植物营养中的硅元素是条“硬汉”

植物营养中的硅元素是条“硬汉”
植物营养中的硅元素是条“硬汉”

植物营养中的硅元素是条“硬汉”

编者唠:本文查阅《中国硅肥营养研究与硅肥应用》中的文献发现,植物营养中的硅能使作物拥有抗病性、抗虫性、抗旱性、抗弱光性、抗重金属毒害、抗紫外线伤害等等。可谓能力“爆表”,堪称“硬汉”。经常有人抱怨,桃瓜梨枣怎么没有原来好吃,外形不如原来好看。原因呢???关键是农作物营养失衡所致,需要营养调节。谁能担此重任呢?国内

外土肥学家指出,硅肥是一种很好的植物调节性肥料/保健肥料,可以说是植物的一款“健康粗粮”。目前市场上也有含硅

的肥料,如水溶性硅肥、硅镁肥、钙镁磷肥、硅钾矿物肥料、含硅植物营养调理品等,但即便有“硅肥”的称呼,也不能正名,有的未能在国家工商行政部门登记在册。“中国硅肥之父”蔡德龙在表示对硅肥没有”户口“的现状感到很是尴尬和委屈。

一、植物营养元素硅简介早在1804年,De Saussure就发现植物中含有硅,此后植物能从土壤中吸收硅的习性逐渐获得了早期植物学的公认。1840年,德国化学家李比西提出

矿物营养理论时,把硅列为与氮磷钾一样重要的元素。有160多年历史的世界最早的英国洛桑肥料试验站,110多年连续试验证明,硅具有活化天然磷的作用。硅在《植物营养学》书中归为植物有益元素,是水稻等禾本科作物的必需营养元素。硅在土壤中主要存在于土体和土壤溶液中,或被吸附在

土壤胶体表面。在土壤溶液中,硅主要以单硅酸(H4SiO4)即

Si(OH)4的形态存在。土壤有效硅含量通常作为衡量土壤供硅能力的指标。它受气候条件、土壤pH值、成土母质、土壤粘粒、施用有机肥、土壤水分及土壤温度等因素的影响。研究发现,Si在植物体内的存在形式主要是硅酸

(SiO2·nH2O)和多聚硅酸,其次是胶状硅酸和游离单硅酸[Si (OH)4]。目前认为,栽培作物的含Si量可分为三类:一是含Si 量很高的植物,在5%~20%,如水稻;二是含Si量中等的植物,在2%~4%,如小麦、大麦、燕麦等;三是含Si量很低的植物,在1%以下,如豆科植物和双子叶植物。据Thiagalingam等对包括豆科、谷类等22种植物的研究表明,植物含硅量的顺序是:谷类作物>牧草>蔬菜>果树>豆科。除

了上述植物物种差异以外,植物体内硅的含量还受植物的部位、生育期、栽培方式、环境条件等多种因素的影响。Si在植物体内的分布是不均匀的。二、从功能作用及其机理证明植物硅元素是条“硬汉”2.1 抗病能力及其机理:(1)水茂兴

等学者(2000年)从植物病理学研究证明了稻温病最易感

染时期是新叶展开的最初几天,过了这一时期(新叶展开4天后)即不再感染。供硅使新叶组织硅质化,有效地阻碍病菌侵入,使叶瘟病发生显著降低。从电子探针分析可知,施硅处理新嫩叶片表皮已有明显哑铃状硅化细胞出现,乳突粗大。X-射线硅的能谱分析在硅化细胞和乳突处出现较高的峰,

表示该处硅分布密度较高,即固体化;而不施硅/硅缺乏处理则相反。硅沉积在乳突体、表皮层或受真菌侵染部位、伤口处的硅增加了植物细胞壁的机械强度,起到天然的“机械或物理屏障”作用。(2)硅促进了作物根和叶片细胞壁对抗白粉病侵袭的局部防御区的形成,诱导酚类物质沿细胞壁积累,破坏病原菌吸器的完整性,限制真菌孢子萌发、吸器形成和菌丝生长。(3)硅参与了寄主与病原菌作用的代谢过程。硅诱导作物过氧化物酶和多酚氧化酶活性的增加并化合物聚合

形成坚固的屏障,并形成木质素,形成木质素过程中诱发产生的植保素而增强植物对病原菌的抵抗能力。(4)硅可以诱导植株产生抗毒素,诱导对真菌有毒的物质积累在被真菌侵染的作物叶片表皮层细胞中,调节类黄酮类抗毒素在黄瓜叶片的积累量,有效提高作物的抗病性。2.2 抗虫能力及其机理:硅增强作物细胞壁(硅化细胞壁)的物理特性及诱导作物产生毒素都是硅影响食草性生物危害程度的重要因素。植物细胞壁的力学特性直接影响植物受损的程度,含硅量较高的植物,由于硅化结构体填充在由纤维素胶团组成的细胞壁孔隙中,故可增强叶片的机械强度,进而阻止昆虫颚的撕裂作用或幼虫刺入和抵御各种外力的侵入。2.3抗倒伏能力及其机理:硅使植物机械组织细胞硅质化,表皮细胞的外侧细胞壁中纤维素微团空隙被硅胶充满为硅-纤维膜,与角质层形成角质-硅质双层结构,使茎叶硬度增强。2.4 抗旱能力及其

机理:(1)硅化作用。硅可以在水稻叶片及叶鞘表皮细胞上形成“角质-双硅层”,这种结构可有效屏蔽水分或水气渗透,保持细胞膜结构和功能的稳定性,使植物的凋萎减轻,蒸腾作用降低,保持细胞膜结构和功能的稳定性,以减少叶面水分消耗,降低呼吸速率,防止茎叶萎蔫和下垂,从而增强抗旱性。对施硅玉米叶片细胞进行了电镜照片分析认为,施硅改变了玉米叶片细胞形态结构,使细胞腔明显变小,细胞壁变皱、变厚,减少了玉米植株体内水分的渗透,抑制了植株内水分的无益蒸腾。(2)硅参与了干旱胁迫下作物的代谢活动。马成仓认为硅可以明显提高超氧化物歧化酶、过氧化氢酶、谷胱甘肽还原酶的活性,提高脂质不饱和脂肪酸、光合色素、可溶性蛋白和总硫醇的含量及小麦叶片净CO2同化速率。硅增加了叶片中各种色素的含量,提高了小麦的净光合作用,并使得干旱胁迫下小麦的光合午休不明显。一天当中中午作物蒸腾强烈,植物受到水分胁迫而关闭气孔,同时也就抑制CO2的吸收(即植物光合/午休现象),由于硅能使水分胁迫减轻,因此可以缩短强光条件下叶片的光/睡眠时间,使干物质增加。(3)硅可以影响气孔运动和细胞汁液浓度。随着硅酸的加入,玉米植株气孔的蒸腾速率明显降低;施加硅酸的玉米植株木质部汁液流动速度比未施加硅酸的玉米植株降低20 %,表明硅的沉积导致木质部导管汁液的亲和力增加。2.5 耐盐能力及其机理:(1)硅促进盐胁迫下作物对钠、钾的选择性

吸收。徐呈祥等认为硅在盐胁迫下作物根系等器官对Na+、K+的选择性吸收与区隔化机制中可能起重要作用。(2)硅有利于稳定盐胁迫下作物细胞膜的完整性、稳定性和功能性。硅有利于稳定盐胁迫下作物叶细胞的超微结构,提高叶绿体膜结构的完整度,减轻盐胁迫对基粒超微结构的损伤,改善细胞的长宽比例,使细胞更趋向于圆形,同时减少盐胁迫引起的畸形细胞,使细胞保持较旺盛的分裂和代谢能力,增强细胞的耐盐性。(3)硅参与作物代谢过程。硅提高盐胁迫下作物叶片酶活性,减少膜氧化带来的伤害,维持膜的最佳流动性。2.6 抗紫外线胁迫能力及其机理:紫外线辐射可以对作物生物大分子产生直接伤害,同时又激发植物体活性氧的产生而引起氧化伤害。作物类黄酮和其他酚类物质可以通过避免活性氧类物质的积累而减轻紫外辐射的伤害,因为这些化合物主要集中于叶片表皮细胞并具有较强的紫外线辐射

吸收能力。硅在作物叶片表面的积累与酚类化合物的合成相关联。硅可以诱导活体类黄酮及酚类物质的积累,提高酚类物质的含量,调节酚类物质的释放速度,增加酚类物质代谢的酶活性,有效提高水稻叶片的抗紫外线能力。2.7抗重金属胁迫能力及其机理:重金属通过植物(初级生产者)经食物链传递进入人体,对保证食物质量和食品安全及人体健康意义重大。(1)硅与重金属在介质和作物体内发生沉淀。?硅提高了土壤pH 值,促进了重金属离子的沉淀及硅酸盐复合

物的形成,降低了土壤中活性重金属离子的浓度及其流动性。?Baylis等(1994)认为施硅对重金属镉也有可能存在

Si-Cd复合物形态,发生沉淀,从而降低镉的有效性。?硅与

重金属离子在根的外层细胞壁共沉积,限制其从根部向茎部的运输,降低了植株共质体中重金属离子的浓度。王永锐等认为,由于可溶性硅酸盐在水溶液中水解生成凝胶状H4SiO4,可吸附有毒金属离子及其它有害物质,这可能是硅缓解毒害

作用的原因之一。2.8抗冻害能力及其机理:表皮细胞角质

-硅质双层的形成,增强了表皮的坚韧性,从而有利于提高植

株的抗寒性。在美国, Ulloa和Anderson报道了硅钙肥可增强甘蔗对寒冷的忍耐力。根据Ulloa的研究,在条播甘蔗中使用硅肥的试验结果表明,硅可缓解甘蔗的冻害。2.9 抗弱光能力及其机理:(1)硅提高植物类胡萝卜素的含量,类胡萝卜素可提高光合电子传递量子效率,增强植物抵御午间强光和高温的能力,减轻光抑制程度;(2)硅显著降低植物的蒸腾速率,提高水分利用率;(3)硅可降低烟草暗呼吸速率光补偿点、CO2 补偿点,提高光饱和点、表观量子效率、CO2 饱和点、和RuBP 羧化效率。弱光胁迫即通常所说的光照强度不足,是指环境中的光强持久或短时间显著低于光饱和点,但不低于限制植物生存的最低光照强度时的光环境。光照强度不足最直接的影响就是叶片叶绿素含量和光合作用降低,最终导致减产、品质降低等问题。已有研究表明,硅可以提

高水稻、甘蔗、小麦、番茄、黄瓜、烟草等的光合作用,使植物对光能的利用率提高20-25%。2.10其他功能及机理:硅肥可以改善农作物果实的色、香、味等感官效果。近年来,身边的朋友和上了年纪的亲人越来越多地抱怨,西瓜、苹果不甜,大米、小麦不香,番茄歪歪扭扭,黄瓜一头大一头小等等,其实这些都是在某种程度上氮肥施用过多、速生时作物营养失衡所致。而硅肥作为一种土壤中固有的天然矿物肥,不仅自身有益于作物生长,而且还可以调节作物的不同阶段对氮、磷、钾等其他元素的营养需求,在其他元素施用过量时有抑制供给的作用。硅肥的调节作用可以在本质上改善

作物的营养成分,使瓜果类的糖分和维生素、花生的脂肪、谷物的淀粉、小麦的蛋白质含量等明显提高。世界“硅肥之父”、日本山梨大学教授小林均等人做的试验表明,施过娃肥的水稻质量较之未施娃肥的要提高1~2个等级;浙江省土肥站

的试验也表明,施过硅肥的甘蔗糖度较之未施硅肥的也要提高2~3度。上述两方面的作用机理在于,硅肥有助于作物

根系的生长发育,增强吸收能力;同时,它还可以关闭植物表面气孔,减少植物体内水分蒸腾,保证养分有效供给,使作物所需营养始终处于充分、均衡状态,不致于因速生而

使营养失调。此外,硅肥使作物形成的娃化细胞的细胞壁,其坚硬是其他肥料所无法企及的,有助于细胞群的有序排列组合,使作物形状完美。这些作用机理,使作物的感官效果

赏心悦目,而在本质上则是作物品质的改善。二、肥料家族成员-硅的农业应用现状与建议3.1 农业对硅肥的需求大需

求蔡德龙认为,我国的硅肥研究进展缓慢,主要是因为氮磷钾肥料的推广应用比国外晚。黄河、淮河、长江三大河流中下游流域有效硅的含量在百万分之十以下,比世界上已经广泛使用硅肥的日本、菲律宾、韩国等国河流中有效硅含量都要低。我国土壤大面积缺硅土地抽样测量表明:全国有50 %即10亿亩左右的耕地缺硅,另外,环保部和国土资源部联

合发布《全国土壤污染状况调查公报》显示,全国土壤总的点位超标率16.1%,耕地总体情况不容乐观,部分地区土壤污染严重,耕地点位超标率19.4%,土壤镉超标率7.0%,

土其中镉重度污染点位比例为0.5%,土壤环境质量堪忧。

加大硅肥的研究推广与应用,就能改善污染土地的各项指标。每年需要3000万~3500万吨硅肥,市场容量500~1000亿。3.2硅肥“个性低调”,需农化服务推广由于硅元素是个“不爱动分子”,可以持久保持肥效,但也正是它的“不爱动”,即使把硅肥施于作物根部周围,也不容易进入根圈。要根据作物和土壤选择不同的施肥方式。根据我国的实际情况,国家测土配方已把是否缺少二氧化硅作为技术标准。目前,中国的农化服务水平相对落后,大多数农化服务工作者的推广重点在氮磷钾锌钙硼等元素上,由于这些元素一旦缺乏会在植物叶、花、果等部位明显表现出来,相比之下硅的缺乏症状

就显得“低调”了,导致许多农化服务人员一度认为只有水稻是需“硅”的,其他作物并不需要额外补充。其实,大多数作物生长过程都需要硅元素的参与。3.3硅肥是出身低,没“户口”在众人眼里,含硅肥料是由磷化工的废渣或硅矿石,矿物石头“烧”出来的,什么炉渣、炼铁水淬渣、黄磷电炉渣、粉煤灰等等是“磨”出来的。日本、韩国等国非常重视硅肥的施用,他们从中国进口钙镁磷肥等含硅肥料,自己也研发了各种水溶性硅肥。如钙镁磷肥参考日本标准,除规定P2O5含量外,还标明有效MgO、有效SiO2含量及碱度。即便”硅肥“的称呼,现在也可以说是名不正言不顺,未能在国家工商行政部门登记在册。硅肥处于没有”户口“的现状。3.4硅肥科学应用才能发挥其价值(1)控制用量,适量施硅。硅肥施用也有“临界值”研究表明,适量施硅可显著促进番茄生长,以1.2 mmol/L硅浓度处理效果较好,如进一步提高硅浓度至1.8 mmol/L,反而抑制番茄生长。土壤供硅能力是确定是否施用硅肥的重要依据。土壤缺硅程度越大,施肥增产的效果越好,应根据不同地块土壤有效硅的含量与硅肥水溶态硅的含量确定硅肥施用量。严重缺硅的土壤可适量多施,而轻度缺硅的土壤应少施。(2)与氮磷钾等元素配施,协同作用。郭彬等研究发现氮、硅肥配施水稻有效穗数、产量、植株氮、磷、钾、硅养分含量增幅均高于氮肥和硅肥单施。江立庚等研究表明,氮硅肥配施水稻氮素积累与硅素积累存在极显著

相关关系,原因可能是施硅可促进水稻对氮素的吸收,改善植株营养状况,提高地上部分物质积累量,从而增产。因此,建议喷施含硅叶面肥时补施氮肥或者冲施含硅的大量元素

水溶肥效果更佳。(3)找准时机“雪中送炭”。作物对各种元素的吸收和需求都有一个“营养临界期”和“营养最大效率期”。其中“营养临界期”一般在苗期,这个时期需要养分量较低但是缺乏的话又会严重阻碍作物生长,而“营养最大效率期”一般是作物生长最旺盛的时期,对养分的需求量和吸收最多,如能及时满足作物养分需求,其增产效果将非常显著。作物对硅元素的需求也遵循这个规律,例如,在水稻生产中应在水稻孕穗之前施用。因此我们要找准作物对硅的需求关键时期,及时施用硅肥,可达到低用量、高效率的效果。总之,硅肥是一种很好的植物调节性肥料/保健肥料,可以说是植物的一款“健康粗粮”。但由于硅元素是“低调”、“不爱动分子”、“没户口”等制约其推广应用,俗话说“酒香也怕巷子深”,“硅好也怕没名分”,因此,在此希望热爱“土壤-植物营养-人体健康”的科技工作、媒体朋友、农业管理部门等联合推动硅肥的应用。致谢:蔡德龙、周秀杰、张玉龙、夏石头、宫海军、唐旭、贾建新等推荐书籍《中国硅营养研究与硅肥应用》,蔡德龙主编作者:王宗抗、刘梦丹

植物生理学第二章 植物的矿质营养新选.

第二章植物的矿质营养 一、名词解释 1. 矿质营养 2. 必需元素 3. 大量元素 4. 微量元素 5. 水培法 6. 叶片营养 7. 可再利用元素8. 易化扩散9. 通道蛋白 10. 载体蛋白11. 转运蛋白12. 植物营养最大效率期 13. 反向运输器14. 同向运输器15. 单向运输器 二、填空题 1.植物细胞中钙主要分布在中。 2.土壤溶液的pH对于植物根系吸收盐分有显著影响。一般来说,pH增大易于吸收;pH 降低易于吸收。 3.生产上所谓肥料三要素是指、和三种营养元素。 4.参与光合作用水光解反应的矿质元素是、和。 5.在植物体内促进糖运输的矿质元素是、和。 6.离子跨膜转移是由膜两侧的梯度和梯度共同决定的。 7.促进植物授粉、受精作用的矿质元素是。 8.驱动离子跨膜主动转运的能量形式是和。 9.植物必需元素的确定是通过法才得以解决的。 10.华北地区果树的小叶病是因为缺元素的缘故。 11.缺氮的生理病症首先出现在叶上。 12.缺钙的生理病症首先出现在叶上。 13.根部吸收的矿质元素主要通过向上运输的。 14.一般作物的营养最大效率期是时期。 15.植物地上部分对矿质元素吸收的主要器官是。 16.植物体内可再利用的元素中以和最典型;不可再利用的元素中以最典型。17.追肥的形态指标有和等;追肥的生理指标有和。 18.油菜“花而不实”症是土壤当中缺乏营养元素引起的。 19. 引起大白菜干心病、菠菜黑心病矿质元素是。 20. 被称为植物生命元素的是。 21. 一般作物生育的最适pH是。 22.诊断作物缺乏矿质元素的方法有、和。 23.影响根部吸收矿质元素的因素有、、和。 三、选择题 1.在下列元素中不属于矿质元素的是()。 A.铁 B.钙 C.氮 D.磷 2.植物缺铁时会产生缺绿症,表现为()。 A.叶脉仍绿 B.叶脉失绿C.全叶失绿 D.全叶不缺绿 3.影响植物根细胞主动吸收无机离子最重要的因素是()。

【精选】植物营养学

第一章绪论 1.什么是植物营养?什么是植物营养学? 答:植物营养:植物体从外界环境中吸取其生长发育所需的化学物质,并用以维持其生命活 动的过程。植物营养学:研究植物对营养物质的吸收、运输、转化和利用的规律及植物与外 界环境之间营养物质和能量交换的科学。 2.李比希提出的植物营养“三大学说”各自的含义是什么? 答:矿质营养学说:驳斥了当时流行的“腐殖质营养学说”,认为植物最初的营养物质是矿物 质,而非腐殖质。 养分归还学说:作物的每次收获必然要从土壤中取走大量养分;若不及时归还被带走的养分, 土壤地力将逐渐下降;要想恢复地力就必须归还从土壤中取走的全部养分。 最小养分律:植物的生长量或产量受环境中最缺少的养分的限制,并随之增减而增减。环境 中最缺少的养分称为最小养分。 3.试述植物营养学的研究范畴与研究方法。 答:研究范畴:植物营养生理学(营养元素生理学、产量生理学、逆境生理学);植物根际 营养(根-土界面、植物-土壤-微生物及环境因素);植物营养遗传学;植物营养生态学;植 物的土壤营养(土壤养分行为学、土壤肥力学);肥料学与现代施肥技术。 研究方法:生物田间试验法(在田间自然条件下进行,是植物营养学科中最基本的研究 方法);生物模拟试验法(运用特殊装置,给予特殊条件便于调控水、肥、气、热和光照等 因素);化学分析法;数理统计法;核素分析法(同位素标记);酶学诊断法 第二章植物的元素营养 1.什么是植物的必需元素?其判别标准是什么? 答:植物必需元素:对植物生长具有必需性、不可替代性和直接营养作用的化学元素。 其判别标准是:①必要性:这种元素对所有高等植物的生长发育是不可缺少的;如果缺少该元素, 植物就不能完成其生活史。②专一性:这种元素的功能不能由其它元素所代替;缺乏这种元素时, 植物会表现出特有的症状,只有补充这种元素后症状才能减轻或消失。③直接性:这种元素必须直 接参与植物的代谢作用,对植物起直接的营养作用,而不是改善环境的间接作用。 2.高等植物的必需元素有哪些?大量元素与微量元素是如何划分的?为什么将N、P、K称为“肥料三要素”? 答:高等植物必需营养元素目前有16(17)种:碳、氢、氧、氮、磷、钾、钙、镁、硫、铁、硼、锰、铜、锌、钼、氯、(镍)。 大量元素:C、H、O、N、P、K、Ca、Mg、S(其中,Ca、Mg、S是中量元素。) 微量元素:Fe、B、Mn、Zn、Cu、Mo、Cl 将N、P、K称为“肥料三要素”:在土壤-植物间的供求矛盾大,常需施肥补充。 3.试述大棚、温室等设施栽培条件下进行二氧化碳施肥必要性,并举例说明二氧化碳施肥的方法。 答:温室和大棚:因通气不足CO2浓度常降至很低,增施CO2肥料是不可忽视的一项增产技术。 二氧化碳施肥的方法: 4.植物体内活性氧的清除系统有哪些? 答:植物体内活性氧的清除系统有:①酶系统:超氧化物歧化酶(SOD);过氧化氢酶(CAT);过氧化物酶(POD或POX)。②抗氧化剂系统:维生素E;谷胱甘肽(GSH);抗坏血酸(ASA)。此外,非酶类自由基清除剂还有细胞色素、甘露糖醇、氢醌、胡萝卜素等。 5.试述N在植物体内的主要生理功能。N主要从哪些方面影响农产品品质? 答:N在植物体内的主要生理功能:①N是植物体内许多重要有机化合物的组分,通常被称为“生命元素”。②促进并调节植物生长③影响农产品品质:影响农产品中粗蛋白含量(增加N素供应(尤其生长后期)可增加农产品中蛋白质含量,但在评价其对农产品品质的影响时应慎重。);

植物必须的营养元素

植物生长所需的营养元素 1.必需营养元素: 营养元素在植物体内的含量不同,所引起的作用也不同,有些元素在植物体内含量很少,但是是不可缺少的,判断必需营养元素的三个依据: (1)如缺少某种营养元素,植物就不能完成生活史; (2)必须营养元素的功能不能由其它营养元素代替; (3)必需营养元素直接参入植物代谢作用. 2.目前已发现16种必需营养元素: (1)大量营养元素: C、H、O、N、P、K; (2)中量营养元素Ca、Mg、S; (3)微量营养元素: Fe Mn Cu Zn B Mo Cl(一般占植物干重的0.1%以下)。 3.有益元素: 在16种营养元素之外,还有一类营养元素,它们对一些植物的生长发育具有良好的作用,或为某些植物在特定条件下所必需,但不是所有植物所必需,人们称之为“有益元素”,其中主要包括: Si Na Co Se Ni Al等. 4.为什么大量施肥并不能获得高产? (1)各类元素的同等重要性 大量、中量和微量营养元素具有同等重要性,必需营养元素在植物体内不论数量多少都是同等重要的,作物的产量和品质是有最缺乏的营养元素决定的,要想节约肥料的投入成本又能获得高产,必须做的平衡施肥。 (2)常见土壤营养元素的缺乏状况表 土壤类型土壤pH<6.0 土壤pH 6.0-7. 0 土壤pH>7.0 沙土、氮、磷、钾、钙、镁、铜、氮、镁、锰、硼、铜、锌氮、镁、锰、硼、铜、锌、铁 锌、钼 轻壤土氮、磷、钾、钙、镁、铜、钼氮、镁、锰、硼、铜氮、镁、锰、硼、铜、锌 壤土磷、钾、钼锰、硼锰、硼、铜、铁 粘壤土磷、钾、钼锰硼、锰 粘土磷、钼硼、锰硼、锰 髙有机质土磷、锌、铜锰、锌、铜锰、锌、铜

第二章 植物的营养成分

第二章植物的营养成分 【教学目标】 1、掌握植物必需的营养元素判断标准和种类。 2、掌握植物对矿质营养的吸收及根外营养特点和注意事项。 3、了解营养元素的生理作用。 4、了解营养元素的缺素症及其诊断。 【教学重点】 1、掌握植物必需的营养元素判断标准和种类。 2、掌握植物对矿质营养的吸收及根外营养特点和注意事项。 【教学难点】 掌握植物对矿质营养的吸收及根外营养特点和注意事项。 【教学方法】 项目引导教学法 【教学过程】 复习回顾: 我们在第一章学习了土壤的概念及组成,土壤的力学性质和耕性,土壤肥力。 导入新课: 我们都知道,有收无收在于水,收多收少在于肥。第三章我们开始学习合理施肥。要合理施肥就需要知道植物都需要哪些营养元素。 什么是营养?什么是营养元素? 营养:植物从外界环境中吸取所需的物质,以维持其生长和生命活动的作用称为营养。 营养元素:植物所需的化学元素也成为营养元素。 第一节植物必需的营养元素 一、植物必需的营养元素: 1、判断植物必需的营养元素有三条标准: (1)对所有植物完成生活周期是必不可少的。 (2)其功能不能由其他元素代替,缺乏时会表现出特有的症状。 (3)对植物起直接营养作用。 2、植物必须的营养元素有16种:碳C;氢H;氧O;氮N;磷P;钾K;钙Ca;镁Mg;硫S;铁Fe;硼B;锰 Mn;铜Cu;锌 Zn;钼Mo;氯Cl。 大量元素:占干重千分之几以上 C、H、O、N、P、K 微量元素:万分之几以下 Fe、B、Mn、Cu、Zn、Mo、Cl 中量元素:Ca、Mg、S 各元素对植物营养和生理功能都是同等重要的,不可相互代替。 3、肥料三要素 在植物必需营养元素中,植物对氮、磷、钾三种元素的需要量多,而土壤中一般含量都很低,常通过施肥补充才能满足植物营养的需要,故称为肥料三要素。 二、植物矿质营养的吸收 1、植物吸收养分的形态: 离子态:阳离子、阴离子 分子态:二氧化碳、尿素 2、植物根部营养

植物必须元素及其缺素症状

植物营养元素的生理功能及缺素 一、营养元素种类 植物营养元素可分为必需营养元素和有益营养元素。 (一)、必需营养元素: 1、判定某种元素是不是植物生长所必需的,要看其是否具备以下三个条件: 1、这种元素是完成作物生活周期所不可缺少的; 2、缺少时呈现专一的缺素症,具有不可替代性,惟有补充后才能恢复或预防; 3、在作物营养上具有直接作用的效果,并非由于它改善了作物生活条件所产生的间接效果,也不是依照它在作物体内的含量的多少,而是以它对作物生理过程所起的作用来决定。 2、植物必需营养元素有十六种: 大量营养元素:碳(C)、氢(H)、氧(O)、氮(N)、磷(P)、钾(K); 中量营养元素:钙(Ca)、镁(Mg)、硫(S); 微量营养元素:铁(Fe)、硼(B)、锰(Mn)、铜(Cu)、锌(Zn)、钼(Mo)、氯(Cl)。 此外,有人认为,镍(Ni)元素是植物必需营养元素。 (二)、有益营养元素: 有益营养元素是为某些植物正常生长发育所必需而非所有植物所必需的元素。如硅(Si)、钠(Na)、钴(Co),它们可代替某种营养元素的部分生理功能,或促进某些植物的生长发育。如: 甜菜是喜钠植物,它可在渗透调节等方面代替钾的作用,并促进细胞伸长,

增大叶面积;硅是稻、麦等禾本科植物所必需,可增强植株抗病虫害能力,使茎叶坚韧,又能防止倒伏;钴是豆科植物固氮及根瘤生长所必需。固植物所必需,可增强植株抗病虫害能力,使茎叶坚韧,又能防止倒伏, (三)、稀土元素: 稀土元素是指化学周期表中镧系的15个元素和化学性质相似的钪与钇。镧系:镧La* 铈Ce* 镨Pr 铷Nd * 钷Pm 钐Sm* 铕Eu 钆Gd 铽Tb 镝Dy 钬Ho 铒Er 铥Tm 镱Yb 镥Lu* 和钪Sc 钇Y 。 其中的镧、铈、钕、钐和镥等有放射性,但放射性较弱,造成污染可能性很小。土壤中普遍含有稀有元素,但溶解度很低,有效性低。磷肥及石灰中往往含有较多的稀土元素。稀土元素在植物生理上的作用还不够清楚,现在只知道在某些作物或果树上施用稀土元素后,有增大叶面积、增加干物质重、提高叶绿素含量、提高含糖量、降低含酸量的效果。由于它的生理作用和有效施用条件还不很清楚,所以施用稀土元素不是总是有效的。 二、营养元素的生理功能与缺素症状 (一)、一般不需通过施肥补充的营养元素:碳、氢、氧 1、碳、氢、氧是植物体内各种重要有机化合物的组成元素,如碳水化合物、蛋白质、脂肪和有机酸等; 2、植物光合作用的产物-糖是由碳、氢、氧构成的,而糖是植物呼吸作用和体内一系列代谢作用的基础物质,同时也是代谢作用所需能量的原料; 3、氢和氧在植物体内的生物氧化还原过程中起着很重要的作用。 (二)、需要通过施肥补充的营养元素: 1.氮(N):

第二章植物的大量营养元素与大量元素肥料

第一节 植物的氮素营养与氮肥 地球上的大部分氮素存在于岩石圈和大气圈中,在大气中惰性气体占78%,占地球总氮量的1.96%,地球表面每平方米上空有7550kg的N,但这些氮不能被植物直接利用,许多因素与氮的循环转化有关,其中有生理的、化学的、生物化学的,而且是许多过程伴随进行氮是植物的主要营养元素,是构成蛋白质的主要成分,对作物的产量和品质关系极大,而我国大部分地区缺氮。 1、含量 一般植物含氮量约占植物干重的0.3-5%,而含量的多少与植物种类、器官、发育阶段有关。种类:豆科作物、豆科绿肥>禾本科作物 器官:种子>叶>根>茎秆 品种:高产品种>低产品种 一、作物体内氮的含量和分布 组织:幼嫩组织>成熟组织>衰老组织生长点>非生长点 生长时期:苗期>旺长期>成熟期>衰老期营养生长期>生殖生长期 发育:同一作物的不同生育时期,含氮量也不相同。一般作物吸收高峰在营养生长旺盛期和开花期,以后迅速下降,直到收获,到成熟期作物体内氮从茎叶转向种子或果实。 2. 分布: 营养生长期:大部分在营养器官中 生殖生长期:转移到贮藏器官约占植株体内全氮的70% 二、氮的营养功能 1/蛋白质的重要组分: 蛋白态氮通常可占植株全氮的80-85%。蛋白质中平均含氮16-18%,体内细胞的增长和新细胞的形成都必须有蛋白质,否则受到抑制,生长发育缓慢或停滞。 2/核酸和核蛋白质的成分 核酸是合成蛋白质和决定生物遗传性的物质基础,因此也是植物生长发育和生命活动的基础物质,RNA,DNA,核酸中含氮15-16%,核酸态氮占植株全氮的10%左右。 3/ 叶绿素的组成元素 叶绿素是植物进行光合作用的场所,据测定,叶绿体约占叶片干重的20-30%,而叶绿体中约含蛋白质45-60%。 4/许多酶的组分 酶本身就是蛋白质,是植物体内生化作用和代谢过程中的生物催化剂。 5/氮是多种维生素(B1 B2 B6 PP等)的组分----辅酶的成分 6/氮也是生物碱的组分(如烟碱、茶碱、可可碱、咖啡碱、胆碱--卵磷脂--生物膜)7/多种维生素的组分 8/一些植物激素的成分 9/氮是一些植物激素的成分(如玉米素、GA、CTK)--生理活性物质 10/生物碱的组分 N是一切有机体不可缺少的元素,所以它被称为“生命元素”。 五、氮素不足或过多对作物生长发育与品质的影响 作物缺氮的外部特征 苗期缺氮:幼苗生长缓慢,植株矮小,叶片薄叶小,叶色发淡,甚至发黄、干枯而脱落。因在植物体内移动性较强,缺乏症首先从下部老叶片开始。生长中、后期缺氮:植物早衰、早

初中生物植物生长所必需的营养元素一

初中生物植物生长所必需的营养元素(一) 初中生物植物生长所必需的营养元素(一) 在植物整个生长期内所必需的营养元素是:碳()、氢(H)、氧()、氮(N)、磷(P)、钾()、钙(a)、镁(g)、硫(S)、铁(Fe)、锰(n)、锌(Zn)、铜(u)、钼()、硼(B)、氯(L)十六种。 这十六种必须的营养元素又可分为大量营养元素、中量营养元素、微量营养元素。 大量营养元素,它们在植物体内含量为植物干重的千分之几到百分之几。有碳()、氢(H)、氧()、氮(N)、磷(P)、钾()。 中量营养元素有钙(a)、镁(g)、硫(S)。 微量营养元素,它们在植物体内含量很少,一般只有只占干重的十万分之几到千分之几。有铁(Fe)、锰(n)、锌(Zn)、铜(u)、钼()、硼(B)、氯(L)。氮(N)对作物的生理作用氮不仅是植物体内蛋白质、核酸以及叶绿素的重要组成部分,而且也是植物体内多种酶的组成部分。同时,植物体内的一些维生素和生物碱中都含有氮。在蛋白质中,氮的平均含量是16-18%,而蛋白质是构成原生质的基本物质。一切有生命的有机体都是处于蛋白质的不断合成与分解之中,如果没有氮素,就不会有蛋白质,也就没有生命。氮也是植物体内叶绿素的组成部分,氮素的丰缺与叶片中叶绿素的含量有着密切的关系,如果绿色植物缺少氮素,会影响叶绿素的形成,光合作用就不能顺利进行。氮素供应充足,植物可以合成较多的叶绿素。一般作物缺乏氮

时的症状是:从下部叶开始黄化,并逐渐向上部扩展,作物的根. 系比正常生长的根系色白而细长,但根量减少。磷(P)对作物的生理作用磷是植物体内许多重要有机化合物的成分(如核酸、磷脂、腺三磷等),并以多种方式参与植物体内的生理、生化过程,对植物 的生长发育和新陈代谢都有重要作用。核酸和蛋白质是原生质、细胞核和染色体的重要成分,在植物的生命活动和遗传变异中起重要作用。细胞分裂和新器官的形成都少不了他们。供给正常的磷营养,能加速细胞分裂和增殖,促进生长发育,并有利于保持优良品种的遗传特性。特别是作物的生育早期,充足的磷营养对促进作物的生长发育和早熟、优质高产有重要作用,否则,生长受到抑制,根系发育不良,而且这种影响即使以后大量补给也难于完全弥补。 在氮素代谢中,磷也是重要的,如果磷不足,就会影响蛋白质的合成,严重时蛋白质还会分解,从而影响氮素的正常代谢。所以在缺磷时单施氮肥效果不好,所以我们提倡氮磷肥配合使用。 如果供磷不足,能使细胞分裂受阻,生长停滞;根系发育不良, 叶片狭窄,叶色暗绿,严重时变为紫红色。大量事实表明,充足的 磷营养能提高植物的抗旱、抗寒、抗病、抗倒伏和耐酸碱的能力,能促进植物的生长发育,促进花芽分化和缩短花芽分化的时间,因而能促使作物提早开花、成熟。钾()对作物的生理作用钾对植物的生长发育也有着重要的作用,但它不象氮、磷一样直接参与构成生物大分子。它的主要作用是,在适量的钾存在时,植物的酶才能充分发挥它的作用。

第二章 植物施肥的基本理论

第二章植物施肥的基本理论 ●植物必需营养元素与肥料三要素 1939年阿隆(Arnon)和斯托德(Stuot)提出了确定必需营养元素的3个标准: (1)这种化学元素对所有高等植物的生长发育是不可缺少的。缺少这种植物就不能完成其生命周期。对高等植物来说,即由种子萌发到再结出种子的过程。 (2)缺乏这种元素后,植物就会表现出特有的症状,而且其他任何一种化学元素均不能代替其作用,只有补充这种元素后症状才能减轻或消失。 (3)这种元素必须是直接参与植物的新陈代谢,对植物起直接的营养作用,而不是环境改变的间接作用。 符合这些标准的化学元素才能称为植物必须营养元素,其他的则是非必需营养元素。 到目前为止,国内外公认的高等植物必需的营养元素有16种。它们是碳(C)、氢(H)、氧(O)、氮(N)、磷(P)、钾(K)、钙(Ca)、镁(Mg)、硫(S)、铁(Fe)、硼(B)、锰(Mn)、铜(Cu)、锌(Zn)、钼(Mo)和氯(Cl)。 氮、磷、钾是农业生产中最常见的肥料,是植物生长发育所必需的营养元素,又称“肥料三要素”。 ●植物吸收营养的器官及影响吸收的因素 根部是植物吸收养分和水分的主要器官,也是养分和水分在植物体内运输的重要部位,他在土壤中能固定植物,保证正常受光和生长,并能作为养分的储藏库。植物除可以从根部吸收养分外,还能通过叶片(或茎)吸收养分,这种营养方式称为植物的跟外营养。 矿质营养元素首先经根质外体到达根细胞原生质膜吸收部位,然后通过主动吸收或被动吸收跨膜进入细胞质,再经胞间连丝进行共质体运输,或通过质外体运输到达内皮层凯氏带处,再跨膜转运到细胞质中进行共质体运输。 一、植物根系对养分的吸收 植物主要通过根系从土壤中吸收矿质养分。因此,除了植物本身的遗传特性外,土壤和其他环境因子对养分的吸收以及向地上部分的运移都有显著的影响。影响养分吸收的因素主要包括介质中的养分浓度、温度、光照强度、土壤水分、通气状况、土壤pH值、养分离子的理化性质、根的代谢活性、苗龄和生育时期植物体内养分状况等。 1、介质中养分的浓度 (1)中断养分供应的影响 如过中断某一养分的供应,往往会促进植物对这一养分的吸收,因为植物对养分中断具有反馈能力。在植物体内,由于磷能迅速转移到地上部分,根中磷的浓度不会很快提高,使得控制吸磷的反馈调节能力可持续数月。因此,在缺磷一段时期后再供应磷会导致地上部含磷量大大增加,甚至还可能引起磷中毒。虽然在土培中供磷状况未必会发生如此快速的变化,但在营养液培养试验中,尤其在更换溶液后,是很可能会发生的。 (2)长期供应的影响 当养分供应以后,养分吸收速率会非常高,甚至在高浓度范围内吸收速率仍继续增高。这种现象至少持续几个小时或几天,当体内在养分浓度上升后,吸收速率就减慢了。 (3)植物根系对养分的吸收不仅受植物预处理方式的影响,更主要的是受植物对养分需求量的主动控制。这种反馈调控机理可使植物体内某一离子的含量较高时,降低其吸收速率;反之,养分缺乏或养分含量较低时,能明显提高吸收速率。 (4)细胞质和液泡中养分的分配 植物细胞的细胞质是进行各种生化反应的主要场所。由于养分在各种生化反应中的重要作用在于保证细胞质组成和状态的稳定以及植物旺盛的代谢作用,因此,一般认为,当养分供应不足时,可通过调节跨原生质膜的吸收速率或对储存在液泡中的养分再分配调节。

第二章植物矿质营养作业及答案

一、名词解释 . 矿质营养: 是指植物对矿质元素地吸收、运输与同化地过程. .灰分元素:亦称矿质元素,将干燥植物材料燃烧后,剩余一些不能挥发地物质称为灰分元素. .大量元素:在植物体内含量较多,占植物体干重达万分之一以上地元素.包括钙、镁、硫、氮、磷、钾、碳、氢、氧等种元素. 个人收集整理勿做商业用途 .微量元素:植物体内含量甚微,稍多即会发生毒害地元素包括:铁、锰、硼、锌、铜、钼和氯等种元素. . 单盐毒害和离子拮抗:单盐毒害是指溶液中因只有一种金属离子而对植物之毒害作用地现象;在发生单盐毒害地溶液中加入少量其他金属离子,即能减弱或消除这种单盐毒害,离子间地这种作用称为离子拮抗. 个人收集整理勿做商业用途 . 平衡溶液:在含有适当比例地多种盐溶液中,各种离子地毒害作用被消除,植物可以正常生长发育,这种溶液称为平衡溶液. 个人收集整理勿做商业用途 . 胞饮作用:物质吸附在质膜上,然后通过膜地内折而转移到细胞内地攫取物质及液体地过程. . 诱导酶:又称适应酶,指植物体内本来不含有,但在特定外来物质地诱导下可以生成地酶.如硝酸还原酶可为所诱导. 个人收集整理勿做商业用途 . 生物固氮:某些微生物把空气中游离氮固定转化为含氮化合物地过程. 二、填空题 .植物生长发育所必需地元素共有种,其中大量元素有种,微量元素有种.、、.植物必需元素地确定是通过法才得以解决地. 水培 .解释离子主动吸收地有关机理地假说有和. 载体学说质子泵学说个人收集整理勿做商业用途 .果树地“小叶病”往往是因为缺元素地缘故. . 缺氮地生理病症首先表现在叶上,缺钙地生理病症首先表现在叶上.老、嫩 .根系从土壤吸收矿质元素地方式有两种:和. 通过土壤溶液得到、直接交换得到个人收集整理勿做商业用途 .()属于生理性盐,属于生理性盐、属于生理性盐.酸、碱、中个人收集整理勿做商业用途 .硝酸盐还原成亚硝酸盐地过程由酶催化,亚硝酸盐还原成氨过程是叶绿体中地酶催化地.硝酸还原酶、亚硝酸还原酶个人收集整理勿做商业用途 .影响根部吸收矿物质地条件有、、和.温度、通气状况、溶液浓度、氢离子浓度、离子间地相互作用个人收集整理勿做商业用途 .植物地上部分对矿质元素吸收地主要器官是,营养物质可从运入叶内.叶片、角质层个人收集整理勿做商业用途 .植物体内可再利用元素中以和最典型.磷、氮 .栽种以果实籽粒为主要收获对象地禾谷类作物可多施些肥,以利于籽粒饱满;栽培根茎类作物则可多施些肥,促使地下部分累积碳水化合物;栽培叶菜类作物可多施些肥,使叶片肥大.磷、钾、氮个人收集整理勿做商业用途 . 矿质元素主动吸收过程中有载体参加,可从下列两方面得到证实:饱和效应、离子竞争. 硝酸盐还原速度白天比夜间快,这是因为叶片在光下形成地还原力和磷酸丙糖能促进硝酸盐地还原.个人收集整理勿做商业用途 根部吸收地无机离子是通过木质部向上运输地,但也能横向运输到韧皮部.喷在叶面地有机与无机物质是通过韧皮部运到植株各部分地.衰老器官解体地原生质与

植物营养九问植物必需的营养元素有哪些

植物营养九问植物必需的营养元素有哪些 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

植物营养九问植物必需的营养元素有哪些 1、植物必需的营养元素有哪些 植物生长发育所必需的营养元素有: 碳(C)、氢(H)、氧(O)、氮(N)、磷(P)、钾(K)、钙(Ca)、镁(Mg)、硫(S)、铁(Fe)、锰(Mn)、硼(B)、锌(Zn)、铜(Cu)、钼(Mo)、氯(Cl)16种,其中碳、氢、氧主要通过土 壤、农家肥获得,尤其是有机碳素,现在越来越需要了,可用嘉美红利进行补充。矿质营养学说理论中,氮、磷、钾需求量最大,称为大量元素;钙、镁、硫需求量适中,称为中量元素;铁、锰、硼、锌、铜、钼、氯等元素需要量少,称为微量元素。 2、植物对养分的吸收特性 ①最小养分律。德国化学家、现代农业化学的倡导者李比希提出最小养分律——木桶效 应,最小养分是随时间、地点和作物生长期而变化的最小养分律对科学合理施肥的指导意义:作物对养分的需求不是平均的,不是含量最高的养分影响产量,而是含量相对最小的养分制约着作物的产量。 ②报酬递减律。从一定土地上所得到的报酬随着向该土地投入的劳动和资本量的增大而有 所增加,但随着投入的增加,单位劳动和资本所获取的报酬却在减少。 报酬递减律对科学合理施肥的指导意义:肥料不是施越多越好,肥料施多了不仅成本高,还可能产生肥害,影响产量或绝收。 ③养分归还学说。由于人们在土地上种植作物并把这些产物连续不断地拿走,这就必然会 使土壤肥力逐渐下降,从而土壤所含的养分将会越来越少。 养分归还学说对科学合理施肥的指导意义:为了获得连续的丰产稳产,必需及时补充作物生长发育所需的各种养分。 ④同等重要定律。对农作物来讲,不论大量元素或微量元素,都是同样重要缺一不可的, 即使缺少某一种微量元素,尽管它的需要量很少,仍会影响某种生理功能而导致减产。同等重要律对科学合理施肥的指导意义:各种养分对作物都是同等重要的,微量元素、稀有元素和大量元素是同等重要的。 ⑤植物有机营养理论。矿物营养理论,植物为完成生命过程和繁衍后代合成多种有机物,形成组织构成物(纤维素、半纤维素、木质素);储藏物(淀粉、蛋白质、脂肪);生命活动能源(葡萄糖、磷脂、激素、维生素);抵御环境胁迫(生物碱、黄酮)。植物因为需

植物生长需要的16种元素

氮(N)对作物的生理作用 氮不仅是植物体内蛋白质、核酸以及叶绿素的重要组成部分,而且也是植物体内多种酶的组成部分。同时,植物体内的一些维生素和生物碱中都含有氮。在蛋白质中,氮的平均含量是16-18%,而蛋白质是构成原生质的基本物质。一切有生命的有机体都是处于蛋白质的不断合成与分解之中,如果没有氮素,就不会有蛋白质,也就没有生命。氮也是植物体内叶绿素的组成部分,氮素的丰缺与叶片中叶绿素的含量有着密切的关系,如果绿色植物缺少氮素,会影响叶绿素的形成,光合作用就不能顺利进行。氮素供应充足,植物可以合成较多的叶绿素。一般作物缺乏氮时的症状是:从下部叶开始黄化,并逐渐向上部扩展,作物的根系比正常生长的根系色白而细长,但根量减少。 磷(P)对作物的生理作用 磷是植物体内许多重要有机化合物的成分(如核酸、磷脂、腺三磷等),并以多种方式参与植物体内的生理、生化过程,对植物的生长发育和新陈代谢都有重要作用。核酸和蛋白质是原生质、细胞核和染色体的重要成分,在植物的生命活动和遗传变异中起重要作用。细胞分裂和新器官的形成都少不了他们。供给正常的磷营养,能加速细胞分裂和增殖,促进生长发育,并有利于保持优良品种的遗传特性。特别是作物的生育早期,充足的磷营养对促进作物的生长发育和早熟、优质高产有重要作用,否则,生长受到抑制,根系发育不良,而且这种影响即使以后大量补给也难于完全弥补。 在氮素代谢中,磷也是重要的,如果磷不足,就会影响蛋白质的合成,严重时蛋白质还会分解,从而影响氮素的正常代谢。所以在缺磷时单施氮肥效果不好,所以我们提倡氮磷肥配合使用。 如果供磷不足,能使细胞分裂受阻,生长停滞;根系发育不良,叶片狭窄,叶色暗绿,严重时变为紫红色。大量事实表明,充足的磷营养能提高植物的抗旱、抗寒、抗病、抗倒伏和耐酸碱的能力,能促进植物的生长发育,促进花芽分化和缩短花芽分化的时间,因而能促使作物提早开花、成熟。 钾(K)对作物的生理作用 钾对植物的生长发育也有着重要的作用,但它不象氮、磷一样直接参与构成生物大分子。它的主要作用是,在适量的钾存在时,植物的酶才能充分发挥它的作用。 钾能够促进光合作用。有资料表明含钾高的叶片比含钾低的叶片多转化光能50%-70%。因而在光照不好的条件下,钾肥的效果就更显著。 此外钾还能够促进碳水化合物的代谢、促进氮素的代谢、使植物经济有效地利用水分和提高植物的抗性。 由于钾能够促进纤维素和木质素的合成,因而使植物茎杆粗壮,抗倒伏能力加强。此外,由于合成过程加强,使淀粉、蛋白质含量增加,而降低单糖,游离氨基酸等的含量,减少了病原生物的养分。因此,钾充足时,植物的抗病能力大为增强。例如,钾充足时,能减轻水稻纹枯病、白叶枯病、稻瘟病、赤枯病及玉米茎腐病,大小斑病的危害。 钾能提高植物对干旱、低温、盐害等不良环境的忍受能力和对病虫、倒伏的抵抗能力。 土壤缺乏钾的症状是:首先从老叶的尖端和边缘开始发黄,并渐次枯萎,叶面出现小斑点,进而干枯或呈焦枯焦状,最后叶脉之间的叶肉也干枯,并在叶面出现褐色斑点和斑块。 钙(Ga)对作物的生理作用

植物营养

名词解释: 1.植物营养:植物体从外界环境中吸收其生长发育所需要的养分,用以维持其 生命活动的过程。 2.营养元素:植物体用于维持正常新陈代谢完成生命周期所需的化学元素。 3.植物营养学:是研究植物对营养物质吸收、运输、转化和利用的规律及植物 与外界环境之间营养物质和能量交换的科学。 4.肥料:直接或间接供给植物所需养分,改善土壤性状,以提高作物产量和改 善产品品质的物质 5.大量元素:碳、氢、氧、氮、磷、钾 6.中量元素:钙、镁、硫 7.微量元素:铁、锰、铜、锌、硼、钼、氯 8.养分归还学说:植物从土壤中吸收养分,每次收获必从土壤中带走某些养分, 使土壤中养分减少,土壤贫化。要维持地力和作物产量,就要归还植物带走的养分 9.最小养分律:指植物的产量由含量最少的养分所支配的定律。 10.矿质营养学说:植物生长发育所需要的原始养分是矿物质(无机物)而不是 腐殖质(有机质),因为腐殖质是在地球上有了植物后才出现的。 11.腐殖质营养学说:土壤肥力取决于土壤腐殖质的含量,腐殖质是土壤中唯一 的植物营养物质,而矿物质只是起间接作用,即它是加速腐殖质的转化和溶解,使其变成易被植物吸收的物质。 12.必须营养元素:是指所有植物正常生长发育所必须的,缺乏它植物就不能完 成其生命史。 13.有益元素:对某些植物的生长发育具有良好的刺激作用,是某种植物种类, 在某些特定条件下所必需但不是所有植物所必需。 14.有害元素:这些元素进入植物体内,不仅会对植物产生毒害作用,影响植物 的生长发育,造成减产,同时由于其在植物体内的残留,通过食物链进入动物或人体内,危害他们的健康。 15.环境五毒:即五种有害元素汞(Hg) 镉(Cd) 铅(Pb) 铬(Cr) 砷(As) 16.重金属:一般泛指能够引起环境污染的金属元素 17.根际:由于植物根系的影响而使其理化及生物性质与原土体有显著不同的那 部分根区土壤。 18.根际效应:在根际中,植物根系不仅影响介质土壤中的无机养分的溶解度, 也影响土壤生物的活性,从而构成“根际效应”。 19.根分泌物:是指植物生长过程中向生长基质中释放的有机质的总称。 20.菌根:是高等植物根系与真菌形成的共生体,分布很广,分外生菌根,内生 菌根。 21.截获:是指植物根系在生长过程中直接接触养分而使养分转移至根表的过程 22.质流:是指由于水分吸收形成的水流而引起养分离子向根表迁移影响因素 23.扩散:是指由于植物根系对养分的吸收,导致根表离子浓度下降从而形成土 体——根表之间的浓度梯度,使养分离子从浓度高的土体向浓度低的根表迁移的过程。 24.拮抗作用:指在溶液中某一离子存在能抑制另一离子吸收的现象 25.协助作用:指在溶液中某一离子的存在有利于根系对另一些离子的吸收。

第二章 植物矿质营养作业及答案

第二章植物矿质营养 一、名词解释 1. 矿质营养: 是指植物对矿质元素的吸收、运输与同化的过程。 2.灰分元素:亦称矿质元素,将干燥植物材料燃烧后,剩余一些不能挥发的物质称为灰分元素。 3.大量元素:在植物体内含量较多,占植物体干重达万分之一以上的元素。包括钙、镁、硫、氮、磷、钾、碳、氢、氧等9种元素。 4.微量元素:植物体内含量甚微,稍多即会发生毒害的元素包括:铁、锰、硼、锌、铜、钼和氯等7种元素。 5. 单盐毒害和离子拮抗:单盐毒害是指溶液中因只有一种金属离子而对植物之毒害作用的现象; 在发生单盐毒害的溶液中加入少量其他金属离子,即能减弱或消除这种单盐毒害,离子间的这种作用称为离子拮抗。 6. 平衡溶液:在含有适当比例的多种盐溶液中,各种离子的毒害作用被消除,植物可以正常生 长发育,这种溶液称为平衡溶液。 7. 胞饮作用:物质吸附在质膜上,然后通过膜的内折而转移到细胞内的攫取物质及液体的过程。 8. 诱导酶:又称适应酶,指植物体内本来不含有,但在特定外来物质的诱导下可以生成的酶。 如硝酸还原酶可为NO3-所诱导。 9. 生物固氮:某些微生物把空气中游离氮固定转化为含氮化合物的过程。 二、填空题 1.植物生长发育所必需的元素共有种,其中大量元素有种,微量元素有种。16、9、7 2.植物必需元素的确定是通过法才得以解决的。水培 3.解释离子主动吸收的有关机理的假说有和。载体学说质子泵学说4.果树的“小叶病”往往是因为缺元素的缘故。 Zn 5. 缺氮的生理病症首先表现在叶上,缺钙的生理病症首先表现在叶上。老、嫩 6.根系从土壤吸收矿质元素的方式有两种:和。通过土壤溶液得到、直接交换得到 7.(NH4)2S04属于生理性盐,KN03属于生理性盐、NH4NO3属于生理性盐。酸、碱、中 8.硝酸盐还原成亚硝酸盐的过程由酶催化,亚硝酸盐还原成氨过程是叶绿体中的酶催化的。硝酸还原酶、亚硝酸还原酶 9.影响根部吸收矿物质的条件有、、和。温度、通气状况、溶液浓度、氢离子浓度、离子间的相互作用 10.植物地上部分对矿质元素吸收的主要器官是,营养物质可从运入叶内。叶片、角质层 11.植物体内可再利用元素中以和最典型。磷、氮 13.栽种以果实籽粒为主要收获对象的禾谷类作物可多施些肥,以利于籽粒饱满;栽培根茎类作物则可多施些肥,促使地下部分累积碳水化合物;栽培叶菜类作物可多施些肥,使叶片肥大。磷、钾、氮 14. 矿质元素主动吸收过程中有载体参加,可从下列两方面得到证实:饱和效应、离子竞 争。 15.硝酸盐还原速度白天比夜间快,这是因为叶片在光下形成的还原力和磷酸丙糖 能促进硝酸盐的还原。 16.根部吸收的无机离子是通过木质部向上运输的,但也能横向运输到韧皮部。喷在叶 面的有机与无机物质是通过韧皮部运到植株各部分的。衰老器官解体的原生质与高分子颗粒还可通过胞间连丝向新生器官转移。

植物营养九问植物必需的营养元素有哪些

植物营养九问植物必需的营养元素有哪些 1、植物必需的营养元素有哪些? 植物生长发育所必需的营养元素有: 碳(C)、氢(H)、氧(O)、氮(N)、磷(P)、钾(K)、钙(Ca)、镁(Mg)、硫(S)、铁(Fe)、锰(Mn)、硼(B)、锌(Zn)、铜(Cu)、钼(Mo)、氯(Cl)16种,其中碳、氢、氧主要通过土壤、农家肥 获得,尤其是有机碳素,现在越来越需要了,可用嘉美红利进行补充。矿质营养学说理论中,氮、磷、钾需求量最大,称为大量元素;钙、镁、硫需求量适中,称为中量元素;铁、锰、硼、锌、铜、钼、氯等元素需要量少,称为微量元素。 2、植物对养分的吸收特性? ①最小养分律。德国化学家、现代农业化学的倡导者李比希提出最小养分律——木桶效应, 最小养分是随时间、地点和作物生长期而变化的最小养分律对科学合理施肥的指导意义:作物对养分的需求不是平均的,不是含量最高的养分影响产量,而是含量相对最小的养分制约着作物的产量。 ②报酬递减律。从一定土地上所得到的报酬随着向该土地投入的劳动和资本量的增大而有所 增加,但随着投入的增加,单位劳动和资本所获取的报酬却在减少。 报酬递减律对科学合理施肥的指导意义:肥料不是施越多越好,肥料施多了不仅成本高,还可能产生肥害,影响产量或绝收。 ③养分归还学说。由于人们在土地上种植作物并把这些产物连续不断地拿走,这就必然会使土壤肥力逐渐下降,从而土壤所含的养分将会越来越少。 养分归还学说对科学合理施肥的指导意义:为了获得连续的丰产稳产,必需及时补充作物生长发育所需的各种养分。 ④同等重要定律。对农作物来讲,不论大量元素或微量元素,都是同样重要缺一不可的,即 使缺少某一种微量元素,尽管它的需要量很少,仍会影响某种生理功能而导致减产。同等重要律对科学合理施肥的指导意义:各种养分对作物都是同等重要的,微量元素、稀有元素和大量元素是同等重要的。 ⑤植物有机营养理论。矿物营养理论,植物为完成生命过程和繁衍后代合成多种有机物,形成组织构成物(纤维素、半纤维素、木质素);储藏物(淀粉、蛋白质、脂肪);生命活动能

第二章-植物矿质营养作业及答案复习课程

第二章-植物矿质营养作业及答案

第二章植物矿质营养 一、名词解释 1. 矿质营养: 是指植物对矿质元素的吸收、运输与同化的过程。 2.灰分元素:亦称矿质元素,将干燥植物材料燃烧后,剩余一些不能挥发的物质称为灰分元素。 3.大量元素:在植物体内含量较多,占植物体干重达万分之一以上的元素。包括钙、镁、硫、氮、磷、钾、碳、氢、氧等9种元素。 4.微量元素:植物体内含量甚微,稍多即会发生毒害的元素包括:铁、锰、硼、锌、铜、钼和氯等7种元素。 5. 单盐毒害和离子拮抗:单盐毒害是指溶液中因只有一种金属离子而对植物之毒害作用的现 象;在发生单盐毒害的溶液中加入少量其他金属离子,即能减弱或消除这种单盐毒害,离子间的这种作用称为离子拮抗。 6. 平衡溶液:在含有适当比例的多种盐溶液中,各种离子的毒害作用被消除,植物可以正常生 长发育,这种溶液称为平衡溶液。 7. 胞饮作用:物质吸附在质膜上,然后通过膜的内折而转移到细胞内的攫取物质及液体的过程。 8. 诱导酶:又称适应酶,指植物体内本来不含有,但在特定外来物质的诱导下可以生成的酶。 如硝酸还原酶可为NO3-所诱导。 9. 生物固氮:某些微生物把空气中游离氮固定转化为含氮化合物的过程。 二、填空题 1.植物生长发育所必需的元素共有种,其中大量元素有种,微量元素有种。16、9、7 2.植物必需元素的确定是通过法才得以解决的。水培 3.解释离子主动吸收的有关机理的假说有和。载体学说质子泵学说4.果树的“小叶病”往往是因为缺元素的缘故。 Zn 5. 缺氮的生理病症首先表现在叶上,缺钙的生理病症首先表现在叶上。老、嫩 6.根系从土壤吸收矿质元素的方式有两种:和。通过土壤溶液得到、直接交换得到 7.(NH4)2S04属于生理性盐,KN03属于生理性盐、NH4NO3属于生理性盐。酸、碱、中 8.硝酸盐还原成亚硝酸盐的过程由酶催化,亚硝酸盐还原成氨过程是叶绿体中的酶催化的。硝酸还原酶、亚硝酸还原酶 9.影响根部吸收矿物质的条件有、、和。温度、通气状况、溶液浓度、氢离子浓度、离子间的相互作用 10.植物地上部分对矿质元素吸收的主要器官是,营养物质可从运入叶内。 叶片、角质层 11.植物体内可再利用元素中以和最典型。磷、氮 13.栽种以果实籽粒为主要收获对象的禾谷类作物可多施些肥,以利于籽粒饱满;栽培根茎类作物则可多施些肥,促使地下部分累积碳水化合物;栽培叶菜类作物可多施些肥,使叶片肥大。磷、钾、氮 14. 矿质元素主动吸收过程中有载体参加,可从下列两方面得到证实:饱和效应、离子竞 争。 15.硝酸盐还原速度白天比夜间快,这是因为叶片在光下形成的还原力和磷酸丙糖 能促进硝酸盐的还原。

植物必需的营养元素及其生理作用

植物营养 原文地址:植物营养原文作者:shen.yirshen 第一讲植物必需的营养元素及其生理作用 一、植物必需营养元素的概念、分类及相互关系 (一)概念 根据植物分析,组成植物体的化学元素有70余种。化学元素周期表中,除惰性气体、铀后面元素以外的化学元素,包括贵金属金和银,几乎都能在植物体内找到。其中不少化学元素对植物具有直接或间接的营养作用,但只有那些为作物的正常生命活动所必需,并同时符合下列条件的化学元素,才能称为作物的必需营养元素。 (1)这种化学元素对所有植物的生长发育是不可缺少的。缺少这种元素,植物就不能完成其生命周期,对高等植物来说,即由种子萌发到再结出种子的过程。 (2)缺乏这种元素后,植物会表现出特有的症状,而且其它任何一种化学元素都不能代替其作用,只有补充这种元素后症状才能减轻或消失。 (3)这种元素必须是直接参与植物的新陈代谢,对植物起直接的营养作用,而不是改善环境的间接作用。 凡是同时符合以上三个条件者,均为必需营养元素,反之为非必需营养元素。目前已证明为植物生长所必需的营养元素有C、H、O、N、P、K、Ca、Mg、S、Fe、Mn、B、Zn、Cu、Mo、Cl共16种。在非必需营养元素中有一些元素,对特定植物的生长发育有益,或为某些种类植物所必需,如藜科植物需要钠,豆科植物需要钴,蕨类植物和茶树需要铝,硅藻和水稻都需要硅,紫云英需要硒等。只是限于目前的科学技术水平,尚未证实它们是否为高等植物普遍所必需。所以,称这些元素为有益元素。 (二)分类 植物所必需的营养元素虽然多达16种,但并不是等量的被植物所吸收,因而各种营养元素在植物体内的含量也各有差异。一般可根据植物体内的含量将其划分为三类: (1)大量营养元素

植物必需营养元素的主要生理功能及其缺素症状

植物必需营养元素的主要生理功能及其缺素症状 四川智慧农业产业联盟郑熙晋整理 一、营养元素种类 植物营养元素可分为必需营养元素和有益营养元素。 一)、必需营养元素: 1、判定某种元素是不是植物生长所必需的,要看其是否具备以下三个条件: 1、这种元素是完成作物生活周期所不可缺少的; 2、缺少时呈现专一的缺素症,具有不可替代性,惟有补充后才能恢复或预防; 3、在作物营养上具有直接作用的效果,并非由于它改善了作物生活条件所产生的间接效果,也不是依照它在作物体内的含量的多少,而是以它对作物生理过程所起的作用来决定。 2、植物必需营养元素有十七种: 大量营养元素:碳(C)、氢(H)、氧(O)、氮(N)、磷(P)、钾(K); 中量营养元素:钙(Ca)、硅(Si)、镁(Mg)、硫(S); 微量营养元素:铁(Fe)、硼(B)、锰(Mn)、铜(Cu)、锌(Zn)、钼(Mo)、氯(Cl)。 此外,有人认为,镍(Ni)等十几种有益元素和稀有元素是植物必需营养元素。 二)、有益营养元素: 有益营养元素是为某些植物正常生长发育所必需而非所有植物所必需的元素。如硅(Si)、钠(Na)、钴(Co),它们可代替某种营养元素的部分生理功能,或促进某些植物的生长发育。如:甜菜是喜钠植物,它可在渗透调节等方面代替钾的作用,并促进细胞伸长,增大叶面积;硅是稻、麦等禾本科植物所必需,可增强植株抗病虫害能力,使茎叶坚韧,又能防止倒伏;钴是豆科植物固氮及根瘤生长所必需。固植物所必需,可增强植株抗病虫害能力,使茎叶坚韧,又能防止倒伏,三)、稀土元素: 稀土元素是指化学周期表中镧系的15个元素和化学性质相似的钪与钇。镧系:镧La*铈Ce*镨Pr铷Nd*钷Pm钐Sm*铕Eu钆Gd铽Tb镝Dy钬Ho铒Er铥Tm镱Yb镥Lu*和钪Sc钇Y。 其中的镧、铈、钕、钐和镥等有放射性,但放射性较弱,造成污染可能性很小。土壤中普遍含有稀有元素,但溶解度很低,有效性低。磷肥及石灰中往往含有较多的稀土元素。稀土元素在植物生理上的作用还不够清楚,现在只知道在某些作物或果树上施用稀土元素后,有增大叶面积、增加干物质重、提高叶绿素含量、提高含糖量、降低含酸量的效果。由于它的生理作用和有效施用条件还不很清楚,所以施用稀土元素不是总是有效的。 二、营养元素的生理功能与缺素症状 一)、一般不需通过施肥补充的营养元素:碳、氢、氧 1、碳、氢、氧是植物体内各种重要有机化合物的组成元素,如碳水化合物、蛋白质、脂肪和有机

相关文档
最新文档