BUCK型开关电源中的损耗与效率的计算
dcdc buck电路的计算

dcdc buck电路的计算DC-DC Buck电路是一种广泛应用于电子设备中的电源电路,其主要功能是将输入电压转换为所需的较低电压。
本文将详细介绍如何计算DC-DC Buck 电路的各个元件参数,并提供一些实用建议。
一、DC-DC Buck电路简介DC-DC Buck电路,又称为降压型直流-直流变换器,主要由输入电容、输出电容、开关管、二极管、电感等元件组成。
其工作原理是通过开关管的开通和关断,使电感上的电流发生变化,从而实现电压的降低。
二、计算DC-DC Buck电路的步骤1.确定电路的输入电压、输出电压和开关频率根据实际需求,确定电路的输入电压Vin、输出电压Vout和开关频率f。
这两个参数将影响电路元件的选择。
2.选择电感、电容和二极管(1)电感的选择:根据电感电流IL和开关频率f,可选用以下公式计算电感值L:L = Vin * f / (2 * π * f * IL)(2)电容的选择:根据输出电压Vout和开关频率f,可选用以下公式计算电容容值C:C = Vout * f / (2 * π * f * IO)其中,IO为电路的输出电流。
(3)二极管的选择:根据电路的输出电压Vout和二极管的正向电压VF,选择合适的二极管。
3.计算电路元件的额定电流和额定电压根据电路的输出电流IO和输入电压Vin,计算各元件的额定电流和额定电压。
在此基础上,选择合适的元件。
三、电路元件参数的计算与应用1.电感的应用注意事项:(1)电感值的选择要适当,过大会导致电路响应变慢,过小则会导致电路噪声增加。
(2)电感器应尽量靠近负载,以减小电压降。
2.电容的应用注意事项:(1)电容值的选择要适当,过大可能导致电路工作不稳定,过小则可能导致输出电压波动较大。
(2)电容器应选择陶瓷电容或薄膜电容,以保证电路的稳定工作。
3.二极管的应用注意事项:(1)二极管的正向电压VF应小于电路的输入电压Vin和输出电压Vout。
理解电路中的功率损耗与效率

理解电路中的功率损耗与效率电路是我们日常生活中必不可少的一部分,从家里的电灯到电脑、手机等电子设备,无时无刻不在与电路打交道。
在使用电路的过程中,了解电路中的功率损耗和效率是非常重要的。
本文将探讨电路中的功率损耗与效率,并解释电路中的一些常见现象。
首先,我们来了解电路中的功率损耗。
在电路中,当电流通过导线、电阻或其他电路元件时,会遇到电阻,从而产生功率损耗。
这种损耗可以分为两种类型:欧姆损耗和非欧姆损耗。
欧姆损耗是指通过电阻器或导线时发生的热量损耗。
根据欧姆定律,电阻的功率损耗可以通过以下公式计算:P = I^2 * R。
其中,P表示功率损耗,I表示电流,R表示电阻值。
这意味着,当电流增加或者电阻增加时,功率损耗也会增加。
因此,在设计电路时,要选择合适的电阻值以减少功率损耗,提高电路的效率。
非欧姆损耗是指在电路中,电流通过电容器和电感器时产生的功率损耗。
电容器和电感器内部有一定的电阻,当电流通过它们时,会产生热量损耗。
此外,电感器还会产生磁场能量的损耗,称为铁损耗。
非欧姆损耗通常会导致电能转化为其他形式的能量,例如热能、光能等。
了解功率损耗之后,我们再来探讨电路中的效率。
电路的效率是指电路所能转化的有用能量与总能量之间的比值。
在电路中,电能往往会转化为其他形式的能量,例如光能、热能等。
有效利用电能并提高电路的效率,是我们设计和使用电路时要考虑的重要问题。
电路的效率可以通过以下公式计算:η = (输出功率 / 输入功率) * 100%,其中,η表示电路的效率,输出功率指的是电路输出的有用功率,输入功率指的是电路所消耗的总功率。
在实际应用中,我们通常希望电路的效率越高越好,因为高效率的电路可以最大程度地利用电能,减少不必要的能量浪费。
然而,在电路中提高效率并不总是容易的。
一方面,功率损耗会使电路效率下降,因此我们要尽可能减少欧姆损耗和非欧姆损耗。
另一方面,电路元件的选择也会影响效率。
例如,在选择电阻器时,我们可以选择低电阻值的电阻器以减小功率损耗。
BUCK同步整流MOS损耗

基于Buck同步整流电路中功率MOSFETS管参数的优化 华晓辉1 林维明21 2)福州大学电气工程与自动化学院 福州 3500021)Email :hxh_1889@ 2) Email :weiming @摘 要 本文是分析BUCK 同步整流电路中开关管与整流管的损耗模型,以两支管的损耗最小为目标,并以输入电压IN V =5V ,输出电压OUT V =1.8V ,开关频率s f =5MHZ为例,用MATLAB 工具对其进行优化计算,得出该条件下器件物理参数。
关键词 SR-Buck, MOSFET 损耗模型 , MATLAB 优化1.引言MOSFET 现已成为高频开关变换器、微处理器与半导体存储器等先进集成电路(IC)中最主要的器件单元,它尺寸小、功耗低、并与数字电路的主流工艺兼容。
近年来,使用MOSFET 的模拟IC 逐渐已成为主流,改变了以往主要使用双极型器件的局面。
GENFET MOSFET 器件就采用了Genera l Semiconductor 公司的0.35um 深槽工艺制造出了每平方英寸含200M 单元,集成度提高了4倍,更加适合了移动电话机,笔记本电脑,PDA 以及其它的无线电产品的应用。
因此在高功率密度集成Buck 同步整流电路中,确定MOSFET 的损耗模型,优化电路中主开关管与同步整流管的最小损耗模型显得十分重要。
2.寄生参数随着器件尺寸的不断减小,电路模拟程序中的器件模型也越来越复杂,以保证模拟结果的精确度;然而电路的模拟精确度不仅与器件模型有关,还与给定的器件模型参数有关。
功率MOSFET 的常用等效模型如图1,其中dson R 为导通电阻,Cgs 及Cds 和Cgd 为MOSFET 的寄生电容[1],它们的值是非线性的与施加在MOSFET 上的栅极的电压有关。
为简化分析,在此的模型的优化过程中忽略了引线电感等,并使器件工作在线形放大区。
在图1中:Cgov W Cox L W Cgd Cgs ⋅+⋅⋅==2 (1)Cgs 、Cgd 分别是栅极与源极、栅极与漏极之间的电容,Cgov 是栅极与源极、漏极之间的重叠电容[2];图1 MOSFET 常用等效电路模型Cox =ox ox T /97.3ε 是每单位面积的氧化层的电容,其中o ε是真空介电 常数,ox T 为栅极氧化层的厚度,ox ε为栅极氧化层的介电常数。
开关电源8大损耗,讲的太详细了

开关电源8大损耗,讲的太详细了能量转换系统必定存在能耗,虽然实际应用中无法获得100%的转换效率,但是,一个高质量的电源效率可以达到非常高的水平,效率接近95%。
绝大多数电源IC 的工作效率可以在特定的工作条件下测得,数据资料中给出了这些参数。
一般厂商会给出实际测量的结果,但我们只能对我们自己的数据担保。
图1 给出了一个SMPS 降压转换器的电路实例,转换效率可以达到97%,即使在轻载时也能保持较高效率。
采用什么秘诀才能达到如此高的效率?我们最好从了解SMPS 损耗的公共问题开始,开关电源的损耗大部分来自开关器件(MOSFET 和二极管),另外小部分损耗来自电感和电容。
但是,如果使用非常廉价的电感和电容(具有较高电阻),将会导致损耗明显增大。
选择IC 时,需要考虑控制器的架构和内部元件,以期获得高效指标。
例如,图1 采用了多种方法来降低损耗,其中包括:同步整流,芯片内部集成低导通电阻的MOSFET,低静态电流和跳脉冲控制模式。
我们将在本文展开讨论这些措施带来的好处。
图1. 降压转换器集成了低导通电阻的MOSFET,采用同步整流,效率曲线如图所示。
降压型SMPS损耗是任何SMPS 架构都面临的问题,我们在此以图2 所示降压型(或buck)转换器为例进行讨论,图中标明各点的开关波形,用于后续计算。
降压转换器的主要功能是把一个较高的直流输入电压转换成较低的直流输出电压。
为了达到这个要求,MOSFET 以固定频率(f S),在脉宽调制信号(PWM)的控制下进行开、关操作。
当MOSFET 导通时,输入电压给电感和电容(L 和C OUT)充电,通过它们把能量传递给负载。
在此期间,电感电流线性上升,电流回路如图2 中的回路1 所示。
当MOSFET 断开时,输入电压断开与电感的连接,电感和输出电容为负载供电。
电感电流线性下降,电流流过二极管,电流回路如图中的环路2 所示。
MOSFET 的导通时间定义为PWM 信号的占空比(D)。
BUCK电感计算

BUCK电感计算BUCK电感计算是指在Buck变换器中,由于电感与电压、电流以及时间的关系,需要对电感进行精确的计算与选择的过程。
在电路设计中,电感计算是非常重要的一项工作,它会直接影响到Buck变换器的性能、效率与稳定性。
首先,需要明确Buck变换器的工作原理。
Buck变换器是一种降压型的DC-DC变换器,其基本电路如下:```+--------------------- V_in ----------------------++-----------+-------------+-------------+-----------+L=Inductor C=Capacitor R=Load+-----------+--------------+-------------+Switch (MOSFET or BJT+--------------+--------------+-------------+V_out```在Buck变换器工作时,开关周期性地打开和关闭。
当开关关闭时,电感L储存了能量,并通过二极管向负载R提供电能;当开关打开时,电感L释放出储存的能量,通过电容C提供给负载R。
对于Buck变换器的电感计算,可以基于以下几个关键参数:1. 输入电压V_in:电感的值会受到输入电压的影响。
所以首先要确定输入电压范围。
2. 输出电压V_out:通过电感的能量转换,可以得到所需的输出电压。
确定所需的输出电压水平,以便计算电感值。
3. 电流涓涓 I_Lripple:电感的值还要考虑到输出电流的涓涓,也就是电感的工作电流范围。
通常设计时要估计电感电流的峰值,以确定电感的饱和电流,稍微留出一定的安全裕度,以确保电感工作在稳定的工作区间。
4. 工作频率 f:Buck变换器的工作频率也是计算电感的重要参数之一、频率较高,那么电感的值较小;频率较低,电感的值较大。
工作频率的选择要在输入电压、输出电压、电感大小、电流涓涓等条件之间取得一个合理的平衡。
dcdc buck电路的计算

dcdc buck电路的计算一、DC-DC Buck电路简介DC-DC Buck电路,又称为降压型直流-直流变换器,是一种广泛应用于电子设备电源的电路。
它通过调整开关器件的导通与截止时间,实现输入电压与输出电压之间的能量传递。
Buck电路主要由开关器件、电感、电容和二极管等元件组成。
二、计算DC-DC Buck电路的步骤1.确定电路参数:包括输入电压、输出电压、开关频率等。
2.选择开关器件:根据电路参数,选择合适的开关器件,如MOSFET或IGBT等。
3.计算电感值:根据开关频率和输出电压纹波要求,选择合适的电感值。
4.计算电容值:根据输出电压、开关频率和电容电压应力要求,选择合适的电容值。
5.计算二极管的电压和电流:根据输出电压和电流,选择合适的二极管。
6.电路仿真与优化:通过电路仿真软件,对电路进行仿真,根据结果调整电路参数,直至满足性能要求。
三、电路参数计算实例以一款5V输出、3A电流的DC-DC Buck电路为例:1.确定电路参数:输入电压为12V,开关频率为100kHz。
2.选择开关器件:根据电流和电压要求,选择一款600V、3A的MOSFET。
3.计算电感值:根据开关频率和输出电压纹波要求,电感值为10uH。
4.计算电容值:根据输出电压、开关频率和电容电压应力要求,电容值为100uF。
5.计算二极管的电压和电流:根据输出电压和电流,选择一款40V、3A的整流二极管。
四、电路元件选择与应用1.开关器件:根据电路性能要求,选择合适电压、电流和开关速度的开关器件。
2.电感:选择合适电感值,以降低输出电压纹波和电磁干扰。
3.电容:选择合适容值,以减小输出电压波动和滤除高频干扰。
4.二极管:根据电路电压和电流要求,选择合适的整流二极管或肖特基二极管。
五、总结与建议DC-DC Buck电路作为一种常见的电源变换电路,在电子设备中具有广泛应用。
在设计过程中,要充分考虑电路性能要求,合理选择元件,并进行优化。
开关电源检修及损耗计算知识总结
开关电源检修及损耗计算知识总结开关电源检修的方法1.假负载法在维修开关电源时,为区分故障出在负载电路还是电源本身,经常需要断开主负载,并在开关电源主电压输出端加上假负载进行试机,如图4-1所示。
之所以要接假负载,是因为开关管在截止期间,储存在开关变压器一次绕组的能量要向二次侧释放,如果不接假负载,则开关变压器储存的能量无处释放,极易导致开关管击穿损坏。
关于假负载,应根据开关电源的输出电压(或功率)的大小进行选择,一般而言,若输出电压在100V以上,应选择40~100W的灯泡或300Q 左右的大功率电阻做假负载;若输出电压在30V以下,可选择汽车/摩托车上用的灯泡或600Ω~lkΩ大功率电阻做假负载。
另外需要说明的是,有些电子产品,其开关电源的直流电压输出端通过一个电阻接地,相当于接了一个假负载,因此,对于这种结构的开关电源,维修时不需要再接假负载。
2.短路法并联型开关电源一般采用带光电耦合器的直接取样稳压控制电路,当输出电压高时,可采用短路法来区分故障范围。
短路检修法的过程是:先短路光电耦合器的光敏接收管的两脚,相当于减小了光敏接收管的内阻,测主电压仍未变化,则说明故障在光电耦合器之后(开关变压器的一次电路一侧)。
反之,故障在光电耦合器之前的电路。
需要说明的是,短路法应在熟悉电路的基础上有针对性地进行,不能盲目短路,以免将故障扩大。
另外,从检修的安全角度考虑,短路之前,应断开负载电路。
3.串联灯泡法所谓串联灯泡法,就是取掉输入回路的保险丝(熔断器),用一个60W/220V的灯泡串在保险丝两端。
当通入交流电后,如灯泡很亮,则说明电路有短路现象。
由于灯泡有一定的阻值,如60W/220V的灯泡,其阻值约为500Ω(指热阻),所以起到一定的限流作用。
这样,一方面能直观地通过灯泡的明亮度来大致判断电路的故障;另一方面,由于灯泡的限流作用,不至于立即使已有短路的电路烧坏元器件。
直至排除短路故障后,灯泡的亮度自然会变暗,最后再去掉灯泡,换上保险丝。
开关器件开关过程损耗计算公式
开关器件开关过程损耗计算公式
开关器件是电子电路中常用的元件,它可以控制电路的通断,实现电路的开关功能。
在开关器件的使用过程中,会产生一定的损耗,这些损耗会影响电路的性能和稳定性。
因此,了解开关器件开关过程的损耗计算公式是非常重要的。
开关器件的损耗主要包括导通损耗和关断损耗两部分。
导通损耗是指在开关器件导通状态下,由于电流通过器件产生的损耗。
关断损耗是指在开关器件关断状态下,由于电感和电容等元件的反向电压产生的损耗。
在计算开关器件的导通损耗时,可以使用以下公式:
Pd = Vce × Ic
其中,Pd表示导通损耗,Vce表示开关器件的导通电压,Ic表示开关器件的导通电流。
这个公式的意义是,导通损耗等于导通电压和导通电流的乘积。
在计算开关器件的关断损耗时,可以使用以下公式:
Pf = Vf × If
其中,Pf表示关断损耗,Vf表示开关器件的反向电压,If表示开关器件的反向电流。
这个公式的意义是,关断损耗等于反向电压和反向电流的乘积。
需要注意的是,开关器件的损耗与其工作状态、工作频率、温度等因素都有关系。
因此,在实际应用中,需要根据具体情况进行计算和分析,以确保电路的稳定性和可靠性。
开关器件的损耗计算是电子电路设计和应用中的重要内容。
掌握开关器件的损耗计算公式,可以帮助我们更好地理解开关器件的工作原理,优化电路设计,提高电路的性能和稳定性。
BuckBoost电路的开关损耗分析
电力传动与控制课程设计任务书2017-2018学年第一学期第12周-14周注:1、此表一组一表二份,课程设计小组组长一份;任课教师授课时自带一份备查。
2、课程设计结束后与“课程设计小结”、“学生成绩单”一并交院教务存档。
目录1、概述 (2)2 主电路拓扑和控制方式 (3)2.1 Buck/Boost主电路的构成 (3)2.2 电感电流连续时的工作原理及基本关系 (4)3、主电路参数的计算 (7)4、 MATLAB仿真 (8)5、Buck/Boost电路的开关损耗分析 (9)6、结论 (9)7、心得 (10)1、概述直流-直流变流电路的功能是将直流电变为另一固定电压或可调电压的直流电,包括直接直流变流电路和间接直流变流电路。
其中,直接直流变流电路又叫斩波电路,它包括降压斩波电路(Buck Chopper)、升压斩波电路(Boost Chopper)、升降压斩波电路(Buck/Boost)、Cuk斩波电路、Sepic斩波电路和Zeta斩波电路共六种基本斩波电路。
Buck/Boost升降压斩波电路同时具有Buck斩波电路和Boost斩波电路的特点,能对直流电直接进行降压或者升压变换,应用广泛。
本文将对Buck/Boost升降压斩波电路进行详细的分析。
2 主电路拓扑和控制方式2.1 Buck/Boost主电路的构成Buck/Boost变换器的主电路与Buck或Boost变换器所用元器件相同,也由开关管、二极管、电感、电容等构成,如图1所示。
与Buck和Boost不同的是电感L在中间,不在输出端也不在输入端,且输出电压极性与输入电压极性相反。
开关管也采用PWM控制方式。
Buck/Boost变换器也由电感电流连续和断续两种工作方式,但在实际应用中,往往要求电流不断续,即电流连续,当电路中电感值足够大时,就能使得电路工作在电流连续的状态下。
因此为了分析方便,现假设电感足够大,则在一个周期内电流连续。
图1 Buck/Boost主电路结构图电流连续时有两个开关模态,即V导通时的模态1,等效电路见图2(a);V 关断时的模态2,等效电路见图2(b)(a)V导通(b)V关断,VD续流图2 Buck/Boost不同模态等效电路2.2 电感电流连续时的工作原理及基本关系电感电流连续工作时的工作主要波形见图3。
buck电路电感计算公式推导
buck电路电感计算公式推导摘要:1.介绍BUCK 电路2.阐述BUCK 电路的电感计算公式3.推导BUCK 电路的电感计算公式4.总结正文:一、介绍BUCK 电路BUCK 电路,全称为降压斩波电路(Buck Converter),是一种DC-DC (直流- 直流)变换器,主要用于将较高的直流电压转换为较低的直流电压。
相较于其他DC-DC 变换器,如Boost、Flyback 和Forward 等,BUCK 电路具有结构简单、效率高、输出电压可调等优点,因此在电子设备中得到了广泛的应用。
二、阐述BUCK 电路的电感计算公式在BUCK 电路中,电感L(inductor L)是一个重要的元件,它对电路的输出电压、电流和效率等性能参数具有重要影响。
通常情况下,我们需要根据电路的具体需求和条件来选择合适的电感值。
BUCK 电路的电感计算公式可以表示为:L = (Vout * Iout) / (3 * f * ΔVout)其中,L 表示电感值(单位:亨利,H),Vout 表示输出电压(单位:伏特,V),Iout 表示输出电流(单位:安培,A),f 表示开关频率(单位:赫兹,Hz),ΔVout 表示输出电压的峰值(单位:伏特,V)。
三、推导BUCK 电路的电感计算公式为了更好地理解BUCK 电路的电感计算公式,我们简要介绍一下BUCK 电路的工作原理。
BUCK 电路主要由开关、电感、电容和负载组成。
在电路工作过程中,开关在两个状态之间切换:开态(导通)和关态(断开)。
在开关开态时,电感上的电流逐渐增加,电容器上的电荷也逐渐积累;在开关关态时,电感上的电流逐渐减小,电容器上的电荷也逐渐放电。
通过这种开关控制电感电流的方式,我们可以得到所需的输出电压。
根据电感的定义,我们知道电感L(以亨利为单位)等于通过它的电流变化率产生的电动势。
对于BUCK 电路,我们可以根据以下步骤推导出电感计算公式:1.根据电感的定义,电感L = VL / ΔI,其中VL 表示电感上的电动势,ΔI 表示电感上的电流变化量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
在BUCK型开关电源中,如果没有损耗,那效率就是100%,但这是不可能的,BUCK型开关电源中主要的损耗是导通损耗和交流开关损耗,导通损耗主要是指MOS管导通后的损耗和肖特基二极管导通的损耗(是指完全导通后的损耗,因为导通不是瞬间导通,有个从线性区到非线性区的过程),在MOS管导通时,由于存在导通电阻,那么流过电流就必然存在导通损耗,而肖特基导通损耗是指在MOS 管关闭期间,由于电感的电流不能突变加上电感反冲现象,会产生与MOS管导通时的相反电压方向,从而使肖特基导通,流过的电流会在肖特基上产生损耗。
由于MOS管在导通的时候,流过其的电流不是瞬间达到最大,此时电流有个从零逐渐上升到最大的过程,此时MOS管漏源(DS)之间的电压也是从Vdc逐渐下降到零,MOS管关闭的时候也存在此情况,只是与打开的时候过程相反,那么在这逐渐的过程中就会产生损耗,这就是交流开关损耗,交流开关损耗包括MOS管打开和关闭损耗,交流开关损耗与开关的频率成正比,因为一开一关的次数越多,损耗自然就大了。
在忽略交流开关损耗的情况下,假设输入电压Vdc,输出电压为Vo,MOS管导通时间为Ton,关闭时间为Toff,整个周期为T,即
T=Ton+Toff。
在MOS管导通期间流过的平均电流为Io,由于电感电流不能突变,那么在MOS管关闭期间流过肖特基的平均电流也为Io,在MOS管和肖特基导通期间产生的压差基本为1V,那么导通损耗=P(mos管)+P(肖特基)=1*Io*Ton/T+1*Io*Toff/T=1*Io。
那么此时的效率E=Po/(Po+Plosse)=(Vo*Io)/(Vo*Io)+(1*Io)=Vo/Vo+1。
在考虑交流开关损耗的时候,基本交流开关损耗可以分两种情况来考虑,第一种情况是MOS管导通期间,电流开始上升的时候电压同时开始下降,MOS管关闭期间电流开始下降的时候电压同时上升,此种情况也是最理想的情况(一般实际情况很难达到),那么在此情况下,交流开关损耗=整个开关周期的导通损耗+整个开关周期的关断损耗=(时间从0到Ton,流过电流和电压剩积的积分)*(Ton/T)+(时间从0到Toff,流过电流和电压剩积的积分)*(Toff/T)=Io*Vdc/6*(Ton/T)+Io*Vdc/6*(Toff/T)。
设Ton=Toff=Ts(理论上MOS管打开瞬间电流从0上升到最大与MOS管关断瞬间从最大下降到0的时间是一样),所以交流开关损耗Pac=Io*Vdc*Ts/3T。
则此时的效率E=Po/(Po+DClosse+AClosse)=(Vo*Io)/(Vo*Io)+(1*Vo)+(Io*Vdc*Ts/3T)=Vo/(Vo+1+Vdc*Ts/T)
上面是在考虑交流开关损耗的理想情况下的效率,那么第二种情况就是在最差的情况下,即MOS管导通时,电流从0达到最大后,电压才开始下降,而不是同时,MOS管关闭时,电压上升到最大后,电流才开始从0开始下降,一般这种情况更接近真实情况,那么此种情况下,交流开关损耗=整个开关周期的导通损耗+整个开关周期的关断损耗=Io*Vdc*Ts/T+Io*Vdc*Ts/T=2*Io*Vdc*Ts/T。
所以此时效率E=Po/(Po+DClosse+AClosse)=(Vo*Io)/(Vo*Io)+(1*Vo)+(2*Io*Vdc*Ts/T)=Vo/(Vo+1+2*Vdc*Ts/T)。
以上的效率计算是在没有考虑肖特基的反向恢复时间的情况下,实际的效率可能还会比以上计算的低,反向恢复时间是指二极管从承受反向电压的瞬间到完全停止流过反向漏电流所经历的时间,因为二极管在反向截止时不可能瞬间截止,也是有一个过程的。
应该使用反向恢复时间在35ns~50ns的超快恢复二极管作为续流二极管,该损耗与开关频率成正比
开关电源中主要的发热元器件为半导体开关管、功率二极管、高频变压器、滤波电感等。
不同器件有不同的控制发热量的方法。
功率管是高频开关电源中发热量较大的器件之一,减小它的发热量,不仅可以提高功率管的可靠性,而且可以提高开关电源的可靠性,提高平均无故障时间(MTBF)。
开关管的发热量是由损耗引起的,开关管的损耗由开关过程损耗和通态损耗两部分组成,减小通态损耗可以通过选用低通态电阻的开关管来减小通态损耗;开关过程损耗是由于栅电荷大小及开关时间引起的,减小开关过程损耗可以选择开关速度更快、恢复时间更短的器件来减少。
但更为重要的是通过设计更优的控制方式和缓冲技术来减小损耗,如采用软开关技术,可以大大减小这种损耗。
减小功率二极管的发热量,对交流整流及缓冲二极管,一般情况下不会有更好的控制技术来减小损耗,可以通过选择高质量的二极管来减小损耗。
对于变压器二次侧的整流可以选择效率更高的同步整流技术来减小损耗。
对于高频磁性材料引起的损耗,要尽量避免趋肤效应,对于趋肤效应造成的影响,可采用多股细漆包线并绕的办法来解决。
5.2.2 开关电源的散热设计
MOS管导通时有一定的压降,也即器件有一定的损耗,它将引起芯片的温升,但
是器件的发热情况与其耐热能力和散热条件有关。
由此,器件功耗有一定的容限。
其值按热欧姆定律可表示为:
PD="Tj-Tc/RT"。