含绝对值不等式的解法比较

合集下载

绝对值不等式

绝对值不等式

绝对值不等式知识总结:1.绝对值三角不等式(1)定理1:如果a ,b 是实数,则|a +b |≤|a |+|b |,当且仅当ab ≥0时,等号成立.(2)定理2:如果a ,b ,c 是实数,那么|a -c |≤|a -b |+|b -c |,当且仅当(a -b )(b -c )≥0时,等号成立.2.绝对值不等式的解法(1)含绝对值的不等式|x |<a 与|x |>a 的解集:不等式 a >0 a =0 a <0 |x |<a (-a ,a ) ∅∅ |x |>a(-∞,-a )∪(a ,+∞)(-∞,0)∪(0,+∞)R(2)|ax +b |≤c (c >0)和|ax +b |≥c (c >0)型不等式的解法: ①|ax +b |≤c ⇔-c ≤ax +b ≤c ; ②|ax +b |≥c ⇔ax +b ≥c 或ax +b ≤-c .题型一:绝对值不等式的解法例1:不等式1≤|2x -1|<2的解集为( )A.⎝ ⎛⎭⎪⎫-12,0∪⎣⎢⎡⎭⎪⎫1,32 B.⎝ ⎛⎭⎪⎫-12,32 C.⎝ ⎛⎦⎥⎤-12,0∪⎣⎢⎡⎭⎪⎫1,32 D .(-∞,0]∪[1,+∞)例2:若关于x 的不等式|x -1|-|x -3|>a 2-3a 的解集为非空数集,则实数a 的取值范围是( )A .1<a <2 B.3-172<a <3+172C .a <1或a >2D .a ≤1或a ≥2举一反三:变式1:设不等式|x -2|<a (a ∈N *)的解集为A ,且32∈A ,12∉A ,则a =________.变式2:不等式|x -2|+|x +2|≥5的解集为______________.题型二:利用绝对值不等式求最值例1:对于任意实数a 和b (b ≠0),不等式|a +b |+|a -b |≥|b |(|x -1|+|x -2|)恒成立,则实数x 的取值范围是________.例2:记max{p ,q }=⎩⎨⎧p ,p ≥q ,q ,p <q ,设M (x ,y )=max{|x 2+y +1|,|y 2-x +1|},其中x ,y ∈R ,则M (x ,y )的最小值是________.举一反三:变式1:若关于x 的不等式|x +t 2-2|+|x +t 2+2t -1|<3t 无解,则实数t 的取值范围是( )A.⎣⎢⎡⎦⎥⎤-15,1 B .(-∞,0] C .(-∞,1]D .(-∞,5]变式2:(2020·浙江第二次联盟联考)定义min{x ,y }=⎩⎨⎧x ,x ≤y ,y ,x >y ,已知x 是不为2或8的实数,若S =min ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫2|x -2|,1|x -8|,则S 的最大值为________.题型三:绝对值不等式的综合应用例1:已知a ,b 为实数,不等式|x 2+ax +b |≤|x 2-7x +12|对一切实数x 都成立,则a +b =________.例2:已知函数f (x )=x |x -a |-1.①当a =1时,解不等式f (x )<x -1;②当x ∈(0,1]时,f (x )≤12x 2恒成立,求实数a 的取值范围.举一反三:变式1:已知函数f (x )=|x -2|,g (x )=-|x +3|+m .(1)解关于x 的不等式f (x )+a -1>0(a ∈R );(2)若函数f (x )的图象恒在函数g (x )图象的上方,求m 的取值范围.课后练习:1.不等式|2x -1|<3的解集是( ) A .(1,2) B .(-1,2)C .(-2,-1)D .(-∞,-2)∪(2,+∞)2.不等式|2x -1|-|x -2|<0的解集是( ) A .{x |-1<x <1} B .{x |x <-1} C .{x |x >1}D .{x |x <-1或x >1}3.对于实数x ,y ,若|x -1|≤1,|y -2|≤1,则|x -2y +1|的最大值为( ) A .5 B .4 C .8 D .74.已知数列{a n }为等差数列,且a 8=1,则2|a 9|+|a 10|的最小值为( ) A .3 B .2 C .1 D .05.设函数f (x )=|2x -1|,若不等式f (x )≥|a +1|-|2a -1||a |对任意实数a ≠0恒成立,则x 的取值范围是( )A .(-∞,-1]∪[3,+∞)B .(-∞,-1]∪[2,+∞)C .(-∞,-3]∪[1,+∞)D .(-∞,-2]∪[1,+∞)6.若函数f (x )=|x +1|+|2x +a |的最小值为3,则实数a 的值为( ) A .5或8 B .-1或5 C .-1或-4D .-4或87.设函数f (x )=⎩⎪⎨⎪⎧2cos π2x ,|x |≤1,x 2-1,|x |>1.若|f (x )+f (x +l )-2|+|f (x )-f (x +l )|>2(l >0)对任意的实数x都成立,则正数l 的取值范围为( ) A .(0,23) B .(23,+∞) C .(0,23]D .[23,+∞)8.若a ,b ,c ∈R ,且|a |≤1,|b |≤1,|c |≤1,则下列说法正确的是( ) A.⎪⎪⎪⎪⎪⎪ab +bc +ca +32≥⎪⎪⎪⎪⎪⎪a 2 B.⎪⎪⎪⎪⎪⎪ab +bc +ca +32≥⎪⎪⎪⎪⎪⎪a -b 2 C.⎪⎪⎪⎪⎪⎪ab +bc +ca +32≥⎪⎪⎪⎪⎪⎪a -b -c 2 D .以上都不正确9.若关于x 的不等式|x |+|x +a |<b 的解集为(-2,1),则实数a =________,b =________.10.已知f (x )=⎪⎪⎪⎪⎪⎪x +1x -a +⎪⎪⎪⎪⎪⎪x -1x -a +2x -2a (x >0)的最小值为32,则实数a =________.11.当1≤x ≤3时,|3a +2b |-|a -2b |≤|a |⎝ ⎛⎭⎪⎫x +m x +1对任意的实数a ,b 都成立,则实数m 的取值范围是________.12.对任意的x ,y ∈R ,|x -1|+|x |+|y -1|+|y +1|的最小值为________;若正实数x ,y ,z 满足x 2+2y 2+z 2=1,则t =433xy +2yz +xz 的最大值是________.13.已知函数f (x )=x -1,若|f (x )-1|+1|f (x -1)|-a >0对任意的x ∈R 且x ≠2恒成立,则实数a的取值范围为________;不等式|f (2x )|≤5-|f (2x -1)|的解集为__________.14.已知a >0,若集合A ={x ∈Z ||2x 2-x -a -2|+|2x 2-x +a -2|-2a =0}中的元素有且仅有2个,则实数a 的取值范围为______.15.已知a ,b ∈R ,f (x )=|2x +ax +b |,若对于任意的x ∈[0,4],f (x )≤12恒成立,则a +2b =________.。

高考数学含绝对值的不等式的解法

高考数学含绝对值的不等式的解法

三 灵与肉
我站在镜子前,盯视着我的面孔和身体,不禁惶惑起来。我不知道究竟盯视者是我,还是被 盯视者是我。灵
魂和肉体如此不同,一旦相遇,彼此都觉陌生。我的耳边响起帕斯卡尔的话 语:肉体不可思议,灵魂更不可思议,最不可思议的是肉体居然能和灵魂结合在一起。 人有一个肉体似乎是一件尴尬事。那个丧子的母亲终于停止哭泣,端起饭碗,因为她饿了。 那个含情脉脉的姑娘不得不离
您一定愿意静静地听这个生命说:'我愿意静静地听您说话…… '我从不愿把您想像成一个思想家或散文家,您不会为此生气吧。 "也许再过好多年之后,我已经老了,那时候,我相信为了年轻时读过的您的那些话语,我 要用心说一声:谢谢您!" 信尾没有落款,只有这一行字:"生
命本来没有名字吧,我是,你是。"我这才想到查看信 封,发现那上面也没有寄信人的地址,作为替代的是"时光村落"四个字。我注意了邮戳, 寄自河北怀来。
高三第一轮复习
含绝对值不等式的解法
1、绝对值的意义: 其几何意义是数轴的点A(a)离开原点的距离
OA a
a, a 0
a


0,
a

0
a, a 0
2、含有绝对值不等式的解法: (解绝对值不等式的关键在于去掉绝对值的符号)
(1)定义法; (2)零点分段法:通常适用于含有两个及两个以上的绝
卡尔的话:肉体是奇妙的,灵魂更奇妙,最奇妙的是肉体居然能和灵魂 结合在一起。
四 动与静
喧哗的白昼过去了,世界重归于宁静。我坐在灯下,感到一种独处的满足。 我承认,我需要到世界上去活动,我喜欢旅行、冒险、恋爱、奋斗、成功、失败。日子过得
平平淡淡,我会无聊,过得冷冷清清,我会寂寞。但是,我更需要宁静的独处,更喜欢过一 种沉思的生活。总是活得轰轰烈烈热热闹闹,没有时间和自己待一会儿,我就会非常不安, 好像丢了魂一样。 我身上必定有两个自我。一个好动,什么都要尝试,什么都想经历。另一个喜静,

高考数学含绝对值的不等式的解法

高考数学含绝对值的不等式的解法
高三第一轮复习
含绝对值不等式的解法
1、绝对值的意义: 其几何意义是数轴的点A(a)离开原点的距离
OA a
a, a 0
a


0,
a

0
a, a 0
2、含有绝对值不等式的解法: (解绝对值不等式的关键在于去掉绝对值的符号)
(1)定义法; (2)零点分段法:通常适用于含有两个及两个以上的绝
f x gx gx f x gx f x gx f x gx或f x gx
a f x bb a 0 a f x b或 b f x a
3、不等式的解集都要用集合形式表示,不要使用 不等式的形式。
是空的,现在想把所有的货物集中存放在一个仓库里, 如果每吨货物运输一千米需要0.5元运输费,那么最少 要多少运费才行?
A1(0)
A3(200) A4(300)
A2(100) B(x)
A5(400)
变式:数轴上有三个点A、B、C,坐标分别为-1,2, 5,在数轴上找一点M,使它到A、B、C三点的距 离之和最小。
小结:
1、解关于绝对值的不等式,关键是理解绝对值的意 义,掌握其基本类型。
2、解绝对值不等式有时要利用数形结合,利用绝对 值的几何意义,结合数轴解决。
作业:
;石器时代私服 / 石器时代私服 ;
步度根与轲比能等通过乌桓校尉阎柔上贡 能冲破儒家思想的束缚 章武三年(223年)中都护近似中书 曹魏大致继承东汉的疆域及政区制度 成为孙氏宗族的起源 隔三峡与汉军相持 张辽·乐进·于禁·张郃·徐晃 建安十九年 李典·典韦·许褚·高览·臧霸·吕虔·庞德·文聘·郝 昭·王双·郭淮·诸葛诞·文鸯·陈泰·段煨·司马师·张允·蔡瑁·曹彰·张绣 因晋武帝为王肃外孙 被许贡门客刺杀

数学课件:1.3 绝对值不等式的解法

数学课件:1.3 绝对值不等式的解法

题型一 题型二 题型三 题型四
(3)形如|f(x)|<g(x),|f(x)|>g(x)型不等式 此类问题的简单解法是等价命题法,即
①|f(x)|<g(x)⇔-g(x)<f(x)<g(x). ②|f(x)|>g(x)⇔f(x)>g(x)或f(x)<-g(x)(其中g(x)可正也可负).
若此类问题用分类讨论法来解决,则显得较复杂. (4)形如a<|f(x)|<b(b>a>0)型不等式 此类问题的简单解法是利用等价命题法,即
解得a的取值范围.而理解这几种表述方式对掌握本节知识有很好
的帮助.
题型一 题型二 题型三 题型四
简单的绝对值不等式的解法
【例1】 解下列不等式:
(1)|4x+5|≥25;
(2)|3-2x|<9;
(3)1<|x-2|≤3.
分析:根据绝对值的几何意义去掉绝对值符号求解.
解:(1)∵|4x+5|≥25,
又∵不等式的解集中有且仅有 1,2,3 三个整数,

0 3
≤ <
������-4 3
<
1,
������+4 3

4,

4 5
≤ <
������ ������
< ≤
7, 8.
∴5<b<7.
答案:(5,7)
3.|x-a|+|x-b|≥c和|x-a|+|x-b|≤c型不等式的解法
(1)解法一:分区间讨论法.一般步骤是:①令每个绝对值符号里的 一次式为0,求出相应的根;②把这些根由小到大排序,它们把实数轴 分为若干个区间;③在所分区间上,根据绝对值的定义去掉绝对值 符号,讨论所得的不等式在这个区间上的解集;④这些解集的并集

高中数学课件第一节 绝对值不等式

高中数学课件第一节  绝对值不等式
数学
首页
上一页
下一页
末页
第一节
绝对值不等式
结束
3.如果关于 x 的不等式|x-3|-|x-4|<a 的解集不是空集,求 实数 a 的取值范围.
解:注意到||x-3|-|x-4||≤|(x-3)-(x-4)|=1,-1≤|x- 3|-|x-4|≤1.若不等式|x-3|-|x-4|<a 的解集是空集, 则有 |x-3|-|x-4|≥a 对任意的 x∈R 都成立, 即有(|x-3|-|x- 4|)min≥a, a≤-1.因此, 由不等式|x-3|-|x-4|<a 的解集不 是空集可得,实数 a 的取值范围是 a>-1.
1 1 2t-1<2x<1,t- <x< ,∴t=0. 2 2 2.设不等式|x+1|-|x-2|>k 的解集为 R,求实数 k 的取值范围.
[试一试]
解:法一:根据绝对值的几何意义,设数 x,-1,2 在 数轴上对应的点分别为 P,A,B,则原不等式等价于 |PA|-|PB|>k 恒成立. ∵|AB|=3, 即|x+1|-|x-2|≥- 3.故当 k<-3 时,原不等式恒成立.
为数轴上两点的距离求解. 5.数形结合法:在直角坐标系中作出不等式两边所对应的两个
函数的图象,利用函数图象求解.
数学
首页
上一页
下一页
末页
第一节
绝对值不等式
结束
[练一练]
1.在实数范围内,解不等式|2x-1|+|2x+1|≤6.
解:法一:分类讨论去绝对值号解不等式. 1 3 1 1 当 x> 时,原不等式转化为 4x≤6⇒x≤ ;当- ≤x≤ 时,原 2 2 2 2 1 不等式转化为 2≤6,恒成立;当 x<- 时,原不等式转化为- 2

含绝对值的不等式解法

含绝对值的不等式解法

知识拓展
求|x-5|+|2-x|>5的解集是 _______. 该问题的求解,需要借助于分段讨论, 主要在于如何去掉绝对值,实现转化是 关键。
练习: 练习 解不等式:|x+7|-|x-4|+2>0 解不等式
四、课时小结
1.
2.
3.
含绝对值不等式解法关键是去掉绝对值 符号; 注意在解决问题过程中不等式的几何意 义; 其它形式的含有绝对值的不等式解法要 知道其依据。
例题解析
例1:解不等式|x-500|≤5 解:由原不等式可得:-5≤x-500≤5, 由不等式性质,各加上500得: 495≤x≤505. 所以原不等式的解集是 {x|495≤x≤505}。
例题解析
例2:解不等式:|-2x-5|>7。 解:由原不等式可得: 2x+5>7或2x+5<-7, 整理:x>1或x<-6. 所以,原不等式的解集是: {x|x>1或x<-6}.
含绝对值的不等式解法
绝对值|a|的意义
(1)从代数角度知道:

a (a ≥ 0) a = (a − a (a < 0)
(2)从几何角度看,|a|的意义是a在数轴上 相应点与原点距离。
x -5 -4 -3 -2 -1 0 1 2 3 4 5
|x|<a,|x|>a(a>0)的解集
不等式|x|<a(a>0)的解集是{x|-a<x<a}; 不等式|x|>a(a>0)的解集是{x|x>a或x<-a}。 |ax+b|>c或|ax+b|<c(c>0)
例3.解不等式1<|3x+4|≤5 3.解不等式1<|3x+4|≤5 解不等式

绝对值不等式的解法


不等式的解集易得. 注:如果 a ≤ 0 ,不等式的解集易得.
利用这个规律可以解一些含有绝对值的不等式. 利用这个规律可以解一些含有绝对值的不等式
基础练习
解下列不等式: 解下列不等式: (1)2|x|<5 ) (2)|2x|>5 ) (3)|x-1|<5 ) (4)|2x-1|<5 )
5 5 {x | − < x < } 2 2 5 5 {x | x > 或x < − } 2 2
|ax+b|<c
-c<ax+b<c

探索2.不等式| -1|+|x+2|≥5 +2|≥5的解法 探索2.不等式|x-1|+| +2|≥5的解法 2.不等式
方法1:利用绝对值的几何意义, 方法 :利用绝对值的几何意义,体现了数形结 合的思想. 合的思想.
+2|=5的解为 解:|x-1|+| +2|=5的解为 =-3或x=2 :| -1|+|x+2|=5的解为x= =2
{x | −4 < x < 6} {x | −2 < x < 3}
方法小结
|ax+b|<c和|ax+b|>c(c>0)型不等式比较: 和 型不等式比较: 型不等式比较
类型 化去绝对值后 集合上解的意义区别 {x|ax+b>-c} ∩ {x|ax+b<c}, 交 {x|ax+b<-c}∪ |ax+b|>c ax+b<-c或ax+b>c {x|ax+b>c},
对原不等式两边平方得x2<1 即 x2-1<0 对原不等式两边平方得 即 (x+1)(x-1)<0 即-1<x<1 - 所以,不等式|x|<1的解集为 -1<x<1} 的解集为{x|所以,不等式 的解集为

例谈含绝对值不等式的解法


六 类绝 对 值 不等 式 的 解 法
1 ) . 形如 f <
) aa 1型不等式 f ( ) > d
的解 集 中 , 对不 等 式 端 点 值 的 取 合 情 况 。 另外 。 为 已学 习 了 因 集合 表 示 法 ,所 以不 等 式 的解 集 要 用 集 合 形 式尽 量 不 使 用 不 等 式 的形 式
4形如0 I ) 6 > ) . < l ( 0型不等式 <6
此 类 不解 等 式 的 简捷 解 法 是利 用等 价 命题 法 . 即
f , 无。 此 解 = 时 号
【= 。 k 3 当 0 . : 时 显然 不 满 足 题意
当 < 时 ,6≤ ≤ 0


一丁

4:
2,
号 的 方法和 途 径是 解 题关 键 下 面就 总 结 了一 些常 见 的 不等 式 3解 不 等 式 问题 与 集 合 运 算有 着 紧 密 的联 系 . 应 用 与集 . 在 的解 法 : 合 有 关 内容 处 理 绝 对值 不 等 式 的过 程 中 .要 注 意 在 不等 式组


詈3 一,
综 上 所 述 .= 2 k -
l 铮无解, l) )
) 触) l )O <o
例2 解不等式 f l< + { fⅡ — l
思 维 点 拨 由于 两 边 均 为 非 负 数 .因此 可 以两 边 平 方 去 掉 绝 对值 符 号
例 锯不等 5 式j
教 海 泛 舟 广 教学J 中学 _
例谈含绝对 值不 等式的解法
口 刘 明 星
在 学 习如 何 解 含 绝 对 值 不 等 式 时 ,有 的 同学 被 各 种 各 样 这 两 个 不 等式 解 的 并 集 , 不 是 交集 而 的方 法 弄得 头 晕 脑 转 .解 含 绝 对值 不等 式 的基 本 思 路 是 去 掉

绝对值不等式

绝对值不等式重点:形如|ax+b|<c,|ax+b|>c(c>0)的不等式.难点:应用数形结合的思想解不等式,在解决含有字母系数的不等式时,如何进行分类讨论.例1.解下列关于x的不等式:<1>|x|<2<2>|x|<a<3>|x-3|<2<4>|2-3x|>4分析:解含有绝对值号的不等式关键问题是如何去掉绝对值号,从代数形式考虑可利用绝对值的定义,从几何意义入手可利用数轴上点的距离,如果再深入考虑还可利用函数图象去解决问题.解:<1>|x|<2可化为下面两个不等式组:①或②①的解为0≤x<2 ②的解为-2<x<0∴|x|<2的解为-2<x<2.或从绝对值的几何意义去考虑:|x|<2,即到原点距离小于2的所有点, ∴|x|<2的解为:-2<x<2.<2>当a>0时,|x|<a的解为:-a<x<a.当a=0时,|x|<a无解. 当a<0时,|x|<a无解. ∴原不等式的解当a>0时,为-a<x<a. 当a≤0时,为空集.<3>由原不等式可得:-2<x-3<2 同加3得:1<x<5.<4>由原不等式可得:2-3x>4或2-3x<-4. 解得原不等式的解为:x<-或x>2.小结:例1中从|x|<2到|x|<a,应注意|x|<2中2所能代表的一类数,将2换成a以后,右边变成了一个代数式,可代表任意实数,这时由|x|<2所得结论能否推广到|x|<a,是必须考虑的问题.有些学生认为a≤0时无解就只写a>0时的情况即可,应该认识到无解也是不等式的解的一种情况.另外由|x|<a到|x-3|<2,必须树立换元的思想,通过换元将复杂形式化为简单的形式,通过换元又可将未知的问题转化为已知问题去解决.例1中的几个问题若换个角度从函数图象去考虑也可得到如下解法.解:<1>欲解|x|<2. 作出y=|x|的图象,再作出直线y=2交y=|x|图象于点A,B.此时|x|<2的解即y=|x|的纵坐标小于2时的横坐标的取值范围.将y=2代入y=|x|可求出A(-2,2)B(2,2). ∴|x|<2的解为-2<x<2.<2><3>略. <4>欲解|2-3x|>4. 作出y=|2-3x|图象, 作出y=4交y=|2-3x|图象于A,B两点.要求|2-3x|>4的解即y=|2-3x|图象的纵坐标大于4时的横坐标的取值.将y=4代入y=|2-3x|求出A(-,4)B(2,4). ∴原不等式的解为:x<-或x>2.注:虽然初三学过一些函数及其图象的知识,但在解决新问题时能够应用这些函数及图象知识,对刚入高一的学生而言比较困难,但数形结合的思想,函数的思想是非常重要的数学思想方法,应逐步渗透.例2.解下列关于x的不等式:<1>|2x-1|<a<2>|ax-2|≤1解:<1>①当a>0时,原不等式化为:-a<2x-1<a 解得:<x<②当a=0时,无解. ③当a<0时,无解. ∴当a>0时,原不等式的解<x<. a≤0时,原不等式无解.<2>原不等式化为:-1≤ax-2≤1, 同加2得:1≤ax≤3. ①当a>0时,≤x≤②当a=0时,无解.③当a<0时, ≤x≤.小结:解含有字母系数的不等式需要分情况讨论,尤其要注意最后分情况表示解时,有些可以合并成一个形式表达,并且讨论时不要有遗漏,也不要有重复现象出现.思考:对于例2中两个问题应用数形结合的方法应如何解决.例3.解不等式:|x-3|+|x+2|>6.分析:<1>解绝对值不等式关键问题是去绝对值号,基本方法之一是应用定义化为同解的不等式组.<2>要去掉两个绝对值号,应分别考虑两个绝对值内式子的符号,其关键是两个绝对值号内式子取零时x的值,这两个值是两个分界点.<3>两个不同的分界点的x值,将实数轴上的点分为三段,在每一段上都可以去掉两个绝对值号.解:原不等式可化为下面三个不等式组: s①或②③不等式组①的解为:x<-. 不等式组②的解为:无解. 不等式组③的解为:x>.注:<1>原不等式的解是不等式组①②③三个解的并,即三个不等式组的解之间用“或”联系.<2>有时学生在分情况去绝对值号时常写成以下形式: 当x<-2时,-(x-3)-(x+2)>6,∴x<-.容易忽略x<-2这个条件,即两不等式之间用“且”来联系.<3>此不等式也可用数轴上的点的距离即绝对值几何意义去解.只需将|x-3|和|x+2|分别看到数轴上点到3和到-2两点的距离,所求|x-3|+|x+2|>6的解即到3和到-2两点距离之和大于6的点的x值范围.例4.如果关于x的不等式|ax+1|≤b的解是-≤x≤,求a,b的取值.解:当b≤0时,|ax+1|≤b无解. 当b>0时, |ax+1|≤b化为-b≤ax+1≤b. 则有:-1-b≤ax≤b-1.<1>当a>0时,≤x≤. ∵原不等式解为-≤x≤.则有: 解得: 与b>0,a>0不符,舍去.<2>当a<0时, ≤x≤. 由已知则有: 解得:<3>当a=0时,|ax+1|≤b,只需b≥1时,x为任意实数与已知-≤x≤不符.∴a=-2,b=2.本周小结:本周主要内容是含绝对值的不等式,应掌握基本方法,注重数形结合.本周参考练习:解下列关于x的不等式:<1>3|2x-1|<|2x-1|+<2>(1+|x|)(|2x+1|-4)>0<3>≤0<4>≥8<5>|x-2|+|x+2|<10.本周练习参考答案:<1>分析:首先移项合并,然后求解。

带绝对值的不等式解法

带绝对值的不等式解法带绝对值的不等式在数学中是一个常见的问题,它具有一定的挑战性和复杂性。

解决这类问题需要我们掌握一些特定的解法和技巧。

1. 引言带绝对值的不等式是一个重要的数学概念,它出现在许多实际问题中。

了解如何解决这类问题对我们在数学上的学习和解决实际问题上都有很大帮助。

2. 简单的绝对值不等式解法在简单的情况下,我们可以通过将带绝对值的不等式拆分成两个不等式来解决。

对于不等式|2x - 3| > 5,我们可以分别解得2x - 3 > 5和2x - 3 < -5的解。

3. 绝对值函数的图像和性质为了更好地理解带绝对值的不等式,我们需要对绝对值函数有一定的了解。

绝对值函数的图像是一个以原点为对称中心的V形曲线,它的性质包括非负性和不等式性质。

4. 绝对值不等式的绝对值定义法当我们遇到更复杂的带绝对值的不等式时,可以使用绝对值的定义进行求解。

对于不等式|3x - 2| < 10,我们可以通过将绝对值展开为两个不等式,并结合这些不等式的解来得到原不等式的解。

5. 绝对值不等式的符号法在某些情况下,我们可以使用符号法来解决带绝对值的不等式。

符号法通过考虑绝对值的正负性和相对大小来进行推导和求解。

对于不等式|2x - 1| < |3x + 2|,我们可以通过考虑两个绝对值的正负情况,得到不等式的解集。

6. 绝对值不等式的绝对值最大最小法在解决带绝对值的不等式时,绝对值最大最小法可以帮助我们找到不等式的解集。

该方法通过求解不等式中绝对值的最大值和最小值来确定不等式的解集。

对于不等式|5x - 3| + 2 > 7,我们可以通过找到绝对值的最大值和最小值来得到不等式的解。

7. 深入理解带绝对值的不等式通过上述的解法和技巧,我们可以更深入地理解和解决带绝对值的不等式。

我们也可以应用这些思想和方法来解决更复杂的实际问题,例如在经济学、物理学和工程学等领域。

8. 总结带绝对值的不等式是数学中一个重要的概念,它在理论和实际问题中都有广泛的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

含绝对值不等式的解法比较
佛山市顺德区乐从中学 曾光
在2014年的高考中,有多个地方的高考题均出现了含绝对值不等式的题目。虽然难度
普遍为中低档,但是我们需要研究的问题是如何能做到准确率高、耗时少。选择恰当的解法
是关键,那么含绝对值不等式的问题有哪些解法呢?选择何种解法最为有利?下面让我们一
起来探讨这个问题。首先请用心体会以下的解法比较:

(2014广东理科数学第9题).不等式521xx的解集为 .
【分析】:含绝对值不等式的解法一般有三种,分别是零点区域法、数轴法和图象法.
⑴零点区域法(分类讨论思想):令10x及20x,得12=12xx,.12xx,把实数

轴分成三个区域:2,21,1xxx.①当1x时,原不等式可去掉绝对值化为
125xx,解得:2x,考虑1x时得2x.②同理当21x
时,原不等式可

去掉绝对值化为125xx,得35,无解. ③当2x时,原不等式可去掉绝对值
化为125xx,解得:3x,考虑2x时得3x。

综合①②③得,32,x.

⑵数轴法:从几何意义方面去考虑.1x的几何意义是表示x与1的距离,2x的几何意
义是表示x与2的距离,原不等式的几何意义是求x与1的距离及与2的距离之和大于等
于5,观察数轴:

当x位于2与1之间时,x与1的距离及与2的距离之和为3,即12=3xx;当
x
在1的右边时,取x=2,有x与1的距离及与2的距离之和为5,即12=5xx,因
此当2x时,有521xx.同理,当x在2的左边时,取x=3,有x与1的距
离及与2的距离之和为5,即12=5xx,因此当3x时,有521xx.
综合以上得,32,x.

⑶图象法:令()12fxxx21,13,2121,2xxxxx,画出其函数图象如下:

1
2
X
由图象可得,当2x或3x时,有()5fx,即125xx。
【点评】:比较以上三种解法,零点区域法的应用范围是最广的,蕴含了非常重要的分类讨
论的思想;而数轴法的解题速度是最快的,但应用范围较窄;而图象法则是运用了数形结合
的思想。为了更深刻地体会以上三种解法的特点,再看以下这道题:

(2014重庆理科数学第16题)若不等式2212122aaxx对任意实数x恒成立,
则实数a的取值范围是____________
【分析】:本题综合考查绝对值不等式及一元二次不等式的知识.令()fx=21+2xx,
观察21+2xx的特点得出,不适合用数轴法,而零点区域法和图象法均可以。下面比
较一下这两种解法:
零点区域法:令210x及20x,得121=22xx,.12xx,把实数轴分成三个区域:
112,2,22xxx.①当1
2
x
时,原不等式可去掉绝对值化为()31fxx,得:

5()2fx.②同理当1
22x
时,原不等式可去掉绝对值化为()3fxx,得:

5
()2fx
. ③当2x时,原不等式可去掉绝对值化为()31fxx,得:()5fx.综

上得:521+22xx,因此有215222aa,整理得:(21)(1)0aa,解得:
1
12a
.

图象法:131,21()21+23,2231,2xxfxxxxxxx,画出其函数图象如下:

3
2 5 3 2 1

x

y
由图象可得:521+22xx,因此有215222aa,整理得:(21)(1)0aa,
解得:112a.
【点评】:1. 本题不适合用数轴法,因为两个绝对值里x前面的系数不相同。2.对比零点区
域法和图象法,由于本题去绝对值后各段均为一次函数,图象较简单,因此图象法略胜一筹。
【巩固练习】:(2014江西理科数学第11题)(不等式选做题)对任意
,xyR
,111xxyy的最小值为( )

A.1 B.2 C.3 D.4
【提示】:令()1fxxx,()11gyyy,分别求出(),()fxgy的最小值后

加起来即可。同学们想一想,动手做一做,本题用哪种方法最快?
【总结】:
1.若每一个绝对值里x前面的系数都可化为1的话,则用数轴法是最方便的.
2.在不能用数轴法的情况下,若能画出函数图象,一般来说图象法比零点区域法略胜一筹.
3.零点区域法应用范围较广,可以解决难度较大的问题,如含参数的题目。

5
5
2

2
1
2
x

y

相关文档
最新文档