高一数学上册精练调研考试题5
人教版高中数学必修一精品讲义5.1 任意角和弧度制(精练)(解析版)

5.1 任意角和弧度制【题组一 基本概念的辨析】1.(2020·河南林州一中高一月考)已知集合A ={α|α小于90°},B ={α|α为第一象限角},则A ∩B =( ) A .{α|α为锐角} B .{α|α小于90°} C .{α|α为第一象限角} D .以上都不对【正确答案】D【详细解析】∵A ={α|α小于90°},B ={α|α为第一象限角}, ∴A ∩B ={小于90°且在第一象限的角},对于A :小于90°的角不一定是第一象限的,不正确,比如﹣30°;对于B :小于90°的角且在第一象限的角不一定是0°~90°的角,不正确,例如﹣300°; 对于C :第一象限的角不一定是小于90°的角且在第一象限的角,不正确,例如380°, 故选D .2.(2020·浙江高一课时练习)下列命题中正确的是( ). A .第一象限角一定不是负角 B .小于90°的角一定是锐角 C .钝角一定是第二象限角 D .终边和始边都相同的角一定相等 【正确答案】C【详细解析】300︒-为第一象限角且为负角,故A 错误;5090-︒<︒,但50︒-不是锐角,故B 错误;终边与始边均相同的角不一定相等,它们可以相差360,k k Z ︒⋅∈,故D 错误.钝角一定是第二象限角,C 正确. 故选:C .3.(2020·汪清县汪清第六中学高一期中(文))下列结论中正确的是( ) A .小于90°的角是锐角 B .第二象限的角是钝角 C .相等的角终边一定相同 D .终边相同的角一定相等 【正确答案】C【详细解析】对于A,小于90︒可能是负角,不是锐角;对于B,第二象限的角可能是负角,不是钝角;对于C,两个角相等,始边一致,则终边一定相同;对于D,终边相同的角,可能相差360°的倍数,不一定相等.故选C.4.(2020·全国高一课时练习)(1)给出下列说法: ①锐角都是第一象限角; ②第一象限角一定不是负角;③小于180°的角是钝角或直角或锐角.其中正确说法的序号为________.( 把正确说法的序号都写上) (2)将时钟拨快20分钟,则分针转过的度数是________. 【正确答案】② 120-︒【详细解析】(1)①锐角的范围为()0,90︒︒是第一象限的角,命题①正确;②第一象限角的范围为()()360,90360k k k Z ⋅︒︒+⋅︒∈,故第一象限角可以为负角,故②错误; ③根据任意角的概念,可知小于180°的角,可以为负角,故③错误; 故正确答案为:②(2)将时针拨快20分钟,则分针顺时针转过120︒,即转过的度数为120-︒ 故正确答案为:120-︒5.(2020·全国高一课时练习)给出下列说法: ①锐角都是第一象限角; ②第一象限角一定不是负角;③小于180°的角是钝角或直角或锐角.其中正确说法的序号为________.( 把正确说法的序号都写上) 【正确答案】①【详细解析】锐角指大于0°小于90°的角,都是第一象限角,所以①对;由任意角的概念知,第一象限角也可为负角,小于180°的角还有负角、零角,所以②③错误.故正确答案为:① 6.(2020·全国高一课时练习)下列命题正确的是____________( 填序号). ①-30°是第一象限角; ②750°是第四象限角; ③终边相同的角一定相等; ④-950°12′是第二象限的角. 【正确答案】④【详细解析】①30-︒是第四象限的角度,故①错误;②750°的终边与30︒的终边相同,故其为第一象限的角度,故②错误; ③终边相同的角度不一定相等,故③错误;④-950°12′与-950°12′108012948+︒=︒′的终边相同,其为第二象限的角,故④正确. 故正确答案为:④.【题组二 角度与弧度转换】1.(2019·伊美区第二中学高一月考)300-化为弧度是( ) A .43π-B .53π-C .23π-D .56π-【正确答案】B【详细解析】300530023603ππ-=-⨯=- 2.(2020·全国高一课时练习)把85π化为角度是( )A .270°B .280°C .288°D .318°【正确答案】C【详细解析】因为1801rad π⎛⎫=︒ ⎪⎝⎭,故8818028855πππ︒︒⎛⎫=⨯= ⎪⎝⎭.故选:C. 3.(2020·灵丘县豪洋中学高一期中)320-︒化为弧度是( ) A .43π-B .169π-C .76π-D .56π-【正确答案】B【详细解析】320-︒化为弧度是16320=1809ππ-︒⨯-.故选:B 4.(2020·金华市江南中学高一期中)1500︒转化为弧度数为( ) A .253B .163πC .163D .253π【正确答案】D【详细解析】由1180rad π︒=,所以15001550002318ππ︒=⨯=rad 故选:D 5.(2019·长沙铁路第一中学高一月考)将300o 化为弧度为( ) A .43πB .53π C .76π D .74π 【正确答案】B【详细解析】53003001803ππ︒=⨯=.故选:B . 6.(2020·通榆县第一中学校高一期末)512π=( )A .70°B .75°C .80°D .85°【正确答案】B【详细解析】因为1801rad π⎛⎫=︒⎪⎝⎭,故512π=51807512ππ⎛⎫⨯︒=︒ ⎪⎝⎭.故选:B. 7.(2020·全国高一课时练习)将下列角度与弧度进行互化. (1)20°;(2)-15°;(3)712π(4)-115π. 【正确答案】(1)20°=9π;(2)-15°=-12π;(3)712π=105°;(4)-115π=-396°.【详细解析】(1)20°=20180π=9π.(2)-15°=-15180π=-12π.(3)712π=712×180°=105°.( 4)-115π=-115×180°=-396°.【题组三 终边相同】1.(2020·浙江高一课时练习)与405°角终边相同的角是( ). A .45360,k k Z ︒︒-+⋅∈ B .405360,k k Z ︒︒-+⋅∈ C .45360,k k Z ︒︒+⋅∈ D .45180,k k Z ︒︒+⋅∈【正确答案】C【详细解析】由于40536045︒︒︒=+,故与405°终边相同的角应为45360,k k Z ︒︒+⋅∈.故选:C 2.(2020·永州市第四中学高一月考)在0360~︒︒的范围内,与510︒-终边相同的角是( ) A .330︒ B .210︒C .150︒D .30︒【正确答案】B【详细解析】因为510720210︒-=-+,则在0360~︒︒的范围内,与510︒-终边相同的角是210︒,故选:B. 3.(2020·合肥市第八中学高一月考)下列各个角中与2020°终边相同的是( ) A .150︒- B .680°C .220°D .320°【正确答案】C【详细解析】由题,20202205360︒=︒+⨯︒,故选:C4.(2020·汪清县汪清第六中学高一期中(文))在0°~360°范围内,与-1050°的角终边相同的角是( )A .30°B .150°C .210°D .330°【正确答案】A【详细解析】因为1050336030-︒=-⨯︒+︒所以在0°~360°范围内,与-1050°的角终边相同的角是30故选:A5.(2020·北京延庆·高一期末)与角196π终边相同的角为( ) A .6π-B .6π C .56π-D .56π 【正确答案】C 【详细解析】与角196π终边相同的角可写成192,6παπ=+∈k k Z 令2k =-,则56πα=-故选:C6.(2020·辉县市第二高级中学高一期中) 下列与的终边相同的角的表达式中正确的是( )A .2k π+45°( k ∈Z)B .k ·360°+π( k ∈Z)C .k ·360°-315°( k ∈Z)D .k π+( k ∈Z)【正确答案】C 【详细解析】与的终边相同的角可以写成2k π+( k ∈Z),但是角度制与弧度制不能混用,所以只有正确答案C 正确.故正确答案为C7.(2020·陕西大荔·高一月考)已知角2α是第一象限角,则α的终边位于( )A .第一象限B .第二象限C .第一或第二象限D .第一或第二象限或y 轴的非负半轴上【正确答案】D 【详细解析】∵由角2α是第一象限角,∴可得π2π2π,22k k k α<<+∈Z ,∴4π4ππ,k k k α<<+∈Z .即α的终边位于第一或第二象限或y 轴的非负半轴上.故选:D.8.(2020·宁县第二中学高一期中)已知角α的终边在图中阴影所表示的范围内(不包括边界),那么α∈________.【正确答案】{}|180********,n n n αα⋅︒+︒<<⋅︒+︒∈Z . 【详细解析】在0360范围内,终边落在阴影内的角α满足:30150α<<或210330α<<∴满足题意的角α为:{}{}30360150360210360330360k k k k αααα+⋅<<+⋅⋃+⋅<<+⋅{}{}302180150218021021803302180k k k k αααα=+⋅<<+⋅⋃+⋅<<+⋅{}()(){}3021801502180302118015021180k k k k αααα=+⋅<<+⋅⋃++⋅<<++⋅{}30180150180n n αα=+⋅<<+⋅,k Z ∈,n Z ∈本题正确结果:{}30180150180,n n n Z αα+⋅<<+⋅∈ 【题组四 象限的判断】1.(2020·广东高一期末)下列各角中,与2019°终边相同的角为( ) A .41° B .129°C .219°D .﹣231°【正确答案】C【详细解析】因为20195360219=⨯+,所以219与2019°终边相同.故选:C. 2.(2020·湖南隆回·高一期末)下列各角中,与60终边相同的角为( )A .30B .120C .420D .300【正确答案】C【详细解析】与60终边相同的角的集合是{}60360,k k Z αα=+⋅∈,当1k =时,420α=.故选:C 3.(2020·河南项城市第三高级中学高一月考)设2α是第一象限角,且cos cos αα=-,则α是第( )象限角 A .一 B .二C .三D .四【正确答案】B【详细解析】∵2α是第一象限角,∴360903602k k α︒<<︒+︒,k Z ∈,∴720180720k k α︒<<︒+︒,k Z ∈,∴α为第一象限角或第二象限角或终边在y 轴正半轴上的轴线角, ∵cos cos αα=-,∴cos 0α<,∴α是第二象限角.故选:B .4.(2020·辉县市第二高级中学高一期中)角–2α=弧度,则α所在的象限是( ) A .第一象限 B .第二象限C .第三象限D .第四象限【正确答案】C【详细解析】角–2α=弧度,2(,)2ππ-∈--,∴α在第三象限,故选:C .5.(2020·全国高一课时练习)若θ=-5,则角θ的终边在( ) A .第四象限 B .第三象限 C .第二象限 D .第一象限【正确答案】D【详细解析】2π-5与-5的终边相同,∵2π-5∈0,2π⎛⎫⎪⎝⎭,∴2π-5是第一象限角,则-5也是第一象限角. 故选:D6.(2020·浙江高一课时练习)若θ是第四象限角,则角2θ的终边在( ) A .第一象限 B .第一或第三象限 C .第四象限D .第二或第四象限【正确答案】D【详细解析】取80θ=-︒,则402θ=-︒,在第四象限;取320θ=︒,则1602θ=︒,在第二象限.故选:D .7.(2020·浙江高一课时练习)试求出终边在如图所示阴影区域内的角的集合.【正确答案】222,34k k k Zππβπβπ⎧⎫-++∈⎨⎬⎭⎩.【详细解析】因为42233πππ+=,所以43π的终边与23π-的终边相同,则终边在题图所示阴影区域内的角的集合为222,34k k k Zππβπβπ⎧⎫-++∈⎨⎬⎭⎩.8.(2020·上海高一课时练习)用弧度制写出终边在阴影部分的角的集合:(1)(2)【正确答案】(1)222,43k k k Zπαπαππ⎧⎫+<+∈⎨⎬⎩⎭;(2),6k k k Zπαπαπ⎧⎫+∈⎨⎬⎩⎭【详细解析】(1)边界对应射线所在终边的角分别为222,() 43k k k Zππππ++∈,所以终边在阴影部分的角的集合为222,43k k k Zπαπαππ⎧⎫+<+∈⎨⎬⎩⎭(2)边界对应射线所在终边的角分别为222,2,()667k k k k k Z πππππππ+++∈,, 所以终边在阴影部分的角的集合为722,22,66k k k Z k k k Z ππαπαπαππαπ⎧⎫⎧⎫≤+∈⋃+≤+∈⎨⎬⎨⎬⎩⎭⎩⎭=,6k k k Z παπαπ⎧⎫+∈⎨⎬⎩⎭【题组五 扇形】1.(2020·山东潍坊·高一期末)已知某扇形的半径为4cm ,圆心角为2rad ,则此扇形的面积为( ) A .232cm B .216cmC .28cmD .24cm【正确答案】B【详细解析】由题意,某扇形的半径为4cm ,圆心角为2rad , 根据扇形的面积公式,可得22211241622S r cm α==⨯⨯= 所以此扇形的面积为216cm .故选:B. 2.(2020·江西省铜鼓中学高一期末)一个扇形的圆心角为150°,面积为53π,则该扇形半径为( )A .4B .1C D .2【正确答案】D【详细解析】圆心角为51506πα==,设扇形的半径为R ,2215152326S R R ππα=⋅⇒=⨯, 解得2R =.故选:D3.(2020·武威第八中学高一期末)已知扇形的周长为8cm ,圆心角为2弧度,则该扇形的面积为( ) A .24cm B .26cmC .28cmD .216cm【正确答案】A【详细解析】设此扇形半径为r ,扇形弧长为l=2r 则2r +2r =8,r=2,∴扇形的面积为12l r=224r cm =故选A 4.(2020·辉县市第二高级中学高一期中)已知扇形的圆心角为2,周长为8,则扇形的面积为( ) A .2 B .4C .8D .16【正确答案】B【详细解析】设该扇形的半径为r ,弧长为l ,则2lr =,且28l r +=,所以有42l r =⎧⎨=⎩,所以,该扇形的面积为142S lr ==.故选:B. 5.(2020·河南宛城·南阳中学高一月考)中国传统扇文化有着极其深厚的底蕴.一般情况下,折扇可看作是从一个圆面中剪下的扇形制作而成,设扇形的面积为1S ,圆面中剩余部分的面积为2S ,当1S 与2S 的比值为12时,扇面看上去形状较为美观,那么此时扇形的圆心角的弧度数为( )A .(3πB .1)πC .1)πD .2)π【正确答案】A【详细解析】1S 与2S 所在扇形圆心角的比即为它们的面积比,设1S 与2S 所在扇形圆心角分别为,αβ,则αβ=,又2αβπ+=,解得(3απ=- 故选:A6.(2020·永昌县第四中学高一期末) 如图,已知扇形AOB 的圆心角为120°,半径长为6,求弓形ACB 的面积.【正确答案】12π-【详细解析】∵120°=π=π,∴l =6×π=4π,∴AB 的长为4π.∵S 扇形OAB =lr =×4π×6=12π,如图所示,作OD ⊥AB ,有S △OAB =×AB ×OD =×2×6cos 30°×3=9.∴S 弓形ACB =S 扇形OAB -S △OAB =12π-9.∴弓形ACB 的面积为12π-9.【题组六 生活中实际】 1.(2020·全国高一课时练习)将时钟拨快20分钟,则分针转过的度数是________.【正确答案】-120°【详细解析】将时针拨快20分钟,则分针顺时针转过120︒,即转过的度数为120-︒故正确答案为:120-︒ 2.(2020·全国高一课时练习)已知α=30°,将其终边按逆时针方向旋转三周后的角度数为________.【正确答案】1110°【详细解析】一个角为30,其终边按逆时针方向旋转三周后的角的度数为:3603301110︒⨯+︒=︒. 故正确答案为:1110︒.3.(2020·全国高一课时练习)写出下列说法所表示的角.(1)顺时针拧螺丝2圈;(2)将时钟拨慢2小时30分,分针转过的角.【正确答案】(1)-720°;(2)900°.【详细解析】(1)顺时针拧螺丝2圈,即旋转了2360=720⨯︒︒,顺时针旋转得到的角为负角,故转过的角是720-︒; (2)拨慢时钟需将分针按逆时针方向旋转,时针拨慢2小时30分,是2.5周角,角度数是2.5360900⨯︒=︒;又分针是逆时针旋转,转过的角是900︒.4.(2020·浙江高一课时练习)在一昼夜中,钟表的时针和分针有几次重合?几次形成直角?时针、分针和秒针何时重合?请写出理由.【正确答案】正确答案见详细解析.【详细解析】时针每分钟走0.5°,分针每分钟走6°,秒针每分钟走360°,(1)一昼夜有24601440⨯=(分钟), 时针和分针每重合一次间隔的时间为36060.5-分钟, 所以一昼夜时针和分针重合14402236060.5=-(次).(2)假设时针不动,分针转一圈与时针两次形成直角,但一昼夜时针转了两圈,则少了4次垂直,于是时针和分针一共有242444⨯-=(次)形成直角.(3)秒针与分针每重合一次间隔的时间为3603606-分钟,由3603606-和36060.5-的“最小公倍数”为720,而720分钟=12小时,所以一昼夜只有0:00与12:00这两个时刻“三针”重合.。
高一上学期数学期末考测试卷(基础)(解析版)--人教版高中数学精讲精练必修一

3 5
,
sin
3π 4
5 13
3π 4
π 4
π 2
,则
sin
的值为
.
【答案】 56 65
【解析】∵ π 3π , 0 π ,∴ π π 0 , 3π 3π π ,
4
4
4
24
44
∴
sin
π 4
1
cos2
π 4
4 , 5
cos
3π 4
1 sin2
3π 4
A.1
B. 0
C. 3
D. 3
【答案】AC
【解析】由于命题 p : x R , x2 2x 2 a 0 为真命题,则 22 4 2 a 4a 4 0 ,解得 a 1.
符合条件的为 A、C 选项.故选:AC.
10.(2023·全国·高一专题练习)已知不等式
ax2
bx
c
0
的解集为
所以 CD 选项符合,AB 选项不符合.
故选:CD
12.(2023·辽宁大连 )下列结论正确的有( )
A.函数 f (x) ax ax (a 0 且 a 1) 是奇函数;
B.函数 f (x) loga (2x 1) 1(a 0 且 a 1) 的图像恒过定点 1,1 ;
C. f (x) log2 (x2 mx 1) 的定义域为 R,则 m (, 2) (2, ) ; D. f (x) log2 (x2 mx 1) 的值域为 R,则 m (, 2] [2, ) . 【答案】ABD 【解析】函数 f (x) ax ax (a 0 且 a 1) 的定义域为 R,
【答案】(1),1∪2, ;
(2)答案见解析;
(3) ,2 2 3 .
高一数学上册精练调研考试题10

数学基础知识复习数学精练 (10)1.设全集{}1,2,3,4,5,6,7U =,集合{}1,3,5A =,集合{}3,5B =,则 ( )A .U AB =⋃ B .()U UC A B =⋃ C .()U U A C B =⋃D .()()U U U C A C B =⋃2. 已知集合X={0,1},Y={x |x ⊆X},那么下列说法正确的是( ) A .X 是Y 的元素 B.X 是Y 的真子集 C .Y 是X 的真子集 D.X 是Y 的子集3.已知函数)(x f 是定义在实数集R 上的不恒为零的偶函数,且对任意实数x 都有)()1()1(x f x x xf +=+,则)25(f 的值是( ) A. 0 B. 21C. 1D. 254. 如图所示,当0ab >时,函数2()y ax f x ax b ==+与的图象是 ( )5.符合条件{}{},,a P a b c ⊆Ø的集合P 的个数是( )A .4 B. 3 C. 2 D.16.已知⎩⎨⎧>-<+=0404)(x x x x x f ,则)3([-f f ]的值为 ( )A .3B .2C .-2D .-37.若函数()y f x =的定义域是 [0 , 2 ],则函数(2)()1f xg x x =-的定义域是( )A .[0,1] B. [0,1) C .[0,1)⋃(1,4)] D. (0,1)8.若偶函数()f x 在(-∞,-1)上是增函数,则下列关系式中成立的是( )A 、3(2)()(1)2f f f <-<-B 、3()(1)(2)2f f f -<-< C 、3(2)(1)()2f f f <-<- D 、3(1)()(2)2f f f -<-< 9.函数()f x 对于任意的x R∈,都有(1)f x f x +=01()x fx x x ≤≤=-当时,则)(1.5)(f =A 、116B 、18C 、14D 、15-410.如果函数2()2(1)2f x x a x =+-+在区间[)+∞,4 上是递增的,那么实数a 的取值范围是( )A 、a ≤-3B 、a ≥-3C 、a ≤5D 、a ≥5答案CAADB DBAAB。
【高一】2021 2021学年高一数学上册第一次调研考试试题(含答案)

【高一】2021 2021学年高一数学上册第一次调研考试试题(含答案)【高一】2021-2021学年高一数学上册第一次调研考试试题(含答案)2021-2021学年度第一学期一调考试高一年级数学试卷本试卷分第ⅰ卷()和第ⅱ卷(非)两部分,共150分。
考试时间120分钟。
第ⅰ卷(选择题共60分后)一、选择题(每小题5分,共60分.下列每小题所给选项只有一项符合题意,请将正确答案的序号填涂在答题卡上)1.以下关系中,恰当的个数为()①②③④a.1b.2c.3d.42.设全集,则()a.b.c.d.3.已知集合,那么集合为()a.b.c.d.4.下列哪组中的函数与相等()a.,b.,c.,d.,5.以下子集至子集的对应就是态射的共计几个()①a={-1,0,1},b={-1,0,1},;②a={0,1},b={-1,0,1},f:;③a=r,b=r,;④,,对应关系每一个班级都对应班里的学生a.1b.2c.3d.46.下列函数在[1,4]上最大值为3的是()a.b.c.d.7.已知函数则为()a.b.c.d.8.下列结论正确的是()a.函数就是偶函数b.函数在上就是减至函数c.函数在r上是减函数d.函数是奇函数9.若函数的值域为子集p,则以下元素中不属于p的就是()a.2b.c.d.10.未知a、b两地距离150千米,某人上开汽车以60千米/小时的速度从a地抵达b 地,在b地逗留1小时后再以50千米/小时的速度回到a地,把汽车返回a地的距离x则表示为时间t(小时)的函数表达式就是()a.b.c.d.11.已知函数,若,则()a. b.c. d.的大小不能确定12.定义在r上的偶函数在[0,7]上就是减至函数,在就是增函数,又,则()a.在是增函数,且最大值是6b.在是减函数,且最大值是6c.在就是增函数,且最小值就是6d.在就是减至函数,且最小值就是6第ⅱ卷(非选择题共90分)二、题(每题5分后,共20分后.把答案填上在答题纸的横线上)13.已知是定义在r上的偶函数,且当时,,则时,=_______________________.14.已知x[0,1],则函数y=的值域是.15.若函数就是偶函数,则f(x)的递增区间就是.16.若函数满足下列性质:(1)定义域为r,值域为;(2)图象关于对称;(3)对任一,若,都存有请写出函数的一个解析式(只要写出一个即可)。
高一数学集合的基本运算精练题目

高一数学集合的基本运算精练题目考点一 交集1. 设集合A {}3,5,6,8=,集合B {}4,5,7,8=,则AB 等于( )A .{}5,8B .{}3,,6C .{}4,7D .{}3,5,6,82. 已知集合{|||2}A x x =<,{2,0,1,2}B =-,则AB =A .{0,1}B .{–1,0,1}C .{–2,0,1,2}D .{–1,0,1,2}3. 已知集合{}2160A x x =-<,{}2430B x x x =-+<,则AB =( )A .{}34x x << B .{}44x x -<< C .{}13x x <<D .{}41x x -<<4. 已知集合{|10}A x x =-≥,{0,1,2}B =,则AB =A .{0}B .{1}C .{1,2}D .{0,1,2}5. 已知集合{}|12M x x =-<<,{}|13N x x =≤≤,则MN =( )A .(]1,3-B .(]1,2-C .[)1,2D .(]2,36. 设集合2{|430}A x x x =-+<,{|230}B x x =->,则AB =( )A .3(3,)2-- B .3(3,)2-C .3(1,)2D .3(,3)27. 已知集合103x A xx ⎧⎫-=≤⎨⎬+⎩⎭,{}2B x x =<,则A B =( ).A .{}21x x -<< B .{}32x x -<< C .{}21x x -<≤ D .{}21x x -≤≤8. 已知集合{2,1,0,1,2}A =--,{(1)(2)0}B x x x =-+>,则AB 的子集个数为( )A .2B .4C .6D .89. 已知集合22{(,)|1}A x y x y =+=,{(,)|}B x y y x ==,则AB 中元素的个数为A .3B .2C .1D .010. 已知集合2{|560}A x x x =-+≤,{|15}B x Z x =∈<<,则AB =( )A .[2,3]B .(1,5)C .{}2,3D .{2,3,4}11. 设集合{}2|340A x Z x x =∈--≤,{}|21B x x =-<,则AB =( )A .{1,0,1,2}-B .[1,2)-C .{1,0,1}-D .[1,2]-12. 设集合{1,2,4}A =,2{|40}B x xx m =-+=,若A B ={1},则B =A .{1,3}-B .{1,0}C .{1,3}D .{1,5}13. 已知集合{1,2,3,4},{|32},A B y y x x A ===-∈,则A B =A .{1}B .{4}C .{1,3}D .{1,4}14. 设集合2{|430}A x xx =-+<,{|230}B x x =->,则=A BA .3(3,)2-- B .3(3,)2- C .3(1,)2D .3(,3)2考点二 并集15. 若集合{}22A x x =-<≤,{}13B x x =-≤<,则AB =( )A .[)2,3-B .(]1,2-C .(]2,2-D .()2,3-16. 已知集合,,则A .B .C .D .17. 已知集合{22}A xx =-<<∣,若A B A ⋃=,则B 可能是( ) A .{}1,1- B .{}2,3C .[)1,3-D .[]2,1--18. 满足条件{}{}1,31,3,5A ⋃=的所有集合A 的个数是 ( )A .1B .2C .3D .419. 已知集合{|11}P x x =-<<,{|02}Q x x =<<,那么PQ =A .(1,2)-B .(0,1)C .(1,0)-D .(1,2)20. 已知集合2{|1}P x x ==, 2{|0}Q x x x =-=,那么PQ =( )A .{1,1}-B .{1}C .{1,0,1}-D .{0,1}21. 已知集合{}*220A x N x x =∈-++≥,则满足条件A B A ⋃=的集合B 的个数为( )A .3B .4C .7D .822. 设集合2{|}M x x x ==,{|0}1xN x x =<-,则(M N ⋃= ) A .[]0,1 B .(]0,1 C .[)0,1D .(],1-∞23. 集合{}21,M y y x x R ==+∈,{}25,N y y x x R ==-∈,则M N ⋃=______.考点三 补集与全集{1,}A =2,3{|(1)(2)0,}B x x x x =+-<∈Z A B ={1}{12},{0123},,,{10123}-,,,,24. 已知集合2{20}=-->A x x x ,则A =RA .{12}-<<x xB .{12}-≤≤x xC .{|1}{|2}<->x x x xD .{|1}{|2}-≤≥x x x x25. 已知全集{1,2,3,4,5}U =,{1,3}A =,则A .∅B .{1,3}C .{2,4,5}D .{1,2,3,4,5}26. 设集合{}0,1,2,3U =,集合{}2|0A x U x mx =∈+=,若{}1,2U C A =,则实数m =_____.27. 已知全集{}{}2{2,3,23},1,2,3U U a a A a C A a =+-=+=+,则a 的值为__________28. 设全集{}22,3,3U a a =+-,集合{},3A a =,{}2U C A =,则a =___________.考点四 集合运算综合运用29. 设全集为R ,集合{02}A x x =<<,{1}B x x =≥,则()=R ABA .{01}x x <≤B .{01}x x <<C .{12}x x <≤D .{02}x x <<30. 已知全集{}1,2,3,4,5,6,7,8U =,集合{}2,3,5,6A =,集合{}1,3,4,6,7B =,则集合UAB =A .{}2,5B .{}3,6C .{}2,5,6D .{}2,3,5,6,831. 已知集合2{|20}A x x x =--<,{|11}B x x =-<<,则A .AB B .B AC .A B =D .A B =∅=UA32. 已知集合{}3|0|31x M x N x x x +⎧⎫=<=≤-⎨⎬-⎩⎭,,则集合 {}|1x x ≥=( ) A .M N ⋂ B .M N ⋃C .()RM N ⋂D .()RM N ⋃33. 已知集合22{(,)1,,}A x y x y x y =+≤∈Z ,{(,)||2,||2,B x y x y =≤≤,}x y ∈Z ,定义集合12121122{(,)(,),(,)}A B x x y y x y A x y B ⊕=++∈∈,则A B ⊕中元素的个数为A .77B .49C .45D .3034. 设集合{1,2,6}A =,{2,4}B =,{|15}C x x =∈-R ≤≤,则()AB C =A .{2}B .{1,2,4}C .{1,2,4,6}D .{|15}x x ∈-R ≤≤35. 已知集合{|1}A x x =<,{|31}xB x =<,则A .{|0}AB x x =< B .A B R =C .{|1}A B x x =>D .A B =∅36. 已知集合{|(3)(1)0}A x x x =-+>,{1|1}B xx =->‖,则()R C A B ⋂=( ) A .[1,0)(2,3]- B .(2,3] C .(,0)(2,)-∞+∞ D .(1,0)(2,3)-37. 已知全集{}1,0,1,2,3,4U =-,集合{}|1,=≤∈A x x x N ,{}1,3B =,则()UB A =( )A .{}4B .{}2,4C .{}1,2,4-D .{}1,0,2,4-38. 已知全集{}0,1,2,3,4,5,6U =,集合{}0,1,3,5A =,{}2,3,6B =,则()UA B ⋃=( )A .{}3B .{}0,1,3,4C .{}0,1,3,4,5D .{}0,1,2,3,5,639. 已知集合{}{}{}1,2,3,4,5,6,72,3,4,52,3,6,7U A B ===,,,则C U BAA .{}1,6B .{}1,7C .{}6,7D .{}1,6,740. 已知全集U =R ,{|||}A x x x =>,101B x x ⎧⎫=<≤⎨⎬⎩⎭,则集合()UA B 等于( )A .{|0}x x ≥B .{|1}x x ≤C .{|01}x x ≤≤D .{|01}x x ≤<41. 设U R =,集合102x A x Rx ⎧⎫-=∈⎨⎬-⎩⎭,{|02}B x R x =∈<<,则()(U A B ⋂= ) A .(]1,2 B .[)1,2 C .()1,2D .[]1,242. 已知全集U=R ,则正确表示集合M= {-1,0,1} 和N={ x |x +x=0} 关系的韦恩(Venn)图是( )A .B .C .D .43. 已知集合{}()(){}2,1,0,1,|120A B x x x =--=-+≤,则 ( )A .{}2,1,0,1AB ⋂=-- B .{}2,1,0,1A B ⋃=--C .{}1,0,1A B =-D .{}|21A B x x ⋃=-≤≤44. 已知集合2{20},{12}P x x x Q x x =-=<≥≤,则()R P Q =A .[0,1)B .(0,2]C .(1,2)D .[1,2]45. 已知M ,N ,P 为全集U 的子集,且满足M P N ⊆⊆,下列结论不正确的是( )(多选).A .UUN P ⊆B .()UM N =∅C .()UP M =∅D .UUP M ⊆考点五 求参数46. 已知集合{}2|3210A x x x =--≤,{}|23B x a x a =<<+,若AB =∅,则实数a 的取值范围是( ) A .101,,32⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭ B .101,,32⎛⎤⎡⎫-∞-⋃+∞ ⎪⎥⎢⎝⎦⎣⎭ C .()1,2,6⎛⎫-∞-⋃+∞ ⎪⎝⎭D .[)1,2,6⎛⎤-∞-⋃+∞ ⎥⎝⎦47. 若不等式组2142x a x a ⎧->⎨-<⎩的解集非空,则实数a 的取值范围是( )A .()1,3-B .(,1)(3,)-∞-+∞C .()3,1-D .(,3)(1,)-∞-⋃+∞48. 设全集U =R ,已知集合{3A x x =<或}9x ≥,集合{}B x x a =≥.若()UC A B ≠∅,则a 的取值范围为( ) A .3a > B .3a ≤C .9a <D .9a ≤49. 已知集合{},11,P x x R x =∈-<{},1,Q x x R x a =∈-≤且PQ =∅.则实数a 取值范围为A .3a ≥B .1a ≤-C .1a ≤-或3a ≥D .13a -≤≤50. 已知集合{}{}||12A x x a B x x =<=<<,,且()A B ⋃=R R ,则实数a 的取值范围是( )A .1a ≤B .1a <C .2a ≥D .2a >51. 设集合{}{}23,0,3,1A B t t =-=-+,若A B A ⋃=,则t 的值为( )A .1-B .2C .1D .2或1-52. 已知集合A ={x |x 2﹣3x +2≥0},B ={x |x +1≥a },若A ∪B =R ,则实数a 的取值范围是( )A .[2,+∞)B .(﹣∞,2]C .[1,+∞)D .(﹣∞,1]53. 已知全集{|08}U x Z x =∈<≤,集合{|2}(28)A x Z x m m =∈<<<<,若U C A 的元素的个数为4,则m 的取值范围为( ) A .(6,7] B .[6,7) C .[6,7]D .(6,7)54. 若A ={a 2,a +1,﹣3},B ={a ﹣3,2a ﹣1,a 2+1},A ∩B ={﹣3},则a =___.55. 已知集合{}{}1,2,|10A B x mx =-=+=,若A B A ⋃=,则m 的值为__________.56. 已知全集U =R ,集合{}2|450A x x x =--≤,{}|24B x x =≤≤.(1)求()U A C B ⋂;(2)若集合{}|4,0C x a x a a =≤≤>,满足C A A =,C B B =,求实数a 的取值范围.57. 已知602x A xx ⎧⎫-=>⎨⎬-⎩⎭,{}(1)(1)0B x x a x a =---+≤.(Ⅰ)当2a =时,求AB ;(Ⅱ)当0a >时,若A B B ⋃=,求实数a 的取值范围.58. 设集合{}|34A x x =-≤≤,{}|132B x m x m =-≤≤-,(1)当3m =时,求A B ;(2)若A B B =,求实数m 的取值范围.59. 已知集合{}{}222|560,|120A x x x B x x ax a =--==++-=,若BA A ≠.求实数a 的取值范围.60. 设集合()(){}()100M x x a x a =+-≤>,{}24430N x xx =--<.(Ⅰ)若322M N x x ⎧⎫⋃=-≤<⎨⎬⎩⎭,求实数a 的值; (Ⅱ)若()M N =RR ,求实数a 的取值范围.61. 设集合{0,4}A =-,{}22|2(1)10B x x a x a =+++-=,若A B A ⋃=,求实数a 的值.62. 设集合{}2320A x x x =-+=,(){}222150B x x a x a =+++-=.(1)若{}2A B ⋂=,求实数a 的值; (2)若A B A ⋃=,求实数a 的取值范围; (3)若全集U =R ,()UA B A =,求实数a 的取值范围.。
高一数学上学期选科调研考试试题

卜人入州八九几市潮王学校二零二零—二零二壹高一数学上学期选科调研考试试题 考生注意:1.本套试卷分第I 卷(选择题)和第II 卷(非选择题〕两局部,一共150分。
考试时间是是120分钟。
2.请将各题答案填写上在答题卡上。
3.本套试卷主要考试内容:A 必修1第一章、第二章第一节。
第I 卷一、选择题:本大题一一共12小题,每一小题5分,一共60分。
在每一小题给出的四个选项里面,只有一项为哪一项哪一项符合题目要求的。
{314},{120}A x x B x x =-<-<=->,那么A B = A.{5}x x < B.{15}x x << C.{21}x x -<< D.{2}x x <-2.以下函数中,与函数y =x -1是同一函数的是 A.1y x =- B.211x y x -=+C.2y =D.22(1)(1)1x x y x -+=+ ()f x =的定义域为A.(-∞,2]B.[0,2]C.(0,2]D.[2,+∞)1()x x f x e e x-=--的局部图象大致为1)2f x =+,那么A.f(x)=x 2+2x +lB.f(x)=x 2-2x +3(x ≥1) C.f(x)=x 2-2x +lD.f(x)=x 2+2x +3(x ≥1) 1(),0()2,0x x f x ax a x ⎧≤⎪=⎨⎪->⎩是R 上的单调函数,那么a 的取值范围是A.[-l ,0)B.(-l ,0)C.(-∞,0)D.[-l ,+∞)7.函数f(x +1)的定义域为[-2,1],那么函数1()(2)2g x f x x =+--的定义域为 A.[1,4]B.[0,3]C.[1,2)∪(2,4]D.[1,2)∪(2,3]8.f(x),g(x)分别是定义在R 上的偶函数和奇函数,假设f(x)+g(x)=2x +1,那么g(-l)= A.32- B.32C.52D.52- 9.假设函数f(x)=x 2-2ax +1-a 。
高一数学上学期第一次模拟选科调研考试试卷含解析 试题
2021年第一次模拟选科调研制卷人:打自企;成别使;而都那。
审核人:众闪壹;春壹阑;各厅……日期:2022年二月八日。
高一数学考试〔考试时间是是:120分钟试卷满分是:150分〕一、选择题:此题一共12小题,每一小题5分,一共60分.在每一小题给出的四个选项里面,只有一项是哪一项符合题目要求的.1.角的终边上有一点,且,那么〔〕A. 4B. 5C. -4D.【答案】D【解析】【分析】根据三角函数的定义,先计算,再利用余弦函数的定义求出.【详解】因为角的终边上有一点,所以,因为,所以,所以,应选D.【点睛】此题主要考察了任意角余弦函数的定义,解题的关键是正确运用定义,属于根底题.2.集合,,那么〔〕A. B. C. D.【答案】C【解析】【分析】通过解一元一次不等式得到集合,再结合补集的定义即可得最后结果.【详解】由得:,又因为,所以,应选C.【点睛】此题主要考察了一元一次不等式的解法,补集的概念及其运算,纯熟掌握全集与补集的概念是解题的关键,属于根底题.3.函数,假设,那么〔〕A. 2B.C. 8D.【答案】A【解析】【分析】直接将代入函数的解析式,根据指数的运算即可得结果.【详解】∵,∴,解得,应选A.【点睛】此题主要考察了函数值求自变量的值,纯熟掌握指数的意义是解题的关键,属于根底题.4.点在第二象限,那么为〔〕A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】C【解析】【分析】根据点的象限,判断对应坐标的符号,结合角的终边和三角函数的符号进展判断即可.【详解】∵点在第二象限,∴,且,即第三象限角,应选C.【点睛】此题主要考察三角函数值符号的应用,根据点的坐标符号以及三角函数的符号与象限的关系是解决此题的关键.5.函数是〔〕A. 最小正周期为的奇函数B. 最小正周期为的偶函数C. 最小正周期为的奇函数D. 最小正周期为的偶函数【答案】B【解析】【分析】通过诱导公式将函数式进展化简,根据余弦函数的图象和性质可知函数为最小正周期为的偶函数.【详解】∵∴由余弦函数的图象和性质可知函数为最小正周期为的偶函数.应选B.【点睛】此题主要考察了诱导公式的应用,余弦函数的图象和性质,纯熟运用诱导公式是解题的关键,属于根底题.6.设函数,假设,那么的取值范围为〔〕A. B. C. D.【答案】A【解析】【分析】根据对数函数的性质单调递增,,列出不等式,解出即可.【详解】∵函数在定义域内单调递增,,∴不等式等价于,解得,应选A.【点睛】此题主要考察了对数不等式的解法,在解题过程中要始终注意函数的定义域,也是易错点,属于中档题.7.函数,假设,那么〔〕A. 1B. -1C. 3D. -3【答案】C【解析】【分析】将代入可推导出,再将代入,利用整体代换思想即可得最后结果.【详解】∵,,∴,∴,∴,应选C.【点睛】此题考察函数值的求法,是根底题,解题时要认真审题,注意函数性质的合理运用,整体代换思想的应用,属于中档题.8.设函数,假设,那么〔〕A. 3B.C. -3或者1D. 或者1【答案】B【解析】【分析】利用分段函数的解析式,分为和两种情形,分别列出方程求解即可.【详解】根据题意有或者解得,应选B.【点睛】此题考察分段函数函数值问题,分段函数函数值问题和分段函数不等式问题经常出如今选择题中,属于中档题.9.函数的零点在区间上,那么的取值范围为〔〕A. B. C. D.【答案】D【解析】【分析】首先确定函数在上单调递增,根据零点在区间上,可得且,解出不等式即可.【详解】∵函数,在均为递增函数,∴在均为递增函数,∵函数的零点在区间上,∴且,解得,即的取值范围为,应选D.【点睛】此题主要考察了函数的零点,正确把问题等价转化、纯熟掌握根本函数的单调性是解题的关键,属于中档题.10.函数的局部图像大致为〔〕A. B. C. D.【答案】A【解析】【分析】此题主要采用排除法,当时,,可排除B,C选项;当时,,可排除D选项,故可得结果.【详解】∵,当时,,,∴,那么B,C不正确;当时,,,∴,那么D不正确;综上可得选项为A.【点睛】此题考察函数的图象的判断与应用,是中档题;函数解析式,选择其正确图象是高考中的高频考点,主要采用的是排除法,最常见的排出方式有根据函数的定义域、值域、单调性、奇偶性、周期性等性质,同时还有在特殊点处所对应的函数值或者其符号,其中包括等.11.函数,那么〔〕A. 在单调递减B. 的图象关于对称C. 在上的最大值为3D. 的图象的一条对称轴为【答案】B【解析】【分析】由题意利用余弦函数的图象和性质,逐一判断各个选项是否正确,从而得出结论.【详解】当时,,函数先减后增,故A错误;当时,,即的图象关于对称,那么B正确,D错误;当时,,,,即在上的最大值为,那么C错误;应选B.【点睛】此题主要考察余弦型函数的性质之单调性、对称中心、对称轴、最值等,属于中档题.12.函数,是函数的一个零点,且是的一个单调区间,那么的最大值为〔〕A. 18B. 17C. 15D. 13【答案】D【解析】【分析】由可得,结合,得到〔〕,再由是的一个单调区间,可得,即,进一步得到,然后对逐一取值,分类求解得答案.【详解】由题意,得,∴,又,∴〔〕.∵是的一个单调区间,∴,即,∵,∴,即.①当,即时,,,∴,,∵,∴,此时在上不单调,∴不符合题意;②当,即时,,,∴,,∵,∴,此时在上不单调,∴不符合题意;③当,即时,,,∴,.∵,∴,此时在上单调递增,∴符合题意,应选D.【点睛】此题主要考察正弦型函数的单调性,对周期的影响,零点与对称轴之间的间隔与周期的关系,考察分类讨论的数学思想方法,考察逻辑思维才能与推理运算才能,结合选项逐步对系数进展讨论是解决该题的关键,属于中档题.二、填空题:此题一共4小题,每一小题5分,一共20分.13.函数的定义域为________.【答案】【解析】【分析】根据题意,列出不等式组,解出即可.【详解】要使函数有意义,需满足,解得,即函数的定义域为,故答案为.【点睛】此题主要考察了详细函数的定义域问题,属于根底题;常见的形式有:1、分式函数分母不能为0;2、偶次根式下大于等于0;3、对数函数的真数局部大于0;4、0的0次方无意义;5、对于正切函数,需满足等等,当同时出现时,取其交集.14.定义在上的奇函数,当时,,那么________.【答案】-6【解析】【分析】根据奇函数的性质可得,结合,代入函数解析式即可得最后结果.【详解】因为函数为上的奇函数,所以,当时,,所以,故,故答案为.【点睛】此题主要考察了奇函数性质的应用,纯熟掌握对于定义域内任意均有是解题的关键,属于根底题.15.函数的最小值为________.【答案】【解析】【分析】利用换元法,令,,然后利用配方法求其最小值.【详解】令,,那么,当时,函数有最小值,故答案为.【点睛】求与三角函数有关的最值常用方法有以下几种:①化成的形式利用配方法求最值;②形如的可化为的形式性求最值;③型,可化为求最值;④形如可设换元后利用配方法求最值.16.函数〔且〕在上的值域是.假设函数的图象不经过第一象限,那么的取值范围为________.【答案】【解析】【分析】首先根据对数型函数的单调性及值域可求出的值,再结合指数函数图象平移即可得的取值范围.【详解】函数〔且〕在上的值域是当时,单调递减∴,无解当时,单调递增,∴,解得,∵的图象不经过第一象限,∴解得,即的取值范围是,故答案为.【点睛】此题考察了指数函数与对数函数的单调性,考察了数形结合的思想方法、推理才能与计算才能,属于中档题.三、解答题:一共70分.解容许写出文字说明,证明过程或者演算步骤.第17~21题为必考题,每个试题考生都必须答题.第22、23题为选考题,考生根据要求答题.17.集合,.〔1〕当时,求;〔2〕假设,求的取值范围.【答案】〔1〕〔2〕【解析】【分析】〔1〕将代入可得集合,解对数不等式可得结合,结合交集的概念即可得结果;〔2〕由,易得,列出不等式即可得结果.【详解】〔1〕因为,所以,因为,所以.〔2〕因为,所以.因为,,所以.解得.故的取值范围为.【点睛】此题考察了交集及其运算,考察了对数不等式的解法,集合间的互相关系,准确解出对数不等式是解题的关键,属于根底题.18..〔1〕求的值;〔2〕求的值;【答案】〔1〕〔2〕【解析】【分析】〔1〕通过诱导公式将等式化简可得,结合即可得结果;〔2〕根据二次齐次式的特征可将原式化为,结合〔1〕中的结果可得结论.【详解】〔1〕因为,所以.从而,那么.〔2〕.【点睛】此题主要考察同角三角函数关系式的恒等变换,通过诱导公式化简三角函数式,三角函数的值的求法,属于中档题.19.函数,且,,〔1〕求的值;〔2〕求在上的最大值和最小值.【答案】〔1〕6〔2〕3,2【解析】【分析】〔1〕通过可得的值,通过可得的值,进而可得的值;〔2〕将二次函数进展配方可得对称轴为,进而,.【详解】〔1〕因为,所以.因为,所以,即.故.〔2〕由〔1〕可得,那么的对称轴为.所以.因为,.所以.【点睛】此题主要考察了求二次函数的解析式以及二次函数的性质,属于根底题.20.函数的局部图象如下图.〔1〕求的解析式;〔2〕当时,求的值域.【答案】〔1〕〔2〕【解析】【分析】〔1〕观察图像,通过可得的值,通过图象经过点可得的值,通过图象经过点可得的值,进而得到函数的解析式;〔2〕通过的范围求出的范围,结合余弦函数的性质可得值域.【详解】〔1〕因为,所以.因为的图象经过点,所以,即.又,所以.因为的图象经过点,所以,即.故的解析式为.〔2〕因为,所以,从而,故当时,的值域为.【点睛】此题主要考察由函数的局部图象求解析式,理解解析式中的意义是正确解题的关键,属于中档题.为振幅,有其控制最大、最小值,控制周期,即,通常通过图象我们可得和,称为初象,通常解出,之后,通过特殊点代入可得.21.函数.〔1〕当时,求方程的解;〔2〕假设在上有零点,求的取值范围.【答案】〔1〕2〔2〕【解析】【分析】〔1〕将代入即,通过因式分解即可得方程的解;〔2〕设,那么,原题意等价于在上有解,求出的值域即可.【详解】〔1〕当时,.因为,所以,即,解得,即.〔2〕设,那么.在上有零点等价于在上有解,即在上有解.令,那么在上单调递增,所以,.故的取值范围为.【点睛】此题主要考察了指数的运算,换元法在函数中的应用,二次函数的性质,等价转化思想在函数中的应用,属于中档题.22.将函数的图象向左平移个单位长度,再向上平移个单位长度,得到的图象.〔1〕求的单调递增区间;〔2〕假设在上的最大值为,求的取值范围.【答案】〔1〕〔2〕【解析】【分析】〔1〕根据三角函数的平移法那么可得解析式,通过解不等式即可得增区间;〔2〕通过的范围计算出的范围,结合正弦函数的性质原题意等价于,解出即可.【详解】〔1〕由题意得.令,解得.故的单调增区间为.〔2〕由〔1〕知,因为,所以.因为在上的最大值为.所以在上的最大值为.所以,即.故的取值范围为.【点睛】此题主要考察了三角函数图象的平移以及其性质,在平移过程中需注意:〔1〕要弄清楚是平移哪个函数的图象,得到哪个函数的图象;〔2〕要注意平移前后两个函数的名称是否一致,假设不一致,应先利用诱导公式化为同名函数;〔3〕由的图象得到的图象时,需平移的单位数应为,而不是.制卷人:打自企;成别使;而都那。
高一上学期期中考测试卷(提升)(解析版)--人教版高中数学精讲精练必修一
f
x
x2 1, x 1 ax2 x 2, x 1 的最小值是-1,则
实数 a 的取值范围是( )
A.
,
1 12
B.
0,
1 12
【答案】C
C.
1 12
,
D.
1 6
,
【解析】由已知可得 x 1, f x x2 1, 显然 f (x) 在 , 0 上单调递减,在 0,1 上单调递增,所以 f (x) 在 x 0
期中考测试卷(提升)
一、单选题(每题 5 分,每题只有一个选项为正确答案,8 题共 40 分)
1.(2023 秋·江苏南通·高一校考开学考试)设全集U 2,3, m2 m 4 ,集合 A m, 2 ,ðU A = {3},则 m
()
A. 2
B. 2
C. 2
【答案】A
【解析】由题意集合 A m, 2 , ðU A = {3},
2a 1 2 4 2a 1 2 4 4
当且仅当
4 2a 1
a
2
1 2
,即
a
5 2
,b
10 3
时取得等号.
故选:B
7.(2023 秋·陕西榆林
)定义在 R 上的偶函数
f
x
满足:对任意的
x 1
,
x2
0,
(
x1
x2
),都有
f
x2
x2
f
x1
x1
0
,且
f
3
0
,则不等式 2x
1
f
x
0
的解集是(
)
A.
三、填空题(每题 5 分,4 题共 20 分)
13.(2023 秋·高一单元测试)已知集合 A {x | 0 x a} ,集合 B {x | m2 2 x m2 4},如果命题
高一上学期数学期末考测试卷(提升)(解析版)--人教版高中数学精讲精练必修一
的值可以是(
)
A.3
B.4
C.5
D. 16 3
【答案】BC
【解析】作出函数 f x 的图象,如图所示,
设 f x1 f x2 f x3 f x4 t , 由图可知,当 0 t 1时,直线 y t 与函数 f x 的图象有四个交点,
交点的横坐标分别为 x1, x2 , x3, x4 ,且 x1 x2 x3 x4 ,
因为
x
0,
π 3
,
2x
π 6
π, 6
5π 6
,函数
y
sint
在
π 6
,
5π 6
上不单调,故
D
错误.
故选:ABC.
10.(2023 秋·江苏南通 )下列命题中,真命题的是( )
A. x R ,都有 x2 x x 1
B.
x 1,
,使得
x
x
4
1
6
.
C.任意非零实数 a,b ,都有 b a 2 ab
f x 在 , 上不具单调性,故 B 错误;
f x 图象与 x 轴只一个交点,即有且只有一个零点,故 C 正确;
令
yቤተ መጻሕፍቲ ባይዱ
0
,解得
x
3 2
,从图象看,
f
(x)
关于
3 2
,
0
对称,下面证明:
由 f x x 1 x 2 ,
得
f
3 2
x
x
1 2
x1 2
,
f
3 2
x
x
1 2
x 1 2
x 1 2
x 1, 2
则
f
3 2
人教版高中数学必修一精品讲义5.4 三角函数的图象与性质(精练)(解析版)
5.4 三角函数的图象与性质【题组一 五点画图】1.(2020·永州市第四中学高一月考)函数1sin y x =-,[]0,2x π∈的大致图像是( )A .B .C .D .【正确答案】B【详细解析】当0x =时,1y =;当2x π=时,0y =;当πx =时,1y =;当3π2x =时,2y =;当2x π=时,1y =.结合正弦函数的图像可知B 正确.故选B.2.(2020·全国高一课时练习)请用“五点法”画出函数1sin 226y x π⎛⎫=- ⎪⎝⎭的图象. 【正确答案】作图见详细解析. 【详细解析】令2X x π=-,则当x 变化时,y 的值如下表:描点画图:这是一个周期上的图像,然后将函数在13,1212ππ⎡⎤⎢⎥⎣⎦上的图像向左、向右平移周期的正整数倍个单位即得1sin 226y x π⎛⎫=- ⎪⎝⎭的图像. 3.(2020·全国高一课时练习)画出下列函数的简图: ( 1)1sin y x =+,[0,2]x π; ( 2)cos y x =-,[0,2]x π.【正确答案】(1)见详细解析(2)见详细解析( 1)按五个关键点列表:描点并将它们用光滑的曲线连接起来( 如图):( 2)按五个关键点列表:描点并将它们用光滑的曲线连接起来( 如图):5.(2020·全国高一课时练习)“五点法”作正弦函数、余弦函数在x ∈[0,2π]上的图象时是哪五个点?【正确答案】正确答案见详细解析. 【详细解析】6.(2020·全国高一课时练习)在同一直角坐标系中,画出函数sin y x =,[0,2]x π,cos y x =,3,22x ππ⎡⎤∈-⎢⎥⎣⎦的图象.通过观察两条曲线,说出它们的异同. 【正确答案】见详细解析【详细解析】可以用“五点法”作出它们的图象,还可以用图形计算器或计算机直接作出它们的图象,图象如图.两条曲线的形状相同,位置不同.【题组二 周期】1.(2020·永昌县第四中学高一期末)函数2cos 53y x π⎛⎫=+ ⎪⎝⎭的最小正周期是( )A .5πB .52πC .2πD .5π【正确答案】D【详细解析】由题意,函数2cos()53y x π=+,所以函数的最小正周期是:2525T ππ==.故选:D . 2.(2020·辽宁沈阳·高一期中)下列函数中最小正周期为π的是( )A .sin y x =B .1sin y x =+C .cos y x =D .tan 2y x =【正确答案】C【详细解析】对A 选项,令32x π=-,则33sin 122f ππ⎛⎫-=-=- ⎪⎝⎭3sin 122f πππ⎛⎫-+=-= ⎪⎝⎭,不满足3322f f πππ⎛⎫⎛⎫-=-+ ⎪ ⎪⎝⎭⎝⎭, 所以sin y x =不是以π为周期的函数,其最小正周期不为π; 对B 选项,1sin y x =+的最小正周期为:2T π=; 对D 选项,tan 2y x =的最小正周期为:2T π=;排除A 、B 、D 故选C3.(2020·河南洛阳·高一期末(文))tan 2y x =的最小正周期是( ) A .2πB .πC .2πD .3π【正确答案】A【详细解析】tan 2y x =的最小正周期是2T π=.故选:A.4.(2020·林芝市第二高级中学高二期末(文))函数()tan 23f x x ππ⎛⎫=+ ⎪⎝⎭的最小正周期是( )A .1B .2C .3D .4【正确答案】B【详细解析】函数()tan 23f x x ππ⎛⎫=+ ⎪⎝⎭的最小正周期是22T ππ==,故选:B . 【题组三 对称性】1.(2019·伊美区第二中学高一月考)函数sin(2)3y x π=+图象的对称轴方程可能是( )A .6x π=-B .12x π=-C .6x π=D .12x π=【正确答案】D【详细解析】函数的对称轴方程满足:()232x k k Z πππ+=+∈ ,即:()212k x k Z ππ=+∈ ,令0k = 可得对称轴方程为12x π= .本题选择D 选项. 2.(2020·山西省长治市第二中学校高一期末(文))函数()sin()4f x x π=-的图像的一条对称轴是( )A .4x π=B .2x π=C .4πx =-D .2x π=-【正确答案】C【详细解析】对称轴穿过曲线的最高点或最低点,把4πx =-代入后得到()1f x =-,因而对称轴为4πx =-,选C .3.(2020·江苏鼓楼·南京师大附中高三其他)曲线()π2sin 04y x ωω⎛⎫=+> ⎪⎝⎭的一个对称中心的坐标为()3,0,则ω的最小值为__________.【正确答案】π4【详细解析】令2sin(3)04πω+=,可得sin(3)04πω+=,3=,4πωπ+∈k k Z +,123ππω=-∈k k Z ,当1,4πω==k 最小故正确答案为:4π【题组四 单调性】 1.下列函数中,在0,2π⎡⎤⎢⎥⎣⎦内是增函数且以π为最小正周期的函数是 ( ) A .|sin |y x = B .tan 2y x =C .sin 2y x =D .cos 4y x =【正确答案】A【详细解析】由于最小正周期等于π,而tan 2y x =的周期为与cos 4y x =的周期为2π,故排除B 、D 两个选项;在0,2π⎡⎤⎢⎥⎣⎦内,sin 2y x =不是增函数,排除选项C,只有|sin |y x =在0,2π⎡⎤⎢⎥⎣⎦内是增函数且以π为最小正周期,故选A.2.(2020·全国高一课时练习)函数()tan 4f x x π⎛⎫=+⎪⎝⎭的单调递增区间为( ) A .(),22k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭B .()(),k k k Z πππ+∈C .()3,44k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭D .()3,44k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭【正确答案】C【详细解析】根据正切函数性质可知,当πππππ242k xk k Z 时,函数()tan 4f x x π⎛⎫=+ ⎪⎝⎭单调递增,即3ππππ44k xk k Z ,故选:C.3.(2020·阜新市第二高级中学高一期末)设函数f ( x )=cos ( x +3π),则下列结论错误的是 A .f( x)的一个周期为−2π B .y=f( x)的图像关于直线x=83π对称 C .f( x+π)的一个零点为x=6πD .f( x)在(2π,π)单调递减 【正确答案】D【详细解析】f ( x )的最小正周期为2π,易知A 正确; f 8π3⎛⎫⎪⎝⎭=cos 8ππ33⎛⎫+ ⎪⎝⎭=cos3π=-1,为f ( x )的最小值,故B 正确; ∵f ( x +π)=cos ππ3x ⎛⎫++⎪⎝⎭=-cos π3x ⎛⎫+ ⎪⎝⎭,∴f ππ6⎛⎫+ ⎪⎝⎭=-cos ππ63⎛⎫+ ⎪⎝⎭=-cos 2π=0,故C 正确;由于f 2π3⎛⎫⎪⎝⎭=cos 2ππ33⎛⎫+ ⎪⎝⎭=cosπ=-1,为f ( x )的最小值,故f ( x )在,2ππ⎛⎫ ⎪⎝⎭上不单调,故D 错误.故选D.4.(2019·四川仁寿一中高三其他(文))已知函数π()sin()0,0||2f x x ωϕωϕ⎛⎫=+><<⎪⎝⎭的最小正周期为π,且关于,08π⎛⎫⎪⎝⎭中心对称,则下列结论正确的是( ) A .(1)(0)(2)f f f << B .(0)(2)(1)f f f << C .(2)(0)(1)f f f << D .(2)(1)(0)f f f <<【正确答案】B【详细解析】根据()f x 的最小正周期为π,故可得2T ππω==,解得2ω=.又其关于,08π⎛⎫⎪⎝⎭中心对称,故可得sin 04πϕ⎛⎫+= ⎪⎝⎭,又0,2πϕ⎛⎫∈ ⎪⎝⎭, 故可得4πϕ=-.则()sin 24f x x π⎛⎫=-⎪⎝⎭. 令222,242k x k k Z πππππ-≤-≤+∈,解得()3,,88x k k k Z ππππ⎡⎤∈-+∈⎢⎥⎣⎦. 故()f x 在3,88ππ⎡⎤-⎢⎥⎣⎦单调递增. 又()3224f f π⎛⎫=- ⎪⎝⎭,且30,?2,14π-都在区间3,88ππ⎡⎤-⎢⎥⎣⎦中, 且30214π<-<,故可得()()()021f f f <<. 故选:B .【题组五 奇偶性】1.(2020·全国高一课时练习)对于函数cos 22y x π⎛⎫=- ⎪⎝⎭,下列命题正确的是( ) A .周期为2π的偶函数 B .周期为2π的奇函数 C .周期为π的偶函数 D .周期为π的奇函数【正确答案】D【详细解析】因为函数cos 2sin22y x x π⎛⎫=-=⎪⎝⎭,2ππ2T ==,且sin2y x =是奇函数,故正确答案为D. 2.(2020·山西省长治市第二中学校高一期末(文))函数()3sin(2)3f x x πϕ=-+,()0,ϕπ∈为偶函数,则ϕ的值为______ 【正确答案】56π【详细解析】因为()3sin(2)3f x x πϕ=-+为偶函数,故y 轴为其图象的对称轴,所以20,32k k Z ππϕπ⨯-+=+∈,故5,6k k Z πϕπ=+∈,因为()0,ϕπ∈,故56πϕ=,故正确答案为:56π.3.下列函数不是奇函数的是 A .y =sin x B .y =sin 2x C .y =sin x +2D .y =12sin x【正确答案】C【详细解析】当x =π2时,y =sin π2+2=3,当x =-π2时,y =sin( -π2)+2=1,∴函数y =sin x +2是非奇非偶函数.4.(2019·陕西高一期末)若函数()[]()3cos 0,223x f x πϕϕπ+⎛⎫=+∈⎪⎝⎭的图像关于y 轴对称,则ϕ=( ) A .34πB .32π C .23π D .43π 【正确答案】B【详细解析】∵函数f (x )=cos (323x πϕ++)=sin 3x ϕ+ (φ∈[0,2π])的图象关于y 轴对称,∴,32k k Zϕππ=+∈,由题知 φ32π=,故选:B .【题组六 定义域】1.(2020·全国专题练习)函数y =的定义域是( )A .{|22,}2x k x k k Z πππ≤≤+∈B .{|,}2x k x k k Z πππ≤≤+∈C .{|,}3x k x k k Z πππ≤≤+∈D .{|,}33x k x k k Z ππππ-≤≤+∈【正确答案】D【详细解析】要使原函数有意义,则2210cos x +≥ ,即122cos x ≥-, 所以2222233k x k k Z ππππ-≤≤+∈,.解得:33k x k k Z ππππ-≤≤+∈,. 所以,原函数的定义域为{|}33x k x k k Z ππππ-≤≤+∈,. 故选D . 2.(2020·内蒙古集宁一中高一期末(理))函数y =的定义域是( )A .()2,266k k k Z ππ⎡⎤⎢⎥⎣⎦π-π+∈ B .()22,333k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦C .()2,233k k k Z 2π2⎡⎤⎢⎥⎣⎦ππ-π+∈ D .()2,233k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦【正确答案】C【详细解析】由2cos 10x +≥得:2222,33k x k k πππ-≤≤π+∈Z .所以函数y =()2,233k k k Z 2π2⎡⎤⎢⎥⎣⎦ππ-π+∈.故选:C. 3.(2020·全国高一课时练习)求函数f ( x )=lgsin x的定义域 .【正确答案】[4,)(0,)ππ--⋃【详细解析】由题意,要使f ( x )有意义,则2sin 0160x x >⎧⎨-≥⎩,由sin 0x >,得22,k x k k Z πππ<<+∈, 由2160x -≥,得44x -≤≤,所以4x π-≤<-或0πx <<所以函数f ( x )的定义域为[4,)(0,)ππ--⋃ 【题组七 值域】1.(2020·重庆高三其他(文))设函数()()cos 03f x x πωω⎛⎫=-> ⎪⎝⎭在0,2π⎡⎤⎢⎥⎣⎦上的值域为1,12⎡⎤⎢⎥⎣⎦,则ω的取值范围为( ) A .24,33⎡⎤⎢⎥⎣⎦B .20,3⎛⎤ ⎥⎝⎦C .2,13⎡⎤⎢⎥⎣⎦D .41,3⎡⎤⎢⎥⎣⎦【正确答案】A【详细解析】因为0,2x π⎡⎤∈⎢⎥⎣⎦,所以,3323x ππππωω⎡⎤-∈--⎢⎥⎣⎦,所以0233πππω≤-≤,解得2433ω≤≤. 故选:A2.(2020·涡阳县第九中学高一月考)cos 6y x π⎛⎫=-⎪⎝⎭在0,2π⎡⎤⎢⎥⎣⎦上的值域为( )A .12⎡-⎢⎣⎦B .12⎡⎢⎣⎦C .1,12⎡⎤⎢⎥⎣⎦D .⎤⎥⎣⎦【正确答案】C 【详细解析】102x π≤≤,663x πππ∴-≤-≤,1cos 126x π⎛⎫∴≤-≤ ⎪⎝⎭即112y ≤≤,故选C .3.函数cos ,,62y x x ππ⎡⎤=∈-⎢⎥⎣⎦的值域是 ______. 【正确答案】[0,1]【详细解析】因为()cos f x x =在[,0]6π-上递增,在[0,]2π上递减,所以()cos f x x =有最大值()0cos01f ==,又因为0,06222f f ππ⎛⎫⎛⎫-==> ⎪ ⎪⎝⎭⎝⎭, 所以()cos f x x =有最小值0,函数()cos ,,62f x x x ππ⎡⎤=∈-⎢⎥⎣⎦的值域是[]0,1.故正确答案为[]0,1. 4.(2020·上海市进才中学高一期末)函数3cos 2,0,32y x x ππ⎛⎫⎡⎤=+∈ ⎪⎢⎥⎝⎭⎣⎦的最小值为________.【正确答案】3-【详细解析】0,2x π⎡⎤∈⎢⎥⎣⎦,42,333x πππ⎡⎤∴+∈⎢⎥⎣⎦,1cos 21,32y x π⎛⎫⎡⎤∴=+∈- ⎪⎢⎥⎝⎭⎣⎦, 3cos 233y x π⎛⎫∴=+≥- ⎪⎝⎭所以函数的最小值为3-.故正确答案为:3-5.(2020·河南宛城·南阳中学高一月考)函数2()sin cos 2f x x x =+-的值域是________ 【正确答案】3[3,]4--【详细解析】22()sin cos 2cos cos 1f x x x x x =+-=-+-,设cos x t =,[]1,1t ∈-,则2213124y t t t ⎛⎫=-+-=--- ⎪⎝⎭, 当12t =时,函数有最大值为34-;当1t =-时,函数有最小值为3-.故函数值域为3[3,]4--.故正确答案为:3[3,]4--.6.(2020·永州市第四中学高一月考)设x ∈(0,π),则f (x )=cos 2x+sinx 的最大值是 . 【正确答案】【详细解析】∵f (x )=cos 2x+sinx=1﹣sin 2x+sinx=﹣+,故当sinx=时,函数f (x )取得最大值为,故正确答案为. 7.(2020·河南林州一中高一月考)函数224sin 6cos 633y x x x ππ⎛⎫=+--≤≤ ⎪⎝⎭的值域________.【正确答案】16,4⎡⎤-⎢⎥⎣⎦【详细解析】224sin 6cos 64(1cos )6cos 6y x x x x =+-=-+-22314cos 6cos 24(cos )44x x x =-+-=--+, 233x ππ-≤≤,1cos 12x ∴-≤≤ ,故231164(cos )444x -≤--+≤,故正确答案为:16,4⎡⎤-⎢⎥⎣⎦ 8.(2020·广东广州·期末)已知函数f ( x )=sin( ωx +ϕ)( ω>0)的图象相邻两对称轴间的距离等于4π,若∀x ∈R .f ( x )≤6f π⎛⎫ ⎪⎝⎭,则正数ϕ的最小值为( ) A .6π B .3π C .23π D .56π 【正确答案】D 【详细解析】依题意得24T π=,所以2T π=,所以22ππω=,所以4ω=, 又对∀x ∈R .f ( x )≤6f π⎛⎫ ⎪⎝⎭,所以直线6x π=是函数()f x 的对称轴, 所以462k ππϕπ⨯+=+,k Z ∈,即6k ϕπ=π-,k Z ∈,又0ϕ>,所以1k =时,ϕ取得最小值56π.故选:D. 【题组八 正切函数性质】1.(2020·山东潍坊·高一期末)若函数()tan (0)4f x x πωω⎛⎫=+> ⎪⎝⎭的最小正周期为π,则( ) A .(2)(0)5f f f π⎛⎫>>- ⎪⎝⎭ B .(0)(2)5f f f π⎛⎫>>-⎪⎝⎭ C .(0)(2)5f f f π⎛⎫>-> ⎪⎝⎭D .(0)(2)5f f f π⎛⎫->> ⎪⎝⎭ 【正确答案】C【详细解析】由题意,函数()tan (0)4f x x πωω⎛⎫=+> ⎪⎝⎭的最小正周期为π, 可得w ππ=,解得1w =,即()tan()4f x x π=+, 令,242k x k k Z πππππ-+<+<+∈,即3,44k x k k Z ππππ-+<<+∈,当1k =时,544x ππ<<,即函数()f x 在5(,)44ππ上单调递增, 又由4(0)(),()()()555f f f f f πππππ=-=-+=, 又由425ππ>>,所以(0)(2)5f f f π⎛⎫>-> ⎪⎝⎭.故选:C. 2.(2020·陕西渭滨·高一期末)函数tan(2)6y x π=-的一个对称中心是( ) A .(,0)12πB .2(,0)3πC .(,0)6πD .(,0)3π【正确答案】AD【详细解析】因为tan()01266f πππ⎛⎫=-= ⎪⎝⎭;24tan()tan 33663f ππππ⎛⎫=-== ⎪⎝⎭;tan 663f ππ⎛⎫== ⎪⎝⎭;当3x π=时, 2362πππ⨯-=. 所以(,0)12π、(,0)3π是函数tan(2)6y x π=-的对称中心.故选:AD 3.(2019·伊美区第二中学高一月考)求函数tan 23x y π⎛⎫=+⎪⎝⎭的定义域和单调区间. 【正确答案】定义域为{|2,}3x x k k Z ππ≠+∈,单调增区间为5{|22,}33x k x k k Z ππππ-<<+∈,无单调减区间. 【详细解析】令,232x k k Z πππ+≠+∈,解得2,3x k k Z ππ≠+∈, 故tan 23x y π⎛⎫=+⎪⎝⎭的定义域为{|2,}3x x k k Z ππ≠+∈; 令,2232x k k k Z πππππ-<+<+∈,解得522,33k x k k Z ππππ-<<+∈, 故tan 23x y π⎛⎫=+ ⎪⎝⎭的单调增区间为5{|22,}33x k x k k Z ππππ-<<+∈, 该函数没有单调减区间.4.(2020·全国高一课时练习)求函数1tan 24π⎛⎫=-+ ⎪⎝⎭y x 的单调区间及最小正周期.【正确答案】32,222ππππ⎛⎫-++⎪⎝⎭k k k Z∈,2Tπ=【详细解析】因为11tan tan2424ππ⎛⎫⎛⎫=-+=--⎪ ⎪⎝⎭⎝⎭y x x,又12242πππππ-+<-<+k x k,k Z∈,解得32222ππππ-+<<+k x k,k Z∈,所以1tan24π⎛⎫=-+⎪⎝⎭y x的单调减区间为32,222ππππ⎛⎫-++⎪⎝⎭k k k Z∈.因为1tan24π⎛⎫=-+⎪⎝⎭y x,所以212ππ==-T.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学基础知识复习
数学精练 (5)
1.满足条件{1,2}{1,2,3,4,5}B的所有集合B的个数为( )
A.2 B.3 C.4 D.8
2.若集合{|1}Xxx,下列关系式中成立的为( )
A.0X B.0X C.X D.0X
3.下列函数中是偶函数,且在(0,1)上为单调递减的函数是( )
A.2xy B.4xy C.21xy D.13yx
4.已知集合2{|1,}MyyxxR,2{|3}NxyxR,则
MN
( )
A.)}1,2(),1,2{( B.]3,1[ C.]3,0[
D.
5.函数222(03)()6(20)xxxfxxxx的值域是( )
A.R B.9, C.8,1 D.9,1
6.设函数()23,(2)()fxxgxfx,则()gx的表达式是( )
A.21x B.21x C.23x D.27x
7.已知集合2{320}Axaxx至多有一个元素,则a的取值范围是
( )
A.98a B.98a或0a C.98a或0a D.98a
8.求函数132)(3xxxf零点的个数为 ( )
A.1 B.2 C.3 D.4
9.若偶函数)(xf在1,上是减函数,则下列关系式中成立的是( )
A.)2()1()23(fff B.)2()23()1(fff
C.)23()1()2(fff D.)1()23()2(fff
10.用min,ab表示,ab两个数中的较小值.设1()min{21,}(0)fxxxx,
则()fx的最大值为( )
A.1 B.1 C.0 D.不存在
11.已知函数f(x)是R上的增函数,A(0,-1)、B(3,1)是其图象上
的两点,那么不等式
|f(x+1)|<1的解集的补集是
( )
A.(-1,2) B.(1,4) C.(-∞,-1)∪[4,+∞) D.(-
∞,- 1]∪[2,+∞)