有四种 情况. 答案 C
第三十四页,编辑于星期五:二十点 十四分。
听 课 记 录 (1)由题意,(a,b,c)所有的可能为(1,1,1),(1,1,2), (1,1,3),(1,2,1),(1,2,2),(1,2,3),(1,3,1),(1,3,2),(1,3,3),(2,1,1), (2,1,2),(2,1,3),(2,2,1),(2,2,2),(2,2,3),(2,3,1),(2,3,2),(2,3,3), (3,1,1),(3,1,2),(3,1,3),(3,2,1),(3,2,2),(3,2,3),(3,3,1),(3,3,2), (3,3,3),共 27 种.

高考数学总复习配套课件:第10章《概率》10-3几何概型

高考数学总复习配套课件:第10章《概率》10-3几何概型

为3的正方体内自由飞行,若蜜蜂在飞行
过程中始终保持与正方体6个表面的距离
均A.2大47 于1,称其为“安全B.19飞行”,则蜜蜂
“4安全飞行”的概率为( 1 )
C.9
D.27
解析:蜜蜂如果能“安全飞行”,则蜜蜂飞行过程中应在一个中心
与原正方体中心重合,且在棱长为 1 的正方体内,该正方体的体积 V1= 13=1,而原正方体的体积 V=33=27,故所求概率 P=VV1=217.
【思想方法】 转化与化归思想在几何概 型中的应用
【典例】 (2012年高考辽宁卷)在长为12
cm的线段AB上任取一点C,现作一矩形, 邻A.16边长分别等于线段ABC.13 ,CB的长,则该
矩2形面积大于20 cm2的概4 率为( )
C.3
D.5
【解析】 设 AC=x,则 BC=12-x,所以 x(12-x)=20,解得 x
电影;若此点到圆心的距离小于14,则去打篮球;否则,在家看书.则小 波周末不在家看书的概率为________.
[解析] 设 A={小波周末去看电影},B={小波周末去打篮球},C ={小波周末在家看书},D={小波周末不在家看书},如图所示,则 P(D) =1-π122-π π142=1136.
[答案]
13 16
1.(2013 年太原模拟)若实数 a,b 满足 a2+b2≤1,则关于 x 的方程
x2-ax+34b2=0 有实数根的概率是(
)
1
1
A.6
B.4
1 C.3
D.1
解析:由原方程有实根得a2-3b2≥0⇔(a- b)(a+b)≥0,则整个基本事件空间可用点 (a,b)所在图形的面积来度量,为以原点 为圆心,以1为半径的圆,事件“方程有 实根”可用不等式组对应平面区域的面积

【大高考】(三年模拟一年创新)2016届高考数学复习 第十章 第一节 随机事件及其概率 文(全国通用)

【大高考】(三年模拟一年创新)2016届高考数学复习 第十章 第一节 随机事件及其概率 文(全国通用)

【大高考】(三年模拟一年创新)2016届高考数学复习 第十章 第一节 随机事件及其概率 文(全国通用)A 组 专项基础测试 三年模拟精选一、选择题1.(2015·忻州四校联考)集合A ={2,3},B ={1,2,3},从集合A ,B 中各任意取一个数,则这两个数的和等于4的概率是( ) A.23B.12C.13D.16解析 从A ,B 中各取任意一个数共有2×3=6种取法,而两数之和为4的有(2,2),(3,1)两种,故所求的概率为26=13.答案 C2.(2015·唐山摸底)甲、乙、丙三人站成一排,则甲、乙相邻的概率是( ) A.23B.13C.12D.56解析 甲、乙、丙三个同学站成一排有以下可能:甲乙丙,甲丙乙,乙甲丙,乙丙甲,丙甲乙,丙乙甲,共6种情况,甲、乙相邻包括:甲乙丙,乙甲丙,丙甲乙,丙乙甲,有4种情况,∴甲、乙两人相邻的概率为46=23.答案 A3.(2015·长春第一次调研)下列四个命题: ①对立事件一定是互斥事件;②若A ,B 为两个事件,则P (A ∪B )=P (A )+P (B ); ③若事件A ,B ,C 两两互斥,则P (A )+P (B )+P (C )=1; ④若事件A ,B 满足P (A )+P (B )=1,则A ,B 是对立事件. 其中错误命题的个数是( ) A .0B .1C .2D .3解析 ①正确;②公式成立的条件是A ,B 互斥,故错误;③A ∪B ∪C 不一定为全部事件,故错误;④A ,B 不一定为互斥事件,故错误. 答案 D4.(2014·湖南岳阳质检)用简单随机抽样的方法从含有100个个体的总体中依次抽取一个容量为5的样本,则个体m 被抽到的概率为( ) A.1100B.120C.199D.150解析 总体含有100个个体,则每个个体被抽到的概率为1100,所以以简单随机抽样的方法从该总体中抽取一个容量为5的样本,则指定的某个个体被抽到的概率为1100×5=120.答案 B 二、填空题5.(2014·珠海一模)现从甲、乙、丙3人中随机选派2人参加某项活动,则甲被选中的概率为________.解析 从甲、乙、丙3人中随机选派2人参加某项活动,有甲、乙;甲、丙;乙、丙三种可能,则甲被选中的概率为23.答案 236.(2014·大连检测)现有语文、数学、英语、物理和化学共5本书,从中任取1本,取出的是理科书的概率为________.解析 记取到语文、数学、英语、物理、化学书分别为事件A ,B ,C ,D ,E ,则A ,B ,C ,D ,E 互斥,取到理科书的概率为事件B ,D ,E 概率的和.∴P (B ∪D ∪E )=P (B )+P (D )+P (E ) =15+15+15=35. 答案 35一年创新演练7.在5件产品中,有3件一等品和2件二等品,从中任取2件,以710为概率的事件是( )A .都不是一等品B .恰有1件一等品C .至少有1件一等品D .至多有1件一等品解析 从5件产品中任取2件有10种取法,设3件一等品为1,2,3,2件二等品为4,5.这10种取法是(1,2)(1,3)(2,3)(1,4)(1,5)(2,4)(2,5)(3,4)(3,5)(4,5),其中2件均为一等品的取法有(1,2),(1,3),(2,3),共3种.∴至多有1件一等品的概率P =1-310=710.答案 D8.从一批苹果中随机抽取50个,其重量(单位:克)的频数分布表如下:用分层抽样的方法从重量在[80,85)和[95,100]内的苹果中共抽取4个,再从抽取的4个苹果中任取2个,则有1个苹果的重量在[80,85)内的概率为( ) A.12B.13C.14D.16解析 设从重量在[80,85)内的苹果中抽取x 个,则从重量在[95,100]内的苹果中抽取(4-x )个,因为频数分布表中[80,85),[95,100]两组的频数分别为5,15,所以5∶15=x ∶(4-x ),解得x =1,即抽取的4个苹果中重量在[80,85)内的有1个,记为a ,重量在[95,100]内的有3个,记为b 1,b 2,b 3,任取2个有ab 1,ab 2,ab 3,b 1b 2,b 1b 3,b 2b 3,共6种不同的方法,其中有1个苹果的重量在[80,85)内的事件有ab 1,ab 2,ab 2,共3个,所以所求概率为36=12.答案 AB 组 专项提升测试 三年模拟精选一、选择题9.(2015·湖南十二校联考)甲袋中装有3个白球5个黑球,乙袋中装有4个白球6个黑球,现从甲袋中随机取出一个球放入乙袋中,充分混合后再从乙袋中随机取出一个球放回甲袋,则甲袋中白球没有减少的概率为( ) A.3544B.2544C.3744D.544解析 若先从甲袋中取出的是白球,则满足题意的概率为P 1=38×511=1588;若先从甲袋中取出的是黑球,则满足题意的概率为P 2=58,易知这两种情况不可能同时发生,故所求概率为P =P 1+P 2=1588+58=3544.答案 A 二、填空题10.(2015·临沂模拟)一只袋子中有7个红球,3个绿球,从中无放回地任意抽取两次,每次取一个,至少取到一个红球的概率为____________.解析 至少取到一个红球的对立事件是取到的两个都是绿球,其概率为P 1=310×29=115,故至少取到一个红球的概率P =1-P 1=1415.答案141511.(2015·广东六校联考)盒子里共有大小相同的3个白球,1个黑球.若从中随机摸出两个球,则它们颜色不同的概率是________.解析 设3个白球为A ,B ,C ,1个黑球为d ,则从中随机摸出两只球的所有可能情况有:AB ,AC ,Ad ,BC ,Bd ,Cd ,共6种,其中两只球颜色不同的有3种,故所求概率为12.答案 1212.(2014·开封模拟)已知某台纺纱机在1小时内发生0次、1次、2次断头的概率分别是0.8、0.12、0.05,则这台纺纱机在1小时内断头不超过两次的概率和断头超过两次的概率分别为________,________. 解析 断头不超过两次的概率P 1=0.8+0.12+0.05=0.97.于是,断头超过两次的概率P 2=1-P 1=1-0.97=0.03.答案 0.97 0.03 三、解答题13.(2014·长春模拟)黄种人群中各种血型的人所占的比如下表所示:已知同种血型的人可以输血,O 型血可以输给任一种血型的人,任何人的血都可以输给AB 型血的人,其他不同血型的人不能互相输血.小明是B 型血,若小明因病需要输血,问: (1)任找一个人,其血可以输给小明的概率是多少? (2)任找一个人,其血不能输给小明的概率是多少?解 (1)对任一人,其血型为A ,B ,AB ,O 型血的事件分别记为A ′,B ′,C ′,D ′,它们是互斥的.由已知,有P (A ′)=0.28,P (B ′)=0.29,P (C ′)=0.08,P (D ′)=0.35. 因为B ,O 型血可以输给B 型血的人,故“可以输给B 型血的人”为事件B ′+D ′. 根据互斥事件的加法公式,有P (B ′+D ′)=P (B ′)+P (D ′)=0.29+0.35=0.64. (2)法一 由于A ,AB 型血不能输给B 型血的人,故“不能输给B 型血的人”为事件A ′+C ′,且P (A ′+C ′)=P (A ′)+P (C ′)=0.28+0.08=0.36.法二 因为事件“其血可以输给B 型血的人”与事件“其血不能输给B 型血的人”是对立事件,故由对立事件的概率公式,有1-P (B ′+D ′)=1-0.64=0.36.答:任找一人,其血可以输给小明的概为0.64,其血不能输给小明的概率为0.36.一年创新演练14.将一颗骰子掷两次,观察出现的点数,并记第一次出现的点数为m ,第二次出现的点数为n ,向量p =(m ,n ),q =(3,6),则向量p 与q 共线的概率为( ) A.118 B.112C.19D.29解析 抛两次骰子共有36个基本事件,由向量p 与q 共线得6m =3n ,即2m =n ,符合要求的(m ,n )有(1,2),(2,4),(3,6),共3种情况,则向量p 与q 共线的概率为336=112. 答案 B15.将一颗骰子投掷两次分别得到点数a,b,则直线ax-by=0与圆(x-2)2+y2=2相交的概率为________.解析圆心(2,0)到直线ax-by=0的距离d=|2a|a2+b2,当d<2,直线与圆相交,则有d=|2a|a2+b2<2,得b>a,满足题意的b>a共有15种情况,因此直线ax-by=0与圆(x-2)2+y2=2相交的概率为1536=5 12.答案5 12。

【把握高考】高三数学最新专题综合演练第十章10.4《古典概型及几何概型》人教版必修3精题精练

【把握高考】高三数学最新专题综合演练第十章10.4《古典概型及几何概型》人教版必修3精题精练

------ 精品文档 ! 值得拥有! ------
1 5.袋中装有黑球和白球共 7 个,从中任取 2 个球都是白球的概率为 7,现有甲、乙两人从 袋中轮流摸取 1 个球,甲先取,乙后取,然后甲再取,……,取后不放回,直到两人中有 一人取到白球时即终止.每个球在每一次被取出的机会是等可能的.
(1) 求袋中原有白球的个数; (2) 求取球 2 次终止的概率; (3) 求甲取到白球的概率.
------ 精品文档 ! 值得拥有! ------
1. ( 2011·陕西)甲乙两人一起去游“ 2011 西安世园会”,他们约定,各自独立地从
1 到 6 号景点中任选 4 个进行游览,每个景点参观 1 小时,则最后一小时他们同在一个景
点的概率是
()
1
1
A.
B.
36
9
C. 5
D.
1
36
6
------ 珍贵文档 ! 值得收藏! ------
------ 珍贵文档 ! 值得收藏! ------
------ 精品文档 ! 值得拥有! ------
6.(2010·深圳调研 ) 已知复数 z= x+ yi( x,y∈ R) 在复平面上对应的点为 M. (1) 设集合 P={ -4,- 3,- 2,0} ,Q={0,1,2} ,从集合 P 中随机取一个数作为 集合 Q中随机取一个数作为 y,求复数 z 为纯虚数的概率;
x,从
x+2y∈[0,4] , 求点 M落在不等式组 x≥0,
所表示的平面
y ≥0
区域内的概率.
------ 珍贵文档 ! 值得收藏! ------

三年高考两年模拟高考数学专题汇编 第十章 计数原理、概率与统计1 理

第一节排列与组合A组三年高考真题(2016~2014年)1.(2016·全国Ⅱ,5)如图,小明从街道的E处出发,先到F处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为( )A.24B.18C.12D.92.(2016·全国Ⅲ,12)定义“规范01数列”{a n}如下:{a n}共有2m项,其中m项为0,m项为1,且对任意k≤2m,a1,a2,…,a k中0的个数不少于1的个数.若m=4,则不同的“规范01数列”共有( )A.18个B.16个C.14个D.12个3.(2016·四川,4)用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为( )A.24B.48C.60D.724.(2016·北京,8)袋中装有偶数个球,其中红球、黑球各占一半.甲、乙、丙是三个空盒,每次从袋中任意取出两个球,将其中一个球放入甲盒,如果这个球是红球,就将另一个球放入乙盒,否则就放入丙盒.重复上述过程,直到袋中所有球都被放入盒中,则( )A.乙盒中黑球不多于丙盒中黑球B.乙盒中红球与丙盒中黑球一样多C.乙盒中红球不多于丙盒中红球D.乙盒中黑球与丙盒中红球一样多5.(2015·四川,6)用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40 000大的偶数共有( )A.144个B.120个C.96个D.72个6.(2014·大纲全国,5)有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有( )A.60种B.70种C.75种D.150种7.(2014·辽宁,6)6把椅子摆成一排,3人随机就座,任何两人不相邻的坐法种数为( )A.144B.120C.72D.248.(2014·四川,6)六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有( )A.192种B.216种C.240种D.288种9.(2014·重庆,9)某次联欢会要安排3个歌舞类节目、2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是( )A.72B.120C.144D.16810.(2014·安徽,8)从正方体六个面的对角线中任取两条作为一对,其中所成的角为60°的共有( )A.24对B.30对C.48对D.60对11.(2014·福建,10)用a代表红球,b代表蓝球,c代表黑球.由加法原理及乘法原理,从1个红球和1个蓝球中取出若干个球的所有取法可由(1+a)(1+b)的展开式1+a+b+ab表示出来,如:“1”表示一个球都不取、“a”表示取出一个红球、而“ab”则表示把红球和蓝球都取出来.依此类推,下列各式中,其展开式可用来表示从5个无区别的红球、5个无区别的蓝球、5个有区别的黑球中取出若干个球,且所有的蓝球都取出或都不取出的所有取法的是( )A.(1+a+a2+a3+a4+a5)(1+b5)(1+c)5B.(1+a5)(1+b+b2+b3+b4+b5)(1+c)5C.(1+a)5(1+b+b2+b3+b4+b5)(1+c5)D.(1+a5)(1+b)5(1+c+c2+c3+c4+c5)12.(2014·广东,8)设集合A={(x1,x2,x3,x4,x5)|x i∈{-1,0,1},i=1,2,3,4,5},那么集合A中满足条件“1≤|x1|+|x2|+|x3|+|x4|+|x5|≤3”的元素个数为( )A.60B.90C.120D.13013.(2015·广东,12)某高三毕业班有40人,同学之间两两彼此给对方仅写一条毕业留言,那么全班共写了________条毕业留言(用数字作答).14.(2014·北京,13)把5件不同产品摆成一排,若产品A与产品B相邻,且产品A与产品C 不相邻,则不同的摆法有________种.15.(2014·浙江,14)在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有________种(用数字作答).B组两年模拟精选(2016~2015年)1.(2016·山东济宁模拟)某中学高三学习雷锋志愿小组共有16人,其中一班、二班、三班、四班各4人,现从中任选3人,要求这三人不能全是同一个班的同学,且在三班至多选1人,则不同选法的种数为( )A.484B.472C.252D.2322.(2016·四川成都第二次诊断)某微信群中甲,乙,丙,丁,戊五名成员同时抢4个红包,每人最多抢一个红包,且红包全被抢光,4个红包中有两个2元,两个3元(金额相同视为相同红包),则甲乙两人都抢到红包的情况有( )A.36种B.24种C.18种D.9种3.(2015·河南信阳模拟)某学校安排甲、乙、丙、丁四位同学参加数学、物理、化学竞赛,要求每位同学仅报一科,每科至少有一位同学参加,且甲、乙不能参加同一学科,则不同的安排方法有( )A.36种B.30种C.24种D.6种4.(2015·河南郑州二模)某校开设A类选修课2门;B类选修课3门,一位同学从中选3门,若要求两类课程中至少选一门,则不同的选法共有( )A.3种B.6种C.9种D.18种5.(2016·山东枣庄4月模拟)有5本不同的书,其中语文书2本,数学书2本,物理书1本,若将其随机地摆成一排,则同一科目的书均不相邻的摆法有________种(用数字作答)6.(2016·广东肇庆模拟)某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友,每位朋友1本,则不同的赠送方法共有________种(用数字作答).7.(2016·河北石家庄一模)将甲、乙、丙、丁四名学生分到两个不同的班,每个班至少分到一名学生,且甲、乙两名学生不能分到同一个班,则不同的分法的种数为________(用数字作答).8.(2015·衡水模拟)20个不加区别的小球放入1号,2号,3号的三个盒子中,要求每个盒内的球数不小于它的编号数,则不同的放法种数为________.答案精析A组三年高考真题(2016~2014年)1.B [从E点到F点的最短路径有6种,从F点到G点的最短路径有3种,所以从E点到G点的最短路径为6×3=18种,故选B.]2.C [第一位为0,最后一位为1,中间3个0,3个1,三个1在一起时为000111,001110;只有2个1相邻时,共A24种,其中110100;110010;110001,101100不符合题意,三个1都不在一起时有C34种,共2+8+4=14.]3.D [由题可知,五位数要为奇数,则个位数只能是1,3,5;分为两步:先从1,3,5三个数中选一个作为个位数有C13,再将剩下的4个数字排列得到A44,则满足条件的五位数有C13·A44=72.选D.]4.B [取两个球往盒子中放有4种情况:①红+红,则乙盒中红球数加1个;②黑+黑,则丙盒中黑球数加1个;③红+黑(红球放入甲盒中),则乙盒中黑球数加1个;④黑+红(黑球放入甲盒中),则丙盒中红球数加1个;因为红球和黑球个数一样,所以①和②的情况一样多.③和④的情况随机,③和④对B选项中的乙盒中的红球与丙盒中的黑球数没有任何影响,①和②出现的次数是一样的,所以对B选项中的乙盒中的红球与丙盒中的黑球数的影响次数一样.综上选B.]5.B [由题意,首位数字只能是4,5,若万位是5,则有3×A34=72个;若万位是4,则有2×A34个=48个,故40 000大的偶数共有72+48=120个.选B.]6.C [从中选出2名男医生的选法有C26=15种,从中选出1名女医生的选法有C15=5种,所以不同的选法共有15×5=75种,故选C.]7.D [3人中每两人之间恰有一个空座位,有A33×2=12种坐法,3人中某两人之间有两个空座位,有A33×A22=12种坐法,所以共有12+12=24种坐法.]8.B [当最左端排甲时,不同的排法共有A55种;当最左端排乙时,甲只能排在中间四个位置之一,则不同的排法共有C14A44种.故不同的排法共有A55+C14A44=9×24=216种.]9.B [依题意,先仅考虑3个歌舞类节目互不相邻的排法种数为A33A34=144,其中3个歌舞类节目互不相邻但2个小品类节目相邻的排法种数为A22A22A33=24,因此满足题意的排法种数为144-24=120,选B.]10.C [法一直接法:如图,在上底面中选B1D1,四个侧面中的面对角线都与它成60°,共8对,同样A1C1对应的也有8对,下底面也有16对,这共有32对;左右侧面与前后侧面中共有16对.所以全部共有48对.法二间接法:正方体的12条面对角线中,任意两条垂直、平行或成角为60°,所以成角为60°的共有C212-12-6=48.]11.A [分三步:第一步,5个无区别的红球可能取出0个,1个,…,5个,则有(1+a+a2+a3+a4+a5)种不同的取法;第二步,5个无区别的蓝球都取出或都不取出,则有(1+b5)种不同取法;第三步,5个有区别的黑球看作5个不同色,从5个不同色的黑球中任取0个,1个,…,5个,有(1+c)5种不同的取法,所以所求的取法种数为(1+a+a2+a3+a4+a5)(1+b5)(1+c)5,故选A.]12.D [易知|x1|+|x2|+|x3|+|x4|+|x5|=1或2或3,下面分三种情况讨论.其一:|x1|+|x2|+|x3|+|x4|+|x5|=1,此时,从x1,x2,x3,x4,x5中任取一个让其等于1或-1,其余等于0,于是有C15C12=10种情况;其二:|x1|+|x2|+|x3|+|x4|+|x5|=2,此时,从x1,x2,x3,x4,x5中任取两个让其都等于1或都等于-1或一个等于1、另一个等于-1,其余等于0,于是有2C25+C25C12=40种情况;其三:|x1|+|x2|+|x3|+|x4|+|x5|=3,此时,从x1,x2,x3,x4,x5中任取三个让其都等于1或都等于-1或两个等于1、另一个等于-1或两个等于-1、另一个等于1,其余等于0,于是有2C35+C35C13+C35C23=80种情况.由于10+40+80=130,故答案为D.]13.1 560 [依题两两彼此给对方写一条毕业留言相当于从40人中任选两人的排列数,所以全班共写了A240=40×39=1 560条毕业留言.]14.36 [将A、B捆绑在一起,有A22种摆法,再将它们与其他3件产品全排列,有A44种摆法,共有A22A44=48种摆法,而A、B、C 3件在一起,且A、B相邻,A、C相邻有CAB、BAC 两种情况,将这3件与剩下2件全排列,有2×A33=12种摆法,故A、B相邻,A、C不相邻的摆法有48-12=36种.]15.60 [分情况:一种情况将有奖的奖券按2张、1张分给4个人中的2个人,种数为C23C11A24=36;另一种将3张有奖的奖券分给4个人中的3个人,种数为A34=24,则获奖情况总共有36+24=60(种).]B组两年模拟精选(2016~2015年)1.B [若三班有1人入选,则另两人从三班以外的12人中选取,共有C14C212=264种选法.若三班没有人入选,则要从三班以外的12人中选3人,又这3人不能全来自同一个班,故有C312-3C34=208种选法.故总共有264+208=472种不同的选法.]2.C [甲乙两人都抢到红包有三种情况:(1)都抢到2元红包,有C23=3种;(2)都抢到3元红包,有C23=3种;(3)一个抢到2元,一个抢到3元,有C12A23=12种,故总共有18种情况.]3.B [从4人中选出两个人作为一个元素有C24种方法,同其他两个元素在三个位置上排列C24A33=36,其中有不符合条件的,即学生甲,乙同时参加同一学科竞赛有A33种结果,∴不同的参赛方案共有36-6=30,故选B.]4.C [可分以下两种情况:①A类选修课选1门,B类选修课选2门,有C12C22种不同选法;②A类选修课选2门,B类选修课选1门,有C22C13种不同选法.∴根据分类计算原理知不同的选法共有:C12C23+C22C13=6+3=9种.故选C.]5.48 [根据题意,分2步进行分析:①将5本书进行全排列,有A55=120种情况.②其中语文书相邻的情况有A22A44=48种,数学书相邻的情况有A22A44=48种,语文书,数学书同时相邻的情况有A22A22A33=24种,则同一科目的书均不相邻的摆法有120-48-48+24=48种.]6.10 [两种情况:①选2本画册,2本集邮册送给4位朋友,有C24=6种方法;②选1本画册,3本集邮册送给4位朋友,有C14=4种方法,所以不同的赠送方法共有6+4=10(种).]7.8 [甲、乙不能分在同一个班,则不同的分组有甲单独一组,只有1种;甲和丙或丁两人一组,有2种;甲、丙、丁一组,只有1种.然后再把分成的两组分到不同班级里,则共有(1+2+1)A22=8(种).]8.120 [解析先在编号为2,3的盒内分别放入1个,2个球,还剩17个小球,三个盒内每个至少再放入1个,将17个球排成一排,有16个空隙,插入2块挡板分为三堆放入三个盒中即可,共有C216=120种方法.]。

(三年模拟一年创新)2016届高考数学复习 第十章 第三节 随机事件及其概率 理(全国通用)

第三节 随机事件及其概率A 组 专项基础测试 三年模拟精选一、选择题1.(2015·陕西西安一模)周老师上数学课时,给班里同学出了两道选择题,她预估计做对第一道题的概率为0.80,做对两道题的概率为0.60,则预估计做对第二道题的概率为( ) A .0.80B .0.75C .0.60D .0.48解析 设事件A i (i =1,2)表示“做对第i 道题”,A 1,A 2相互独立, 由已知得P (A 1)=0.8,P (A 1A 2)=0.6,∴P (A 1A 2)=P (A 1)P (A 2)=0.8·P (A 2)=0.6,解得P (A 2)=0.60.8=0.75.故选B.答案 B2.(2015·广州调考)从存放号码分别为1,2,3,…,10的卡片的盒子中,有放回地取100次,每次取一张卡片并记下号码,统计结果如下:则取到号码为奇数的频率是( ) A .0.53B .0.5C .0.47D .0.37解析 取到卡片的号码为奇数的次数为:13+5+6+18+11=53,则所求的频率为53100=0.53,故选A. 答案 A3.(2014·宁波二模)已知甲、乙两人下棋,和棋的概率为12,乙胜的概率为13,则甲胜的概率和甲不输的概率分别为( ) A.16,16B.12,23C.16,23D.23,12解析 “甲胜”是“和棋或乙胜”的对立事件,所以“甲胜”的概率为1-12-13=16.设“甲不输”为事件A ,可看做是“甲胜”与“和棋”这两个互斥事件的和事件,所以P (A )=16+12=23.(或设“甲不输”为事件A ,可看做是“乙胜”的对立事件,所以P (A )=1-13=23). 答案 C 二、填空题4.(2015·温州五校模拟)现有语文、数学、英语、物理和化学共5本书,从中任取1本,取出的是理科书的概率为________.解析 记取到语文、数学、英语、物理、化学书分别为事件A 、B 、C 、D 、E ,则A 、B 、C 、D 、E 互斥,取到理科书的概率为事件B 、D 、E 概率的和.∴P (B ∪D ∪E )=P (B )+P (D )+P (E ) =15+15+15=35. 答案 355.(2014·郑州模拟)抛掷一粒骰子,观察掷出的点数,设事件A 为出现奇数点,事件B 为出现2点,已知P (A )=12,P (B )=16,则出现奇数点或2点的概率为________.解析 因为事件A 与事件B 是互斥事件,所以P (A ∪B )=P (A )+P (B )=12+16=23.答案 236.(2014·成都模拟)某产品分甲、乙、丙三级,其中乙、丙两级均属次品.若生产中出现乙级品的概率为0.03,丙级品的概率为0.01,则对成品抽查一件抽得正品的概率为________.解析 记“生产中出现甲级品、乙级品、丙级品”分别为事件A ,B ,C .则A ,B ,C 彼此互斥,由题意可得P (B )=0.03,P (C )=0.01,所以P (A )=1-P (B +C )=1-P (B )-P (C )=1-0.03-0.01=0.96. 答案 0.96一年创新演练7.设集合A ={1,2},B ={1,2,3},分别从集合A 和B 中随机取一个数a 和b ,确定平面上的一个点P (a ,b ),记“点P (a ,b )落在直线x +y =n 上”为事件C n (2≤n ≤5,n ∈N ),若事件C n 的概率最大,则n 的所有可能值为( ) A .3B .4C .2和5D .3和4解析 点P 的所有可能值为(1,1),(1,2),(1,3),(2,1),(2,2),(2,3). 当n =2时,P 点可能是(1,1); 当n =3时,P 点可能是(1,2),(2,1); 当n =4时,P 点可能是(1,3),(2,2); 当n =5时,P 点可能是(2,3). 即事件C 3,C 4的概率最大,故选D. 答案 DB 组 专项提升测试 三年模拟精选一、选择题8.(2015·江西八校联考)甲袋中有3个白球5个黑球,乙袋中有4个白球6个黑球,现从甲袋中随机取出一个球放入乙袋中,充分混合后再从乙袋中随机取出一个球放回甲袋,则甲袋中白球没有减少的概率为( ) A.3544B.2544C.3744D.544解析 若先从甲袋中取出的是白球,则满足题意的概率为P 1=38×511=1588;若先从甲袋中取出的是黑球,则满足题意的概率为P 2=58,易知这两种情况不可能同时发生,故所求概率为P =P 1+P 2=1588+58=3544.答案 A 二、填空题9.(2014·广东六校联考)盒子里共有大小相同的3个白球,1个黑球.若从中随机摸出两个球,则它们颜色不同的概率是________.解析 设3个白球为A ,B ,C ,1个黑球为d ,则从中随机摸出两只球的所有可能情况有:AB ,AC ,Ad ,BC ,Bd ,Cd ,共6种,其中两只球颜色不同的有3种,故所求概率为12. 答案 12三、解答题10.(2014·广州综合测试)将一枚骰子先后抛掷两次,观察向上的点数. (1)求点数之和是5的概率;(2)设a ,b 分别是将一枚骰子先后抛掷两次向上的点数,求式子2a -b=1成立的概率.解 将一枚骰子先后抛掷两次,向上的点数共有36种不同的结果.(1)将一枚骰子先后抛掷两次,向上的点数分别记为a ,b ,点数之和是5时对应以下4种情况:⎩⎪⎨⎪⎧a =1,b =4,⎩⎪⎨⎪⎧a =4,b =1,⎩⎪⎨⎪⎧a =2,b =3,⎩⎪⎨⎪⎧a =3,b =2. 因此,点数之和是5的概率为P 1=436=19.(2)由2a -b=1得2a -b=20,∴a -b =0,∴a =b .而将一枚骰子先后抛掷两次向上的点数相等对应以下6种情况:⎩⎪⎨⎪⎧a =1,b =1,⎩⎪⎨⎪⎧a =2,b =2,⎩⎪⎨⎪⎧a =3,b =3, ⎩⎪⎨⎪⎧a =4,b =4,⎩⎪⎨⎪⎧a =5,b =5,⎩⎪⎨⎪⎧a =6,b =6. 因此,式子2a -b=1成立的概率为P 2=636=16.一年创新演练11.设集合A =B ={1,2,3,4,5,6},分别从集合A 和B 中随机取数x 和y ,确定平面上的一个点P (x ,y ),我们记“点P (x ,y )满足条件x 2+y 2≤16”为事件C ,则C 的概率为( ) A.29B.112C.16D.12解析 分别从集合A 和B 中随机取数x 和y ,得到(x ,y )的可能结果有36种情况,满足x 2+y 2≤16的(x ,y )有(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2)这8种情况,故所求概率为P (C )=836=29,故选A.答案 A。

【2016年全国高考数学】专题18随机事件的概率、古典概型和几何概型

【母题来源一】2016新课标1卷【母题原题】某公司的班车在7:00,8:00, 8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是( )(A )13 (B )12 (C )23 (D )34【答案】B考点:几何概型【名师点睛】解几何概型问题的关键是确定“测度”,常见的测度有长度、面积、体积等,若题中只有一个变量,可考虑利用长度模型,若题中由两个变量,可考虑利用面积模型.【母题来源二】 2016年山东卷【母题原题】将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是 . 【答案】5.6【解析】先后抛掷2次的基本事件有26=36种,出现向上的点数之和不小于10的基本事件有(4,6)(5,5)(5,6),(6,4),(6,5),(6,6)共6种,所以所求概率为651.366-= 考点:古典概型 【名师点睛】概率客观题问题的考查,侧重于对古典概型和对立事件的概率考查,,注重事件本身的理解,淡化计数方法.因此先明确所求事件本身的含义,然后一般利用枚举法、树形图解决计数问题,而当正面问题比较复杂时,往往采取先求其对立事件的概率.【命题意图】本类问题主要涉及古典概型、几何概型、对立事件概率的计算及概率与统计的综合,要求掌握利用古典概想、几何概型求概率的方法,掌握利用互斥事件概率的加法公式及对立事件的概率公式求概率的方法.【考试方向】本类问题若单独命题 ,一般以客观题形式出现,难度都不大,解答题常与随机变量的分布列及统计结合在一起进行考查.【得分要点】1.古典概型是概率论中最简单而又直观的模型,在概率论的发展初期曾是主要研究对象,许多概率的运算法则都是在古典概型中得到证明的(遂谓之“古典”).要判断一个试验是否为古典概型,只需要判断这个试验是否具有古典概型的两个特征——有限性和等可能性.2.求古典概型的概率(1)对于事件A 的概率的计算,关键是要分清基本事件总数n 与事件A 包含的基本事件数m.因此必须解决以下三个方面的问题:第一,本试验是否是等可能的;第二,本试验的基本事件数有多少个;第三,事件A 是什么,它包含的基本事件有多少个.(2)如果基本事件的个数比较少,可用列举法把古典概型试验所含的基本事件一一列举出来,然后再求出事件A 中的基本事件数,利用公式P (A )=m n求出事件A 的概率,这是一个形象直观的好方法,但列举时必须按照某一顺序做到不重不漏.(3)如果基本事件个数比较多,列举有一定困难时,可以用树状图法,树状图法适合于较为复杂的问题中的基本事件的探求,注意在确定基本事件时(x ,y )可以看成是有序的,如(1,2)与(2,1)不同.有时也可以看成是无序的,如(1,2),(2,1)相同.也可借助两个计数原理及排列组合知识直接计算m ,n ,再运用公式P (A )=m n求概率. (4)较为简单的问题可以直接使用古典概型概率公式计算,较为复杂的概率问题的处理方法有:①转化为几个互斥事件的和,利用互斥事件的加法公式求解;②采用间接法,先求事件A 的对立事件A 的概率,再由P (A )=1-P (A )求事件A 的概率.3.几何概型与古典概型的关系几何概型是古典概型的补充和推广,它要求随机试验的基本事件空间包含无穷多个元素,每个基本事件由在几何空间(一维、二维、三维)中的某一区域G 内随机而取的点的位置来确定;而“基本事件发生或出现是等可能的”这一要求,两种概率模型是高度统一的.4.与长度或面积有关的几何概型是高考命题的热点,多以选择题或填空题的形式呈现,试题难度不大,多为容易题或中档题.重点关注:与线段长度有关的几何概型;与一元不等式有关的几何概型;与距离有关的几何概型.求解与面积有关的几何概型的注意点:求解与面积有关的几何概型时,关键是弄清某事件对应的面积以求面积,必要时可根据题意构造两个变量,把变量看成点的坐标,找到试验全部结果构成的平面图形,以便求解.【易错警示】1. 辨明两个易误点:(1)在计算古典概型中基本事件数和事件发生数时,易忽视他们是否是等可能的.(2)概率的一般加法公式P (A ∪B )=P (A )+P (B )-P (A ∩B )中,易忽视只有当A ∩B= ,即A ,B 互斥时,P (A ∪B )=P (A )+P (B ),此时P (A ∩B )=0.2.解决几何概型问题,注意把握好以下几点:(1)能正确区分古典概型与几何概型.例1:在区间[0,10]上任意取一个整数x ,则x 不大于3的概率为________.例2:在区间[0,10]上任意取一个实数x ,则x 不大于3的概率为________.例1的基本事件总数为有限个11,不大于3的基本事件有4个,此为古典概型,故所求概率为411.例2的基本事件总数为无限个,属于几何概型,所求概率为310. (2)准确分清几何概型中的测度.例3:在等腰Rt △ABC 中,∠C =90°,在直角边BC 上任取一点M ,求∠CAM <30°的概率.例4:在等腰Rt △ABC 中,∠C =90°,在∠CAB 内过点A 作射线交线段BC 于点M ,求∠CAM<30°的概率.例3中的测度定性为线段长度,当∠CAM 0=30°,CM 0=33AC =33C B.满足条件的点M 等可能的分布在线段CM 0上,故所求概率等于CM 0CB =33.例4中的测度定性为角度,过点A 作射线与线段CB 相交,这样的射线有无数条,均匀分布在∠CAB 内,∠CAB =45°.所以所求概率等于∠CAM 0∠CAB =30°45°=23. (3)科学设计变量,数形结合解决问题.例5:某人午觉醒来,发现表停了,他打开收音机,想听电台整点报时,求他等待时间不多于10分钟的概率.例6:某人午觉醒来,发现表停了,求表停的分钟数与实际分钟数差异不超过5分钟的概率.例5是《必修3》P 136的例题,此题中的变量(单变量)可看作是时间的长度,故所求概率为1060=16.例6 容易犯解例5形成的定势思维的错误,得到错误答案560=112.原因在于没有认清题中的变量,本题的变量有两个:手表停的分钟数和实际分钟数,都可取[0,60]内的任意时刻,故所求概率需用到面积型几何概型,由|x -y |≤5结合线性规划知识可解,所求概率为602-552602=23144.通过这两道例题我们也可以看出,单变量多用线型测度,多变量需用面积(或体积)型测度.在画好几何图形后,利用数形结合思【母题1】甲、乙、丙三人站在一起照相留念,乙正好站在甲丙之间的概率为( )A .21B .31C .41D .61 【答案】B考点:古典概型【名师点睛】利用排列组合求基本事件的结果数,要注意区分有序还是无序.【母题2】已知函数()321132f x ax bx x =-+,连续抛掷两颗骰子得到点数分别是,a b ,则函数()f x '在1x =处取得最值的概率是( )A .136B .118C .112D .16 【答案】C【解析】()()21,,,16,16f x a x b x a b a b *'=-+∈≤≤≤≤N 且,其对称轴方程为12b x a ==即2b a =,抛掷两颗骰子得到的点数一共有(){},|,b N,16,16a b a a b ∈≤≤≤≤共36种等可能出现的情况,其中满足2b a =的有()()()1,2,2,4,3,6共3种情况,所以其概率为313612P ==,故选C. 考点:古典概型【名师点睛】本题先通过求导得到要研究的二次函数,结合二次函数的性质找到1x =处取得最值,a b 满足的条件.因为连续抛掷两颗骰子,研究得到的点数情况满足有限性和等可能性,所以属于古典概型,列举出所有可能的基本事件空间,找出满足条件的基本事件,即得所求的概率.【母题3】甲、乙两人各写一张贺年卡随意送给丙、丁两人中的一人,则甲、乙将贺年卡送给同一人的概率是( )A . 21 B .31 C .41 D .51 【答案】A【解析】送卡方法有:(甲送给丙、乙送给丁)、(甲送给丁、乙送给丙)、(甲、乙都送给丙)、(甲、乙都送给丁)共四种情况,其中甲、乙将贺年卡送给同一人的情况有两种,所以概率为1142=.故选A. 考点:古典概型【名师点睛】用列举法计数时要注意有无顺序,不要出现重复计数的情况.【母题4】有一长、宽分别为50m,30m 的游泳池,一名工作人员在池边巡视,某时刻出现在池边任一位置的可能性相同.一人在池中心(对角线交点)处呼唤工作人员,其声音可传出则工作人员能及时听到呼唤(出现在声音可传到区域)的概率是( )A .43B .83C . 3π16D .12+3π32【答案】B【解析】 这是一个几何概型问题, 所有可能结果用周长160表示,事件发生的结果可用两条线段的长度和60表示,所以8316060==P .考点:几何概型【名师点睛】本题是与长度有关的几何概型,解题关键是把事件发生的结果转化为长度问题.【母题5】从1,3,5,7这四个数中随机取出两个数组成一个两位数,则组成的两位数是5的倍数的概率是( )A .18B .16C .14D .12【答案】C考点:古典概型【名师点睛】在求基本事件个数时,当结果较少或限制条件较多,一般采用列举法,不过大多情况下采用排列组合比较方便.【母题6】某中学早上8点开始上课,若学生小典与小方均在早上7:40至8:00之间到校,且两人在该时间段的任何时刻到校都是等可能的,则小典比小方至少早5分钟到校的概率为()A.932B.12C.364D.564【答案】A考点:几何概型.【方法点睛】求几何概型,一般先要求出实验的基本事件构成的区域长度(面积或体积),再求出事件A构成区域长度(面积或体积),最后再代入几何概型的概率公式求解;求几何概型概率时,一定要分清“试验”和“事件”,这样才能找准基本事件构成的区域长度(面积或体积).【母题7】如图,长方形的四个顶点为(0,0),(4,0),(4,2),(0,2)O A B C ,曲线y =点B ,现将一质点随机投入长方形OABC 中,则质点落在图中阴影区域的概率是( )A .512B .12C .34D .23【答案】D【解析】因为阴影部分面积为34200216|33x ==⎰,故概率为1623423=⨯. 考点:1.定积分;2.几何概型.【名师点睛】求曲边多边形的面积一般是转化为求定积分.【母题8】某高中数学老师从—张测试卷的12道选择题、4道填空题、6道解答题中任取3道题作分析,则在取到选择题时解答题也取到的概率为( )A .11112620332210C C C C C ⋅⋅-B .111121264126332210C C C C C C C ⋅⋅+⋅- C .()11122112646126332210C C C C C C C C ⋅++⋅- D .333221016332210C C C C C --- 【答案】C考点:古典概型【名师点睛】本题实质是条件概率问题,条件概率也是高考热点,高考中条件概率一般作为客观题出现,多为基础题,对于简单的条件概率问题也可利用古典概型概率公式计算.【母题9】小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是,M I N ,中的一个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是( )(A )815 (B )18 (C )115 (D )130【答案】C 【解析】开机密码的可能有(,1),(,2),(,3),(,4),(,5),(,1),(,2),(,3),(,4),(,5)M M M M M I I I I I ,(,1),(,2),(,3),(,4),(,5)N N N N N ,共15种可能,所以小敏输入一次密码能够成功开机的概率是115,故 选C .考点:古典概型.【名师点睛】对古典概型必须明确判断两点:①对于每个随机试验来说,所有可能出现的试验结果数n 必须是有限个;②出现的各个不同的试验结果数m 其可能性大小必须是相同的.只有在同时满足①、②的条件下,运用的古典概型计算公式()m P A n=得出的结果才是正确的 【母题10】在区域()02,|04x M x y y ⎧<<⎫⎧⎪⎪=⎨⎨⎬<<⎪⎪⎩⎩⎭内随机撒一把黄豆,落在区域()4,|0x y N x y y x x ⎧+<⎫⎧⎪⎪⎪=>⎨⎨⎬⎪⎪⎪>⎩⎩⎭的概率是________. 【答案】12考点:几何概型.【名师点晴】本题主要考查了面积比的几何概型及其概率的计算,属于中档试题,对于几何概型概率的计算公式中的“几何度量”可以为线段的长度、面积、体积等,而且这个“几何度量”只与“大小”有关,而与形状和位置无关,解答此类问题的步骤为:求出满足条件A的基本事N A,再求出总的基本的对应的“几何度量”N,即可根据公式求解概件对应的“几何度量”()率.。

高考数学一轮复习专题训练—古典概型与几何概型

古典概型与几何概型考纲要求1.理解古典概型及其概率计算公式;2.会计算一些随机事件所包含的基本事件数及事件发生的概率;3.了解随机数的意义,能运用模拟方法估计概率;4.了解几何概型的意义.知识梳理1.古典概型 (1)基本事件的特点①任何两个基本事件是互斥的.②任何事件(除不可能事件)都可以表示成基本事件的和. (2)古典概型的定义具有以下两个特点的概率模型称为古典概率模型,简称古典概型.(3)古典概型的概率公式 P (A )=A 包含的基本事件的个数基本事件的总数.2.几何概型 (1)几何概型的定义如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,那么称这样的概率模型为几何概率模型,简称几何概型. (2)几何概型的两个基本特点(3)几何概型的概率公式P(A)=构成事件A的区域长度面积或体积试验的全部结果所构成的区域长度面积或体积.1.古典概型中的基本事件都是互斥的,确定基本事件的方法主要有列举法、列表法与树状图法.2.概率的一般加法公式P(A∪B)=P(A)+P(B)-P(A∩B)中,易忽视只有当A∩B=∅,即A,B互斥时,P(A∪B)=P(A)+P(B),此时P(A∩B)=0.3.几何概型的基本事件的个数是无限的,古典概型中基本事件的个数是有限的.诊断自测1.判断下列结论正误(在括号内打“√”或“×”)(1)“在适宜条件下,种下一粒种子观察它是否发芽”属于古典概型,其基本事件是“发芽与不发芽”.()(2)掷一枚硬币两次,出现“两个正面”“一正一反”“两个反面”,这三个结果是等可能事件.()(3)随机模拟方法是以事件发生的频率估计概率.()(4)概率为0的事件一定是不可能事件.()答案(1)×(2)×(3)√(4)×解析对于(1),发芽与不发芽不一定是等可能,所以(1)不正确;对于(2),三个事件不是等可能,其中“一正一反”应包括正反与反正两个基本事件,所以(2)不正确;对于(4),概率为0的事件有可能发生,所以(4)不正确.2.袋中装有6个白球,5个黄球,4个红球,从中任取一球抽到白球的概率为( ) A.25 B .415C .35D .非以上答案答案 A解析 从袋中任取一球,有15种取法,其中抽到白球的取法有6种,则所求概率为p =615=25. 3.如图,正方形的边长为2,向正方形ABCD 内随机投掷200个点,有30个点落入图形M 中,则图形M 的面积的估计值为____________.答案 0.6解析 由题意可得正方形面积为4,设不规则图形的面积为S ,由几何概型概率公式可得S4≈30200,∴S ≈0.6.4.(2020·全国Ⅰ卷)设O 为正方形ABCD 的中心,在O ,A ,B ,C ,D 中任取3点,则取到的3点共线的概率为( ) A.15 B .25C .12D .45答案 A解析 从O ,A ,B ,C ,D 这5个点中任取3点,取法有{O ,A ,B },{O ,A ,C },{O ,A ,D },{O ,B ,C },{O ,B ,D },{O ,C ,D },{A ,B ,C },{A ,B ,D },{A ,C ,D },{B ,C ,D },共10种,其中取到的3点共线的只有{O ,A ,C },{O ,B ,D }这2种取法,所以所求概率为210=15.故选A.5.(2019·全国Ⅲ卷)两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是( ) A.16 B .14C.13 D .12答案 D解析 设两位男同学分别为A ,B ,两位女同学分别为a ,b ,则用“树形图”表示四位同学排成一列所有可能的结果如图所示.由图知,共有24种等可能的结果,其中两位女同学相邻的结果(画“√”的情况)共有12种,故所求概率为1224=12.6. (2021·郑州模拟)公元前5世纪下半叶,希波克拉底解决了与化圆为方有关的化月牙形为方.如图,以O 为圆心的大圆直径为4,以AB 为直径的半圆面积等于AO 与BO 所夹四分之一大圆的面积,由此可知,月牙形区域的面积与△AOB 的面积相等.现在在两个圆所覆盖的区域内随机取一点,则该点来自阴影部分的概率是________.答案π+68π+4解析 上方阴影部分的面积等于△AOB 的面积,S △AOB =12×2×2=2,下方阴影部分面积等于14×π×22-⎣⎡⎦⎤14×π×22-12×2×2=π2+1,所以根据几何概型概率公式得所求概率P =2+π2+14π+2=π+68π+4.考点一 古典概型的简单计算1.生物实验室有5只兔子,其中只有3只测量过某项指标.若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为( ) A.23 B .35C .25D .15答案 B解析 设5只兔子中测量过某项指标的3只为a 1,a 2,a 3,未测量过这项指标的2只为b 1,b 2,则从5只兔子中随机取出3只的所有可能情况为(a 1,a 2,a 3),(a 1,a 2,b 1),(a 1,a 2,b 2),(a 1,a 3,b 1),(a 1,a 3,b 2),(a 1,b 1,b 2),(a 2,a 3,b 1),(a 2,a 3,b 2),(a 2,b 1,b 2),(a 3,b 1,b 2),共10种可能.其中恰有2只测量过该指标的情况为(a 1,a 2,b 1),(a 1,a 2,b 2),(a 1,a 3,b 1),(a 1,a 3,b 2),(a 2,a 3,b 1),(a 2,a 3,b 2),共6种可能.故恰有2只测量过该指标的概率为610=35.2.(2021·安徽江南十校质量检测)“哥德巴赫猜想”是近代三大数学难题之一,其内容是:一个大于2的偶数都可以写成两个质数(素数)之和,也就是我们所谓的“1+1”问题.它是1742年由数学家哥德巴赫提出的,我国数学家潘承洞、王元、陈景润等在哥德巴赫猜想的证明中做出相当好的成绩.若将6拆成两个正整数的和,则拆成的和式中,加数全部为质数的概率为( ) A.15 B .13C .35D .23答案 A解析 6拆成两个正整数的和的所有基本事件有(1,5),(2,4),(3,3),(4,2),(5,1),而加数全为质数的为(3,3),所以所求概率为15,故选A.3.(2020·江苏卷)将一颗质地均匀的正方体骰子先后抛掷2次,观察向上的点数,则点数和为5的概率是________. 答案 19解析 列表如下:1 2 3 4 5 61 2 3 4 5 6 7 2 3 4 5 6 7 8 3 4 5 6 7 8 9 4 5 6 7 8 9 10 5 6 7 8 9 10 11 6789101112点数的和共有点数和为5的概率P =436=19.感悟升华 古典概型中基本事件个数的探求方法:(1)枚举法:适合于给定的基本事件个数较少且易一一列举出的问题.(2)树状图法:适合于较为复杂的问题,注意在确定基本事件时(x ,y )可看成是有序的,如(1,2)与(2,1)不同,有时也可看成是无序的,如(1,2)与(2,1)相同. 考点二 古典概型与其他知识的简单交汇【例1】 (1)(2020·郑州一模)已知集合A =⎩⎨⎧⎭⎬⎫-2,-1,-12,13,12,1,2,3,任取k ∈A ,则幂函数f (x )=x k 为偶函数的概率为________(结果用数值表示).(2)(2021·河北七校联考)若m 是集合{1,3,5,7,9,11}中任意选取的一个元素,则椭圆x 2m +y 22=1的焦距为整数的概率为________. 答案 (1)14 (2)12解析 (1)集合A =⎩⎨⎧⎭⎬⎫-2,-1,-12,13,12,1,2,3,任意k ∈A 的基本事件总数为8,当k =±2时,幂函数f (x )=x k 为偶函数,从而幂函数f (x )=x k 为偶函数包含的基本事件个数为2,∴幂函数f (x )=x k 为偶函数的概率p =14.(2)∵m 是集合{1,3,5,7,9,11}中任意选取的一个元素,∴基本事件总数为6,又满足椭圆x 2m +y 22=1的焦距为整数的m 的取值有1,3,11,共有3个,∴椭圆x 2m +y 22=1的焦距为整数的概率p=36=12. 感悟升华 求解古典概型的交汇问题,关键是把相关的知识转化为事件,然后利用古典概型的有关知识解决,一般步骤为:(1)将题目条件中的相关知识转化为事件; (2)判断事件是否为古典概型; (3)选用合适的方法确定基本事件个数; (4)代入古典概型的概率公式求解.【训练1】 设平面向量a =(m,1),b =(2,n ),其中m ,n ∈{1,2,3,4},记“a ⊥(a -b )”为事件A ,则事件A 发生的概率为( ) A.18 B .14C .13D .12答案 A解析 有序数对(m ,n )的所有可能情况为4×4=16个,由a ⊥(a -b )得m 2-2m +1-n =0,即n =(m -1)2.由于m ,n ∈{1,2,3,4},故事件A 包含的基本事件为(2,1)和(3,4),共2个,所以P (A )=216=18.考点三 古典概型与统计的综合应用【例2】 某城市100户居民的月平均用电量(单位:千瓦时)以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300]分组的频率分布直方图如图.(1)求直方图中x 的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量为[240,260),[260,280),[280,300]的三组用户中,用分层抽样的方法抽取6户居民,并从抽取的6户中任选2户参加一个访谈节目,求参加节目的2户来自不同组的概率.解 (1)由(0.002 0+0.009 5+0.011 0+0.012 5+x +0.005 0+0.002 5)×20=1得x =0.007 5, 所以直方图中x 的值是0.007 5.(2)月平均用电量的众数是220+2402=230.因为(0.002 0+0.009 5+0.011 0)×20=0.45<0.5, 且(0.002 0+0.009 5+0.011 0+0.012 5)×20=0.7>0.5,所以月平均用电量的中位数在[220,240)内,设中位数为a ,由(0.002 0+0.009 5+0.011 0)×20+0.012 5×(a -220)=0.5,解得a =224, 所以月平均用电量的中位数是224.(3)月平均用电量为[240,260)的用户有0.007 5×20×100=15(户), 月平均用电量为[260,280)的用户有0.005×20×100=10(户), 月平均用电量在[280,300]的用户有0.002 5×20×100=5(户).抽样方法为分层抽样,在[240,260),[260,280),[280,300]中的用户比为3∶2∶1, 所以在[240,260),[260,280),[280,300]中分别抽取3户、2户和1户.设参加节目的2户来自不同组为事件A ,将来自[240,260)的用户记为a 1,a 2,a 3,来自[260,280)的用户记为b 1,b 2,来自[280,300]的用户记为c 1,在6户中随机抽取2户有(a 1,a 2),(a 1,a 3),(a 1,b 1),(a 1,b 2),(a 1,c 1),(a 2,a 3),(a 2,b 1),(a 2,b 2),(a 2,c 1),(a 3,b 1),(a 3,b 2),(a3,c1),(b1,b2),(b1,c1),(b2,c1),共15种取法,其中满足条件的有(a1,b1),(a1,b2),(a1,c1),(a2,b1),(a2,b2),(a2,c1),(a3,b1),(a3,b2),(a3,c1),(b1,c1),(b2,c1),共11种,故参加节目的2户来自不同组的概率P(A)=1115.感悟升华有关古典概型与统计结合的题型是高考考查概率的一个重要题型.概率与统计的结合题,无论是直接描述还是利用频率分布表、频率分布直方图、茎叶图等给出的信息,准确从题中提炼信息是解题的关键.【训练2】海关对同时从A,B,C三个不同地区进口的某种商品进行抽样检测,从各地区进口此种商品的数量(单位:件)如表所示.工作人员用分层抽样的方法从这些商品中共抽取6件样品进行检测.(1)求这6件样品中来自A,B(2)若在这6件样品中随机抽取2件送往甲机构进行进一步检测,求这2件商品来自相同地区的概率.解(1)A,B,C三个地区商品的总数量为50+150+100=300,抽样比为6300=1 50,所以样本中包含三个地区的个体数量分别是50×150=1,150×150=3,100×150=2.所以A,B,C三个地区的商品被选取的件数分别是1,3,2.(2)设6件来自A,B,C三个地区的样品分别为:A;B1,B2,B3;C1,C2.则从6件样品中抽取的这2件商品构成的所有基本事件为:{A,B1},{A,B2},{A,B3},{A,C1},{A,C2},{B1,B2},{B1,B3},{B1,C1},{B1,C2},{B2,B3},{B2,C1},{B2,C2},{B3,C1},{B3,C2},{C1,C2},共15个.每个样品被抽到的机会均等,因此这些基本事件的出现是等可能的.记事件D:“抽取的这2件商品来自相同地区”,则事件D包含的基本事件有:{B1,B2},{B1,B 3},{B 2,B 3},{C 1,C 2},共4个. 所以P (D )=415.即这2件商品来自相同地区的概率为415.考点四 几何概型角度1 与长度(角度)有关的几何概型【例3】 (1)在[-6,9]内任取一个实数m ,设f (x )=-x 2+mx +m ,则函数f (x )的图象与x 轴有公共点的概率等于( ) A.215B .715C .35D .1115(2)如图所示,在等腰直角三角形ABC 中,过直角顶点C 在∠ACB 内部任作一条射线CM ,与AB 交于点M ,则AM <AC 的概率为________.答案 (1)D (2)34解析 (1)因为f (x )=-x 2+mx +m 的图象与x 轴有公共点,所以Δ=m 2+4m ≥0,所以m ≤-4或m ≥0,所以在[-6,9]内取一个实数m ,函数f (x )的图象与x 轴有公共点的概率p =[-4--6]+9-09--6=1115. (2)过点C 作CN 交AB 于点N ,使AN =AC ,如图所示.显然当射线CM 处在∠ACN 内时,AM <AC ,又∠A =45°,所以∠ACN =67.5°,故所求概率为p =67.5°90°=34.感悟升华 1.解答几何概型问题的关键在于弄清题中的考查对象和对象的活动范围,当考查对象为点,且点的活动范围在线段上时,用“线段长度”为测度计算概率,求解的核心是确定点的边界位置.2.当涉及射线的转动,扇形中有关落点区域问题时,应以角对应的弧长的大小作为区域度量来计算概率.事实上,当半径一定时,曲线弧长之比等于其所对应的圆心角的弧度数之比. 角度2 与面积有关的几何概型【例4】 在区间(0,1)上任取两个数,则两个数之和小于65的概率是( )A.1225 B .1625C .1725D .1825答案 C解析 设这两个数是x ,y ,则试验所有的基本事件构成的区域即⎩⎪⎨⎪⎧0<x <1,0<y <1确定的平面区域,满足条件的事件包含的基本事件构成的区域即⎩⎪⎨⎪⎧0<x <1,0<y <1,x +y <65确定的平面区域,如图所示,阴影部分的面积是1-12×⎝⎛⎭⎫452=1725,所以这两个数之和小于65的概率是1725.感悟升华 几何概型与平面几何的交汇问题:要利用平面几何的相关知识,先确定基本事件对应区域的形状,再选择恰当的方法和公式,计算出其面积,进而代入公式求概率. 角度3 与体积有关的几何概型【例5】 有一个底面半径为1、高为2的圆柱,点O 为这个圆柱底面圆的圆心,在这个圆柱内随机取一点P ,则点P 到点O 的距离大于1的概率为________. 答案 23解析 由题意得该圆柱的体积V =π×12×2=2π.圆柱内满足点P 到点O 的距离小于等于1的几何体为以圆柱底面圆心为球心的半球,且此半球的体积V 1=12×43π×13=23π,所以所求概率p =V -V 1V =23.感悟升华 对于与体积有关的几何概型问题,关键是计算问题的总体积(总空间)以及事件的体积(事件空间),对于某些较复杂的也可利用其对立事件去求.【训练3】 (1)(2021·西安一模)在区间[-1,1]上随机取一个数k ,使直线y =k (x +3)与圆x 2+y 2=1相交的概率为( ) A.12B .13C .24D .23(2) (2020·新疆一模)剪纸艺术是最古老的中国民间艺术之一,作为一种镂空艺术,它能给人以视觉上透空的感觉和艺术享受.剪纸艺术通过一把剪刀、一张纸就可以表达生活中的各种喜怒哀乐.如图是一边长为1的正方形剪纸图案,中间黑色大圆与正方形的内切圆共圆心,圆与圆之间是相切的,且中间黑色大圆的半径是黑色小圆半径的2倍,若在正方形图案上随机取一点,则该点取自白色区域的概率为( )A.π64B .π32C .π16D .π8答案 (1)C (2)D解析 (1)圆x 2+y 2=1的圆心为(0,0), 圆心到直线y =k (x +3)的距离为|3k |k 2+1, 要使直线y =k (x +3)与圆x 2+y 2=1相交,则|3k |k 2+1<1,解得-24<k <24. ∴在区间[-1,1]上随机取一个数k ,使直线y =k (x +3)与圆x 2+y 2=1相交的概率为24-⎝⎛⎭⎫-242=24. (2)设黑色小圆的半径为r .由题意得2r +2r +2×2r =1,解得r =18,所以白色区域的面积为π·⎝⎛⎭⎫122-4×π·⎝⎛⎭⎫182-π·⎝⎛⎭⎫142=π8.所以在正方形图案上随机取一点,该点取自白色区域的概率为π81×1=π8.故选D. 基础巩固一、选择题1.一枚硬币连掷2次,恰好出现1次正面的概率是( ) A.12 B .14C .34D .0答案 A解析 列举出所有基本事件,找出“只有1次正面”包含的结果.一枚硬币连掷2次,基本事件有(正,正),(正,反),(反,正),(反,反)共4个,而只有1次出现正面的包括(正,反),(反,正)2个,故其概率为24=12.故选A.2.袋子中有大小、形状完全相同的四个小球,分别写有“和”“谐”“校”“园”四个字,有放回地从中任意摸出一个小球,直到“和”“谐”两个字都摸到就停止摸球,用随机模拟的方法估计恰好在第三次停止摸球的概率.利用电脑随机产生1到4之间(含1和4)取整数值的随机数,分别用1,2,3,4代表“和”“谐”“校”“园”这四个字,以每三个随机数为一组,表示摸球三次的结果,经随机模拟产生了以下18组随机数: 343 432 341 342 234 142 243 331 112 342 241 244 431 233 214 344 142 134 由此可以估计,恰好第三次就停止摸球的概率为( ) A.19 B .16C .29D .518答案 C解析 由18组随机数得,恰好在第三次停止摸球的随机数是142,112,241,142,共4组,所以恰好第三次就停止摸球的概率约为418=29.故选C.3. (2021·河北六校联考)《周髀算经》中提出了“方属地,圆属天”,也就是人们常说的“天圆地方”.我国古代铜钱的铸造也蕴含了这种“外圆内方”“天地合一”的哲学思想.现将铜钱抽象成如图所示的图形,其中圆的半径为r ,正方形的边长为a (0<a <r ),若在圆内随机取点,得到点取自阴影部分的概率是p ,则圆周率π的值为( )A.a 21-p r 2B .a 21+p r 2C.a1-p rD .a1+p r答案 A解析 由几何概型的概率计算公式,得πr 2-a 2πr 2=p ,化简得π=a 21-p r 2.故选A.4.在集合A ={2,3}中随机取一个元素m ,在集合B ={1,2,3}中随机取一个元素n ,得到点P (m ,n ),则点P 在圆x 2+y 2=9内部的概率为( ) A.12 B .13C .34D .25答案 B解析 点P (m ,n )共有(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),6种情况,只有(2,1),(2,2)这2个点在圆x 2+y 2=9的内部,所求概率为26=13.5.某单位试行上班刷卡制度,规定每天8:30上班,有15分钟的有效刷卡时间(即8:15—8:30),一名职工在7:50到8:30之间到达单位且到达单位的时刻是随机的,则他能有效刷卡上班的概率是( )A.23 B .58C .13D .38答案 D解析 该职工在7:50至8:30之间到达单位且到达单位的时刻是随机的,设其构成的区域为线段AB ,且AB =40,职工的有效刷卡时间是8:15到8:30之间,设其构成的区域为线段CB ,且CB =15,如图,所以该职工有效刷卡上班的概率p =1540=38.故选D.6.(2021·合肥质检)已知三棱锥S -ABC ,在该三棱锥内任取一点P ,则使V P -ABC ≤13V S -ABC的概率为( ) A.13 B .49C .827D .1927答案 D解析 作出S 在底面△ABC 的射影为O ,若V P -ABC =13V S -ABC ,则三棱锥P -ABC 的高等于13SO ,P 点落在平面EFD 上,且SE SA =SD SB =SF SC =23,所以S △EFD S △ABC =49,故V S -EFD =827V S -ABC, ∴V P -ABC ≤13V S -ABC 的概率p =1-827=1927.二、填空题7.(2020·太原模拟)下课以后,教室里还剩下2位男同学和1位女同学,若他们依次随机走出教室,则第2位走出的是女同学的概率是________.答案 13解析 2位男同学记为男1,男2,则三位同学依次走出教室包含的基本事件有:男1男2女,男1女男2,女男1男2,男2男1女,男2女男1,女男2男1,共6种,其中第2位走出的是女同学包含的基本事件有2种.故第2位走出的是女同学的概率是p =26=13.8.在等腰Rt △ABC 中,∠C =90°,在直角边BC 上任取一点M ,则∠CAM <30°的概率是________. 答案33解析 ∵点M 在直角边BC 上是等可能出现的, ∴“测度”是长度.设直角边长为a , 则所求概率为33a a =33.9.(2021·郑州质量预测改编)从2,3,8,9中任取两个不同的数字,分别记为a ,b ,则log a b 为整数的概率是________. 答案 16解析 从2,3,8,9中任取两个不同的数字,分别记为a ,b ,则有(2,3),(2,8),(2,9),(3,8),(3,9),(8,9),(3,2),(8,2),(9,2),(8,3),(9,3),(9,8),共12种取法,其中log a b 为整数的有(2,8),(3,9)两种,故p =212=16.三、解答题10.(2020·成都诊断)某校从高一年级学生中随机抽取40名学生,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段:[40,50),[50,60),…,[90,100]后得到如图所示的频率分布直方图.(1)求图中实数a的值;(2)若从数学成绩在[40,50)与[90,100]两个分数段内的学生中随机选取2名学生,求这2名学生的数学成绩之差的绝对值不大于10的概率.解(1)由已知,得10×(0.005+0.010+0.020+a+0.025+0.010)=1,解得a=0.030.(2)易知成绩在[40,50)分数段内的人数为40×0.05=2,这2人分别记为A,B;成绩在[90,100]分数段内的人数为40×0.1=4,这4人分别记为C,D,E,F.若从数学成绩在[40,50)与[90,100]两个分数段内的学生中随机选取2名学生,则所有的基本事件有(A,B),(A,C),(A,D),(A,E),(A,F),(B,C),(B,D),(B,E),(B,F),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F),共15个.如果2名学生的数学成绩都在[40,50)分数段内或都在[90,100]分数段内,那么这2名学生的数学成绩之差的绝对值一定不大于10.如果一个成绩在[40,50)分数段内,另一个成绩在[90,100]分数段内,那么这2名学生的数学成绩之差的绝对值一定大于10.记“这2名学生的数学成绩之差的绝对值不大于10”为事件M,则事件M包含的基本事件有(A,B),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F),共7个,故所求概率P(M)=715.11.(2019·天津卷)2019年,我国施行个人所得税专项附加扣除办法,涉及子女教育、继续教育、大病医疗、住房贷款利息或者住房租金、赡养老人等六项专项附加扣除.某单位老、中、青员工分别有72,108,120人,现采用分层抽样的方法,从该单位上述员工中抽取25人调查专项附加扣除的享受情况.(1)应从老、中、青员工中分别抽取多少人?(2)抽取的25人中,享受至少两项专项附加扣除的员工有6人,分别记为A,B,C,D,E,F.享受情况如下表,其中“○”表示享受,“×”表示不享受.现从这6人中随机抽取2人接受采访.②设M为事件“抽取的2人享受的专项附加扣除至少有一项相同”,求事件M发生的概率.解(1)由已知得老、中、青员工人数之比为6∶9∶10,由于采用分层抽样的方法从中抽取25位员工,因此应从老、中、青员工中分别抽取6人、9人、10人.(2)①从已知的6人中随机抽取2人的所有可能结果为{A,B},{A,C},{A,D},{A,E},{A,F},{B,C},{B,D},{B,E},{B,F},{C,D},{C,E},{C,F},{D,E},{D,F},{E,F},共15种.②由表格知,符合题意的所有结果为{A,B},{A,D},{A,E},{A,F},{B,D},{B,E},{B,F},{C,E},{C,F},{D,F},{E,F},共11种.所以事件M发生的概率P(M)=1115.能力提升12.(2021·长春质检)我国古人认为宇宙万物是由金、木、水、火、土这五种元素构成的,历史文献《尚书·洪范》提出了五行的说法,到战国晚期,五行相生相克的思想被正式提出.这五种物质属性的相生相克关系如图所示,若从这五种物质中随机选取三种,则取出的三种物质中,彼此间恰好有一个相生关系和两个相克关系的概率为()A.35 B .12C .25D .13答案 B解析 (列举法)依题意,三种物质间相生相克关系如下表,金木水 金木火 金木土 金水火 金水土 金火土 木水火 木水土 木火土 水火土 × √√√×××√×√所以彼此间恰好有一个相生关系和两个相克关系的概率p =510=12,故选B.13.由不等式组⎩⎪⎨⎪⎧x ≤0,y ≥0,y -x -2≤0确定的平面区域记为Ω1,由不等式组⎩⎪⎨⎪⎧x +y ≤1,x +y ≥-2确定的平面区域记为Ω2,若在Ω1中随机取一点,则该点恰好在Ω2内的概率为________. 答案 78解析 如图,平面区域Ω1就是三角形区域OAB ,平面区域Ω2与平面区域Ω1的重叠部分就是区域OACD ,易知C ⎝⎛⎭⎫-12,32.由几何概型的概率公式,所求概率p =S 四边形OACDS △OAB =2-142=78.14.如图所示的茎叶图记录了甲、乙两组各四名同学的植树棵数,其中有一个数据模糊,无法确认,在图中以X 表示.(1)如果X =8,求乙组同学植树棵数的平均数和方差;(2)如果X =9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵数为19的概率.解 (1)当X =8时,由茎叶图可知,乙组四名同学的植树棵数分别是8,8,9,10,故x =8+8+9+104=354,s 2=14×⎣⎡⎦⎤⎝⎛⎭⎫8-3542×2+⎝⎛⎭⎫9-3542+⎝⎛⎭⎫10-3542=1116. (2)当X =9时,记甲组四名同学分别为A 1,A 2,A 3,A 4,他们植树的棵数依次为9,9,11,11;乙组四名同学分别为B 1,B 2,B 3,B 4,他们植树的棵数依次为9,8,9,10.分别从甲、乙两组中随机选取一名同学,其包含的基本事件为{A 1,B 1},{A 1,B 2},{A 1,B 3},{A 1,B 4},{A 2,B 1},{A 2,B 2},{A 2,B 3},{A 2,B 4},{A 3,B 1},{A 3,B 2},{A 3,B 3},{A 3,B 4},{A 4,B 1},{A 4,B 2},{A 4,B 3},{A 4,B 4},共16个.设“选出的两名同学的植树总棵数为19”为事件C ,则事件C 中包含的基本事件为{A 1,B 4},{A 2,B 4},{A 3,B 2},{A 4,B 2},共4个.故P (C )=416=14.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四节 古典概型与几何概型
A组 专项基础测试
三年模拟精选
一、选择题
1.(2015)四川成都模拟)一个边长为2 m,宽1 m的长方形内画有一个中学生运动会的会
标,在长方形内随机撒入100粒豆子,恰有60粒落在会标区域内,则该会标的面积约为
( )
A。35 m2 B。65 m2 C。125 m2 D。185 m2
解析 由几何概型的概率计算公式可知,会标的面积约为60100×2=65。故选B。
答案 B
2.(2015)广东佛山模拟)某校高三年级学生会主席团共有5名同学组成,其中有3名同学
来自同一班级,另外两名同学来自另两个不同班级.现从中随机选出两名同学参加会
议,则两名选出的同学来自不同班级的概率为( )
A。 0。35 B。 0。4 C。 0。6 D。 0。7
解析 来自同一班级的3名同学用1,2,3表示,来自另两个不同班级2名同学用A,
B
表示,从中随机选出两名同学参加会议,共有12,13,1A,1B,23,2A,2B,3A,3B,
AB
共10种,

这两名选出的同学来自不同班级,共有1A,1B,2A,2B,3A,3B、AB共7种,故这两名
选出的同学来自不同班级概率P=710=0。7。
答案 D
3。(2014)梅州质检)如图所示方格,在每一个方格中填入一个数字,数字可以是1,2,
3,4中的任何一个,允许重复.则填入A方格的数字大于B方格的数字的概率为( )
A
B
A。12 B。14 C。34 D。38
解析 不考虑大小,A,B两个方格有4×4=16(种)排法.要使填入A方格的数字大于
B
方格的数字,则从1,2,3,4中选2个数字,大的放入A格,小的放入B格,有(4,3),
(4,2),(4,1),(3,2),(3,1),(2,1),共6种,故填入A方格的数字大于B方格的
数字的概率为616=38,选D。
答案 D
4.(2014)皖南八校三模)一颗质地均匀的正方体骰子,其六个面上的点数分别为1,2,
3,4,5,6,将这颗骰子连续抛掷三次,观察向上的点数,则三次点数依次构成等差数
列的概率为( )
A。112 B。118 C。136 D。7108
解析 连续抛掷三次共有63=216种情况,记三次点数分别为a,b,c,则a+c=2b,所
以a+c为偶数,则a、c的奇偶性相同,且a、c允许重复,一旦a、c确定,b也唯一确
定,又a,c共有2×32=18种,所以所求概率为18216=112,故选A。
答案 A
二、填空题
5.(2014)成都模拟)在区间-π2,π2上随机取一个数x,cos x的值介于0至12之间的概
率为________.
解析 由0≤cos x≤12,x∈-π2,π2,可得-π2≤x≤-π3,或π3≤x≤π2,结合几何

概型的概率公式可得所求的概率为P=2π2-π3π2--π2=13。
答案 13
一年创新演练
6.在棱长为2的正方体ABCD-A1B1C1D1中,点O为底面ABCD的中心,在正方体ABCD-
A1B1C1D1内随机取一点P,则点P到点O
的距离大于1的概率为( )

A。π12 B.1-π12 C。π6 D.1-π6
解析 点P到点O的距离大于1的点位于以O为球心,以1为半径的半球外.记点P到点

O的距离大于1为事件A,则P(A
)=23-12×4π3×1323=1-π12。

答案 B
7.在区间[-1,1]上随机取一个数k,使直线y=k(x+2)与圆x2+y2=1相交的概率为
( )

A。12 B。13 C。33 D。32
解析 由题意知圆心(0,0)到直线的距离d=|2k|k2+1<1,

∴-33答案 C
B组 专项提升测试
三年模拟精选
一、选择题
8.(2015)广州模拟)在△ABC中,∠ABC=60°,AB=2,BC=6,在BC上任取一点D,使
△ABD为钝角三角形的概率为( )
A。16 B。13 C。12 D。23
解析 如图,过点A作AH⊥BC,垂足为H,则在Rt△AHB中,BH=AB)
cos 60°=2cos 60°=1;过点A作AM⊥AB,交BC于点M,则在Rt
△ABM中,BM=ABcos 60°=4,故MC=BC-BM=2。
由图可知,要使△ABD为钝角三角形,则点D只能在线段BH或线段
MC上选取,故所求事件的概率P
=1+26=12,故选C。

答案 C
二、填空题
9.(2014)浙江十校联考)两个袋中各装有编号为1,2,3,4,5的5个小球,分别从每个
袋中摸出一个小球,所得两球编号数之和小于5的概率为________.
解析 共有25种摸球情况,两球编号数之和小于5的组合情况有(1,1),(1,2),(1,
3),(2,1),(2,2),(3,1),共6种,故所求概率为625。
答案 625
二、解答题
10.(2014)沈阳模拟)已知集合A={-2,0,2},B={-1,1}.
(1)若M={(x,y)|x∈A,y∈B},用列举法表示集合M;
(2)在(1)中的集合M内,随机取出一个元素(x,y),求以(x,y)为坐标的点位于区域D:






x-y
+2≥0,

x+y
-2≤0,

y
≥-1

内的概率.

解 (1)M={(-2,-1),(-2,1),(0,-1),(0,1),(2,-1),(2,1)}.
(2)记“以(x,y)为坐标的点位于区域D内”为事件C。
集合M中共有6个元素,即基本事件总数为6,区域D含有集合M中元素
(-2,-1),(0,-1),(0,1),(2,-1),共4个,
∴P(C)=46=23。
故以(x,y)为坐标的点位于区域D内的概率为23。
一年创新演练
11.设实数a,b均为区间[0,1]内的随机数,则关于x的不等式bx2+ax+14<0有实数解
的概率为( )
A。12 B。16 C。13 D。23
解析 由题意,若b=0,a≠0时不等式bx2+ax+14<0有实数解;

若b≠0,则Δ=a2-b>0;作出0≤a≤1,0≤b≤1,a2>b表示的平面区域如下,

关于x的不等式bx2+ax+14<0有实数解的概率为图中阴影部分与正方形的面积比,
S

= 01x2dx=13x310=13,故ρ=S阴S正方形=131=13,故选C。

答案 C
12.已知函数f(x)=ln xx,导函数为f′(x),在区间[2,3]上任取一点x0,使得f′(x0)>0
的概率为________.
解析 由已知得f′(x)=1-lnxx2,x∈[2,3],
故f′(x)>0⇔1-ln xx2>0,
解得2答案 e-2

相关文档
最新文档