高考知识点随机抽样

合集下载

高考文科数学随机抽样考点讲解

高考文科数学随机抽样考点讲解

继续学习
高考复习讲义
考点全通关 9
随机抽样
通关秘籍
三种抽样方法的特点、联系及适用范围 类别 共同点 各自特点 从总体中逐个 联系 适用范围 总体个数较少
返回目录
抽取 每个个体被抽 2.速率是瞬时速度的大小,但平均速率不是平均速度 将总体均分成 的大小,因为平均速率是路程与时间的比值 ,它与平 在起始部分取 到的可能性相 几部分,按预先 均速度的大小没有对应关系. 系统抽样 等; Your text 样时,采用简单 STEP 02 制定的规则在 Click here to add your text or Your text and paste it here ②Copy 每次抽出个 随机抽样 各部分中抽取 体后不再将它 将总体分成几 各层抽样时,采 放回,即不放回 分层抽样 层,分层进行抽 用简单随机抽 抽样 取 样或系统抽样
继续学习
高考复习讲义
考点全通关 2
随机抽样 考点一 简单随机抽样
2.简单随机抽样的常用方法
最常用的简单随机抽样有抽签法和随机数法. (1)抽签法:把总体中的N个个体编号,把号码写在号签上,将号签放在一个容器中,搅 拌均匀后,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本. (2)随机数法:利用随机数表、随机数骰子或计算机产生的随机数进行抽样,叫做随 机数法. 利用随机数表法抽样时,(1)选定的初始数和读数的方向是任意的; (2) 对各个个体编号要视总体中的个体数情况而定,且必须保证所编号码 所有理想化模型均忽略对所研究 问题无影响的因素 ,是研究问题的 的位数一致. 一种理想方法.在高中学习的理想 模型还有:点电荷、理想气体、弹 簧振子、点光源等.
继续学习
高考复习讲义
考点全通关 3

高考数学复习考点知识讲解课件69 随机抽样、用样本估计总体

高考数学复习考点知识讲解课件69 随机抽样、用样本估计总体
4.理解样本数据标准差的意义和作用,会计算数据标准差.
5.能从样本数据中提取基本的数字特征(如平均数、标准差),并做
出合理的解释.
6.会用样本的频率分布估计总体分布,会用样本的基本数字特征估
计总体的基本数字特征,理解用样本估计总体的思想.
7.会用随机抽样的基本方法和样本估计总体的思想解决一些简单的
实际问题.
·考向预测·
考情分析:简单随机抽样、系统抽样、分层抽样在高考中极少单独
考查,有时与概率问题相结合出现在题目的已知条件中;频率分布直
方图、茎叶图等统计图表属于高考的常考内容,题型多为选择题,有
时也与概率相结合出现在解答题中.
学科素养:通过随机抽样、统计图表、数字特征考查数据分析、数
学运算的核心素养.
(1)简单随机抽样是一种不放回抽样.( √ )
(2)在抽签法中,先抽的人抽中的可能性较大.( × )
(3)一组数据的方差越大,说明这组数据的波动越大.( √ )
(4)在频率分布直方图中,小矩形的面积越大,表示样本数据落在该
区间内的频率越大.( √ )
(5)频率分布表和频率分布直方图是一组数据频率分布的两种形式,
32 56 78 08 43 67 89 53 55 77 34 89 94 83 75
22 53 55 78 32 43 77 89 23 45
若从表中第5行第6列开始向右依次读取3个数据,则抽到的第5名员工的
编号是(
)
A.007 B.253 C.328 D.736
答案:A
3.[2023·蚌埠模拟]某市小学,初中,高中在校学生人数分别为7.5
解析:∵x1,x2,x3,…,xn的平均数为5,
x +x +x +⋯+xn

高考数学概率统计知识点总结(文理通用)

高考数学概率统计知识点总结(文理通用)

概率与统计知识点及专练(一)统计基础知识:1. 随机抽样:(1).简单随机抽样:设一个总体的个数为N ,如果通过逐个抽取的方法从中抽取一个样本,且每次抽取时各个个体被抽到的概率相等,就称这样的抽样为简单随机抽样.常用抽签法和随机数表法.(2).系统抽样:当总体中的个数较多时,可将总体分成均衡的几个部分,然后按照预先定出的规则,从每一部分抽取1个个体,得到所需要的样本,这种抽样叫做系统抽样(也称为机械抽样).(3).分层抽样:当已知总体由差异明显的几部分组成时,常将总体分成几部分,然后按照各部分所占的比进行抽样,这种抽样叫做分层抽样.2. 普通的众数、平均数、中位数及方差: (1).众数:一组数据中,出现次数最多的数(2).平均数:常规平均数:12nx x x x n ++⋅⋅⋅+=(3).中位数:从大到小或者从小到大排列,最中间或最中间两个数的平均数(4).方差:2222121[()()()]n s x x x x x x n =-+-+⋅⋅⋅+-(5).标准差:s3 .频率直方分布图中的频率:(1).频率 =小长方形面积:f S y d ==⨯距;频率=频数/总数; 频数=总数*频率(2).频率之和等于1:121n f f f ++⋅⋅⋅+=;即面积之和为1: 121n S S S ++⋅⋅⋅+=4. 频率直方分布图下的众数、平均数、中位数及方差: (1).众数:最高小矩形底边的中点(2).平均数:112233n n x x f x f x f x f =+++⋅⋅⋅+ 112233n n x x S x S x S x S =+++⋅⋅⋅+(3).中位数:从左到右或者从右到左累加,面积等于0.5时x 的值(4).方差:22221122()()()nn s x x f x x f x x f =-+-+⋅⋅⋅+-5.线性回归直线方程:(1).公式:ˆˆˆy bx a=+其中:1122211()()ˆ()n ni i i ii in ni ii ix x y y x y nxybx x x nx====---∑∑==--∑∑(展开)ˆˆa y bx=-(2).线性回归直线方程必过样本中心(,) x y(3).ˆ0:b>正相关;ˆ0:b<负相关(4).线性回归直线方程:ˆˆˆy bx a=+的斜率ˆb中,两个公式中分子、分母对应也相等;中间可以推导得到6. 回归分析:(1).残差:ˆˆi i ie y y=-(残差=真实值—预报值)分析:ˆie越小越好(2).残差平方和:2 1ˆ() ni iiy y =-∑分析:①意义:越小越好;②计算:222211221ˆˆˆˆ()()()() ni i n niy y y y y y y y =-=-+-+⋅⋅⋅+-∑(3).拟合度(相关指数):2 2121ˆ()1()ni iiniiy y Ry y==-∑=--∑分析:①.(]20,1R∈的常数;②.越大拟合度越高(4).相关系数:()()n ni i i ix x y y x y nx y r---⋅∑∑==分析:①.[1,1]r∈-的常数;②.0:r>正相关;0:r<负相关③.[0,0.25]r∈;相关性很弱;(0.25,0.75)r∈;相关性一般;[0.75,1]r∈;相关性很强7. 独立性检验:(1).2×2列联表(卡方图): (2).独立性检验公式①.22()()()()()n ad bc k a b c d a c b d -=++++②.上界P 对照表:(3).独立性检验步骤:①.计算观察值k :2()()()()()n ad bc k a b c d a c b d -=++++ ②.查找临界值0k :由犯错误概率P ,根据上表查找临界值0k③.下结论:0k k ≥即认为有P 的没把握、有1-P 以上的有把握认为两个量相关;0k k <:即认为没有1-P 以上的把握认为两个量是相关关系。

简单随机抽样-高中数学知识点讲解

简单随机抽样-高中数学知识点讲解

简单随机抽样1.简单随机抽样【知识点的认识】1.定义:一般地,设一个总体含有N 个个体,从中逐个不放回地抽取n 个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样.2.特点:(1)有限性:总体个体数有限;(2)逐个性:每次只抽取一个个体;(3)不放回:抽取样本不放回,样本无重复个体;(4)等概率:每个个体被抽到的机会相等.(如果从个体数为N 的总体中抽取一个容量为n 的样本,则每个个体푛被抽取的概率等于푁)3.适用范围:总体中个数较少.4.注意:随机抽样不是随意或随便抽取,随意或随便抽取都会带有主观或客观的影响因素.【常用方法】1.抽签法(抓阄法)一般地,从个体总数为N 的总体中抽取一个容量为k 的样本,步骤为:(1)编号:将总体中所有个体编号(号码可以为 1﹣N);(2)制签:将编号写在形状、大小相同的号签上(可用小球、卡片、纸条等制作);(3)搅匀:将号签放在同一个箱子中进行均匀搅拌;(4)抽签:每次从箱中取出 1 个号签,连续抽取k 次;(5)取样:从总体中取出与抽到号签编号一致的个体.2.随机数表法.○随机数表:由 0﹣9 十个数字所组成,其中的每个数都是用随机方法产生的,这样的表称为随机数表.实现步骤:(1)编号:对总体中所有个体编号(每个号码位数一致);(2)选数:在随机数表中任选一个数作为开始;(3)取数:从选定的起始数沿任意方向取数(不在号码范围内的数、重复出现的数不取),直到取满为止;(4)取样:根据所得的号码从总体中抽取相应个体.【命题方向】以基本题(中、低档题)为主,多以选择题、填空题的形式出现,以实际问题为背景,综合考查学生学习基础知识、应用基础知识、解决实际问题的能力.(1)考查简单随机抽样的特点例:用简单随机抽样的方法从含有 100 个个体的总体中依次抽取一个容量为 5 的样本,则个体m 被抽到的概率为()1111A.100B.20C.99D.50分析:依据简单随机抽样方式,总体中的每个个体被抽到的概率都是一样的,再结合容量为 5,可以看成是抽 5 次,从而可求得概率.1解答:一个总体含有 100 个个体,某个个体被抽到的概率为,100∴以简单随机抽样方式从该总体中抽取一个容量为 5 的样本,1则指定的某个个体被抽到的概率为100× 5 =1.20故选:B.点评:不论用哪种抽样方法,不论是“逐个地抽取”,还是“一次性地抽取”,总体中的每个个体被抽到的概率都是一样的,体现了抽样方法具有客观公平性.(2)判断抽样方法是否为简单随机抽样常见与分层抽样、系统抽样对比,注意掌握各种抽样方法的区分.例:下面的抽样方法是简单随机抽样的是()A.在某年明信片销售活动中,规定每 100 万张为一个开奖组,通过随机抽取的方式确定号码的后四位为 2709 的2/ 4B.某车间包装一种产品,在自动包装的传送带上,每隔 30 分钟抽一包产品,称其重量是否合格C.某学校分别从行政人员、教师、后勤人员中抽取 2 人、14 人、4 人了解学校机构改革的意见D.用抽签法从 10 件产品中选取 3 件进行质量检验.分析:从所给的四个选项里观察因为抽取的个体间的间隔是固定的;得到A、B 不是简单随机抽样,因为总体的个体有明显的层次,C 不是简单随机抽样,D 是简单随机抽样.解答:A、B 不是简单随机抽样,因为抽取的个体间的间隔是固定的;C 不是简单随机抽样,因为总体的个体有明显的层次;D 是简单随机抽样.故选D.点评:本题考查简单随机抽样,考查分层抽样,考查系统抽样,是一个涉及到所学的所有抽样的问题,注意发现各种抽样的特点,分析清楚抽样的区别.(3)考查简单随机抽样的抽样方法操作例:利用随机数表法对一个容量为 500 编号为 000,001,002,…,499 的产品进行抽样检验,抽取一个容量为 10 的样本,若选定从第 12 行第 5 列的数开始向右读数,(下面摘取了随机数表中的第 11 行至第 15 行),根据下图,读出的第 3 个数是()A.841B.114C.014D.146分析:从随机数表 12 行第 5 列数开始向右读,最先读到的 1 个的编号是 389,再向右三位数一读,将符合条件的选出,不符合的舍去,继续向右读取即可.解答:最先读到的 1 个的编号是 389,向右读下一个数是 775,775 它大于 499,故舍去,再下一个数是 841,舍去,再下一个数是 607,舍去,再下一个数是 449,再下一个数是 983.舍去,再下一个数是 114.读出的第 3 个数是 114.故选B.点评:本题主要考查了抽样方法,随机数表的使用,在随机数表中每个数出现在每个位置的概率是一样的,所以每个数被抽到的概率是一样的,属于基础题.。

随机抽样知识点总结

随机抽样知识点总结

随机抽样知识点总结随机抽样是统计学中的重要概念,它是指从总体中随机选择一部分个体进行观察与研究的一种方法。

在实际应用中,随机抽样常常被用来代表总体,以便进行统计推断和决策分析。

下面我们来总结一下关于随机抽样的一些重要知识点。

一、随机抽样的定义随机抽样是指从总体中以一定的概率分布随机选择一个或多个个体作为样本的过程。

在进行随机抽样时,要确保每个个体有相等的机会被选入样本,从而保证样本的代表性和可靠性。

二、随机抽样的方法1. 简单随机抽样:从总体中以相等的概率随机选择样本的方法,保证每个个体被选入样本的概率相等。

2. 分层随机抽样:将总体按照某种特定的特征分成若干个层次,然后在每个层次中进行简单随机抽样。

3. 系统抽样:按照一定的规律从总体中选择个体作为样本,例如每隔k个个体选择一个个体作为样本。

4. 整群抽样:将总体分成若干个互不相交的群体(或群组),然后从中随机选择若干个群作为样本。

5. 多阶段抽样:将总体层次化,先进行群组抽样,再在抽样所得的群组内进行简单随机抽样。

三、随机抽样的特点1. 代表性:通过随机抽样,样本能够尽可能代表总体的特征和变异性,从而使得对总体的推断更加准确。

2. 可靠性:在一定的置信水平下,通过对样本数据的分析和推断,可以得出关于总体的可靠性结论。

3. 实用性:随机抽样是一种简单、有效的统计抽样方法,能够在相对较小的成本和时间内获得对总体的有效信息。

四、随机抽样的应用1. 民意调查:随机抽样被广泛应用于民意调查中,通过对选民的随机抽样,可以得出对全国范围内的选民意见的推断。

2. 商品抽检:在商品生产过程中,可以通过随机抽样对产品进行抽检,保证产品质量的可靠性和稳定性。

3. 医学实验:在医学研究中,可以通过随机抽样的方式选择研究对象,以保证研究结论的有效性和可靠性。

4. 企业调查:在市场调研、消费者满意度调查等方面,也常常运用随机抽样的方法进行样本选择,以获得对总体的准确推断。

高考数学一轮复习知识点与练习随机抽样

高考数学一轮复习知识点与练习随机抽样

1.简单随机抽样(1)定义:从个体数为N 的总体中逐个不放回地取出n 个个体作为样本(n <N ),如果每个个体都有相同的机会被取到,那么这样的抽样方法称为简单随机抽样. (2)最常用的简单随机抽样的方法:抽签法和随机数表法.2.系统抽样(1)定义:将总体平均分成几个部分,然后按照一定的规则,从每个部分中抽取一个个体作为样本,这样的抽样方法称为系统抽样.(2)假设要从容量为N 的总体中抽取容量为n 的样本,系统抽样的步骤为:①采用随机的方法将总体中的N 个个体编号;②将编号按间隔k 分段,当N n 是整数时,取k =N n ;当Nn 不是整数时,从总体中剔除一些个体,使剩下的总体中个体的个数N ′能被n 整除,这时取k =N ′n ,并将剩下的总体重新编号;(3)在第一段中用简单随机抽样确定起始的个体编号l ;(4)按照一定的规则抽取样本,通常将编号为l ,l +k ,l +2k ,…,l +(n -1)k 的个体抽出.3.分层抽样(1)定义:一般地,当总体由差异明显的几个部分组成时,为了使样本更客观地反映总体情况,我们常常将总体中的个体按不同的特点分成层次比较分明的几个部分,然后按各个部分在总体中所占的比实施抽样,这种抽样方法叫分层抽样,所分成的各个部分称为“层”. (2)分层抽样的步骤是: ①将总体按一定标准分层;②计算各层的个体数与总体的个体数的比;③按各层个体数占总体的个体数的比确定各层应抽取的样本容量; ④在每一层进行抽样(可用简单随机抽样或系统抽样). (3)分层抽样的应用范围:当总体由差异明显的几个部分组成时,往往选用分层抽样.【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)简单随机抽样是一种不放回抽样.()(2)简单随机抽样每个个体被抽到的机会不一样,与先后有关.()(3)系统抽样在起始部分抽样时采用简单随机抽样.( )(4)要从1 002个学生中用系统抽样的方法选取一个容量为20的样本,需要剔除2个学生,这样对被剔除者不公平.()(5)分层抽样中,每个个体被抽到的可能性与层数及分层有关.()1.(教材改编)某公司有员工500人,其中不到35岁的有125人,35~49岁的有280人,50岁以上的有95人,为了调查员工的身体健康状况,从中抽取100名员工,则应在这三个年龄段分别抽取人数为______________.2.(2015·四川改编)某学校为了了解三年级、六年级、九年级这三个年级之间的学生视力是否存在显著差异,拟从这三个年级中按人数比例抽取部分学生进行调查,则最合理的抽样方法是____________.3.将参加英语口语测试的1 000名学生编号为000,001,002,…,999,从中抽取一个容量为50的样本,按系统抽样的方法分为50组,如果第一组编号为000,001,002,…,019,且第一组随机抽取的编号为015,则抽取的第35个编号为________.4.(教材改编)某公司共有1 000名员工,下设若干部门,现采用分层抽样方法,从全体员工中抽取一个样本容量为80的样本,已告知广告部门被抽取了4个员工,则广告部门的员工人数为________.5.(2014·天津)某大学为了了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查,已知该校一年级、二年级、三年级、四年级的本科生人数之比为4∶5∶5∶6,则应从一年级本科生中抽取________名学生.题型一简单随机抽样例1(1)总体由编号为01,02,…,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为_________.7816657208026314070243699728019832049234493582003623486969387481(2)下列抽取样本的方式不属于简单随机抽样的有__________.①从无限多个个体中抽取100个个体作为样本.②盒子里共有80个零件,从中选出5个零件进行质量检验.在抽样操作时,从中任意拿出一个零件进行质量检验后再把它放回盒子里.③从20件玩具中一次性抽取3件进行质量检验.④某班有56名同学,指定个子最高的5名同学参加学校组织的篮球赛.思维升华应用简单随机抽样应注意的问题(1)一个抽样试验能否用抽签法,关键看两点:一是抽签是否方便;二是号签是否易搅匀.一般地,当总体容量和样本容量都较小时可用抽签法.(2)在使用随机数表法时,如遇到三位数或四位数,可从选择的随机数表中的某行某列的数字计起,每三个或四个作为一个单位,自左向右选取,有超过总体号码或出现重复号码的数字舍去.下列抽样试验中,适合用抽签法的有________.①从某厂生产的5 000件产品中抽取600件进行质量检验;②从某厂生产的两箱(每箱18件)产品中抽取6件进行质量检验;③从甲、乙两厂生产的两箱(每箱18件)产品中抽取6件进行质量检验;④从某厂生产的5 000件产品中抽取10件进行质量检验.题型二系统抽样例2(1)(2015·湖南)在一次马拉松比赛中,35名运动员的成绩(单位:分钟)的茎叶图如图所示若将运动员按成绩由好到差编为1~35号,再用系统抽样方法从中抽取7人,则其中成绩在区间[139,151]上的运动员人数是________.(2)某单位有840名职工,现采用系统抽样方法抽取42人做问卷调查,将840人按1,2,…,840随机编号,则抽取的42人中,编号落入区间[481,720]的人数为________.引申探究1.本例(2)中条件不变,若第三组抽得的号码为44,则在第八组中抽得的号码是________.2.本例(2)中条件不变,若在编号为[481,720]中抽取8人,则样本容量为________.思维升华(1)系统抽样适用的条件是总体容量较大,样本容量也较大.(2)使用系统抽样时,若总体容量不能被样本容量整除,可以先从总体中随机地剔除几个个体,从而确定分段间隔.(3)起始编号的确定应用简单随机抽样的方法,一旦起始编号确定,其他编号便随之确定.将参加夏令营的600名学生编号为001,002,…,600.采用系统抽样方法抽取一个容量为50的样本,且随机抽得的号码为003.这600名学生分住在三个营区,从001到300在第Ⅰ营区,从301到495在第Ⅱ营区,从496到600在第Ⅲ营区,三个营区被抽中的人数依次为______________.题型三分层抽样命题点1求总体或样本容量例3某工厂甲、乙、丙三个车间生产了同一种产品,数量分别为120件,80件,60件.为了解它们的产品质量是否存在显著差异,用分层抽样方法抽取了一个容量为n的样本进行调查,其中从丙车间的产品中抽取了3件,则n=________.命题点2求某层入样的个体数例4(2015·福建)某校高一年级有900名学生,其中女生400名.按男女比例用分层抽样的方法,从该年级学生中抽取一个容量为45的样本,则应抽取的男生人数为________.思维升华分层抽样问题类型及解题思路(1)求某层应抽个体数量:按该层所占总体的比例计算.(2)已知某层个体数量,求总体容量或反之:根据分层抽样就是按比例抽样,列比例式进行计算.(3)确定是否应用分层抽样:分层抽样适用于总体中个体差异较大的情况.(1)(2014·广东改编)已知某地区中小学生人数和近视情况分别如图①和图②所示.为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为____________.(2)(2014·湖北)甲、乙两套设备生产的同类型产品共4 800件,采用分层抽样的方法从中抽取一个容量为80的样本进行质量检测.若样本中有50件产品由甲设备生产,则乙设备生产的产品总数为____件.五审图表找规律典例(14分)某单位有2 000名职工,老年、中年、青年分布在管理、技术开发、营销、生产各部门中,如下表所示:人数管理技术开发营销生产共计老年40404080200中年80120160240600青年40160280720 1 200共计160320480 1 040 2 000(1)若要抽取40人调查身体状况,则应怎样抽样?(2)若要开一个25人的讨论单位发展与薪金调整方面的座谈会,则应怎样抽选出席人?(3)若要抽20人调查对广州亚运会举办情况的了解,则应怎样抽样?温馨提醒(1)本题审题的关键有两点,一是对图表中的人员分类情况和数据要审视清楚;二是对样本的功能要审视准确.(2)本题易错点是,对于第(2)问,由于对样本功能审视不准确,按老、中、青三层分层抽样.[方法与技巧]1.简单随机抽样的特点:总体中的个体性质相似,无明显层次;总体容量较小,尤其是样本容量较小;用简单随机抽样法抽取的个体带有随机性;个体间无固定间距.2.系统抽样的特点:适用于元素个数很多且均衡的总体;各个个体被抽到的机会均等;总体分组后,在起始部分抽样时,采用简单随机抽样.3.分层抽样的特点:适用于总体由差异明显的几部分组成的情况;分层后,在每一层抽样时可采用简单随机抽样或系统抽样.[失误与防范]进行分层抽样时应注意以下几点:(1)分层抽样中分多少层、如何分层要视具体情况而定,总的原则是层内样本的差异要小,两层之间的样本差异要大,且互不重叠.(2)为了保证每个个体等可能入样,所有层中每个个体被抽到的可能性相同.A组专项基础训练(时间:30分钟)1.为了了解某地区的中小学生视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大,在下面的抽样方法中,最合理的抽样方法是________.①简单随机抽样;②按性别分层抽样;③按学段分层抽样;④系统抽样.2.某校选修乒乓球课程的学生中,高一年级有30名,高二年级有40名.现用分层抽样的方法在这70名学生中抽取一个样本,已知在高一年级的学生中抽取了6名,则在高二年级的学生中应抽取的人数为________.3.从编号为1~50的50枚最新研制的某种型号的导弹中随机抽取5枚来进行发射实验,若采用每部分选取的号码间隔一样的系统抽样方法,则所选取5枚导弹的编号可能是________.①5,10,15,20,25 ②3,13,23,33,43③1,2,3,4,5 ④2,4,6,16,324.(2015·北京改编)某校老年、中年和青年教师的人数见下表,采用分层抽样的方法调查教师的身体状况,在抽取的样本中,青年教师有320人,则该样本中的老年教师人数为________.类别人数老年教师900中年教师 1 800青年教师 1 600合计 4 3005.某学校高一、高二、高三年级的学生人数之比为3∶3∶4,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取________名学生.6.某校共有学生2 000名,各年级男、女学生人数如下表.已知在全校学生中随机抽取1名,抽到二年级女生的概率是0.19.现用分层抽样的方法在全校抽取64名学生,则应在三年级抽取的学生人数为________.一年级二年级三年级女生373x y男生377370z7.用系统抽样法从160名学生中抽取容量为20的样本,将160名学生从1~160编号,按编号顺序平均分成20组(1~8号,9~16号,…,153~160号),若第16组抽出的号码为123,则第2组中应抽出个体的号码是________.8.将某班的60名学生编号为01,02,…,60,采用系统抽样方法抽取一个容量为5的样本,且随机抽得的一个号码为04,则剩下的四个号码依次是______________.9.某政府机关有在编人员100人,其中副处级以上干部10人,一般干部70人,工人20人.上级机关为了了解政府机构改革意见,要从中抽取一个容量为20的样本,试确定用何种方法抽取,请具体实施抽取.B组专项能力提升(时间:20分钟)11.(2014·湖南改编)对一个容量为N的总体抽取容量为n的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为p1,p2,p3,则________.①p1=p2<p3②p2=p3<p1③p1=p3<p2④p1=p2=p312.采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,…,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[1,450]的人做问卷A,编号落入区间[451,750]的人做问卷B,其余的人做问卷C.则抽到的人中,做问卷B的人数为________.13.200名职工年龄分布如图所示,从中随机抽取40名职工作样本,采用系统抽样方法,按1~200编号,分为40组,分别为1~5,6~10,…,196~200,第5组抽取号码为22,第8组抽取号码为________.若采用分层抽样,40岁以下年龄段应抽取________人.14.一个总体中有90个个体,随机编号0,1,2,…,89,依从小到大的编号顺序平均分成9个小组,组号依次为1,2,3,…,9.现用系统抽样方法抽取一个容量为9的样本,规定如果在第1组随机抽取的号码为m,那么在第k组中抽取的号码个位数字与m+k的个位数字相同,若m=8,则在第8组中抽取的号码是________.15.某公路设计院有工程师6人,技术员12人,技工18人,要从这些人中抽取n个人参加市里召开的科学技术大会.如果采用系统抽样和分层抽样的方法抽取,不用剔除个体,如果参会人数增加1个,则在采用系统抽样时,需要在总体中先剔除1个个体,求n.。

高中数学知识点:抽样方法

高中数学知识点:抽样方法
一、简单随机抽样
设一个总体的个体数为N,如果通过逐个抽取的方法从中抽取一个样本,且每次抽取时,各个体被抽到的概率相等,就称这样的抽样为简单随机抽样。

一般地如果用简单随机抽样从个体数为N的总体中抽取一个容量为n的样本那么每个个体被抽到的概率等于n/N.常用的简单随机抽样方法有:抽签法、随机数法。

1.抽签法
一般地,抽签法就是把总体中的N个个体编号,把号码写在号签上,将号签放在一个容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本。

2.随机数法
随机抽样中,另一个经常被采用的方法是随机数法,即利用随机数表、随机数骰子或计算机产生的随机数进行抽样。

二、活用随机抽样
系统抽样的最基本特征是“等距性”,每组内所抽取的号码需要依据第一组抽取的号码和组距是唯一确定,每组抽取样本的号码依次构成一个以第一组抽取的号码m为首项,组距d为公差的等差数列{an},第k组抽取样本的号码,
ak=m+(k-1)d,如本题中根据第一组的样本号码和组距,可
得第k组抽取号码应该为9+30*(k-1)
三、系统抽样
当总体中的个体数较多时,采用简单随机抽样显得较为费事,这时,可将总体分成均衡的几个部分,然后按照预先定出的规则,从每一部分抽取一个个体,得到所需要的样本,这种抽样叫做系统抽样。

四、分层抽样。

数学高考一轮复习简单的随机抽样知识点

数学2019高考一轮复习简单的随机抽样知识点简单随机抽样指从总体N个单位中任意抽取n个单位作为样本,使每个可能的样本被抽中的概率相等的一种抽样方式。

以下是简单的随机抽样知识点,请考生学习。

1.总体和样本在统计学中, 把研究对象的全体叫做总体.把每个研究对象叫做个体.把总体中个体的总数叫做总体容量.为了研究总体的有关性质,一般从总体中随机抽取一部分:,,,研究,我们称它为样本.其中个体的个数称为样本容量.2.简单随机抽样,也叫纯随机抽样。

就是从总体中不加任何分组、划类、排队等,完全随机地抽取调查单位。

特点是:每个样本单位被抽中的可能性相同(概率相等),样本的每个单位完全独立,彼此间无一定的关联性和排斥性。

简单随机抽样是其它各种抽样形式的基础。

通常只是在总体单位之间差异程度较小和数目较少时,才采用这种方法。

3.简单随机抽样常用的方法:(1)抽签法;⑵随机数表法;⑶计算机模拟法;⑷使用统计软件直接抽取。

在简单随机抽样的样本容量设计中,主要考虑:①总体变异情况;②允许误差范围;③概率保证程度。

4.抽签法:(1)给调查对象群体中的每一个对象编号;(2)准备抽签的工具,实施抽签(3)对样本中的每一个个体进行测量或调查例:请调查你所在的学校的学生做喜欢的体育活动情况。

要练说,得练看。

看与说是统一的,看不准就难以说得好。

练看,就是训练幼儿的观察能力,扩大幼儿的认知范围,让幼儿在观察事物、观察生活、观察自然的活动中,积累词汇、理解词义、发展语言。

在运用观察法组织活动时,我着眼观察于观察对象的选择,着力于观察过程的指导,着重于幼儿观察能力和语言表达能力的提高。

5.随机数表法:一般说来,“教师”概念之形成经历了十分漫长的历史。

杨士勋(唐初学者,四门博士)《春秋谷梁传疏》曰:“师者教人以不及,故谓师为师资也”。

这儿的“师资”,其实就是先秦而后历代对教师的别称之一。

《韩非子》也有云:“今有不才之子……师长教之弗为变”其“师长”当然也指教师。

高考数学系统抽样知识点

高考数学系统抽样知识点
(1)系统抽样(等距抽样或机械抽样):
把总体的单位进行排序,再计算出抽样距离,然后按照这一固定的抽样距离抽取样本。

第一个样本采用简单随机抽样的办法抽取。

K(抽样距离)=N(总体规模)/n(样本规模)
前提条件:总体中个体的排列对于研究的变量来说,应是随机的,即不存在某种与研究变量相关的规则分布。

可以在调查允许的条件下,从不同的样本开始抽样,对比几次样本的特点。

如果有明显差别,说明样本在总体中的分布承某种循环性规律,且这种循环和抽样距离重合,考试技巧。

(2)系统抽样,即等距抽样是实际中最为常用的抽样方法之一。

因为它对抽样框的要求较低,实施也比较简单。

更为重要的是,如果有某种与调查指标相关的辅助变量可供使用,总体单元按辅助变量的大小顺序排队的话,使用系统抽样可以大大提高估计精度。

第 1 页共1 页。

【高中数学】高考数学第一轮备考简单随机抽样知识点

【高中数学】高考数学第一轮备考简单随机抽样知识点
简单随机抽样指从总体n个单位中任意抽取n个单位作为样本,使每个可能的样本被抽中的概率相等的一种抽样方式。

以下是简单随机抽样知识点,请考生学习。

1.人口和样本
在统计学中,把研究对象的全体叫做总体.
将每个主题称为个体
把总体中个体的总数叫做总体容量.
为了研究总体的相关特性,通常从总体中随机选择一部分:,,,
研究,我们称它为样本.其中个体的个数称为样本容量.
2.简单随机抽样,也称为纯随机抽样。

也就是说,没有从整体上添加分组、分类、排队等,这是完全随机的
机地抽取调查单位。

特点是:每个样本单位被抽中的可能性相同(概率相等),样本的每个单位完全独立,彼此间无一定的关联性和排斥性。

简单随机抽样是其它各种抽样形式的基础。

通常只是在总体单位之间差异程度较小和数目较少时,才采用这种方法。

3.简单随机抽样的常用方法:
(1)抽签法;⑵随机数表法;⑶计算机模拟法;⑷使用统计软件直接抽取。

在简单随机抽样的样本量设计中,主要考虑:① 总体变化;② 允许误差范围;③ 概率保证度。

4.抽签法:
(1)对测量对象组中的每个对象进行编号;
(2)准备抽签的工具,实施抽签
(3)测量或调查样本中的每个个体
例:请调查你所在的学校的学生做喜欢的体育活动情况。

5.随机数表法:
例:利用随机数表在所在的班级中抽取10位同学参加某项活动。

这些都是简单随机抽样知识点的内容。

数学网希望你能更上一层楼。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1节随机抽样最新考纲 1.理解随机抽样的必要性和重要性;2.会用简单随机抽样方法从总体中抽取样本;了解分层抽样和系统抽样方法.会用随机抽样的基本方法解决一些简单的实际问题.知识梳理1.简单随机抽样(1)定义:设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样.(2)最常用的简单随机抽样的方法:抽签法和随机数法.2.系统抽样(1)定义:当总体中的个体数目较多时,可将总体分成均衡的几个部分,然后按照事先定出的规则,从每一部分抽取一个个体得到所需要的样本,这种抽样方法叫做系统抽样.(2)系统抽样的操作步骤假设要从容量为N的总体中抽取容量为n的样本.①先将总体的N个个体编号;②确定分段间隔k,对编号进行分段,当Nn(n是样本容量)是整数时,取k=Nn;③在第1段用简单随机抽样确定第一个个体编号l(l≤k);④按照一定的规则抽取样本,通常是将l加上间隔k得到第2个个体编号(l+k),再加k得到第3个个体编号(l+2k),依次进行下去,直到获取整个样本.3.分层抽样(1)定义:在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法叫做分层抽样.(2)应用范围:当总体是由差异明显的几个部分组成时,往往选用分层抽样.[常用结论与微点提醒]1.三种抽样方法的共同点都是等概率抽样,即抽样过程中每个个体被抽到的概率相等,体现了这三种抽样方法的客观性和公平性.若样本容量为n,总体容量为N,每个个体被抽到的概率是n N.2.系统抽样抽取的个体编号从小到大成等差数列.诊断自测1.思考辨析(在括号内打“√”或“×”)(1)简单随机抽样每个个体被抽到的机会不一样,与先后有关.()(2)系统抽样在起始部分抽样时采用简单随机抽样.()(3)分层抽样中,每个个体被抽到的可能性与层数及分层有关.()(4)要从1 002个学生中用系统抽样的方法选取一个容量为20的样本,需要剔除2个学生,这样对被剔除者不公平.()答案(1)×(2)√(3)×(4)×2.(必修3P100A1改编)在“世界读书日”前夕,为了了解某地5 000名居民某天的阅读时间,从中抽取了200名居民的阅读时间进行统计分析.在这个问题中,5 000名居民的阅读时间的全体是()A.总体B.个体C.样本的容量D.从总体中抽取的一个样本解析由题目条件知,5 000名居民的阅读时间的全体是总体;其中1名居民的阅读时间是个体;从5 000名居民某天的阅读时间中抽取的200名居民的阅读时间是从总体中抽取的一个样本,样本容量是200.答案 A3.某学校为了了解三年级、六年级、九年级这三个年级之间的学生视力是否存在显著差异,拟从这三个年级中按人数比例抽取部分学生进行调查,则最合理的抽样方法是()A.抽签法B.系统抽样法C.分层抽样法D.随机数法解析因为总体由有明显差异的几部分构成,所以用分层抽样法.故选C.答案 C4.从2 017名学生中选取50名学生参加全国数学竞赛,若采用以下方法选取:先用简单随机抽样法从2 017名学生中剔除17名学生,剩下的2 000名学生再按系统抽样的方法抽取,则每名学生入选的概率()A.不全相等B.均不相等C.都相等,且为502 017 D.都相等,且为1 40解析从N个个体中抽取M个个体,则每个个体被抽到的概率都等于M N.答案 C5.从300名学生(其中男生180人,女生120人)中按性别用分层抽样的方法抽取50人参加比赛,则应该抽取男生人数为________.解析因为男生与女生的比例为180∶120=3∶2,所以应该抽取男生人数为50×33+2=30.答案30考点一简单随机抽样及其应用【例1】(1)下列抽取样本的方式属于简单随机抽样的个数为()①从无限多个个体中抽取100个个体作为样本.②盒子里共有80个零件,从中选出5个零件进行质量检验.在抽样操作时,从中任意拿出一个零件进行质量检验后再把它放回盒子里.③从20件玩具中一次性抽取3件进行质量检验.④某班有56名同学,指定个子最高的5名同学参加学校组织的篮球赛.A.0B.1C.2D.3(2)总体由编号为01,02,…,19,20的20个个体组成,利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为()A.08B.07C.02D.01解析(1)①不是简单随机抽样,因为被抽取样本的总体的个数是无限的,而不是有限的;②不是简单随机抽样.因为它是有放回抽样;③不是简单随机抽样.因为这是“一次性”抽取,而不是“逐个”抽取;④不是简单随机抽样.因为不是等可能抽样.故选A.(2)从第1行第5列和第6列组成的数65开始由左到右依次选出的数为08,02,14,07,01,所以第5个个体编号为01.答案(1)A(2)D规律方法 1.简单随机抽样是从含有N(有限)个个体的总体中,逐个不放回地抽取样本,且每次抽取时总体内的各个个体被抽到的机会都相等.2.一个抽样试验能否用抽签法,关键看两点:一是制签是否方便;二是号签是否易搅匀,一般地,当总体容量和样本容量都较小时可用抽签法.而随机数表法适用于总体中个体数较多的情形:随机数表法的操作要点:编号,选起始数,读数,获取样本.【训练1】(1)下面的抽样方法是简单随机抽样的是()A.在某年明信片销售活动中,规定每100万张为一个开奖组,通过随机抽取的方式确定号码的后四位为2709的为三等奖B.某车间包装一种产品,在自动包装的传送带上,每隔30分钟抽一包产品,称其重量是否合格C.某学校分别从行政人员、教师、后勤人员中抽取2人、14人、4人了解对学校机构改革的意见D.用抽签方法从10件产品中选取3件进行质量检验(2)利用简单随机抽样,从n个个体中抽取一个容量为10的样本.若第二次抽取时,余下的每个个体被抽到的概率为13,则在整个抽样过程中,每个个体被抽到的概率为( )A.14B.13C.514D.1027解析 (1)选项A ,B 是系统抽样,C 项是分层抽样,D 是简单随机抽样.(2)依题意,得9n -1=13,解之得n =28.故每个个体在抽样过程中被抽到的概率P =1028=514.答案 (1)D (2)C考点二 系统抽样及其应用【例2】 (1)(2018·安徽皖北联考)某学校采用系统抽样方法,从该校高一年级全体800名学生中抽50名学生做视力检查.现将800名学生从1到800进行编号.已知从33~48这16个数中抽到的数是39,则在第1小组1~16中随机抽到的数是( )A.5B.7C.11D.13(2)(2018·长沙雅礼中学质检)在一次马拉松比赛中,35名运动员的成绩(单位:分钟)的茎叶图如图所示:若将运动员按成绩由好到差编为1~35号,再用系统抽样方法从中抽取7人,则其中成绩在区间[139,151]上的运动员人数是________.解析 (1)把800名学生分成50组,每组16人,各小组抽到的数构成一个公差为16的等差数列,39在第3组.所以第1组抽到的数为39-32=7.(2)依题意,可将编号为1~35号的35个数据分成7组,每组有5个数据,从每组中抽取一人.成绩在区间[139,151]上共有20个数据,分在4个小组内,每组抽取1人,共抽取4人.答案 (1)B (2)4规律方法 1.如果总体容量N 能被样本容量n 整除,则抽样间隔为k =N n ,否则,可随机地从总体中剔除余数,然后按系统抽样的方法抽样,特别注意,每个个体被抽到的机会均是n N .2.系统抽样中依次抽取的样本对应的号码就是一个等差数列,首项就是第1组所抽取样本的号码,公差为间隔数,根据等差数列的通项公式就可以确定每一组内所要抽取的样本号码.【训练2】 (1)(2018·郑州模拟)为规范学校办学,某省教育厅督察组对某所高中进行了抽样调查.抽到的班级一共有52名学生,现将该班学生随机编号,用系统抽样的方法抽取一个容量为4的样本,已知7号、33号、46号同学在样本中,那么样本中还有一位同学的编号应是( )A.13B.19C.20D.51(2)(2018·湖北重点中学适应模拟)某校高三年级共有30个班,学校心理咨询室为了了解同学们的心理状况,将每个班编号,依次为1到30,现用系统抽样的方法抽取5个班进行调查,若抽到的编号之和为75,则抽到的最小的编号为________.解析 (1)由系统抽样的原理知,抽样的间隔为52÷4=13,故抽取的样本的编号分别为7,7+13,7+13×2,7+13×3,即7号,20号,33号,46号. ∴样本中还有一位同学的编号为20.(2)系统抽样的抽取间隔为305=6.设抽到的最小编号为x ,则x +(6+x )+(12+x )+(18+x )+(24+x )=75,所以x =3.答案(1)C(2)3考点三分层抽样及其应用【例3】(1)(2017·江苏卷)某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件,为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取________件.(2)某学校三个兴趣小组的学生人数分布如下表(每名同学只参加一个小组)(单位:人).学校要对这三个小组的活动效果进行抽样调查,按小组分层抽样的方法,从参加这三个兴趣小组的学生中抽取30人,结果篮球组被抽出12人,则a的值为________.解析(1)因为样本容量n=60,样本总体N=200+400+300+100=1 000,所以抽取比例为nN=60 1000=350.因此应从丙种型号的产品中抽取300×350=18(件).(2)由分层抽样得1245+15=30120+a,解得a=30.答案(1)18(2)30规律方法 1.分层抽样中分多少层,如何分层要视具体情况而定,总的原则是:层内样本的差异要小,两层之间的样本差异要大,且互不重叠.2.进行分层抽样的相关计算时,常用到的两个关系(1)样本容量n总体的个数N=该层抽取的个体数该层的个体数;(2)总体中某两层的个体数之比等于样本中这两层抽取的个体数之比.【训练3】(1)(2015·北京卷)某校老年、中年和青年教师的人数见下表,采用分层抽样的方法调查教师的身体状况,在抽取的样本中,青年教师有320人,则该样本中的老年教师人数为()A.90B.100C.180D.300(2)(2018·唐山调研)甲、乙两套设备生产的同类型产品共4 800件,采用分层抽样的方法从中抽取一个容量为80的样本进行质量检测.若样本中有50件产品由甲设备生产,则乙设备生产的产品总数为________件.解析(1)设该样本中的老年教师人数为x,由题意及分层抽样的特点得x 900=3201 600,故x=180.(2)由题设,抽样比为804 800=160.设甲设备生产的产品为x件,则x60=50,∴x=3 000.故乙设备生产的产品总数为4 800-3 000=1 800. 答案(1)C(2)1 800基础巩固题组(建议用时:25分钟)一、选择题1.为了了解某地区的中小学生视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大,在下面的抽样方法中,最合理的抽样方法是()A.简单随机抽样B.按性别分层抽样C.按学段分层抽样D.系统抽样解析不同的学段在视力状况上有所差异,所以应该按照学段分层抽样.答案 C2.(2018·佛山质检)为了解1 000名学生的学习情况,采用系统抽样的方法,从中抽取容量为40的样本,则分段的间隔为()A.50B.40C.25D.20解析根据系统抽样的特点分段间隔为1 00040=25.答案 C3.下列抽样试验中,适合用抽签法的为()A.从某厂生产的5 000件产品中抽取600件进行质量检验B.从某厂生产的两箱(每箱18件)产品中抽取6件进行质量检验C.从甲、乙两厂生产的两箱(每箱18件)产品中抽取6件进行质量检验D.从某厂生产的5 000件产品中抽取10件进行质量检验解析因为A,D中总体的个体数较大,不适合用抽签法;C中甲、乙两厂生产的产品质量可能差别较大,因此未达到搅拌均匀的条件,也不适合用抽签法;B 中总体容量和样本容量都较小,且同厂生产的产品可视为搅拌均匀了.答案 B4.(一题多解)(2018·长沙一中测试)某中学有高中生3 500人,初中生1 500人,为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为n的样本,已知从高中生中抽取70人,则n为()A.100B.150C.200D.250解析法一由题意可得70n-70=3 5001 500,解得n=100.法二由题意,抽样比为703 500=150,总体容量为3 500+1 500=5 000,故n=5 000×150=100.答案 A5.在一个容量为N的总体中抽取容量为n的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为p1,p2,p3,则()A.p1=p2<p3B.p2=p3<p1C.p1=p3<p2D.p1=p2=p3解析由随机抽样的知识知,三种抽样中,每个个体被抽到的概率都相等,故选D.答案 D6.我国古代数学名著《九章算术》有“米谷粒分”题:粮仓开仓收粮,有人送来米1 534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为()A.134石B.169石C.338石D.1 365石解析由随机抽样的含义,该批米内夹谷约为28254×1 534≈169(石).答案 B7.将参加英语口语测试的1 000名学生编号为000,001,002,…,999,从中抽取一个容量为50的样本,按系统抽样的方法分为50组,如果第一组编号为000,001,002,…,019,且第一组随机抽取的编号为015,则抽取的第35个编号为()A.700B.669C.695D.676解析由题意可知,第一组随机抽取的编号l=15,分段间隔数k=Nn=1 00050=20,由题意知抽出的这些号码是以15为首项,20为公差的等差数列,则抽取的第35个编号为15+(35-1)×20=695.答案 C8.交通管理部门为了解机动车驾驶员(简称驾驶员)对某新法规的知晓情况,对甲、乙、丙、丁四个社区做分层抽样调查.假设四个社区驾驶员的总人数为N,其中甲社区有驾驶员96人.若在甲、乙、丙、丁四个社区抽取驾驶员的人数分别为12,21,25,43,则这四个社区驾驶员的总人数N为()A.101B.808C.1 212D.2 012解析甲社区每个个体被抽到的概率为1296=18,样本容量为12+21+25+43=101,所以四个社区中驾驶员的总人数N=10118=808.答案 B二、填空题9.某校高一年级有900名学生,其中女生400名.按男女比例用分层抽样的方法,从该年级学生中抽取一个容量为45的样本,则应抽取的男生人数为________.解析设男生抽取x人,则有45900=x900-400,解得x=25.答案2510.(2018·武汉调研)从编号为0,1,2,…,79的80件产品中,采用系统抽样的方法抽取容量是5的样本,若编号为28的产品在样本中,则该样本中产品的最大编号为________.解析由系统抽样知,抽样间隔k=805=16,因为样本中含编号为28的产品,则与之相邻的产品编号为12和44.故所取出的5个编号依次为12,28,44,60,76,即最大编号为76.答案7611.在距离央视春晚直播不到20天的时候,某媒体报道,由六小龄童和郭富城合演的《猴戏》节目被毙,为此,某网站针对“是否支持该节目上春晚”对网民进行调查,得到如下数据:若采用分层抽样的方法从中抽取48人进行座谈,则持“支持”态度的网民抽取的人数为________.解析持“支持”态度的网民抽取的人数为48×8 0008 000+6 000+10 000=48×13=16.答案1612.从编号为001,002,…,500的500个产品中用系统抽样的方法抽取一个样本,已知样本中编号最小的两个编号分别为007,032,则样本中最大的编号应该为________.解析根据系统抽样的定义可知样本的编号成等差数列,令a1=7,a2=32,d =25,所以7+25(n-1)≤500,所以n≤20,最大编号为7+25×19=482.答案482能力提升题组(建议用时:10分钟)13.福利彩票“双色球”中红色球的号码由编号为01,02,…,33的33个个体组成,某彩民利用下面的随机数表选取6组数作为6个红色球的编号,选取方法是从随机数表第1行的第6列和第7列数字开始由左到右依次选取两个数字,则选出来的第6个红色球的编号为()A.23B.09C.02D.17解析从随机数表第1行的第6列和第7列数字开始由左到右依次选取两个数字,则选出的6个红色球的编号依次为21,32,09,16,17,02,故选出的第6个红色球的编号为02.答案 C14.某工厂的三个车间在12月份共生产了3 600双皮靴,在出厂前要检查这批产品的质量,决定采用分层抽样的方法进行抽取,若从第一、二、三车间抽取的产品数分别为a,b,c,且a,b,c构成等差数列,则第二车间生产的产品数为() A.800 B.1 000C.1 200D.1 500解析因为a,b,c成等差数列,所以2b=a+c.所以a+b+c3=b.所以第二车间抽取的产品数占抽样产品总数的13.根据分层抽样的性质,可知第二车间生产的产品数占总数的13,即为13×3 600=1 200.答案 C15.采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,…,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[1,450]的人做问卷A,编号落入区间[451,750]的人做问卷B,其余的人做问卷C.则抽到的人中,做问卷B的人数为________.解析由系统抽样的特点,知抽取号码的间隔为96032=30,抽取的号码依次为9,39,69,…,939.落入区间[451,750]的有459,489,…,729,这些数构成首项为459,公差为30的等差数列,设有n项,显然有729=459+(n-1)×30,解得n=10.所以做问卷B的有10人.答案1016.一个总体中有90个个体,随机编号0,1,2,…,89,依从小到大的编号顺序平均分成9个小组,组号依次为1,2,3,…,9.现用系统抽样方法抽取一个容量为9的样本,规定:如果在第1组随机抽取的号码为m,那么在第k组中抽取的号码个位数字与m+k的个位数字相同,若m=8,则在第8组中抽取的号码是________.解析由题意知m=8,k=8,则m+k=16,也就是第8组抽取的号码个位数字为6,十位数字为8-1=7,故抽取的号码为76.答案76。

相关文档
最新文档