钙钛矿量子点研究进展
提高钙钛矿量子点稳定性的研究进展

化工进展CHEMICAL INDUSTRY AND ENGINEERING PROGRESS2021年第40卷第1期提高钙钛矿量子点稳定性的研究进展吕斌1,2,郭旭1,2,高党鸽1,2,马建中1,2,麻冬3(1陕西科技大学轻工科学与工程学院,陕西西安710021;2轻化工程国家级实验教学示范中心,陕西西安710021;3陕西燃气集团富平能源科技有限公司,陕西渭南711700)摘要:钙钛矿量子点具有发光谱带较窄、发光可调、量子效率高等优异的光学性能,在发光二极管、激光发射器等领域广受关注。
但是钙钛矿量子点由于强离子性、高表面能及表面配体易迁移等特性而对环境高度敏感,使其在实际应用中受到限制。
本文简要介绍了钙钛矿量子点结构和不稳定的原因,综述了近年来提高钙钛矿量子点稳定性的主要方法,重点从离子掺杂、表面钝化、表面包覆及多重保护4个方面展开论述。
最后从绿色环保的角度出发,对高稳定生物质基钙钛矿量子点材料的制备进行了展望,提出使用具有特定结构的生物质材料及其衍生材料取代传统石油基试剂作为配体、溶剂或吸附重金属离子的外壳材料,可加速钙钛矿量子点朝着绿色低毒的方向发展。
关键词:钙钛矿;量子点;稳定性;生物质中图分类号:TN304文献标志码:A文章编号:1000-6613(2021)01-0247-12Research progress on the improvement of the stability of perovskitequantum dotsLYU Bin 1,2,GUO Xu 1,2,GAO Dangge 1,2,MA Jianzhong 1,2,MA Dong 3(1College of Bioresources Chemistry and Materials Engineering,Shaanxi University of Science &Technology,Xi ’an 710021,Shaanxi,China;2National Demonstration Center for Experimental Light Chemistry Engineering Education,Shaanxi University of Science &Technology,Xi ’an 710021,Shaanxi,China;3Shaanxi Gas Group Fuping EnergyTechnology Corporation Limited,Weinan 711700,Shaanxi,China)Abstract:Perovskite quantum dots have attracted much attention in light-emitting diodes,laser emitters,and other fields due to their narrow optical emission bands,adjustable light emission,and high quantum yield,etc .However,perovskite quantum dots are highly sensitive to the environment due to their strong ionicity,high surface energy,and easy migration of surface ligands,therefore,they are limited in practical applications.This article introduces the reasons of the structure and instability of perovskite quantum dots and summarizes the main methods to improve the stability of perovskite quantum dots in recent years from four aspects:ion doping,surface passivation,surface coating,and multiple protection.Finally,from the perspective of green environmental protection,the prospect of the preparation of highly stable biomass-based perovskite quantum dots are put forward.It proposed to use biomass materials with specific综述与专论DOI :10.16085/j.issn.1000-6613.2020-0432收稿日期:2020-03-23;修改稿日期:2020-07-25。
钙钛矿量子点研究进展资料

③ 无机钙钛矿是一种具有高产 率、高单分散性、宽发射谱 范围、发射光谱可调、短荧 光寿命、低制备成本等优点 的纳米材料。
在LED、光电探测器、 太阳能电池、量子点 激光器等器件上具有 广阔的应用前景。
合成方法
热注入法
过饱和结晶
2016年南京理工大学曾海波团队发 表在Adv. Funct. Mater. DOI: 10.1002/adfm.201600109
➢ 由于发光特性依赖量子点尺寸, 传统的Ⅱ-Ⅵ族量子点的合成的重 复性并不高,很难获得具有相同 尺寸分布。
➢ 发光位置会随着温度的改变而改 变。
➢ 硒化镉等具有很强刺激性。接触 可引起恶心、头痛和呕吐。
传统量子点
CsPbX3(X=Cl、Br、I)量子点 克服了传统的Ⅱ-Ⅵ族量子点的 上述缺陷。
① CsPbX3量子点的量子限域效 应相对较弱,尺寸的不均一 性和表面陷阱状态不会对其 发光性质有较大的影响,因 此 CsPbX3量子点不需要包壳 便可获得超过 90%的量子产 率。
首次提出利用过饱和结晶的方法 获得了高质量的CsPbX3量子点并研 究了其在WLED上的应用。
微波法
DOI:10.1039/c7cc0486a
离子交换法
Chem. Eur. J. 2018, 24, 1898 –1904
CsPbBr3 + 3I-
= CsPbI3+3Br-
改进(掺杂)
• 实质:通过加入Mn(或其 它稀土金属)源取代CsPbX3 中的一部分Pb,达到调节颜 色的目的。
钙钛矿(CsPbX3)量子点的合成与研究 汇报人:陈小鹏
目录
背景&意义 合成方法 改进方法 难题&应用
全固态钙钛矿量子点及发光母粒

全固态钙钛矿量子点及发光母粒1. 简介全固态钙钛矿量子点是一种新型的半导体材料,具有优异的光电特性和发光性能。
由于其在光电器件、显示器件和生物医学领域的潜在应用,引起了广泛的研究兴趣。
全固态钙钛矿量子点及其发光母粒的研究不仅对于材料科学和光电器件领域具有重要意义,而且对推动新型材料在实际应用中的发展也具有深远的意义。
本文将对全固态钙钛矿量子点及发光母粒的研究现状、性能特点和应用前景进行综述。
2. 全固态钙钛矿量子点的合成方法目前,全固态钙钛矿量子点的合成方法主要包括溶液法、热分解法、离子交换法等。
溶液法是最常用的合成方法,通常通过钙钛矿晶种的溶解再结晶来实现对量子点的合成。
热分解法利用高温热解或溶胶-凝胶法将前驱体转化为全固态钙钛矿量子点。
离子交换法则是利用溶液中存在的钙离子与其他阳离子进行交换,合成全固态钙钛矿量子点。
这些方法各有优缺点,需要根据具体需求选择合适的合成方法。
3. 全固态钙钛矿量子点的性能特点全固态钙钛矿量子点具有优异的光致发光特性和较高的荧光量子产率,其发光波长可通过改变结构和成分调控,具有较宽的调制范围。
全固态钙钛矿量子点还具有窄的发光带宽、长的荧光寿命和优异的光稳定性。
这些性能特点使得全固态钙钛矿量子点在显示器件、白光LED等光电器件中具有巨大的应用潜力。
4. 全固态钙钛矿量子点的应用前景全固态钙钛矿量子点的应用前景非常广阔,主要包括显示器件、照明器件、生物成像和生物标记、传感器等领域。
在显示器件中,全固态钙钛矿量子点可应用于LED、QLED、LCD等各种显示技术中,具有较高的亮度和色彩饱和度。
在照明器件中,全固态钙钛矿量子点可以作为优质的发光材料,应用于室内照明、车灯等领域。
在生物医学领域,全固态钙钛矿量子点可作为生物成像探针,用于细胞成像、肿瘤治疗等领域。
在传感器领域,全固态钙钛矿量子点可以应用于化学传感、生物传感等领域,具有较高的灵敏度和选择性。
5. 结语全固态钙钛矿量子点及发光母粒作为一种新型的半导体材料,具有独特的光电特性和发光性能,引起了广泛的研究兴趣和应用价值。
钙钛矿量子点 诺贝尔奖简介

钙钛矿量子点诺贝尔奖简介全文共四篇示例,供读者参考第一篇示例:钙钛矿量子点(Perovskite Quantum Dots,简称PQDs)是一种新型的半导体纳米材料,由钙钛矿结构的有机无机杂化钙钛矿材料构成。
钙钛矿结构是一种常见的晶体结构,通常由一种阴离子和两种不同的阳离子组成。
直到最近几年,钙钛矿量子点的研究和应用逐渐受到科学界的关注和青睐。
2010年,荷兰研究团队首次报道了钙钛矿量子点的合成和性质研究。
随后,钙钛矿量子点在光电子学、生物医药、光催化等领域展现出了广阔的应用前景。
其在太阳能电池、LED显示器、生物成像、光电传感等领域的应用潜力备受瞩目。
随着研究的不断深入,钙钛矿量子点的性能和研究成果也日益丰富。
特别是在光电子学领域,钙钛矿量子点被认为是下一代光电子材料的重要候选者之一。
其优异的光学性能和电学性能,为其在光电转换器件中的应用提供了广阔的发展空间。
诺贝尔奖是最高的科学奖项之一,每年颁发给对人类社会做出重大贡献的科学家。
近年来,有关钙钛矿量子点的研究在国际上获得了广泛认可,也引起了诺贝尔奖委员会的关注。
钙钛矿量子点因其在半导体光电子学领域的重要性和前景,备受科学界和社会的关注。
目前尚未有关于钙钛矿量子点的诺贝尔奖。
由于钙钛矿量子点的研究仍处于起步阶段,尚未形成完整的研究框架和理论体系。
钙钛矿量子点获得诺贝尔奖的可能性较低。
随着钙钛矿量子点研究的进一步深入和发展,有望在未来的某个时刻获得这一最高科学奖项。
第二篇示例:钙钛矿量子点是一种新型的半导体纳米材料,具有优异的光学性能和电学性能,被誉为未来光电器件的重要材料之一。
近年来,钙钛矿量子点在光电领域取得了重要突破,引起了广泛的关注。
由于其优异的光电性能,钙钛矿量子点已经被应用于LED、太阳能电池、生物成像等领域,展现出巨大的应用潜力。
钙钛矿量子点的研究不仅推动了光电器件的发展,也为科学家们赢得了诺贝尔奖。
近年来,有许多科学家因在钙钛矿量子点研究领域取得的重要成果而获得了诺贝尔奖。
钙钛矿量子点的光吸收系数_和稀土离子_概述说明

钙钛矿量子点的光吸收系数和稀土离子概述说明1. 引言1.1 概述随着纳米科技的不断发展,钙钛矿量子点作为一种新兴的材料在光学应用中引起了广泛关注。
钙钛矿量子点具有优异的光学性质和电子特性,被广泛应用于太阳能电池、发光二极管、激光器等领域。
其独特的量子效应使得它在吸收、发射和转换光能方面具有突出优势。
1.2 文章结构本文将首先介绍钙钛矿量子点的光吸收系数及其相关定义和原理,然后探讨影响钙钛矿量子点光吸收系数的因素,并详细介绍测量方法和技术。
接下来,我们将对稀土离子进行概述,并阐述其在光学中的作用机制。
同时研究了稀土离子与钙钛矿量子点之间的相互作用进展情况。
随后,我们将给出实验结果及讨论,包括对钙钛矿量子点光吸收系数以及稀土离子对其的影响进行详细分析。
最后,我们将总结并展望未来的研究方向和建议。
1.3 目的本文旨在全面了解钙钛矿量子点的光吸收系数及其与稀土离子之间的相互作用。
通过对相关概念、原理、实验结果和讨论的详细阐述,期望能够为进一步研究和应用钙钛矿量子点提供参考和指导。
此外,通过对稀土离子在光学中的作用机制以及其与钙钛矿量子点的相互作用研究进展的深入探讨,可以拓宽我们对这一领域的认识,并为开展更多基于稀土离子-量子点体系的应用研究提供理论依据。
2. 钙钛矿量子点的光吸收系数2.1 定义和原理钙钛矿量子点是一种具有特殊光学性质的纳米材料,其光吸收系数用于描述其对入射光的吸收能力。
光吸收系数可以表示为α,其定义为单位长度内材料吸收的光强占入射光强的比例。
在钙钛矿量子点中,电子在晶格结构中发生转移,并进入导带或价带。
当入射光与量子点相互作用时,电子会从价带跃迁至导带,产生吸收现象。
该过程中电子的能级差被转化为激发态和基态之间的能量差。
2.2 影响因素钙钛矿量子点的光吸收系数受到多个因素的影响。
首先,量子点本身的结构、组分和大小会影响其电子能级结构和波函数重叠程度,从而影响到其光吸收性能。
此外,外界环境条件如温度、压力等也会对光吸收系数产生影响。
钙钛矿量子点研究进展

钙钛矿量子点研究进展钙钛矿量子点是一类具有广泛应用前景的新型纳米材料,其具有优异的光学、电学和磁学性能,因此在光电子器件、光催化、生物成像、光传感等领域具有广泛的应用潜力。
近年来,针对钙钛矿量子点的研究取得了诸多重要进展。
首先,钙钛矿量子点的合成方法得到了显著改进。
传统的合成方法多采用热分解法或溶剂热法,但由于条件较为复杂,产率低且很难控制尺寸和形状。
近年来,研究人员发展了许多新的合成方法,如离子交换法、表面修饰法、离子液体法等。
这些新的合成方法不仅能够合成高质量的钙钛矿量子点,还能够精确调控其尺寸、形状和表面性质,为其在应用中提供了更多的可能性。
其次,钙钛矿量子点在光电子器件领域的应用突破了传统材料的限制。
光电转换器件是钙钛矿量子点最具应用潜力的领域之一、研究人员通过合理选择钙钛矿量子点的成分和调控其尺寸,成功制备出高效率的钙钛矿太阳能电池。
此外,钙钛矿量子点还可以用于制备发光二极管、光电传感器、激光器等光电子器件,提高了这些器件的性能和稳定性。
第三,钙钛矿量子点在生物医学领域的应用也取得了重要进展。
由于其优异的光学性能和生物兼容性,钙钛矿量子点被广泛应用于生物成像和生物标记物等方面。
研究人员通过调控钙钛矿量子点的组分和表面性质,使其能够在生物体内具有较高的稳定性和荧光性能。
这使得钙钛矿量子点成为了高分辨率生物成像和癌症治疗的有力工具。
最后,钙钛矿量子点的表面修饰和功能化也取得了重要进展。
表面修饰和功能化可以提高钙钛矿量子点的光学和电学性能,扩展其应用领域。
研究人员通过改变钙钛矿量子点的表面配体,实现了对其吸收光谱和发射光谱的调控。
此外,还将钙钛矿量子点与其他材料进行修饰,制备出具有特殊功能的杂化材料,如电催化剂、光催化剂等。
综上所述,近年来对钙钛矿量子点的研究取得了诸多重要进展。
随着不断发展的合成方法和功能化技术,钙钛矿量子点在光电子器件、生物医学和其他领域的应用前景将进一步拓宽。
然而,钙钛矿量子点的制备成本和毒性问题仍然存在挑战,需要进一步研究和改进。
钙钛矿和量子点发光nature
钙钛矿和量子点发光是当前研究领域中备受关注的两大技术,它们在光电子学、生物医学等领域具有广泛的应用前景。
本文将分别对钙钛矿和量子点发光进行介绍,并比较它们在发光性能、制备工艺、应用领域等方面的差异,旨在全面展现这两种发光材料的特点和优势。
1. 钙钛矿发光技术钙钛矿是一种具有优异光电性能的发光材料,其光电子学性能优异,被广泛应用在LED器件、光伏电池、光传感器等领域。
钙钛矿发光具有以下特点:(1)发光效率高:钙钛矿发光材料具有较高的发光效率,能够将输入的能量转化为可见光,使得光源亮度较高,色彩更加鲜艳。
(2)发光波长可调:钙钛矿发光波长范围较宽,可以通过调控材料的成分和结构来实现发光波长的调节,满足不同领域的应用需求。
(3)制备工艺成熟:目前钙钛矿的制备工艺已经相当成熟,可以通过溶液法、气相沉积等多种方法进行大规模制备,降低了制备成本,提高了材料的商业化应用价值。
2. 量子点发光技术量子点是一种具有特殊结构和发光特性的半导体纳米材料,其发光性能优异,被广泛应用在显示器件、生物成像、光催化等领域。
量子点发光具有以下特点:(1)发光色彩纯净:量子点发光具有色彩纯净、饱和度高的特点,能够实现更加真实、细腻的显示效果,广泛应用于LED显示屏、电视机等领域。
(2)宽发光谱范围:量子点发光谱范围较宽,可以通过调控量子点的尺寸和成分来实现发光波长的调节,满足不同领域的应用需求。
(3)生物兼容性强:量子点具有良好的生物兼容性,被广泛应用于生物成像、药物递送等领域,在医学和生物医学领域具有广阔的应用前景。
3. 钙钛矿和量子点发光的比较(1)发光性能比较:钙钛矿发光效率较高,而量子点发光色彩纯净度更高,两者在发光性能上各有优势。
(2)制备工艺比较:钙钛矿发光材料的制备工艺较为成熟,而量子点需要精密的合成工艺,制备工艺相对较为复杂。
(3)应用领域比较:钙钛矿在LED光源、光伏电池等领域具有较为广泛的应用前景,而量子点在显示器件、生物成像等领域具有独特优势。
钙钛矿量子点的 组 国内外
钙钛矿量子点的组国内外【摘要】钙钛矿量子点是一种具有独特结构特点的纳米材料,正在国内外得到广泛研究。
国内钙钛矿量子点的制备方法多样化,国外应用领域包括生物医药、光电子器件等。
未来,国外钙钛矿量子点有望在太阳能电池、LED灯等领域取得重大进展。
国内外的比较研究也显示了各自的优势和发展方向。
不论是国内还是国外,对钙钛矿量子点的研究都具有重要意义,其应用前景广阔。
钙钛矿量子点的发展前景十分可观,国内外都对其研究予以重视。
钙钛矿量子点有望在未来的光电子领域发挥重要作用。
【关键词】钙钛矿量子点, 组成, 研究现状, 独特结构特点, 制备方法, 应用领域, 发展趋势, 比较研究, 发展前景, 研究重视, 应用前景.1. 引言1.1 钙钛矿量子点的组成钙钛矿量子点是一种具有非常特殊结构的纳米材料,其主要由钙钛矿晶体构成。
钙钛矿晶体的一般化学式为ABX3,其中A和B是两种金属离子,X是一种阴离子。
钙钛矿晶体具有一种立方结构,其中正方体的各个角上分别占有阴离子X、金属离子A和金属离子B。
这种结构使得钙钛矿晶体具有很强的光电性能,特别是光吸收和发射方面。
钙钛矿量子点可以看做是钙钛矿纳米颗粒的一种特殊形式,其直径通常在1到10纳米之间。
由于其纳米尺度的特殊性质,钙钛矿量子点在光学、电子、催化等领域具有很大的应用潜力。
由于其结构的特殊性质和尺寸效应,钙钛矿量子点在国际上被广泛研究,并被认为是一种具有重要应用前景的新型功能材料。
1.2 钙钛矿量子点在国内外的研究现状而在国外,由于对新材料的研究更加深入和成熟,钙钛矿量子点的研究更为广泛和深入。
在国外,钙钛矿量子点已经被应用在光伏材料、LED显示屏、生物标记等领域,并取得了一些重要的应用成果。
国外学者也在不断探索钙钛矿量子点的未来发展趋势,尝试将其应用于更多领域,为科学研究和技术创新提供新的可能性。
钙钛矿量子点在国内外的研究现状呈现出国内研究重在基础探索和应用实践,而国外研究则更为前沿和深入。
钙钛矿量子点的光致发光与非线性光学特性研究
钙钛矿量子点的光致发光与非线性光学特性研究钙钛矿量子点(PeroVSkitequantumdots,PQDS)是一种新型半导体纳米材料,具有高荧光量子产率、宽发光光谱范围、可调控发光颜色等特点,是下一代发光材料的重要研究方向之-O本文针对钙钛矿量子点的光致发光与非线性光学特性展开研究,通过相关实验验证其在红外光谱区间内的非线性光学行为。
首先,通过荧光光谱探测钙钛矿量子点的荧光发射特性,发现它们具有高荧光量子产率和窄的发射带宽,适合作为发光材料的应用。
其次,利用激光拉曼光谱技术对钙钛矿量子点的表面结构进行了表征,发现钙钛矿量子点的表面结构在热稳定性、阳离子扰动等方面的表现良好,能够在实际应用中保持良好的稳定性和效率。
接着,本文对钙钛矿量子点在光致发光方面进行了实验研究。
实验表明,钙钛矿量子点的荧光发射处于可见光区间,荧光发射峰在多种激发波长下均有显著强度。
同时,荧光寿命随着激发波长的改变而变化,这为理解的量子点级别的能量跃迁提供了直接的证据,并且表明这些量子点中的电子和空穴寿命和分辨率都很高。
在此基础上,本文还对钙钛矿量子点的非线性响应进行了研究。
发现,随着激发光强度的增加,钙钛矿量子点荧光发射强度也同步增加,且增长趋势随着激发波长的不同而不同,这表明了钙钛矿量子点具有良好的非线性光学行为。
关键词:钙钛矿量子点,光致发光,非线性光学总之,本文成功地探究了钙钛矿量子点的光致发光与非线性光学特性,为该材料的应用提供了实验依据。
最后指出,钙钛矿量子点的光学性质和非线性响应仍有许多值得探究的地方,还需在结构设计、组装和制备等领域展开更广泛的研究钙钛矿量子点因其独特的光学性质和稳定性,近年来引起了广泛的关注和研究。
除了在发光材料方面应用外,钙钛矿量子点还可应用于太阳能电池、生物探针、传感器等领域。
钙钛矿量子点在太阳能电池中的应用研究表明,该材料对可见光的吸收强度较高,同时具有高荧光量子产率,可以用于增强太阳能电池的吸收效率。
高稳定性卤化物钙钛矿的制备研究进展
68
热注入法合成立方相的铯铅溴化物( CsPbBr 3 ) 钙
更好地控制钙钛矿的结晶过程,形成尺寸在 2 ~ 8
和油酸油胺的混合物溶液中,120 ℃ 条件下保持
溴化铵( MABr) 、溴化铅溶解在 DMF 中,然后将其
钛矿量子点,具体方法是:将溴化铅加入到十八烯
1 h;将碳酸铯加入到十八稀和油酸的混合溶液
当卤化物钙钛矿经历热、光、氧气和极性溶剂等条
合成的钙钛矿的形貌和尺寸难以控制
[9]
。 配体
辅助沉淀法在空气中合成,可以大批量规模化合
成钙钛矿纳米晶
[10]
。 LI X M 等
[11]
率先提出室温
析晶法制备卤化物钙钛矿,将卤化铯( CsX) 和卤
化铅( PbX 2 ) 溶解在二甲基亚砜( DMSO) 或 DMF
等极性溶剂中,加入适量的有机配体油酸或者油
件时, 将面临如下问题:(1)300 ℃ 以下的温度就
会造成有机无机杂化钙钛矿发生分解并产生有机
胺气体,更高的温度(400 ~ 500 ℃ ) 会促使全无机
钙钛矿发生八面体塌缩,这些结构的破坏将导致
其发光强度的降低;( 2) 钙钛矿的光稳定性比较
差,随着光辐照时间的增加会发生明显的团聚,最
为高分 子 材 料 的 制 备 及 性 能。 E-mail: 495111858 @ qq.
com。
基金项目:陕西省教育厅 2020 年度重点科学研究计划项目
(20JS049) 。
Copyright©博看网. All Rights Reserved.
合 成 纤 维 工 业 2023 年第 46 卷
了 CsPbCl 3 纳米晶的稳定性,即使纳米晶在水中
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
难题&应用
存在的问题
CsPbX3稳定性非常差,暴露在空气中很容易被氧化。 CsPbX3非常怕水,暴露在含水的氛围中会失去活性。 文献表明,当把CsPbX3体积做大(例如薄膜)时,其量子产 率 会从90%降至20%,这也限制了CsPbX3在实际生产中的应 用。
应用
钙钛矿量子点在包括LED、光电探测器、量子 点激光器、太阳能电池等功能器件上具有极高 的应用价值。
钙钛矿(CsPbX3)量子点的合成与研究 汇报人:陈小鹏
目录
背景&意义 合成方法 改进方法
Hale Waihona Puke 难题&应用背景&意义
传统的Ⅱ-Ⅵ族量子点(CdSe、 InP、InAs等)的发光强烈地依赖 于其量子限域效应,发光位置会 随着量子点尺寸的改变而改变, 这通常导致发射谱宽化。 极大的比表面积使表面陷阱状态 密度很高,为提高其量子产率, 通常需要对其进行包壳处理。 由于发光特性依赖量子点尺寸, 传统的Ⅱ-Ⅵ族量子点的合成的重 复性并不高,很难获得具有相同 尺寸分布。 发光位置会随着温度的改变而改 变。 硒化镉等具有很强刺激性。接触 可引起恶心、头痛和呕吐。
在LED、光电探测器、 太阳能电池、量子点 激光器等器件上具有 广阔的应用前景。
合成方法
热注入法
过饱和结晶
2016年南京理工大学曾海波团队发 表在Adv. Funct. Mater. DOI: 10.1002/adfm.201600109 首次提出利用过饱和结晶的方法 获得了高质量的CsPbX3量子点并研 究了其在WLED上的应用。
微波法
DOI:10.1039/c7cc0486a
离子交换法
Chem. Eur. J. 2018, 24, 1898 –1904
CsPbBr3 + 3I= CsPbI3+3Br-
改进(掺杂)
• 实质:通过加入Mn(或其 它稀土金属)源取代CsPbX3 中的一部分Pb,达到调节颜 色的目的。
DOI:10.1021/acs.nanolet t.6b02772 Nano Lett. 2016, 16, 7376−7380 DOI: 10.1021/jacs.7b04000 J. Am. Chem. Soc. 2017, 139, 11443−11450
以 CsPbBr3量子点作为发光层的电致发光 LED 的效 率已突破5.7%。 以钙钛矿材料作为光吸收层的太阳能电池的光转化 效率已超过 20%。 钙钛矿半导体在光电探测器、激光器等光电器件 上也得到了大量的实际应用。
传统量子点
CsPbX3(X=Cl、Br、I)量子点 克服了传统的Ⅱ-Ⅵ族量子点的 上述缺陷。 ① CsPbX3量子点的量子限域效 应相对较弱,尺寸的不均一 性和表面陷阱状态不会对其 发光性质有较大的影响,因 此 CsPbX3量子点不需要包壳 便可获得超过 90%的量子产 率。 ② 在 25℃-100℃下量子点的发 光位置不会发生改变。 ③ 无机钙钛矿是一种具有高产 率、高单分散性、宽发射谱 范围、发射光谱可调、短荧 光寿命、低制备成本等优点 的纳米材料。