眼科病床的合理安排模型(09年全国)

合集下载

2009年高教社杯全国大学生数学建模竞赛B题一等奖1

2009年高教社杯全国大学生数学建模竞赛B题一等奖1

承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。

如有违反竞赛规则的行为,我们将受到严肃处理。

我们参赛选择的题号是(从A/B/C/D中选择一项填写):我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):参赛队员(打印并签名) :1.2.3.指导教师或指导教师组负责人(打印并签名):日期: 2009 年 9 月 14 日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):眼科病床的合理安排摘要眼科病床安排问题是一个重要的问题,如果病床安排得不合理,不仅医院资源不能得到有效利用,而且会给病人造成一定得损失,也影响医院的发展。

建立合理的病床安排模型不仅能使医院资源得到有效分配,还能为病人带来方便。

首先,为确定病床安排模型的优劣,我们要建立一个合理的评价指标体系。

从总成本和效率两方面进行综合考虑,建立模型一评价指标模型。

第一个综合指标总成本包括病人在排队系统中等待的损失和医院服务成本,即总成本i i i Q ax by =+;第二个综合指标是用“归一分析法”来分析床位利用效率,其中:=⨯期内床位实际周转次数床位效率指数床位使用率期内床位标准周转次数然后采用模型一的这些指标对该问题的病床安排模型的优劣进行综合评价,得出结论是按照FCFS (First come, First serve )规则安排住院使总成本不断在大幅度增加,床位一直处于低效率运行状态。

数学建模 眼科病床的合理安排问题分析

数学建模  眼科病床的合理安排问题分析

目录摘要 (II)第一章引言 (1)第二章问题分析 (2)2.1问题一分析 (2)2.2问题二分析 (2)2.2.1 模型一的分析 (2)2.2.2 模型二的分析 (2)2.3问题三分析 (3)2.4问题四分析 (3)2.5问题五分析 (3)第三章模型假设 (3)第四章符号说明 (3)第五章模型建立 (4)5.1问题一模型建立 (4)5.2问题二模型建立 (4)5.3问题三模型建立 (10)5.4问题四模型建立 (12)5.5问题五模型建立 (19)第六章模型求解 (21)第七章模型的评价 (24)第八章模型的推广 (25)第九章参考文献 (25)附录 (26)摘要:本文建立了医院病床安排方案的优化模型,并给出了相关算法,最终在讨论分析后,对模型进行了评价和推广。

针对问题一,确定了一套评价指标体系,主要有病人术前准备时间和病床周转次数这两个指标。

术前准备时间由病人(第一次)手术时间与入院时间之差确立;病床周转次数由单位时间内出院的病人数确立。

将病人术前准备时间和病人周转率这两个指标放入指标评价向量里,做为指标评价向量里的元素。

针对问题二,建立了如下两个模型:模型一:通过对数据的统计,观察和分析,发现等待住院病人队列越来越长是由于安排入院时间不合理造成的。

依据加快病人流通速度的原则,尽量减少各类病人术前准备时间,排出在一个星期内每类病人的最佳入院时间表,由最佳入院方案制定决策方案,依照这个决策方案对数据进行安排。

模型一属于经验模型。

原方案的指标评价向量]162,44.2[=m ,模型一建立的指标评价向量]272,89.1[=m ,可看出模型一优于原模型。

模型二:通过动态规划的方法进行模型的建立。

在模型的建立过程中,构造了收益函数)(i i x g ,收益函数)(i i x g 的收益是指能不能很好的解决等待住院病人队列却越来越长这个问题,收益越大,说明)(i i x g 解决此问题的效果越好。

针对问题三,我们根据白内障患者以及他来就诊的时间,建立预测他住院区间的分类策略。

2009年高教社杯全国大学生数学建模竞赛B题一等奖1

2009年高教社杯全国大学生数学建模竞赛B题一等奖1

承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。

如有违反竞赛规则的行为,我们将受到严肃处理。

我们参赛选择的题号是(从A/B/C/D中选择一项填写):我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):参赛队员(打印并签名) :1.2.3.指导教师或指导教师组负责人(打印并签名):日期: 2009 年 9 月 14 日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):眼科病床的合理安排摘要眼科病床安排问题是一个重要的问题,如果病床安排得不合理,不仅医院资源不能得到有效利用,而且会给病人造成一定得损失,也影响医院的发展。

建立合理的病床安排模型不仅能使医院资源得到有效分配,还能为病人带来方便。

首先,为确定病床安排模型的优劣,我们要建立一个合理的评价指标体系。

从总成本和效率两方面进行综合考虑,建立模型一评价指标模型。

第一个综合指标总成本包括病人在排队系统中等待的损失和医院服务成本,即总成本i i i Q ax by =+;第二个综合指标是用“归一分析法”来分析床位利用效率,其中:=⨯期内床位实际周转次数床位效率指数床位使用率期内床位标准周转次数然后采用模型一的这些指标对该问题的病床安排模型的优劣进行综合评价,得出结论是按照FCFS (First come, First serve )规则安排住院使总成本不断在大幅度增加,床位一直处于低效率运行状态。

09B_001

09B_001

0.4472 0.4472 0.4472 0.4472 0.4472
(6) 确定最优向量 Z + 和最劣向量 Z − ,其中为 Z + 同一评价指标的最大归一化值, 而 Z − 为同一评价指标的最小归一化值。 Z + = ( 0.6188 Z = (0.2369

0.4472 0.4472
0.9874 0.0779
5
权重 0.4 0.15 0.3 0.15
代号 X1 X2 X3 X4
X3 12.67 12.51
X4 5.24 8.56
白内障 0.91 白内障 (双眼) 1.04
视网膜疾病 青光眼 外伤
1.28 0.49 0.7
1 1 1
12.54 12.26 1
12.54 10.49 7.04
(3)权向量的确定 运用专家估计法,依各指标对工作效率影响程度重要性给出的最终权重为: W = (0.4, 0.15, 0.3, 0.15) 。 (4)指标的同趋势化 将原始数据指标值进行趋势化变换,把反向指标化为正向指标,对绝对值反 1 向指标使用倒数法 ( ) ,对相对数反向指标使用差值法 (1 − X ) 。这里对 X 3 和 X 4 X 用倒数法,得数据矩阵(倒数乘以 100): 0.91 1 7.8927 19.084 1.04 1 7.9936 11.6822 X = 1.28 1 7.9745 7.9745 0.49 1 8.1566 9.5329 14.2045 0.7 1 100 (5)数据规一化处理 为了消除不同量纲对评价结果的影响, 使评价的多指标在同一个量纲体系 下进行比较, 需对原始数据进行规一化处理。处理的方法为: Z ij = X ij /

医院床位安排

医院床位安排

承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。

如有违反竞赛规则的行为,我们将受到严肃处理。

我们参赛选择的题号是(从A/B/C/D中选择一项填写): B我们的参赛报名号为(如果赛区设置报名号的话):2109547所属学校(请填写完整的全名):盐城师范学院参赛队员(打印并签名) :1. 邵美玲2. 李梅3. 陈蓉蓉指导教师或指导教师组负责人(打印并签名):袁加权日期: 2009 年 9 月 13 日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):B题眼科病床的合理安排摘要本文应用“排队论”对某医院的眼科病床的安排进行分析,用排队论评价指标对医院现有的FCFS排队模型进行评价,在此基础上提出响应比最高者优先排队模型,并验证了此模型的优越性,该模型一方面缩短了病人的等待时间,另一方面提高了医院病床的使用效率。

再进一步地应用此模型,根据当时住院病人及等待住院病人的情况,在病人门诊时即告知其大致入住时间区间。

在住院部周六、周日不安排手术的前提下,我们对模型做了进一步的调整,对医院的手术时间提出了新的调整建议。

在医院病床安排采取各类病人占用病床的比例大致固定的方案的情况下,我们又提出了“最短作业优先”的排队模型,从而使得所有病人在医院内的平均逗留时间(含等待入院及住院时间)最短,从而达到在最短的时间内提供最好的医护服务。

眼科病床合理安排数学建模优秀

眼科病床合理安排数学建模优秀

眼科病床合理安排数学建模优秀眼科病床合理安排摘要本文讨论了病床的合理安排问题,属于优化问题中的排队问题。

我们根据始数据利用EXCEL软件进行了统计分析,得出各类眼科病人的平均等待时间等相关数据信息。

对于问题一,我们综合考虑医院与病人的利益,提出了平均病床周转次数A、病人住院平均等待时间B、等待住院病人队列长度C、等待住院病人队列变化趋势这四项评价指标,用以对病床安排模型的优劣进行评价。

并利用该评价指标体系对医院当前的病床安排模型进行了评价。

对于问题二,我们基于医院的当前情况,以平均病床周转次数A为优化目标,以改进后的优先非抢占排队思想为依据,采用优先级随时间变化的规则来进行病床安排,并根据五类眼科病人的平均住院时间设置了初始优先度值,建立起单目标优化模型一。

我们利用模型一对前来门诊的病人重新进行病床安排,得出了相关结果。

由结果我们可以看出,模型一可以较好的解决医院的等待住院病人队列越来越长的问题。

我们利用问题一里确定的评价指标体系对模型一进行了评价,并将其与医院当前采用的模型进行了对比分析,突显出模型一的优势。

对于问题三,我们根据问题二里得出的病人信息,统计出了各类病人的平均等待时间和等待队列长度,发现在模型一的病床分配方案下,每天门诊总病人数与出院总人数大致平衡。

于是,我们可以根据各类病人的等待时间分布来给出门诊病人的入院时间区间:外伤:1天;视网膜疾病:(10,15)天;青光眼:(7,12)天;白内障单眼:(4,8)天。

白内障双眼病人需视门诊时间而定。

对于问题四,在周六、周日不安排手术的情况下,利用模型一重新对病人进行入院安排,并用评价指标体系对结果进行了评价,发现分配结果并不理想,等待队列长度很长,且等待入院的病人队列会越来越长。

因此,我们认为医院手术时间应该调整,我们建议将白内障双眼病人的手术时间由原来的每周一、周三调整到每周三、周五。

对于问题五,我们利用多服务台排队系统c/来进行求解。

2009数模竞赛 简型层次分析法在眼科病床合理安排评价中的应用

《中国医院管理》第30卷第1期(总第342期)2010年1月医疗管理Yiliaoguanli1问题的提出医院就医排队是当今生活中一个常见的现象,往往也是导致医患矛盾的一根导火线。

长期以来,由于眼科疾病的特殊性及眼科病房相对资源不足,眼科病房的排队就医现象相对较为严重。

如何合理地安排眼科病房的床位,最大限度地减少病人排队就医现象,一直是医院管理决策者所关心的热点问题。

这一问题的核心是首先要建立一套眼科病床合理安排优劣的评价体系[1-2]。

层次分析法(Analytic Hierarchy Process ,简称AHP )[3]是构建评价体系常见的方法,是对一些较为复杂、较为模糊的问题作出决策的简易方法,它特别适用于那些难于完全定量分析的问题。

但它有一个缺点是需构建比较矩阵,且需进行一致性检验,这一般比较困难。

本文基于对各种指标的评价分析,提出建立了简1型层次分析模糊综合评价模型来评价医院眼科病房的合理安排问题。

此模型的优点在于可避免作一致性检验,利用了层次分析法的理论构造了简型层次分析法的决策层对目标层的总排序权重向量计算公式。

2评价指标的分析及建模步骤眼科病床安排模型的最终目的是尽量缩短病人等待住院的时间、充分利用医院的物力和人力资源等。

通常用于综合评价医院医疗服务质量的指标有床位周转率、病床平均工作日、出院者平均住院日、病床使用率等等[4-5]。

一般地,我们可以假设病床目前的使用率为100%,将指标着重定位在等待住院时间最短这一关键点上,并以此为目标建立简型的层次分析综合评价模型。

简型层次分析法的基本步骤包括:(1)建立层次结构模型,一般分为3层,最上面为目标层,最下面为方案层,中间是准则层。

(2)构造比较矩阵,从第二层开始用成对比较矩阵和1-9尺度,确定各准则对于目标层的权重。

(3)计算排序权向量并做一致性检验,并对每个比较矩阵计算最大特征值及其对应的特征向量。

利用一致性指标、随机一致性指标和一致性比率做一致性检验。

数学建模-眼科病床的合理安排

四、符号约定
本文有很多影响该科室病床安排的因素,为了更好地研究此题,需要将所有 的因素和评价指标进行量化,对此,我们将本文常用到的符号(常量和变量)进行 如下定义: Nhomakorabea符号
表示意义
d ij
表示第 i 种病的病人在其手术后住院 j 天的人数
Di
表示医院给出的第 i 种病的病人手术后住院的参考天数
f i1
表示第 i 种病的病人手术后住院的最少天数
问题一:试分析确定合理的评价指标体系,用以评价该问题的病床安排模型 的优劣。
问题二:试就该住院部当前的情况,建立合理的病床安排模型,以根据已知 的第二天拟出院病人数来确定第二天应该安排哪些病人住院。并对所建模型利用 问题一中的指标体系作出全面合理地评价。
问题三:作为病人,自然希望尽早知道自己大约何时能住院。能否根据当时 住院病人及等待住院病人的统计情况,在病人门诊时即告知其大致入住时间区 间。
综上,本文通过模型较好地解决了当前病床安排中两类病人和医院效率之间 的矛盾关系。不仅提高了病人的满意度,也兼顾了医院病床的工作效率。具有极 大的经济价值和社会价值。
关键词: 0-1 规划的思想 eij 指标体系 方差的思想 多目标规划模型
一、问题提出
医院就医排队是大家都非常熟悉的现象,尤其是病床不足时,排队入院这一 问题更是在各家医院普遍存在。为此,某医院眼科想用数学建模的思想对该科室 的病床进行更合理的安排。
该医院眼科门诊每天开放,共有病床 79 张。手术主要分四大类:白内障、 视网膜疾病、青光眼和外伤。白内障手术较简单,且无急症。目前,该院每周一、 三做白内障手术,术前只需准备 1—2 天,且两眼患此病的人大约占 60%,其手 术是周一先做一只,周三再做另一只。外伤疾病通常属于急症,病床有空时立即 安排住院,第二天便可手术。其他眼科疾病比较复杂,大致住院后 2—3 天内便 可接受手术,但术后的观察时间却较长,故此类疾病可根据需要安排手术时间, 且不安排在周一、三。由于特殊急症数量较少,建模时可对此不予考虑。

B题眼科病床地合理安排

眼科病床的合理安排摘要本文是关于某医院眼科门诊对不同病人类型的病床分配问题的研究。

在充分理解题意的基础上,我们提出了合理的假设。

通过对问题的深入分析,我们将本题归结为排队论问题,但由于本问题的限制条件有星期对手术安排的影响,比较特殊,所以我们区别于一般的排队论模型,建立了基于排队论FCFS的改进模型。

问题一是关于评价指标的确定。

我们查阅了与排队论相关的资料,并结合题意,得到了适用于本题的评价指标体系,包括病人等待及逗留时间、等待队长、系统繁忙概率、病人等待概率等指标。

对于问题二。

我们仔细分析了题中给出的病人出入院时间,得到:队长其实一直处于动态稳定的过程当中,但如果医院一开始就按照FCFS的原则进行安排,则不会有虽平衡长达100人左右的等待队长,而且病人普遍等待时间过长(平均约有16天)。

对病人来说,只要等待和逗留时间短,满意度依然是高的,同时会减少等待队长。

所以我们建立了目标为降低病人等待和逗留时间的优化模型,并用mathematic5.0编程用优化模型,不仅可以根据当前情况对第二天入院病人作出安排,还对2008-7-13至2008-9-11间入院并出院的病人进行计算,得到结果比医院的原方案共节省961天,平均每人节省2-3天,优化程度较大。

问题三为提前预计允许服务的任务。

在问题二的基础上,我们只要对用优化模型已经求出的数据进行分类统计,并根据不同情况作出频数图,即可根据当前情况为各种病人提供大致可入院的时间。

问题四为根据增加的限制条件讨论安排方案是否变化的任务。

我们在问题二的基础上增加了周六周日不手术的限制,结果表明手术安排方案不必调整。

问题五为求最优方案的模型。

此问我们建立优化模型的等待时间尽量少的目标函数和限制条件,用lingo求解,但是结果显示无适合解,这说明,如果要分配每类病人的床位数而使等待时间最少,需要增加少量床位(至少3张)。

最后,在评价模型的基础上,我们又提出了两个分别对问题二、五的改进模型和两个分别对问题二、三的改进方向。

眼科病床的合理安排

眼科病床的合理安排徐立周培琦赵汝曜摘要医院的病床合理安排是提高医院资源有效利用率的重要方式之一.首先,我们对数据进行了系统的分析.根据建模需要提取出了四项重要数据:住院日、住院等待日、手术等待日、留院观察日.根据数据将疾病分为五类:白内障(单眼)、白内障(双眼)、外伤、青光眼和视网膜疾病.在此基础上对数据进行分析发现:外伤急症在门诊后不能当天入院治疗,而部分白内障病人入院后,无法及时安排手术,这为我们建立模型指明了方向.针对问题一,参考卫生部《医院管理评价指南(2008版)》,我们引入病床年周转次数、病床使用率、平均住院日三个评价指标,建立评价指标体系,求出病床年年周转次数为26.5次年、病床使用率为100%、平均住院日为9天,发现病床使用率不符合卫生部的参考标准.针对问题二,为了降低病床使用率,我们引入无效住院时间.以病人在医院的无效住院时间最短为目标函数,建立整数规划模型,用LINGO软件编程求解,得到各类病人一周内每天的入院人数.结合评价指标体系,计算出病床使用率为92.4%,平均住院日为5.8天,病床年周转次数为27.7次年,完全符合卫生部的参考标准.针对问题三,对当前各类等待住院病人的数据和当时住院病人情况,在问题二的基础上,得到每天各类病人大致入院时间表.针对问题四,在问题二的基础上,建立整数优化模型,用LINGO软件编程求解,得到将青光眼和视网膜疾病手术时间适当安排到周一进行,以避免这两种病人的拥堵.针对问题五,我们利用多服务台负指数分布排队系统模型,得到平均逗留时间最短的目标函数,利用LINGO软件求解得到各类病人白内障(单)、白内障(双)、视网膜疾病、青光眼、外伤占用病床的比例分别为0.354、0.266、0.139、0.152、0.089.最后,我们对问题二的模型进行了改进,引入出院人数、各类病人的门诊到达人数等随机变量,用计算机仿真的思想对模型二进行改进;对本文的模型和思想进行推广.关键词病床使用率整数规划模型计算机仿真排队系统合理病床安排1.问题重述1.1问题的提出我们考虑某医院眼科病床的合理安排的数学建模问题.该医院门诊每天开放,住院部共有病床79张.该医院眼科手术主要分为四大类:白内障、视网膜疾病、青光眼和外伤,但基于本题的主旨——病床安排考虑,针对住院部而言,手术应当分为白内障(单眼)、白内障(双眼)、外伤、青光眼和视网膜疾病五类.白内障手术较简单,而且没有急症.目前该院是每周一、周三做白内障手术,此类病人术前准备时间只需1、2天,即此为合理术前住院(手术等待)时间.如果是双眼白内障病人则是周一做一只,周三再做一只.外伤通常是急症,也是这几种病中考虑的急症,病床有空时立即安排住院,住院第二天便会安排手术.其他眼科疾病,包括青光眼和视网膜疾病,住院2-3天就可以安排手术,主要是术后观察时间较长.这类疾病可以根据需要安排,一般不安排在周一、周三.由于急症数量较少,故建模中不考虑该类疾病的急症.该医院眼科手术条件比较充分,在考虑病床安排时可不考虑手术条件的限制,但考虑到手术医生的安排问题,通常情况下白内障手术与其他眼科手术(急症除外)不安排在同一天做.当前该住院部对全体非急症病人是按照FCFS(First come, First serve)规则安排住院,但等待住院病人队列却越来越长.1.2问题的要求医院方面希望我们能通过数学建模来帮助解决该住院部的病床合理安排问题,以提高对医院资源的有效利用.有以下问题:(1)试分析确定合理的评价指标体系,用以评价该问题的病床安排模型的优劣.(2)试就该住院部当前的情况,建立合理的病床安排模型,以根据已知的第二天拟出院病人数来确定第二天应该安排哪些病人住院.并对我们的模型利用问题一中的指标体系作出评价.(3)作为病人,自然希望尽早知道自己大约何时能住院.能否根据当时住院病人及等待住院病人的统计情况,在病人门诊时即告知其大致入住时间区间.(4)若该住院部周六、周日不安排手术,重新回答问题二,医院的手术时间安排是否应作出相应调整.(5)有人从便于管理的角度提出建议,在一般情形下,医院病床安排可采取使各类病人占用病床的比例大致固定的方案,试就此方案,建立使得所有病人在系统内的平均逗留时间(含等待入院及住院时间)最短的病床比例分配模型.2.问题分析我们主要针对题目所给的病人信息进行数据分析.题目给出2008年7月13日至2008年9月11日共61天各类病人的情况.表内数据分为三类:已出院病人349例、住院病人79例和等待住院病人102例.通过对349例出院病人的数据分析,我们提炼出一些重要数据.首先我们知道以下公式:住院日出院日期入院日期,=-住院等待日住院日期门诊日期=-手术等待日第一次手术日期入院日期=-留院观察日出院日期第一次手术日期=-白内障(双眼)病人由于要做两次手术,故:留院观察日出院日期第二次手术日期=-然后,我们由公式得到已出院病人各项数据的平均值、取值范围和标准差如下表:通过我们对病人数据的分析,发现了以下问题:(1)外伤.根据题目要求,如果病床有空位时立即安排住院,住院第二天便会安排手术.但根据数据分析:全部的外伤病人均为第二天才安排入院,存在不合理性.(2)白内障.白内障手术只在周一和周三做手术,合理手术等待时间为1-2天.然而数据中发现双眼白内障手术等待时间1-7天不等,单眼白内障手术等待时间1-5天不等,存在不合理性.(3)青光眼及视网膜疾病.这类疾病可以根据需要安排,但不和白内障手术同一天做,即周一、周三不做此类手术.根据数据分析,所有青光眼和视网膜疾病的病人入院后的手术等待时间均为2-3天.且凡是等待三天的病人均分布于周二、周四,即可认为此类手术因为不能与白内障手术同一天做而延误一天.但根据题意,等待2-3天为合理术前等待时间.我们又由79例住院病人和102例等待住院病人数据可知,2008年9月11日当天,该医院79张病床的使用率为100%,病床期望率为229.11%.102例等待住院病人的数据如下表所示:3.模型假设(1)该医院病人充足,一旦有病人出院就会有新的病人入院;(2)将病人留院观察时间设为一个确定值;(3)白内障(双眼)病人只能在周一接受第一次手术,而周三再做另一只;(4)除外伤急症外,每周一、周三只做白内障手术;(5)我们根据该医院眼科住院部共有的病床数量,假设这是一个三级医院.4.模型分析、建立和求解4.1模型一(评价指标体系)4.1.1模型一符号说明p病床使用率T实际占用总床日数,即病人实际使用的床数⨯所有床平均使用的日数,1用来衡量病床的实际使用量T实际开放总床日数,即医院实际开放的总床数⨯所有开放床数的使用2日数,用来衡量医院病床提供量d平均住院日n规定时间内出院人数n年出院人数1t 题目中所给数据的时间长度 mx 规定时间内第m 位病人出院时间 m y 规定时间内第m 位病人入院时间c 病床年周转次数a 平均开放病床数:即实际开放总床日数/本年日历日数(366天) i 病人的种类(1i =表示单眼白内障病,2i =表示双眼白内障病,3i =表示视网膜疾病,4i =表示青光眼疾病)k病人入院后,术前准备的病人种类(1k =表示单眼白内障病,2k =表示双眼白内障病,3k =表示视网膜疾病,4k =表示青光眼疾病) im x 规定时间内第i 种类型中第m 位病人的接受手术时间im z 规定时间内第i 种类型中第m位病人的入院时间k β 第k 类病人的术前准备时间i n 第i 类病人的人数4.1.2评价指标体系的分析与建立从题目中我们了解到该住院部对全体非急症病人是按照FCFS (First come, First serve )规则安排住院的,这就带来了等待住院病人队列越来越长的问题,为了更好的优化模型我们依据第一问的要求我们引入如下评价指标:病床使用率=实际占用总床日数/实际开放总床日数, 即:12366366T p T ⨯=⨯ (1)平均住院日=出院者占用总床日数/出院人数,即:1()nmm m xy d n=-=∑ (2)病床年周转次数=年出院人数/平均开放床位数,即:136679366366n n t c a ⨯==⨯ (3)4.1.3评价指标的计算我们通过数据分析已经知道,在2008年9月11日医院历史整治病人349例(已治愈出院),在医院接受治疗病人79例,已通过门诊诊断,却因为病床限制的等待病人102例.而医院实际开放的总床79张.即当天医院病床使用率为100%.在对数据的进一步挖掘中,我们发现除了外伤急症病人外必须要尽快就医,住院等待时间(住院日期-门诊日期)为1天,其他病人均要等待1天以上.据此可以证明在这60天时间内,医院病床一直处于满负荷状态.所以得出:79366()100%79366p ⨯==⨯病床使用率()9.00286533d =平均住院日136634961)26.5063379366366n a⨯===⨯c(病床年周转次数 我们根据国家卫生部办公厅印发的《医院管理评价指南(2008版)》的通知知道三级医院病床使用率应保持在85%~93%,病床周转次数大于等于19/次年,平均住院日小于等于15天 ,由此与我们计算结果比较得出平均住院日和病床年周转次数符合国家标准,病床使用率不符合,因此我们应该对不符合标准的病床使用率进行优化处理.通过题目所给数据得出为了降低病床使用率,就要有效减小无效住院时间使其尽量接近于零.同时为了提高医院的服务效率我们也应该减小病人的等待住院时间,又因为不同病人入院后等待手术的时间不同,因此我们将病人分为四种类型即:[1]白内障(单)[2]白内障(双)[3]外伤[4]视网膜疾病、青光眼.再由当前该住院部对全体非急症病人按照FCFS (First come, First serve )规则安排住院的模型得出四种类型无效住院时间平均值计算公式如下:[]1()in imim k i ik ixz n βα=--=∑ (4)带入数值计算相关数值如表(4-1)所示.其中根据题目中所个数据得出青光眼和视网膜疾病病人在医院住院等待时间是符合病人住院以后2-3天内就接受手术的要求,因此二者的无效住院等待手术的时间为零.时间,从中我们可以了解到导致病床使用率过高的因素之一就是白内障患者的手术等待时间过长,占用床位所导致的.这也是医院等待住院病人队列却越来越长,服务质量不高的重要原因之一.4.2模型二4.2.1模型二符号说明i 病人的种类(1i =表示单眼白内障病,2i =表示双眼白内障病,3i =表示视网膜疾病,4i =表示青光眼疾病)j 各星期中星期一至星期日的星期数相对应的日期数 ij a 第i 类病人在日期j 时的住院浪费的时间ij x 第i 类病人在日期j时的住院人数4.2.2模型分析由于外伤病人通常属于急症,病床有空时立即安排住院,住院后第二天便会安排手术的特殊性,我们将外伤病人单独考虑,依题意所给数据可知对于外伤病人从7月13日到9月11日61天内前来了56名病人,每天平均有1名病人前来, 每人平均服务时间(住院时间)为7天,也就是说一张病床一周周转一次,所以预留给外伤病人的床位数为7张,这样急症当天入住率可以控制为100%.由此,我们对剩下的72张病床的分配问题做如下分析.因为在病人入院之后还不是立即进行手术有一个手术等待时间,我们通过数据分析得到病人在医院等待手术期间有一个住院时间浪费的问题,因此根据白内障手术较简单,而且没有急症.目前该院是每周一、三做白内障手术,此类病人的术前准备时间只需1、2天.要做双眼是周一先做一只,周三再做另一只.其他眼科疾病比较复杂,有各种不同情况,但大致住院以后2-3天内就可以接受手术的要求求得有关数据,得到病人住院浪费时间表(单位:天),如下:表:所以根据表4.2.3模型建立由问题一中我们得知我们要对模型优化就要减小病人在医院的浪费时间,因此得到如下目标函数:47m in ijij ijax ∑∑以下确定约束条件:因为同一天入院人数要小于等于出院出院人数,得到如下7个限制条件:4134461i i xx x =≤+∑ (5) 4235471i i xx x =≤+∑ (6) 4336411i i xx x =≤+∑ (7) 441314151617371i i xx x x x x x =≤+++++∑ (8)453142431i i xx x x =≤++∑ (9)46111221222324252627441i i xx x x x x x x x x x =≤+++++++++∑ (10)473233451i i xx x x =≤++∑ (11)为了让病人尽快得到治疗,也为了体现治疗的公平性,一周内同一种病人的入院人数应大于等于总人数乘以其在所有病人中的百分比,由此得到如下四个限制条件:74711111jijj i j xk x===≥∑∑∑ (12) 74722111jijj i j xk x ===≥∑∑∑ (13) 74733111jijj i j x k x===≥∑∑∑ (14) 74744111jijj i j xk x===≥∑∑∑ (15)其中由前面数据分析中得到已求出的i k 值如下表:由于我们研究的是医院一周的运作情况,所以入院病人的总数量应该与除去外伤病人占用的床位数相等,即:45446111271111()72iji i i j i i xx x x x====+--+=∑∑∑∑ (16)4.2.4用模型一对问题二求解我们利用lingo 软件对数据进行最优化处理得到结果如下表:由运行结果得出病人住院浪费时间最优解为:47m in 0ijij ijax =∑∑针对问题二结合表4-2、表4-4和表4-6,已知住院日期即可拟出第二天出院病人人数从而确定第二天应该安排住院人数和病人种类.利用评价指标体系对该模型进行评估:病床使用率=实际占用总床日数/实际开放总床日数,即:12366(721)36692.4%36679366T p T ⨯+⨯===⨯⨯平均住院日=出院者占用总床日数/出院人数,即:1()5.8169nii i xy d n=-==∑病床年周转次数=年出院人数/平均开放床位数,即:13663667312 27.72157936679366366366n n t c a ⨯⨯====⨯⨯ 依据第一问所列国家卫生部办公厅印发的《医院管理评价指南(2008版)》的通知的有关数据可以看出所有数据都符合国家标准.通过以上分析可以看出模型得到了优化.因此,我们根据2008年8月30日到2008年9月9日的病人手术信息,计算出病人的出院时间,推算出该时间段内每天的出院人数,即可根据模型确定当天应该安排入院的病人种类和数量,如下表:4.2.5用模型二对问题三求解我们仍然考虑外伤病人当天入院,而其他病人的入院区间求解如下:等待住院的病人统计情况如下表:(表4-8)的思想得到病人大致入住区间,如下表:4.3模型三4.3.1模型三符号说明i 病人的种类(1i =表示单眼白内障病,2i =表示双眼白内障病,3i =表示视网膜疾病,4i =表示青光眼疾病)j 各星期中星期一至星期日的星期数相对应的日期数 ij b 第i 类病人在日期j 时的住院浪费的时间ij y 第i 类病人在日期j时的入院人数4.3.2模型分析与建立我们根据模型二的思想得到病人住院浪费时间表(单位:天),如下:(表4-10)病人出院时间表,如下:目标函数:47m in ijij ijby ∑∑以下确定约束条件:因为同一天入院人数要与出院出院人数相等,得到如下6个限制条件关系式:41341i i y y =≤∑(17)43414546471i i y y y y y =≤+++∑(18)4413141516171i i y y y y y y =≤++++∑(19) 453135363742431i i y y y y y y y =≤+++++∑(20)46111221222324252627441i i y y y y y y y y y y y =≤+++++++++∑(21)4732331i i y y y =≤+∑(22)为了让病人尽快得到治疗,也为了体现治疗的公平性,一周内同一种病人的入院人数应等于总人数乘以其在所有病人中的百分比.由此得到如下四个限制条件.74711111j ij j i j y k y ===≥∑∑∑(23) 74712111j ij j i j y k y ===≥∑∑∑(24) 74713111j ij j i j y k y ===≥∑∑∑(25) 74714111j ij j i j y k y ===≥∑∑∑(26)由于我们研究的是医院一周的运作情况,所以入院病人的总数量因该与除去外伤病人占用的床位数相等即:434444413141516175611127111111()()72ij i i i i i j i i i i y y y y y y y y y y y y ======+-----++--+=∑∑∑∑∑∑(27)4.3.3模型求解我们利用lingo 软件对数据进行最优化处理得到结果,如下表:由运行结果得出病人住院浪费时间最优解为:47m in 0ijij ijby =∑∑将该运行结果与第二问运行结果进行如下分析:从问题二和问题四两个求最小住院浪费时间的最优化值分布可以看出,对于问题二入院人数比较集中的是周一的白内障单眼病人、周六的白内障双眼病人、周六的青光眼病人.对于问题四入院人数比较集中的是周六的白内障单眼病人、周日的白内障双眼病人、周四的视网膜疾病病人.且白内障单眼手术安排在周一和周三做.做双眼是周一先做一只,周三再做另一只.视网膜疾病和青光眼疾病比较复杂,有各种不同情况,但大致住院以后2-3天内就可以接受手术,这类疾病手术时间可根据需要安排,一般不安排在周一、周三.问题四中周六和周日不进行手术,就会导致青光眼和视网膜疾病病人挤压,所以综上所述针对问题四应该将青光眼和视网膜疾病手术时间适当安排到周一进行,以减少这两种病人的拥挤.4.4模型四4.4.1模型四符号说明i c 给第i 种病人安排的病床数n系统的总容量i p 系统的状态概率ρ 服务强度λ 平均到达率 μ 平均服务率i L 第i 类病人的系统服务队长 i w 第i 类病人的系统平均逗留时间4.4.2模型分析与建立有人从便于管理的角度提出建议,在一般情形下,医院病床安排可采取使各类病人占用病床的比例大致固定的方案,我们就此方案,需要建立使得所有病人在系统内的平均逗留时(含等待入院及住院时间)最短的病床比例分配模型.根据排队论知识,得出队长公式为:1101()!()!n c i i i i cn i n ncn i i n c c n L np c n ρρρ--=====∑∑∑(28)又因为病人的逗留时间为:1100()!()!n c i i i i n nci i in i i ic c n c L n w ρρρλλ--====∑∑(29)由模型二的相关数据及问题分析中的数据分析求得病人的平均到达率i λ如下表:由模型二的相关数据及问题分析中的数据分析求得病人的平均到达率为iμ如下表:又因为服务强度i i iλρμ=所以计算得到ρ值表如下表:问题五的目标是为了建立使得所有病人在系统内的平均逗留时间(含等待入院及住院时间)最短的病床比例分配模型,因此我们以平均逗留时间为优化目标构造目标函数,为了区别不同病人优先考虑问题我们引入了权重系数72i c .因此构造目标函数如下:312411223344m in()()()()72727272c c c c w c w c w c w c +++(30)因为总的床位数有限,且外伤的特殊性,依据问题二的分析将外伤病人单独考虑,在问题二的解决过程中求得外伤占用床位数为7,则72n =,由此得到限制条件为:123472c c c c+++=(31)利用lingo软件对数据进行求解得到ic值如下表:由此得到各类病人占用病床的固定比例如下表:5.模型评价5.1模型优点(1)通过模型二的建立能使病床的安排更合理,病床使用率能控制在国家标准内,且外伤病人能够控制在当天入院;(2)应用优化思想,一方面可以有效的解决医院服务系统中人员和设备的配置问题,为医院管理提供可靠的决策依据;并且能找出病人与医院两者之间的平衡点,既减少患者排队等待时间,又不浪费医院人力物力,从而获取最大的社会效益和经济效益;(3)本文采用的数学模型有成熟的理论基础,可信度较高,具有实际的指导意义;建立的数学模型都有相应的专用软件支持,算法简便,编程实现简单,推广容易.5.2模型缺点在假设病人留院观察时间为确定值时,有较大的主观性,但我们对其进行了模型改进.6.模型改进我们用计算机仿真的方法,对模型二进行改进,将病人留院观察时间设为一个不确定值,重新建立模型.首先我们对数据进行分析,如下表:然后针对问题二建立合理的病床安排模型,以根据已知的第二天拟出院病人数来确定第二天应该安排那些病人住院.在我们对该问题及相关数据的分析中,我们发现存在出院人数、各类病人的到达人数等多个随机变量,难于通过建立解析模型求解,于是我们通过计算机仿由于该模型求解过程中需要对每周各天进行区分,所以循环时间以周为单位.每天对各类病人入院人数进行存储,然后归零.通过产生随机出院人数样本值进行每天的循环,优先照顾受外伤的急症病人.考虑到只有周一能做双眼白内障手术以及白内障手术1-2天的合理手术等待时间得出周六和周日优先处理白内障的人的住院等待.通过对530组门诊数据的分析可知,每周白内障病人平均到达数为15.26人,通过对349组出院病人的数据分析可知,平均出院病人为9.00人.故该流程合理,且长期可以解决白内障病人的队列.考虑到周一和周三都能做单眼白内障手术,且单眼白内障病人每周平均到达门诊数为11.48 人,所以长期也可解决长期等待病床问题.考虑到给出数据中青光眼和视网膜疾病的病人2-3天的合理手术等待时间,故将其作为一般疾病,不做任何优先考虑.通过计算机仿真,可以得出一轮试验模拟时间内每天各类病人的入院人数和模拟时间结束时各类病人住院等待的队列长度.7.模型推广(1)整数规划模型是典型的规划模型,在实际生活中有着广泛的使用空间,如企业资金投向、汽车生产与原油采购等资源分配问题;(2)模型建立的思想还可以进一步解决医院门诊系统排队、车辆调度、银行服务排队等方面的规划思想.参考文献[1]姜启源等.数学模型(第三版). 北京:高等教育出版社,2006.[2]薛定宇、陈阳泉.高等应用数学问题的MATLAB求解.北京:清华大学出版社,2004.[3]戴维 R.安德森(David R.Anderson)等.数据、模型与决策.北京:机械工业出版社,2006.[4]魏荣桥.运筹学(第三版).北京:清华大学,2005.[5]罗应婷.spss统计分析.北京:电子工业出版社,2007.[6]卫生部关于印发《医院管理评价指南(2008版)》的通知./publicfiles/business/htmlfiles/mohyzs/s35 85/200806/36242.htm,2009.9.12.[7]袁洪艳.基于排队论的医院全流程排队管理系统的研究.中国知网,2009.9.12.附录1.模型二的lingo程序sets:set1/1..7/:xq;set2/1..4/:hz,K;link(set2,set1):X,A;endsetsdata:k=0.206 0.235 0.289 0.112;A=0 0 3 2 1 0 05 4 3 2 1 0 00 0 0 0 0 0 00 0 0 0 0 0 0;enddatamin=@sum(link(i,j):A(i,j)*X(i,j));@sum(set2(i):X(i,1))<=X(3,4)+X(4,6);@sum(set2(i):X(i,2))<=X(3,5)+X(4,7);@sum(set2(i):X(i,3))<=X(3,6)+X(4,1);@sum(set2(i):X(i,4))<=X(1,3)+X(1,4)+X(1,5)+X(1,6)+X(1,7)+X(3,7);@sum(set2(i):X(i,5))<=X(3,1)+X(4,2)+X(4,3);@sum(set2(i):X(i,6))<=X(1,1)+X(1,2)+X(2,1)+X(2,2)+X(2,3)+X(2,4)+X(2,5 )+X(2,6)+X(2,7)+X(4,4);@sum(set2(i):X(i,7))<=X(3,2)+X(3,3)+X(4,5);@sum(set2(i):@sum(set1(j)|j#le#5:X(i,j)))+@sum(set2(i):X(i,6))-X(1,1) -X(1,2)+@sum(set2(i):X(i,7))=72;@sum(set1(j):X(1,j))>=0.20*@sum(link(i,j):X(i,j));@sum(set1(j):X(2,j))>=0.23*@sum(link(i,j):X(i,j));@sum(set1(j):X(3,j))>=0.25*@sum(link(i,j):X(i,j));@sum(set1(j):X(4,j))>=0.11*@sum(link(i,j):X(i,j));@for(link(i,j):@gin(X(i,j)));end2.模型二的运行结果Global optimal solution found.Objective value: 0.000000Extended solver steps: 30Total solver iterations: 285Variable Value Reduced Cost XQ( 1) 0.000000 0.000000 XQ( 2) 0.000000 0.000000XQ( 3) 0.000000 0.000000 XQ( 4) 0.000000 0.000000 XQ( 5) 0.000000 0.000000 XQ( 6) 0.000000 0.000000 XQ( 7) 0.000000 0.000000 HZ( 1) 0.000000 0.000000 HZ( 2) 0.000000 0.000000 HZ( 3) 0.000000 0.000000 HZ( 4) 0.000000 0.000000 K( 1) 0.1890000 0.000000 K( 2) 0.2510000 0.000000 K( 3) 0.3210000 0.000000 K( 4) 0.1190000 0.000000 X( 1, 1) 13.00000 0.000000 X( 1, 2) 3.000000 0.000000 X( 1, 3) 0.000000 3.000000 X( 1, 4) 0.000000 2.000000 X( 1, 5) 0.000000 1.000000 X( 1, 6) 3.000000 0.000000 X( 1, 7) 0.000000 0.000000 X( 2, 1) 0.000000 5.000000 X( 2, 2) 0.000000 4.000000 X( 2, 3) 0.000000 3.000000 X( 2, 4) 0.000000 2.000000 X( 2, 5) 0.000000 1.000000 X( 2, 6) 14.00000 0.000000 X( 2, 7) 7.000000 0.000000 X( 3, 1) 0.000000 0.000000 X( 3, 2) 0.000000 0.000000 X( 3, 3) 10.00000 0.000000 X( 3, 4) 3.000000 0.000000 X( 3, 5) 3.000000 0.000000 X( 3, 6) 7.000000 0.000000 X( 3, 7) 0.000000 0.000000 X( 4, 1) 3.000000 0.000000 X( 4, 2) 4.000000 0.000000 X( 4, 3) 0.000000 0.000000 X( 4, 4) 0.000000 0.000000 X( 4, 5) 1.000000 0.000000 X( 4, 6) 13.00000 0.000000 X( 4, 7) 4.000000 0.000000 A( 1, 1) 0.000000 0.000000 A( 1, 2) 0.000000 0.000000 A( 1, 3) 3.000000 0.000000A( 1, 4) 2.000000 0.000000 A( 1, 5) 1.000000 0.000000 A( 1, 6) 0.000000 0.000000 A( 1, 7) 0.000000 0.000000 A( 2, 1) 5.000000 0.000000 A( 2, 2) 4.000000 0.000000 A( 2, 3) 3.000000 0.000000 A( 2, 4) 2.000000 0.000000 A( 2, 5) 1.000000 0.000000 A( 2, 6) 0.000000 0.000000 A( 2, 7) 0.000000 0.000000 A( 3, 1) 0.000000 0.000000 A( 3, 2) 0.000000 0.000000 A( 3, 3) 0.000000 0.000000 A( 3, 4) 0.000000 0.000000 A( 3, 5) 0.000000 0.000000 A( 3, 6) 0.000000 0.000000 A( 3, 7) 0.000000 0.000000 A( 4, 1) 0.000000 0.000000 A( 4, 2) 0.000000 0.000000 A( 4, 3) 0.000000 0.000000 A( 4, 4) 0.000000 0.000000 A( 4, 5) 0.000000 0.000000 A( 4, 6) 0.000000 0.000000 A( 4, 7) 0.000000 0.000000Row Slack or Surplus Dual Price1 0.000000 -1.0000002 0.000000 0.0000003 0.000000 0.0000004 0.000000 0.0000005 0.000000 0.0000006 0.000000 0.0000007 0.000000 0.0000008 0.000000 0.0000009 0.000000 0.00000010 1.400000 0.00000011 0.7600000 0.00000012 1.000000 0.00000013 15.32000 0.0000003.模型三的lingo程序sets:set1/1..7/:xq;set2/1..4/:hz,K;link(set2,set1):y,b;endsetsdata:k=0.20 0.23 0.25 0.11;b=0 0 3 2 1 0 05 4 3 2 1 0 00 0 0 0 2 1 00 0 0 0 2 1 0;enddatamin=@sum(link(i,j):b(i,j)*y(i,j));@sum(set2(i):y(i,1))<=y(3,4);@sum(set2(i):y(i,3))<=y(4,1)+y(4,5)+y(4,6)+y(4,7);@sum(set2(i):y(i,4))<=y(1,3)+y(1,4)+y(1,5)+y(1,6)+y(1,7);@sum(set2(i):y(i,5))<=y(3,1)+y(3,5)+y(3,6)+y(3,7)+y(4,2)+y(4,3);@sum(set2(i):y(i,6))<=y(1,1)+y(1,2)+y(2,1)+y(2,2)+y(2,3)+y(2,4)+y(2,5 )+y(2,6)+y(2,7)+y(4,4);@sum(set2(i):y(i,7))<=y(3,2)+y(3,3);@sum(set2(i):@sum(set1(j)|j#le#3:y(i,j)))+@sum(set2(i):y(i,4))-y(1,3) -y(1,4)-y(1,5)-y(1,6)-y(1,7)+@sum(set2(i):y(i,5))+@sum(set2(i):y(i,6) )-y(1,1)-y(1,2)+@sum(set2(i):y(i,7))=72;@sum(set1(j):y(1,j))>=0.20*@sum(link(i,j):y(i,j));@sum(set1(j):y(2,j))>=0.23*@sum(link(i,j):y(i,j));@sum(set1(j):y(3,j))>=0.25*@sum(link(i,j):y(i,j));@sum(set1(j):y(4,j))>=0.11*@sum(link(i,j):y(i,j));@for(link(i,j):@gin(y(i,j)));end4.模型二的运行结果Global optimal solution found.Objective value: 0.000000Extended solver steps: 0Total solver iterations: 18Variable Value Reduced Cost XQ( 1) 0.000000 0.000000 XQ( 2) 0.000000 0.000000 XQ( 3) 0.000000 0.000000 XQ( 4) 0.000000 0.000000 XQ( 5) 0.000000 0.000000 XQ( 6) 0.000000 0.000000 XQ( 7) 0.000000 0.000000HZ( 2) 0.000000 0.000000 HZ( 3) 0.000000 0.000000 HZ( 4) 0.000000 0.000000 K( 1) 0.2000000 0.000000 K( 2) 0.2300000 0.000000 K( 3) 0.2500000 0.000000 K( 4) 0.1100000 0.000000 Y( 1, 1) 0.000000 0.000000 Y( 1, 2) 3.000000 0.000000 Y( 1, 3) 0.000000 3.000000 Y( 1, 4) 0.000000 2.000000 Y( 1, 5) 0.000000 1.000000 Y( 1, 6) 15.00000 0.000000 Y( 1, 7) 0.000000 0.000000 Y( 2, 1) 0.000000 5.000000 Y( 2, 2) 0.000000 4.000000 Y( 2, 3) 0.000000 3.000000 Y( 2, 4) 0.000000 2.000000 Y( 2, 5) 0.000000 1.000000 Y( 2, 6) 0.000000 0.000000 Y( 2, 7) 21.00000 0.000000 Y( 3, 1) 5.000000 0.000000 Y( 3, 2) 11.00000 0.000000 Y( 3, 3) 10.00000 0.000000 Y( 3, 4) 15.00000 0.000000 Y( 3, 5) 0.000000 2.000000 Y( 3, 6) 0.000000 1.000000 Y( 3, 7) 0.000000 0.000000 Y( 4, 1) 10.00000 0.000000 Y( 4, 2) 0.000000 0.000000 Y( 4, 3) 0.000000 0.000000 Y( 4, 4) 0.000000 0.000000 Y( 4, 5) 0.000000 2.000000 Y( 4, 6) 0.000000 1.000000 Y( 4, 7) 0.000000 0.000000 B( 1, 1) 0.000000 0.000000 B( 1, 2) 0.000000 0.000000 B( 1, 3) 3.000000 0.000000 B( 1, 4) 2.000000 0.000000 B( 1, 5) 1.000000 0.000000 B( 1, 6) 0.000000 0.000000 B( 1, 7) 0.000000 0.000000 B( 2, 1) 5.000000 0.000000B( 2, 3) 3.000000 0.000000 B( 2, 4) 2.000000 0.000000 B( 2, 5) 1.000000 0.000000 B( 2, 6) 0.000000 0.000000 B( 2, 7) 0.000000 0.000000 B( 3, 1) 0.000000 0.000000 B( 3, 2) 0.000000 0.000000 B( 3, 3) 0.000000 0.000000 B( 3, 4) 0.000000 0.000000 B( 3, 5) 2.000000 0.000000 B( 3, 6) 1.000000 0.000000 B( 3, 7) 0.000000 0.000000 B( 4, 1) 0.000000 0.000000 B( 4, 2) 0.000000 0.000000 B( 4, 3) 0.000000 0.000000 B( 4, 4) 0.000000 0.000000 B( 4, 5) 2.000000 0.000000 B( 4, 6) 1.000000 0.000000 B( 4, 7) 0.000000 0.000000Row Slack or Surplus Dual Price1 0.000000 -1.0000002 0.000000 0.0000003 0.000000 0.0000004 0.000000 0.0000005 5.000000 0.0000006 9.000000 0.0000007 0.000000 0.0000008 0.000000 0.0000009 0.000000 0.00000010 0.3000000 0.00000011 18.50000 0.00000012 0.1000000 0.0000005.模型改进(计算机仿真算法流程图)5.1变量定义1 2 3 4 1 2 3 4yW W D r r r----------------------一轮试验的预定模拟周数一轮试验的仿真周数累计数一周试验的仿真天数累计数(可根据实际仿真需要与每周各天一一对应)外伤病人排队人数白内障(双眼)病人排队人数白内障(单眼)病人排队人数r青光眼和视网膜疾病病人排队人数s第二天安排外伤病人入院的人数s第二天安排白内障(双眼)病人入院的人数s第二天安排白内障(单眼)病人入院的人数s第二天安排青光眼和视网膜疾病病人入院的人数5.3白内障(双眼)病人子算法流程图5.5青光眼和视网膜疾病病人子算法流程图。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档