产纤维素酶的筛选
产纤维素酶细菌的筛选及培养

产纤维素酶细菌的筛选及培养一、筛选步骤1、菌种的采集采集山上距湿润的表层10cm处的土壤样本40g左右,用研钵研成粉末称取1g样本加入灭菌的250mL锥形瓶中,加入99mL无菌水摇匀静置。
2、菌种初筛(1)按照配方配制200mL CMC培养基,取1 X 250mL空锥形瓶和6 X 15mL试管,塞上棉塞并用报纸、棉线包扎,用报纸、棉线将试管包扎成一捆;取12套培养皿码齐包扎。
将上述器材与培养基、无菌水121℃高压蒸汽灭菌20min。
(2)于无菌台上倒9个CMC培养基备用。
(3)另取6支15mL经灭菌的试管,用移液枪吸取土壤溶液(上清液)1.000mL加入1号试管,加无菌水9.000mL。
混匀后吸取1.000mL 加入2号试管,重复上述操作,进行6次梯度稀释。
(4)待CMC培养基冷却后,在超净工作台分别吸取104、105、106倍稀释液0.100mL于CMC培养基上稀释涂布,每种稀释液涂布三份。
(5)将上述培养基置于37℃培养箱中培养24小时,标记菌落并记录各菌落形态(菌落高度、质地、颜色、气味、着生状态、边缘及表面纹理等)。
(6)配制200mL刚果红家别培养基,与三套培养皿一起121℃灭菌20min。
(7)在无菌操作台上倒3个鉴别培养基备用。
(8)将各菌落用牙签接种到冷却了的刚果红鉴别培养基上,37℃培养24h,挑选5株透明圈直径与菌落直径比最大的菌株进行摇瓶复筛。
3、菌种复筛(1)配制500mL基础发酵培养基,分装到5只250mL的锥形瓶中,121℃高压蒸汽灭菌20min。
(2)将初筛得到的菌株用接种环接种于液体培养基上(2环),37℃、150r/min下培养2—3天,转入4℃冰箱保藏。
二、培养方法1清洗实验器具2灭菌3配培养基(纤维素作唯一能量源的培养基)4倒平板 +选择培养原菌(可能会用摇床)5稀释菌样6涂布平板或平板划线7放入恒温箱(调制均适宜的温度)12-24h ,之后就可以收获细菌了8观察记录(数量、分布等)三、培养基种类及其组成1、初筛CMC培养基:CMC 5g、蛋白胨1 g、FeSO4·7H2O 0.005 g、NaCl 0.25g、琼脂粉10g 于1000mL锥形瓶中加蒸馏水至500mL、调节pH 7.2~7.6,加棉塞121℃灭菌20min。
产纤维素酶菌种的筛选与优化

产纤维素酶菌种的筛选与优化一、菌种筛选的原理与方法菌种筛选的原理是通过筛选产纤维素酶活性高、产量大的菌种。
常用的菌种筛选方法有以下几种:1.传统菌种筛选:分离环境中的纤维素降解菌株,通过纤维素酶活性测定筛选产纤维素酶能力较强的菌株,再通过多次温育和活性测定,逐步筛选出高活性的菌株。
2.显性菌种筛选:利用纤维素酶结构上保守的区域设计引物,在环境DNA中扩增出纤维素酶基因片段,使用这些基因片段进行克隆构建,然后在宿主中进行表达,通过纤维素酶活性测定筛选产纤维素酶能力较强的菌株。
3.基因工程菌种筛选:利用已知纤维素酶的基因进行基因工程,通过载体导入宿主细胞中,通过外源表达基因,从而获得产纤维素酶菌种。
二、菌种优化的原理与方法菌种优化的原理是通过改变菌株基因组或环境条件,提高纤维素酶产量和活力。
常用的菌种优化方法有以下几种:1.自然进化优化:通过长期培养,逐渐挑选出产酶能力强、极端环境适应能力强的突变菌株。
2.诱变优化:利用物理、化学或基因工程等方法对菌株进行诱变,通过筛选获得产纤维素酶能力强、菌株稳定的变种。
3.基因工程优化:利用已知纤维素酶的基因进行基因编程,通过基因工程技术对菌株基因组进行改造,以提高纤维素酶的产量和活力。
三、未来的研究方向1.菌种筛选方法的改进与创新:应综合运用传统筛选、显性筛选和基因工程筛选等方法,发展新的高效、快速的菌种筛选方法。
2.菌种优化技术的优化与提高产量、活性:要通过生理、代谢工程的方法改造纤维素酶产生菌,提高纤维素酶的产量和活力。
3.开发新型纤维素酶菌株:从不同环境中分离筛选出产酶能力强的菌株,进一步发现和研究产纤维素酶的新菌株。
4.提高纤维素酶产量与废弃物转化率的研究:将纤维素酶应用于废弃物转化过程,提高纤维素酶产量和转化率。
综上所述,产纤维素酶菌种筛选与优化的研究是促进纤维素酶应用的关键。
通过不断改进筛选和优化方法,进一步开发新的菌种,提高纤维素酶的产量和活力,将对纤维素酶的应用产生积极的推动作用。
产纤维素酶菌及其筛选改良方法研究进展

产纤维素酶菌及其筛选改良方法研究进展纤维素是由纤维素素和半纤维素组成的天然高分子化合物,在工业和生活中具有广泛的应用。
纤维素酶是一种专门分解纤维素的酶,在纤维素利用和生物质转化等领域有着广泛的应用前景。
本文综述了产纤维素酶菌及其筛选改良方法的研究进展。
一、产纤维素酶菌的筛选和鉴定目前,已有许多研究对产纤维素酶菌进行筛选和鉴定,其中常用的方法包括传统的分离培养方法、高通量筛选系统和基于基因组的筛选方法等。
1.传统的分离培养方法传统的分离培养方法通常包括从不同的环境样品中分离出细菌,并对其进行酶活性测定。
通过该方法已经成功分离出具有纤维素酶活性的微生物,例如Clostridium sp.、Bacillus sp.、Cellulomonas sp.、Acidothermus cellulolyticus等。
2.高通量筛选系统高通量筛选系统是一种快速且高效的筛选方法,常用于从大量的微生物中沉淀出目标细菌。
常用的高通量筛选方法包括微流控装置、免疫分离、荧光筛选和高通量发酵等。
3.基于基因组的筛选方法基于基因组的筛选方法是一种新的筛选方法,它能够根据基因组数据精确地预测目标细菌的性能和代谢特性。
通过依据基因组组态图,可以预测细菌所需的碳水化合物、氮素源、维生素和微量元素等。
并通过基因搜索和蛋白质分析,可以确定特定的酶基因并对其进行驯化研究。
二、纤维素酶菌的改良方法针对传统纤维素酶菌的低效率和耐受性差等问题,研究人员采用不同的改良方法提高纤维素酶的效率和性能。
常用的改良方法包括基因工程技术、筛选和驯化适应性强的菌株、应用生物物理方法提高纤维素酶的结构稳定性等。
1.基因工程技术基因工程技术是一种常见的改良方法,它通过基因重组或突变来优化目标细菌的代谢功能。
例如,利用多肽链替换可以改变纤维素酶的空间结构,提高酶的催化能力。
基因重组还可以将来自不同细菌的多个酶基因组合,形成多功能细菌产生多种酶的机构,提高纤维素降解效率。
纤维素酶高产菌株的选育

纤维素酶高产菌株的选育
纤维素酶是一种能够分解纤维素的酶,对生物质的利用具有重要意义。
选育纤维素酶高产菌株是提高纤维素酶生产效率的关键。
以下是一些选育纤维素酶高产菌株的常用策略和方法:
1. 采用自然筛选法:从自然环境中采集植物残渣、堆肥等具有高纤维素含量的样品,通过培养和筛选获取纤维素酶高产菌株。
这种方法的优势是能够发现具有适应性强、高纤维素酶产量的菌株。
2. 遗传工程法:通过对已知具有高纤维素酶产量的菌株进行基因工程改造,引入其他有利于纤维素酶产量提高的基因或突变体。
3. 诱变法:通过化学物质(如EMS、亚硝酸钠等)或辐射(如紫外光、X射线等)处理菌株,诱发基因突变,筛选出纤维素酶高产突变菌株。
4. 基因筛选法:通过分析纤维素酶基因的表达水平和调控机制,筛选具有高纤维素酶基因表达水平和调控机制的菌株。
5. 代谢工程法:通过改造代谢途径,优化产生纤维素酶所需的底物和能量供应等因素,提高纤维素酶产量。
以上方法可根据实验室条件和研究目的选择合适的方法进行选育纤维素酶高产菌株。
产纤维素酶菌及其筛选改良方法研究进展

产纤维素酶菌及其筛选改良方法研究进展引言:纤维素酶是一类能够降解纤维素的酶,能够将纤维素水解成可溶性的糖类物质。
这种酶类在生物能源、生物制造等领域具有重要的应用价值。
产纤维素酶的菌种及其筛选改良方法的研究,对提高纤维素降解效率、降低生产成本、推动生物能源利用具有重要意义。
本文将介绍产纤维素酶菌及其筛选改良方法的研究进展。
一、产纤维素酶菌的分类和特点产纤维素酶的菌种多样,主要包括真菌和细菌两大类。
真菌包括木霉属、曲霉属、青霉属等;细菌则主要包括纤维素降解细菌和纤维素生产细菌等。
产纤维素酶菌的特点主要表现在对纤维素的降解效率和产酶条件的适应性上。
一方面,有些产纤维素酶的菌种能够高效降解纤维素,产酶量大,并且在生长环境下对温度、pH等条件的适应性较强,能够在广泛的生境中生长;有些产纤维素酶的菌株则对产酶条件相对苛刻,需要较为特殊的生产条件。
二、产纤维素酶菌的筛选方法为了提高产纤维素酶菌的降解效率和提高其生产水平,需要对产纤维素酶菌进行筛选和改良。
在筛选产纤维素酶菌的过程中,可以通过以下几种方法进行:1. 采用纤维素为唯一碳源的筛选培养基。
利用富含纤维素的培养基,能够筛选出对纤维素降解能力较强的菌株。
2. 通过间接检测法筛选。
可以利用纤维素水解产生的可溶性糖类物质来间接检测纤维素酶的产生情况,从而筛选出产酶量较高的菌株。
3. 利用分子生物学方法筛选。
通过利用特定基因的特异性引物,进行PCR扩增和RFLP分析,还可以利用荧光原位杂交技术等手段,对产纤维素酶的菌株进行筛选和鉴定。
4. 通过连续培养或连续发酵系统,对菌株进行长期的驯化和培养,增加产酶菌株的产酶能力。
三、产纤维素酶菌的改良方法在筛选出具有较高产酶能力的菌株之后,需要对这些菌株进行改良,以提高其产酶能力和降解效率。
产纤维素酶菌的改良方法主要包括以下几种:1. 通过传统的诱变选择法,对产纤维素酶菌株进行诱变处理,产生新的突变型菌株,以提高产酶效果。
一株产纤维素酶细菌的筛选与发酵产酶试验

纤维素酶是一种多组分的复合酶系,由内切葡聚糖酶、外切葡聚糖酶和β-葡萄糖苷酶三种组分组成。
由于纤维素在自然界广泛分布,很多细菌、放线菌、酵母和霉菌都具有降解纤维素的能力。
此前纤维素降解菌的研究多以霉菌为主,而对细菌的研究着力较少。
近年来,随着中性纤维素酶和碱性纤维素酶在棉织品水洗整理工艺及洗涤剂工业中的成功应用,通过细菌发酵生产纤维素酶制剂已显示出良好的应用前景。
本文拟从土壤中筛选出产纤维素酶的细菌并进行初步鉴定,以期为纤维素酶制剂的生产提供可能的细菌菌种。
一、材料与方法1.材料(1)土壤样品。
从南京科技职业学院校园小树林堆放枯枝和落叶处采集腐殖土土样,五点取样,混匀,放入无菌的袋中备用。
(2)富集培养基。
牛肉膏3g,蛋白胨10g,NaCl 5g,琼脂15g,加水至1000mL,调pH7.0-7.2。
(3)初筛培养基。
羧甲基纤维素钠(CMC-Na)5g,(NH4)2SO44g,KH2PO4 2g,MgSO4·7H2O 0.5g,蛋白胨1g,琼脂15g,加蒸馏水至l000mL,pH自然。
(4)复筛培养基。
CMC-Na 2g,(NH4)2SO4 2g,KH2PO4 1g,MgSO4·7H2O 0.5g,NaCl 0.5g,刚果红0.4g 琼脂15g,加蒸馏水至l000mL,pH自然。
(5)液体发酵培养基。
CMC-Na 10g,蛋白胨10g,酵母粉10g,NaCl 5g,KH2PO4 1g,加蒸馏水至l000mL,灭菌后用无菌Na2CO3溶液调pH至10。
2.方法(1)土壤细菌的富集。
称取土样10g,放入装有玻璃珠和90mL无菌水的锥形瓶中,充分振摇。
取5mL悬液放入含45mL富集培养基的250mL锥形瓶中,37℃,150r/min振荡培养一昼夜。
(2)初筛培养基稀释涂布。
将富集后的土壤细菌培养物进行梯度稀释,取10-4,10-5,10-6三个稀释度各0.1mL于初筛培养基平板上进行稀释涂布,37℃倒置培养一昼夜,得到单菌落。
从土壤里筛选产纤维素酶细菌的步骤

从土壤中分离产几丁质酶的真菌作者:王春学号:11101680摘要:几丁质是自然界中储量仅次于纤维素的生物多聚体,它广泛存在于真菌、硅藻、节肢动物和原生动物等生物体中,是绝大多数真菌细胞壁的结构物质,同时还是昆虫中肠围食膜的主要成分[1].几丁质酶(Chitinase,EC3.4.1.14)[2]可催化水解几丁质的β21,4糖苷键生成N2乙酰2D2氨基葡萄糖(NAG),它在植物病虫害,尤其是对真菌病的防治方面,以及在几丁质废物的转化和利用等方面都具有重要作用,其研究受到人们的广泛重视.通过几丁质作为碳源,从土壤中筛选产几丁质酶菌株.1 材料与方法1.1 培养基1.1.1 平板培养基 (1)细菌几丁质培养基(分离用):蛋白胨10g,K2HPO40.7g,MgSO40.5g,KH2PO40.3g,胶体几丁质5.0g,琼脂15~20g,蒸馏水1L,pH值为7.2.(2)纯几丁质培养基:胶体几丁质 5.0g,KNO31.0g,NaCl0.5g,K2HPO40.5g,MgSO40.5g,FeSO40.01g,琼脂20g,蒸馏水1L,pH值为7.2.1.1.2 摇瓶培养基 (1)种子培养基(LB培养基):蛋白胨10g,酵母膏5g,NaCl10g,蒸馏水1L,pH值为7.0.(2)发酵培养基:用细菌几丁质培养基(分离用),但不加琼脂1.2 菌株的分离1.2.1 菌株初步分离从生产几丁质的工厂排污沟附近土壤采集土样,经过烘干及风化干燥,置于60目分样筛过筛,备用.称取1g土样放入加有9mL无菌水的离心管,分别稀释制成10-1,10-2,10-3,10-4,10-5,10-6不同稀释倍数的土壤溶液.从10-3,10-4,10-5,10-6不同稀度倍数的4管土壤稀释液中各吸取0.1mL,接种在纯几丁质培养基和细菌几丁质培养基的平板上,用涂布棒涂布均匀,在30℃下培养72h.1.2.2 菌种的二次筛选从第1次稀释涂布的平板中挑取可以产生透明圈的菌落,再一次通过稀释涂布的方法,将其接种于纯几丁质平板和细菌几丁质平板上,培养72h,以取得纯菌落平板.从第2次筛选的纯菌平板上选取水解圈直径与菌落直径比最大的菌种,将其接种于50mL的LB种子培养基上,12h后以2%的接种量接于100mL的细菌几丁质发酵培养基中,在30℃下进行扩大培养.1.3 菌种的鉴定1.3.1 细菌染色体DNA提取从新培养产几个质酶活性高的革兰氏阴性细菌平板上,挑取一环菌落至加有500μLTE缓冲液的1.5mL微量离心管中,混匀后沸水浴1.5min,迅速低温离心(12000r・min-1)10min,取上层清液分装后,置4℃下保存备用.1.3.2 16SrDNA引物根据16SrDNA的结构,应用B2/B3做引物,该引物扩增片段包含V8和V9两个高变区,扩增产物大小为1050bp(basepair,碱基对)左右.这两个引物序列为B2:5’2ACGGGCGGTGTGTAC23’;B3:5’2CCTACGGGAGGCAGCAG23’.1.3.3 聚合酶链反应(PCR)检测 PCR反应体系为20μL,二次蒸馏水12.6μL,10倍扩增缓冲液2.0μL,25mmol・L-1Mg2+1.6μL,各2.5mmol・L-1的脱氧核苷三磷酸(dNTP)0.4μL,20μmol・L-1引物各1.0μL,DNA模板1.0μL,5GU・L-1Taq酶0.4μL.PCR循环:94℃预变性5min,94℃变性60s,50℃退火60s,72℃延伸90s,循环30次,并在72℃后延伸15min.1.3.4 扩增产物的电泳分析用1倍的TAE缓冲液配制质量分数为1%琼脂糖凝胶.取PCR 扩增产物10μL,加2μL溴酚蓝指示剂,混匀后加样,于100V下电泳1.5h,紫外灯下观察电泳结果.1.3.5 序列测定与分析将观察到的PCR产物切胶,用胶回收试剂盒回收后,连接到pMD182T上,送北京奥科生物公司进行测序.然后,将测序结果通过GeneBank进行BLAST序列比对,得出结果参考文献[1] BROGLIEKE.Chitinaseandplantprotection[J].RevPlantPathol,1993,2:4112421.[2] 李力,黄胜元,关雄.产几丁质酶的苏云金杆菌菌株筛选及酶合成条件研究[J].中国病毒学,2000,15(51):94297.[3] CHANGYu2cheng,YANGChiyea,LIChin,etal.IdentificationofBacillussp,Escherichiacoli,Salmonellasp,StaphylococcusspandVibriospwith16SribosomalDNA2basedoligonucleotidearrayhybridization[J].Internation2 alJournalofFoodMicrobiology,2006,107:1312137.[4] 张龙翔,张庭芳,李令媛.生化实验技术[M].北京:高教出版社,1997:1112116.[5] MOOREER,KRUGERAS,HAUBENL,etal.16SrRNAgenesequenceanalysesandinter2andintragenericre2lationshipsofXanthomonasspeciesandStenotrophomonasmaltophilia[J].FEMSMicrobiolLett,1997,151(2):1452 153.[6] MIYAJIT,OTTAY,SHIBATAT,etal.PurificationandcharacterizationofextracellularalkalineserineproteasefromStenotrophomonasmaltophiliastrainS21[J].LettApplMicrobiol,2005,41(3):2532257.[7] MADHA VAPNK,BAIJUTV,SANDHYAC,etal.ProcessoptimizationforantifungalchitinaseproductionbyTrichodermaharzianum[J].ProcessBiochem,2004,39:158321590.[8] NAWANINN,KAPADNISBP.Optimizationofchitinaseproductionusingstatisticsbasedexperimentaldesigns[J].ProcessBiochem,2005,40:6512660。
【精品】产纤维素酶菌株的筛选

【精品】产纤维素酶菌株的筛选综述纤维素是植物细胞壁中最常见的多糖之一,由β-1,4-葡聚糖链和其它多糖组成。
由于其普遍存在于植物生物体中,纤维素是最广泛分布的生物大分子之一。
纤维素在生物质燃烧、压缩和暴露于微生物作用等过程中产生可再生能源,并且还可以用于生产生物质燃料、化学品和其他生物制品。
利用纤维素聚合物(包括木材纤维素、竹杆和淀粉纤维素等)进行生物质转化是一项重要的能源和环境保护技术。
纤维素酶是能够水解纤维素并将其转化为可利用的糖的一种酶,其催化作用是将纤维素链切割成较小的可溶性碳水化合物。
纤维素酶可分为三类:β-葡聚糖酶、β-葡聚糖苷酶和β-葡聚糖磷酸酶。
纤维素酶是一种关键的生物质转化酶,也是生物质转化技术的核心之一。
然而,纤维素在自然界中很难被“消化”,因此生产纤维素酶具有较高的技术难度。
在微生物界中,产纤维素酶的菌株很少。
因此,筛选高效的纤维素酶制造菌株是极其必要的。
本文将介绍产纤维素酶菌株的筛选方法,以期为该领域的研究提供一定的参考价值。
筛选方法1.体外筛选1.1 纤维素酶活性测定法纤维素酶的活性可以通过测定其水解纤维素的能力来衡量。
常用的纤维素酶活性测定法有半定量法和定量法两种。
(1)半定量法:将预处理(物理或化学,使它们易于分散或离解)的纤维素培养基(如Whatman No. 1滤纸或微晶纤维素)片加入Petridish中,加入菌株后在37℃下培养,48小时后菌落上出现消耗氧气的透明区,即为阳性。
(2)定量法:在已知含量的标准纤维素上加入纤维素酶样品,反应一定时间后滴加定量白蚁葡聚糖重量的Barfoed试剂,重量测定所得的还原糖量即为纤维素酶酶活的计算量。
1.2 瓶内发酵筛选法把菌株预处理后接种于纤维素培养基液体中进行发酵,无细菌法(革兰氏阴性菌类)的来源可从沉淀性污泥、土壤、泉水、海水、挖掘蚕豆瓢虫肠道中获得。
在瓶内发酵过程中,间断取样测定纤维素酶的活性,并通过相关的统计学方法得到产酶量几何平均值和标准差,从而筛选出高产纤维素酶的菌株。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
讲 解 内 容
1. 研究背景 2. 试验目的 3. 技术路线 4. 试验方法 5. 预期效果 6. 参考文献
一.研究背景
纤维素作为地球上最丰富的可再生有机资源,其转化和 利用对解决能源危机、粮食短缺、环境污染等问题具有 十分重要的意义。纤维素酶是能够作用于纤维素底物 β1,4 葡萄糖苷键的一类生物酶的总称。由于开发利用木质 纤维资源对人类社会的今后发展具有重大意义,而纤维 素酶对纤维素资源的开发起到极为关键的作用,对其研 究一直是国内外的热点。纤维素代谢也是地球生物圈碳 素循环的重要组成部分,寻找和开发高产纤维素酶菌种 ,是充分利用纤维素资源的关键。
(10).酶活力测定 :以CMC钠盐为底物,测定CMC酶活力。
酶 反应体系 含粗酶液 0.5mL , CMC 钠 盐 1%(g/ mL) , 0.1mol/L的Tris-HCL(pH值为8.0)缓冲液2.0 mL。50℃水 浴反应60 min,立刻用DNS法测定CMC水解所释放的葡 萄糖量。以作用CMC钠盐底物1min释放1 mg葡萄糖所 需的酶量定义为1个酶活力单位。 (11).比较诱变菌株与原菌株的酶活力。 (12).绘制菌株生长曲线与产酶曲线图:以最适的pH, 温度 条件培养产酶菌株,每隔4 h 取一次发酵液,测定OD600 值与纤维素酶活力,绘制菌株生长曲线与产酶曲线图。 (13). 测定 CMC 酶的最适作用 pH 值,最适作用温度以及 热稳定性。
(5).菌株生化鉴定:采用Biolog 微生物鉴定系统进行。操作按仪
器的说明书进行。 (6).诱变育种: ●制备孢子悬液:取试管斜面,用无菌水洗下孢子,装入带 玻璃珠的三角瓶中,27℃振荡2-3h,用脱脂棉过滤后,以10倍 稀释法作一系列稀释,挑选一个稀释度,用移液管移l ml饱子 悬液到小塑料离心管中,待用。 ●紫外(UV)诱变方法:距离紫外灯30cm左右照射60s、70s、 80s、90s、100 s,并不断摇动。 ● 硫 酸 二 乙 酯 (DES) 诱 变 方 法 : 分 别 吸 取 1ml 孢 子 悬 液 10ulDES(终浓度为1%)和30ul乙醇溶液于一小塑料离心管中, 于 30℃水浴振荡 45min、60min、75min ,处理完毕后加入 30ul 25%的硫代硫酸钠溶液终止反应。 ● UV-硫酸二乙酯(DES)复合诱变
测定酶活力
比较两种菌株酶活力
菌株形态观察 菌株分子鉴定 菌株生化鉴定
确定产纤维素酶菌株的属种
绘制菌株生长曲线和产酶曲线图 测定CMC酶的最适作用条件
四.试验方法
1. 材料和仪器 (1).用于菌株分离的样品采自畜禽堆肥。 (2).所用培养基:LB培养基、CMCBug培养基 (3).仪器:菌种鉴定96孔板 2.方法 (1).菌株初筛:取样品1 g,加10 mL无菌蒸馏水,充分 振摇,静止 30 min ,取上清液稀释 105 倍,涂布接种 CMC-刚果红平板筛选培养基,30℃培养72 h至菌落长 出,挑取透明水解圈较大的菌落。
(7) .测定诱变后菌株的透明圈并将其菌株发酵测其酶活
力。 (8).菌株生长及产酶特性测定 :活化菌株接种 CMC 发酵培 养基,接种量5%,30℃、200rpm下培养,定时取样测定 培养液的OD600和CMC酶活力,观察菌株生长和产纤维素 酶情况,绘制菌株生长曲线与产酶曲线图。优化菌株的 培养条件,对3-12的pH值条件以及25-37℃温度条件下菌 株生长也进行观察。 (9). 酶液制备 : 活化菌株接种 CMC 发酵培养基 30 ℃ 、 200 rpm培养48 h,取培养液,4℃,4000 rpm离心10 min,取 上清,55%(NH4)2SO4溶液沉淀粗蛋白,4℃,10000 rpm离 心10 min,收集沉淀,加入培养液同体积的pH值8.0,0.1 mol/L的Tris-HCL缓冲液溶解,4℃保存,用于测定酶的 活力,2 d内使用。
五.预期试验结果
1.可以分离出一株产纤维素的菌株。
2.鉴定出该菌株所属的属种。 3. 对该菌株所产的纤维素酶有一定的了解,绘制出产
酶曲线图和菌株生长曲线,用来指导发酵工业。 4.用诱变后的菌株看能否提高产酶活性,以更好的生 产出纤维素酶。
六.参考文献
[1].禤金彩, 廖龙, 龙寒, et al. 一株产纤维素酶蜡样芽孢杆菌 的分离鉴定及酶学性质初步研究 [J]. 南方农业学报, 2014, 45(6): 984-988. [2].芦志龙, 张穗生, 吴仁智, et al. 产纤维素酶新菌株的筛选 及其产酶特性研究 [J].广西科学, 2014, 21(1): 22-27. [3].封晔, 来航线, 郑真. 高产纤维素酶菌株的筛选及其产酶 条件研究 [J].西北农林科技大学学报, 2007, 10(35): 133138. [4].葛春辉, 徐万里, 邵华伟, et al.一株产纤维素酶细菌的筛 选、鉴定及其纤维素酶的部分特性 [J]. 生物技术, 2009, 19(1): 36-40.
二.试验目的
目前,酸性纤维素酶主要用于纤维素的水解糖化,
而碱性纤维素酶则广泛用于洗涤工业。不过,至 今所研发的纤维素酶仍存在酶活力不足等问题, 有必要挖掘新的酶资源。
三. 技术路线
产纤维素酶菌株的初筛
产纤维素酶菌株的复筛
诱变育种
测其透明圈及酶活力 制备酶液
优化产酶菌株的培养条件
产高活性纤维素酶菌株的鉴定
(3). 菌株的形态观察: LB 培养基培养的菌体用革兰
氏染色,显微镜观察菌株形态。
(4). 分 子 鉴 定 : 提 取 菌 体 DNA(CTAB 法 ) , 以 该 基 因 组
DNA为模板,采用通用引物27F/1492R,PCR扩增菌株的 16SrRNA 序列。 PCR 产物用琼脂糖凝胶电泳检测、分离, 然后用Agarose Gel DNA Purification Kit 试剂盒切胶回收, 用T4 ligase连接到Pmd-18T载体上。将带有目的片段的载 体通过转化E.coli DH 5α菌株扩增培养后,选择阳性克隆 提取质粒测序。将测序得到的 16S rRNA 序列用 NCBI 的 BLAST2.0进行同源分析,搜索Genebank核酸数据库,根 据比对结果对菌株进行分子鉴定。
研究进展: 该类酶上世纪 40 年代首次被发现。早期发现的纤维素 酶主要由丝状真菌的木霉、根霉等菌种产生,通常为酸 性 酶其最适作用pH值在3-5,在碱性条件下基本没有酶 活或活力很低。上世纪70年代,在嗜碱性的枯草芽孢杆 菌(Bacillus sp. N-4 和 Bacillus sp.1139 菌株)中发现了最 适作用pH在碱性范围的纤维素酶,即碱性纤维素酶。随 后发现芽孢杆菌属 (Bacillus) 和链霉菌属 (Streptomyces) 的数十株嗜碱性菌株均能够产生碱性纤维素酶,此外, 动物源碱性纤维素酶开始被报道,并成为开发碱性纤维 素酶的重要方向。
(2). 菌株复筛:挑取透明水解圈较大的菌落,接种
CMC液体发酵培养基,37℃、200rpm摇瓶培养24 h, 测定培养液的碱性CMC酶活力,选取活力最高的培 养瓶,取菌液划线接种CMC-刚果红平板筛选培养基 培养,纯化菌种3次,最后得到产碱性纤维素酶的 高产菌株,命名,斜面和冷冻干燥保藏。