五年级奥数题100题(附答案)

合集下载

小学五年级奥数题100道及答案(完整版)

小学五年级奥数题100道及答案(完整版)

小学五年级奥数题100道及答案(完整版)1. 一个数除以5 余3,除以6 余4,除以7 余5,这个数最小是()A. 208B. 203C. 200D. 198答案:A解析:这个数加上 2 就能被5、6、7 整除,5、6、7 的最小公倍数是210,所以这个数是210 - 2 = 208。

2. 有一个自然数,被10 除余7,被7 除余4,被4 除余1。

这个自然数最小是()A. 137B. 107C. 131D. 101答案:C解析:这个数加上 3 就能被10、7、4 整除,10、7、4 的最小公倍数是140,所以这个数是140 - 3 = 137。

3. 一筐苹果,2 个一拿,3 个一拿,4 个一拿,5 个一拿都正好拿完而没有余数,这筐苹果最少应有()A. 120 个B. 90 个C. 60 个D. 30 个答案:C解析:苹果数量是2、3、4、5 的公倍数,最小公倍数是60。

4. 把66 分解质因数是()A. 66 = 1×2×3×11B. 66 = 6×11C. 66 = 2×3×11D. 2×3×11 = 66答案:C解析:分解质因数是把一个合数写成几个质数相乘的形式。

5. 两个质数的积一定是()A. 质数B. 奇数C. 偶数D. 合数答案:D解析:两个质数相乘的积,除了1 和它本身以外还有这两个质数作为因数,所以是合数。

6. 一个合数至少有()个因数。

A. 1B. 2C. 3D. 4答案:C解析:合数是指除了能被1 和本身整除外,还能被其他数(0 除外)整除的自然数。

所以一个合数至少有3 个因数。

7. 10 以内既是奇数又是合数的数是()A. 7B. 8C. 9D. 5答案:C解析:9 不能被2 整除是奇数,同时除了1 和9 本身还有3 这个因数,所以是合数。

8. 下面算式中,结果最大的是()A. 300÷8÷6×5B. 300÷(8÷6)×5C. 300÷(8÷6×5)D. 300÷8÷(6×5)答案:C解析:分别计算出每个选项的结果进行比较。

五年级奥数题及答案5篇

五年级奥数题及答案5篇

五年级奥数题及答案5篇1.五年级奥数题及答案篇一1、甲乙两码头相距560千米,一只船从甲码头顺水航行20小时到达乙码头,已知船在静水中每小时行驶24千米,问这船返回甲码头需几小时?答案与解析:船顺水航行20小时行560千米,可知顺水速度,而静水中船速已知,那么逆水速度可得,逆水航行距离为560千米,船返回甲船头是逆水而行,逆水航行时间可求。

顺水速度:560÷20=28(千米/小时)逆水速度:24-(28-24)=20(千米/小时)返回甲码头时间:560÷20=28(小时)2、甲、乙二人骑自行车从环形公路上同一地点同时出发,背向而行。

现在已知甲走一圈的时间是70分钟,如果在出发后45分钟甲、乙二人相遇,那么乙走一圈的时间是____分钟?答案与解析:甲行走45分钟,再行走70-45=25(分钟)即可走完一圈。

而甲行走45分钟,乙行走45分钟也能走完一圈。

所以甲行走25分钟的路程相当于乙行走45分钟的路程。

甲行走一圈需70分钟,所以乙需70÷25×45=126(分钟)。

即乙走一圈的时间是126分钟。

2.五年级奥数题及答案篇二1、一副纸牌共54张,最上面的一张是红桃K。

如果每次把最上面的12张牌移到最下面而不改变它们的顺序及朝向,那么,至少经过多少次移动,红桃K才会又出现在最上面?解:因为[54,12]=108,所以每移动108张牌,又回到原来的状况。

又因为每次移动12张牌,所以至少移动108÷12=9(次)。

2、爷爷对小明说:“我现在的年龄是你的7倍,过几年是你的6倍,再过若干年就分别是你的5倍、4倍、3倍、2倍。

”你知道爷爷和小明现在的年龄吗?解:爷爷70岁,小明10岁。

提示:爷爷和小明的年龄差是6,5,4,3,2的公倍数,又考虑到年龄的实际情况,取公倍数中最小的。

(60岁)3、某质数加6或减6得到的数仍是质数,在50以内你能找出几个这样的质数?并将它们写出来。

五年级下册数学奥数题(含答案) 小学五年级奥数题大全及答案(更新版)-通用版

五年级下册数学奥数题(含答案) 小学五年级奥数题大全及答案(更新版)-通用版

五年级奥数题问题+答案1、一块草地,可供24匹马吃6天;20匹马吃10天。

多少马12天吃尽?2、一块草地,可供5只羊吃40天;6只羊吃30天。

如果4只羊吃30天后又增加2只羊一起吃,那么这块草地还可以再吃多少天?3、每小时有3000人到书店买书。

如果设一个售书口,每分钟可以让50人买完离开;如果设2个售书口,1小时后就没有人排队了。

那么如果设4个口,多长时间后就没有人排队了?4、一口井,用3部抽水机40分钟可以抽干;6部抽水机16分钟可以抽干。

那么5部同样的抽水机,多少分钟可以抽干?5、一个水池,池内除原有的水外,每天都流入同样多的水。

如果用池中的水每天浇50亩地,10天用完;如果每天浇45亩地,20天用完。

那么,用这些水浇多少亩地,正好可用25天?6、一个大水坑,每分钟从四周流掉一定数量的水。

如果用5台水泵,6小时抽干;用10台,4小时抽干。

现在要2小时抽干,要多少水泵?7、仓库装满水泥时,可用30天。

现在仓库是空的,用大车运水泥,除每天供工地使用外,要装5天才可装满;用小车,除每天供工地使用外,要装10天才可装满。

如果大车小车一起用,除每天供工地使用外,要装几天才可装满?8、甲、乙、丙、丁四人加工同样的零件,甲先加工了一段时间,然后乙、丙、丁三人一起参加加工,6小时后乙和甲加工的一样多;9小时后丙和甲加工的一样多,12小时后丁和甲加工的一样多。

又知乙每小时加工27个零件,丙每小时加工23个零件。

那么,丁每小时加工零件多少个?答案1、假设草地单位为“1”,所以24*6=144 20*10=200 (200-144)/4=14 因此每天草地长草14个单位“1” 200-14*10=60,因此草地原有草60个单位"1"。

60/12+14=19 19马12天吃尽2、同理,40*5=200 30*6=180 (200-180)/(40-30)=2[每天草地长草] 200-2*40=120[原有草] 120-(4-2)*30=60 60/(6-2)=15(天)3、30分钟{每分钟有100人来,3000/(200-100)}4、20分钟{3*40-6*16=24 24/24=1 120-40*1=80 80/4=20}5、44亩地{45*20-50*10=400 400/10=40 500-40*10=100100/25+40=44}8、21个 {9*23-6*27=45 45/3=15 162-15*6=72 72/12+15=21}五年级奥数题有关行程问题的答案一环行跑道周长为240米,甲乙同向,丙与他们背向,都从同地点出发,每秒钟甲跑8米,乙跑5米,丙跑7米,出发后三人第一次相遇时,丙跑了多少圈?解:由题得知:甲比乙快8-5=3米/秒,也就是240/3=80秒后,甲会比乙多跑1圈且追上乙第一次相遇;要使甲、乙、丙同时相遇,则三者所用的时间必须是80秒的位数。

小学五年级奥数题及答案10篇

小学五年级奥数题及答案10篇

小学五年级奥数题及答案10篇1.小学五年级奥数题及答案篇一1、学校有808个同学,分乘6辆汽车去春游,第一辆车已经接走了128人,如果其余5辆车乘的人数相同,最后一辆车乘了几个同学?【解析】学校有808个同学,第一辆车已经接走了128人,那么还剩下的人数为:808-128=680人,而剩下的这些人被平分到了5辆车上,所以最后的一辆车有680÷5=136个同学。

2、学校里组织兴趣小组,合唱队的人数是器乐队人数的3倍,舞蹈队的人数比器乐队少8人,舞蹈队有24人,合唱队有多少人?【解析】因为舞蹈队有24人,舞蹈队的人数比器乐队少8人,所以器乐队有24+8=32人;又因为合唱队的人数是器乐队人数的3倍,所以合唱队的人数是32×3=96人。

2.小学五年级奥数题及答案篇二1、同学们进行广播操比赛,全班正好排成相等的6行。

小红排在第二行,从头数,她站在第5个位置,从后数她站在第3个位置,这个班共有()人【解析】站队问题,要注意不要忽略本身。

从头数,她站在第5个位置,说明她前面有5-1=4个人,从后数她站在第3个位置,说明她后面有3-1=2人,所以这一行的人数为4+2+1=7人,所以这个班的人数为7×6=42人。

2、有一串彩珠,按“2红3绿4黄”的顺序依次排列。

第600颗是()颜色。

【解析】周期循环问题,以2+3+4=9个一循环,600÷9=66……6,余数为6,所以第600颗是黄颜色。

3.小学五年级奥数题及答案篇三甲班有42名学生,乙班有48名学生。

已知在某次数学考试中按百分制评卷,评卷结果各班的数学总成绩相同,各班的平均成绩都是整数,并且平均成绩都高于80分。

那么甲班的平均成绩比乙班高多少分?答案与解析:方法一:因为每班的平均成绩都是整数,且两班的总成绩相等,所以总成绩既是42的倍数,又是48的倍数,所以为[42,48]=336的倍数。

因为乙班的平均成绩高于80分,所以总成绩应高于48×80=3840分。

小学五年级奥数题大全及答案(更新版)

小学五年级奥数题大全及答案(更新版)

小学五年级奥数题大全及答案五年级奥数1、小数的巧算2、数的整除性3、质数与合数4、约数与倍数5、带余数除法6、中国剩余定理7、奇数与偶数8、周期性问题9、图形的计数10、图形的切拼11、图形与面积12、观察与归纳13、数列的求和14、数列的分组15、相遇问题16、追及问题17、变换和操作18、逻辑推理19、逆推法20、分数问题1.1小数的巧算(一)年级班姓名得分一、填空题1、计算 1.135+3.346+5.557+7.768+9.979=_____.2、计算 1.996+19.97+199.8=_____.3、计算 9.8+99.8+999.8+9999.8+99999.8=_____.4、计算6.11+9.22+8.33+7.44+5.55+4.56+3.67+2.78 +1.89=_____.5、计算1.1+3.3+5.5+7.7+9.9+11.11+13.13+15.15+17.17+19.19=_____.6、计算 2.89⨯4.68+4.68⨯6.11+4.68=_____.7、计算 17.48⨯37-17.48⨯19+17.48⨯82=_____.8、计算 1.25⨯0.32⨯2.5=_____.9、计算 75⨯4.7+15.9⨯25=_____.10、计算 28.67⨯67+32⨯286.7+573.4⨯0.05=_____.二、解答题11、计算 172.4⨯6.2+2724⨯0.3812、计算 0.00...0181⨯0.00 (011)963个0 1028个013、计算12.34+23.45+34.56+45.67+56.78+67.89+78.91+89.12+91.2314、下面有两个小数:a=0.00...0105 b=0.00 (019)1994个0 1996个0求a+b,a-b,a⨯b,a÷b.1.2小数的巧算(二)年级班姓名得分一、真空题1、计算 4.75-9.64+8.25-1.36=_____.2、计算 3.17-2.74+4.7+5.29-0.26+6.3=_____.3、计算 (5.25+0.125+5.75)⨯8=_____.4、计算 34.5⨯8.23-34.5+2.77⨯34.5=_____.5、计算 6.25⨯0.16+264⨯0.0625+5.2⨯6.25+0.625⨯20=_____.6、计算 0.035⨯935+0.035+3⨯0.035+0.07⨯61⨯0.5=_____.7、计算 19.98⨯37-199.8⨯1.9+1998⨯0.82=_____.8、计算 13.5⨯9.9+6.5⨯10.1=_____.9、计算 0.125⨯0.25⨯0.5⨯64=_____.10、计算 11.8⨯43-860⨯0.09=_____.二、解答题11、计算32.14+64.28⨯0.5378⨯0.25+0.5378⨯64.28⨯0.75-8⨯64.28⨯0.125⨯0.537812、计算 0.888⨯125⨯73+999⨯313、计算 1998+199.8+19.98+1.99814、下面有两个小数:a=0.00...0125 b=0.00 (08)1996个0 2000个0试求a+b, a-b, a⨯b, a÷b.2.1数的整除性(一)年级班姓名得分一、填空题1、四位数“3AA1”是9的倍数,那么A=_____.2、在“25□79这个数的□内填上一个数字,使这个数能被11整除,方格内应填_____.3、能同时被2、3、5整除的最大三位数是_____.4、能同时被2、5、7整除的最大五位数是_____.5、1至100以内所有不能被3整除的数的和是_____.6、所有能被3整除的两位数的和是______.7、已知一个五位数□691□能被55整除,所有符合题意的五位数是_____.8、如果六位数1992□□能被105整除,那么它的最后两位数是_____.9、42□28□是99的倍数,这个数除以99所得的商是_____.10、从左向右编号为1至1991号的1991名同学排成一行,从左向右1至11报数,报数为11的同学原地不动,其余同学出列;然后留下的同学再从左向右1至11报数,报数为11的留下,其余同学出列;留下的同学第三次从左向右1至11报数,报到11的同学留下,其余同学出列,那么最后留下的同学中,从左边数第一个人的最初编号是_____号.二、解答题1、173□是个四位数字.数学老师说:“我在这个□中先后填入3个数字,所得到的3个四位数,依次可被9、11、6整除.”问:数学老师先后填入的3个数字的和是多少?12、在1992后面补上三个数字,组成一个七位数,使它们分别能被2、3、5、11整除,这个七位数最小值是多少?13、在“改革”村的黑市上,人们只要有心,总是可以把两张任意的食品票换成3张其他票券,也可以反过来交换.试问,合作社成员瓦夏能否将100张黄油票换成100张香肠票,并且在整个交换过程中刚好出手了1991张票券?14、试找出这样的最小自然数,它可被11整除,它的各位数字之和等于13.2.2数的整除性(二)年级班姓名得分一、填空题1、一个六位数23□56□是88的倍数,这个数除以88所得的商是_____或_____.2、123456789□□,这个十一位数能被36整除,那么这个数的个位上的数最小是_____.3、下面一个1983位数33…3□44…4中间漏写了一个数字(方框),已知这991个 991个个多位数被7整除,那么中间方框内的数字是_____.4、有三个连续的两位数,它们的和也是两位数,并且是11的倍数.这三个数是_____.5、有这样的两位数,它的两个数字之和能被4整除,而且比这个两位数大1的数,它的两个数字之和也能被4整除.所有这样的两位数的和是____.6、一个小于200的自然数,它的每位数字都是奇数,并且它是两个两位数的乘积,那么这个自然数是_____.7、任取一个四位数乘3456,用A表示其积的各位数字之和,用B表示A的各位数字之和,C表示B的各位数字之和,那么C是_____.8、有0、1、4、7、9五个数字,从中选出四个数字组成不同的四位数,如果把其中能被3整除的四位数从小到大排列起来,第五个数的末位数字是_____.9、从0、1、2、4、5、7中,选出四个数,排列成能被2、3、5整除的四位数,其中最大的是_____.10、所有数字都是2且能被66……6整除的最小自然数是_____位数.100个二、解答题11、找出四个互不相同的自然数,使得对于其中任何两个数,它们的和总可以被它们的差整除,如果要求这四个数中最大的数与最小的数的和尽可能的小,那么这四个数里中间两个数的和是多少?12、只修改21475的某一位数字,就可知使修改后的数能被225整除,怎样修改?13、500名士兵排成一列横队.第一次从左到右1、2、3、4、5(1至5)名报数;第二次反过来从右到左1、2、3、4、5、6(1至6)报数,既报1又报6的士兵有多少名?14、试问,能否将由1至100这100个自然数排列在圆周上,使得在任何5个相连的数中,都至少有两个数可被3整除?如果回答:“可以”,则只要举出一种排法;如果回答:“不能”,则需给出说明.3.1质数与合数(一)年级班姓名得分一、填空题1在一位的自然数中,既是奇数又是合数的有_____;既不是合数又不是质数的有_____;既是偶数又是质数的有_____.2、最小的质数与最接近100的质数的乘积是_____.3、两个自然数的和与差的积是41,那么这两个自然数的积是_____.4、在下式样□中分别填入三个质数,使等式成立.□+□+□=505、三个连续自然数的积是1716,这三个自然数是_____、_____、_____.6、找出1992所有的不同质因数,它们的和是_____.7、如果自然数有四个不同的质因数, 那么这样的自然数中最小的是_____.8、9216可写成两个自然数的积,这两个自然数的和最小可以达到_____.9、从一块正方形的木板上锯下宽为3分米的一个木条以后,剩下的面积是108平方分米.木条的面积是_____平方分米.10、今有10个质数:17,23,31,41,53,67,79,83,101,103.如果将它们分成两组,每组五个数,并且每组的五个数之和相等,那么把含有101的这组数从小到大排列,第二个数应是_____.二、解答题11、2,3,5,7,11,…都是质数,也就是说每个数只以1和它本身为约数.已知一个长方形的长和宽都是质数个单位,并且周长是36个单位.问这个长方形的面积至多是多少个平方单位?12、把7、14、20、21、28、30分成两组,每三个数相乘,使两组数的乘积相等.13、学生1430人参加团体操,分成人数相等的若干队,每队人数在100至200之间,问哪几种分法?14、四只同样的瓶子内分别装有一定数量的油,每瓶和其他各瓶分别合称一次,记录千克数如下:8、9、10、11、12、13.已知四只空瓶的重量之和以及油的重量之和均为质数,求最重的两瓶内有多少油?3.2质数与合数(二)年级班姓名得分一、填空题1、在1~100里最小的质数与最大的质数的和是_____.2、小明写了四个小于10的自然数,它们的积是360.已知这四个数中只有一个是合数.这四个数是____、____、____和____.3、把232323的全部质因数的和表示为AB,那么A⨯B⨯AB=_____.4、有三个学生,他们的年龄一个比一个大3岁,他们三个人年龄数的乘积是1620,这三个学生年龄的和是_____.5、两个数的和是107,它们的乘积是1992,这两个数分别是_____和_____.6、如果两个数之和是64,两数的积可以整除4875,那么这两数之差是_____.7、某一个数,与它自己相加、相减、相乘、相除,得到的和、差、积、商之和为256.这个数是_____.8、有10个数:21、22、34、39、44、45、65、76、133和153.把它们编成两组,每组5个数,要求这组5个数的乘积等于那组5个数的乘积.第一组数____________;第二组数是____________.9、有_____个两位数,在它的十位数字与个位数字之间写一个零,得到的三位数能被原两位数整除.10、主人对客人说:“院子里有三个小孩,他们的年龄之积等于72,年龄之和恰好是我家的楼号,楼号你是知道的,你能求出这些孩子的年龄吗?”客人想了一下说:“我还不能确定答案。

小学数学奥数题100题(附答案)

小学数学奥数题100题(附答案)

⼩学数学奥数题100题(附答案)⼩学数学奥数题100题(附答案)×213÷27+765×327÷27解:原式=765÷27×(213+327)= 765÷27×540=765×20=153002.(9999+9997+...+9001)-(1+3+ (999)解:原式=(9999-999)+(9997-997)+(9995-995)+……+(9001-1) =9000+9000+…….+9000(500个9000)=45000003.×1998×解:(+1)×1998×=×1998×+=1998=100004.(873×477-198)÷(476×874+199)解:873×477-198=476×874+199因此原式=15.2000×1999-1999×1998+1998×1997-1997×1996+…+2×1解:原式=1999×(2000-1998)+1997×(1998-1996)+…+3×(4-2)+2×1=(1999+1997+…+3+1)×2=2000000。

6.297+293+289+…+209解:(209+297)*23/2=58197.计算:解:原式=(3/2)*(4/3)*(5/4)*…*(100/99)*(1/2)*(2/3)*(3/4)*…*(98/99)=50*(1/99)=50/998.解:原式=(1*2*3)/(2*3*4)=1/49.有7个数,它们的平均数是18。

去掉⼀个数后,剩下6个数的平均数是19;再去掉⼀个数后,剩下的5个数的平均数是20。

求去掉的两个数的乘积。

五年级奥数题及答案

五年级奥数题及答案题目一:数字排列小明在玩一个数字排列游戏,他有数字1到9的卡片各一张,现在他想将这些卡片排列成一个三位数,使得这个三位数的每一位数字都不相同。

请问小明有多少种不同的排列方式?答案:这是一个排列组合问题。

对于三位数,我们有9个选择来放置第一位数字(不能是0),剩下的8个数字中选择一个来放置第二位,最后7个数字中选择一个来放置第三位。

因此,总的排列方式是9×8×7=504种。

题目二:图形计数在一个5×5的方格中,有多少种不同的路径可以从左上角走到右下角,只能向下或向右移动?答案:这是一个组合问题,我们可以通过计算到达右下角的路径数来解决。

在5×5的方格中,到达右下角需要向右移动4次和向下移动4次,总共8步。

我们需要从这8步中选择4步是向下的,剩下的4步是向右的。

这可以通过组合公式C(8,4)来计算,即8!/(4!4!)=70种不同的路径。

题目三:分数问题如果1/2 + 1/3 + 1/4 + ... + 1/100的和是一个整数,那么这个整数是多少?答案:首先我们需要找到一个通项公式来表示这个序列。

这个序列是1/n,其中n从2到100。

我们需要找到一个公共的分母,使得所有的分数相加后能够简化为一个整数。

这个公共分母是2到100的所有整数的乘积。

将每个分数转换为这个公共分母后,我们可以看到分子是1到100的和,即(1+2+3+...+100)。

这是一个等差数列的和,公式为n(n+1)/2,代入n=100,我们得到51×101=5151。

因此,这个整数是5151。

题目四:逻辑推理有五个盒子,每个盒子里都装有不同的糖果数量,分别是2、3、5、7和11个。

现在有五个人,每个人从每个盒子里拿走了不同数量的糖果。

第一个人拿走了总数的一半,第二个人拿走了剩下的一半,依此类推。

最后,每个盒子里都剩下1个糖果。

问每个人分别从每个盒子里拿走了多少糖果?答案:这是一个逆向思维问题。

五年级上册奥数题

五年级上册奥数题五年级上册奥数题(含答案)1、有大、中、小三筐苹果,小筐装的是中筐的一半,中筐比大筐少装16千克,大筐装的是小筐的4倍,大、中、小筐共有苹果多少千克。

解:设小筐装苹果X千克。

4X=2X+162X=16X=88×2=16(千克)8×4=32(千克)答:小筐装苹果8千克,中筐装苹果16千克,大筐装苹果32千克。

2、参加校学生运动会团体操表演的运动员排成一个正方形队列,如果要使这个正方形队列减少一行和一列,则要减少33人,参加团体操表演的运动员有多少人?解:设团体操原来每行X人。

2X-1=332X=34X=1717×17=289(人)答:参加团体操表演的运动员有289人。

3、有两根绳子,长的比短的长1倍,现在把每根绳子都剪掉6分米,那么长的一根就比短的一根长两倍。

问:这两根绳子原来的长各是多少?1+1=21+2=3解:设原来短绳长X分米,长绳长2X分米。

(X-6)×3=2X-63X-18=2X-6X=122X=2×12=24答:原来短绳长12分米,长绳长24分米。

4、甲乙两数的和是32,甲数的3倍与乙数的5倍的和是122,求甲、乙二数各是多少?解:设甲数为X,乙数为(32-X)。

3X+(32-X)×5=1223X+160-5X=1222X=38X=1932-X=32-19=13答:甲数是19,乙数是13。

5、30枚硬币,由2分和5分组成,共值9角9分,两种硬币各多少枚?9角9分=99分解:设2分硬币有X枚,5分硬币有(30-X)枚。

2X+5×(30-X)=992X+150-5X=993X=51X=1730-X=30-17=136、搬运100只玻璃瓶,规定搬一只得搬运费3分,但打碎一只不但不得搬运费,而且要赔5分,运完后共得运费2.60元,搬运中打碎了几只?2.60元=260分解:设搬运中打碎了X只。

3×(100-X)-5X=260300-3X-5X=2608X=40X=5答:搬运中打碎了5只。

小学五年级奥数题(有答案)

小学五年级奥数题一、小数的巧算(一)填空题1. 计算 1.996+19.97+199.8=_____。

答案:221.766。

解析:原式=(2-0.004)+(20-0.03)+(200-0.2)=222-(0.004+0.03+0.2)=221.766。

2. 计算 1.1+3.3+5.5+7.7+9.9+11.11+13.13+15.15+17.17+19.19=_____。

答案:103.25。

解析:原式=1.1⨯(1+3+...+9)+1.01⨯(11+13+ (19)=1.1⨯25+1.01⨯75=103.25。

3. 计算 2.89⨯4.68+4.68⨯6.11+4.68=_____。

答案:46.8。

解析:4.68×(2.89+6.11+1)=46.84. 计算 17.48⨯37-17.48⨯19+17.48⨯82=_____。

答案:1748。

解析: 原式=17.48×37-17.48×19+17.48×82=17.48×(37-19+82)=17.48×100=1748。

5. 计算 1.25⨯0.32⨯2.5=_____。

答案:1。

解析:原式=(1.25⨯0.8)⨯(0.4⨯2.5)=1⨯1=1。

6. 计算 75⨯4.7+15.9⨯25=_____。

答案:750。

原式=75⨯4.7+5.3⨯(3⨯25)=75⨯(4.7+5.3)=75⨯10=750。

7. 计算 28.67⨯67+3.2⨯286.7+573.4⨯0.05=____。

答案:2867。

原式=28.67⨯67+32⨯28.67+28.67⨯(20⨯0.05)=28.67⨯(67+32+1)=28.67⨯100=2867。

(二)解答题8. 计算 172.4⨯6.2+2724⨯0.38。

答案:原式=172.4⨯6.2+(1724+1000)⨯0.38=172.4⨯6.2+1724⨯0.38+1000⨯0.38=172.4⨯6.2+172.4⨯3.8+380=172.4⨯(6.2+3.8)+380=172.4⨯10+380=1724+380=2104。

五年级下册奥数应用题100道及答案解析

五年级下册奥数应用题100道及答案解析1. 有一块长方形草地,长18 米,宽12 米,在它的四周每隔3 米种一棵桃树,一共要种多少棵桃树?答案:20 棵解析:长方形草地的周长为:(18 + 12)×2 = 60(米),每隔3 米种一棵桃树,所以共种60 ÷3 = 20(棵)2. 一辆汽车从甲地开往乙地,每小时行60 千米,5 小时到达。

若要4 小时到达,则每小时需要多行多少千米?答案:15 千米解析:甲乙两地的距离为60×5 = 300(千米),若 4 小时到达,速度应为300÷4 = 75(千米/小时),每小时多行75 - 60 = 15(千米)3. 小明买5 本日记本比买1 本故事书多用5.8 元,已知一本故事书的价钱正好是一本日记本价钱的3 倍。

一本日记本的价钱是多少元?答案:2.9 元解析:设一本日记本的价钱为x 元,则一本故事书的价钱为3x 元。

5x - 3x = 5.8,2x = 5.8,x = 2.94. 某工厂有一堆煤,如果每天烧2.5 吨,可以烧30 天,如果每天节约0.5 吨,可以多烧多少天?答案:6 天解析:煤的总量为2.5×30 = 75(吨),每天节约0.5 吨,每天烧2.5 - 0.5 = 2(吨),可以烧75÷2 = 37.5(天),多烧37.5 - 30 = 7.5 天,约为6 天5. 学校买来8 张办公桌和6 把椅子,共花去1650 元。

每张办公桌的价钱是每把椅子的2 倍,每张办公桌和每把椅子各多少元?答案:办公桌150 元,椅子75 元解析:设每把椅子的价钱为x 元,则每张办公桌的价钱为2x 元。

8×2x + 6x = 1650,22x = 1650,x = 75,2x = 1506. 甲乙两车同时从相距480 千米的两地相对而行,甲车每小时行45 千米,途中因汽车故障甲车停了1 小时,5 小时后两车相遇。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

五年级奥数题100题(附答案)五年级奥数题100题(附答案)1. 765×213÷27+765×327÷27解:原式=765÷27×(213+327)= 765÷27×540=765×20=153002. (9999+9997+...+9001)-(1+3+ (999)解:原式=(9999-999)+(9997-997)+(9995-995)+……+(9001-1) =9000+9000+…….+9000 (500个9000) =45000003.19981999×19991998-19981998×19991999解:(19981998+1)×19991998-19981998×19991999=19981998×19991998-19981998×19991999+19991998=19991998-19981998=100004.(873×477-198)÷(476×874+199)解:873×477-198=476×874+199因此原式=15.2000×1999-1999×1998+1998×1997-1997×1996+…+2×1解:原式=1999×(2000-1998)+1997×(1998-1996)+…+3×(4-2)+2×1=(1999+1997+…+3+1)×2=2000000。

6.297+293+289+…+209解:(209+297)*23/2=58197.计算:解:原式=(3/2)*(4/3)*(5/4)*…*(100/99)*(1/2)*(2/3)*(3/4)*…*(98/99)=50*(1/99)=50/998.解:原式=(1*2*3)/(2*3*4)=1/49.有7个数,它们的平均数是18。

去掉一个数后,剩下6个数的平均数是19;再去掉一个数后,剩下的5个数的平均数是20。

求去掉的两个数的乘积。

解: 7*18-6*19=126-114=126*19-5*20=114-100=14去掉的两个数是12和14它们的乘积是12*14=16810.有七个排成一列的数,它们的平均数是30,前三个数的平均数是28,后五个数的平均数是33。

求第三个数。

解:28×3+33×5-30×7=39。

11.有两组数,第一组9个数的和是63,第二组的平均数是11,两个组中所有数的平均数是8。

问:第二组有多少个数?解:设第二组有x个数,则63+11x=8×(9+x),解得x=3。

12.小明参加了六次测验,第三、第四次的平均分比前两次的平均分多2分,比后两次的平均分少2分。

如果后三次平均分比前三次平均分多3分,那么第四次比第三次多得几分?解:第三、四次的成绩和比前两次的成绩和多4分,比后两次的成绩和少4分,推知后两次的成绩和比前两次的成绩和多8分。

因为后三次的成绩和比前三次的成绩和多9分,所以第四次比第三次多9-8=1(分)。

13.妈妈每4天要去一次副食商店,每 5天要去一次百货商店。

妈妈平均每星期去这两个商店几次?(用小数表示)解:每20天去9次,9÷20×7=3.15(次)。

14.乙、丙两数的平均数与甲数之比是13∶7,求甲、乙、丙三数的平均数与甲数之比。

解:以甲数为7份,则乙、丙两数共13×2=26(份)所以甲乙丙的平均数是(26+7)/3=11(份)因此甲乙丙三数的平均数与甲数之比是11:7。

15.五年级同学参加校办工厂糊纸盒劳动,平均每人糊了76个。

已知每人至少糊了70个,并且其中有一个同学糊了88个,如果不把这个同学计算在内,那么平均每人糊74个。

糊得最快的同学最多糊了多少个?解:当把糊了88个纸盒的同学计算在内时,因为他比其余同学的平均数多88-74=14(个),而使大家的平均数增加了76-74=2(个),说明总人数是14÷2=7(人)。

因此糊得最快的同学最多糊了74×6-70×5=94(个)。

16.甲、乙两班进行越野行军比赛,甲班以4.5千米/时的速度走了路程的一半,又以5.5千米/时的速度走完了另一半;乙班在比赛过程中,一半时间以4.5千米/时的速度行进,另一半时间以5.5千米/时的速度行进。

问:甲、乙两班谁将获胜?解:快速行走的路程越长,所用时间越短。

甲班快、慢速行走的路程相同,乙班快速行走的路程比慢速行走的路程长,所以乙班获胜。

17.轮船从A城到B城需行3天,而从B城到A城需行4天。

从A城放一个无动力的木筏,它漂到B城需多少天?解:轮船顺流用3天,逆流用4天,说明轮船在静水中行4-3=1(天),等于水流3+4=7(天),即船速是流速的7倍。

所以轮船顺流行3天的路程等于水流3+3×7=24(天)的路程,即木筏从A城漂到B城需24天。

18.小红和小强同时从家里出发相向而行。

小红每分走52米,小强每分走70米,二人在途中的A处相遇。

若小红提前4分出发,且速度不变,小强每分走90米,则两人仍在A处相遇。

小红和小强两人的家相距多少米?解:因为小红的速度不变,相遇地点不变,所以小红两次从出发到相遇的时间相同。

也就是说,小强第二次比第一次少走4分。

由(70×4)÷(90-70)=14(分)可知,小强第二次走了14分,推知第一次走了18分,两人的家相距(52+70)×18=2196(米)。

19.小明和小军分别从甲、乙两地同时出发,相向而行。

若两人按原定速度前进,则4时相遇;若两人各自都比原定速度多1千米/时,则3时相遇。

甲、乙两地相距多少千米?解:每时多走1千米,两人3时共多走6千米,这6千米相当于两人按原定速度1时走的距离。

所以甲、乙两地相距6×4=24(千米)20.甲、乙两人沿400米环形跑道练习跑步,两人同时从跑道的同一地点向相反方向跑去。

相遇后甲比原来速度增加2米/秒,乙比原来速度减少2米/秒,结果都用24秒同时回到原地。

求甲原来的速度。

解:因为相遇前后甲、乙两人的速度和不变,相遇后两人合跑一圈用24秒,所以相遇前两人合跑一圈也用24秒,即24秒时两人相遇。

设甲原来每秒跑x米,则相遇后每秒跑(x+2)米。

因为甲在相遇前后各跑了24秒,共跑400米,所以有24x+24(x+2)=400,解得x=7又1/3米。

21.甲、乙两车分别沿公路从A,B两站同时相向而行,已知甲车的速度是乙车的1.5倍,甲、乙两车到达途中C站的时刻分别为5:00和16:00,两车相遇是什么时刻?解:9∶24。

解:甲车到达C站时,乙车还需16-5=11(时)才能到达C站。

乙车行11时的路程,两车相遇需11÷(1+1.5)=4.4(时)=4时24分,所以相遇时刻是9∶24。

22.一列快车和一列慢车相向而行,快车的车长是280米,慢车的车长是385米。

坐在快车上的人看见慢车驶过的时间是11秒,那么坐在慢车上的人看见快车驶过的时间是多少秒?解:快车上的人看见慢车的速度与慢车上的人看见快车的速度相同,所以两车的车长比等于两车经过对方的时间比,故所求时间为1123.甲、乙二人练习跑步,若甲让乙先跑10米,则甲跑5秒可追上乙;若乙比甲先跑2秒,则甲跑4秒能追上乙。

问:两人每秒各跑多少米?解:甲乙速度差为10/5=2速度比为(4+2):4=6:4所以甲每秒跑6米,乙每秒跑4米。

24.甲、乙、丙三人同时从A向B跑,当甲跑到B时,乙离B还有20米,丙离B还有40米;当乙跑到B时,丙离B还有24米。

问:(1) A, B相距多少米?(2)如果丙从A跑到B用24秒,那么甲的速度是多少?解:解:(1)乙跑最后20米时,丙跑了40-24=16(米),丙的速度25.在一条马路上,小明骑车与小光同向而行,小明骑车速度是小光速度的3倍,每隔10分有一辆公共汽车超过小光,每隔20分有一辆公共汽车超过小明。

已知公共汽车从始发站每次间隔同样的时间发一辆车,问:相邻两车间隔几分?解:设车速为a,小光的速度为b,则小明骑车的速度为3b。

根据追及问题“追及时间×速度差=追及距离”,可列方程10(a-b)=20(a-3b),解得a=5b,即车速是小光速度的5倍。

小光走10分相当于车行2分,由每隔10分有一辆车超过小光知,每隔8分发一辆车。

26.一只野兔逃出80步后猎狗才追它,野兔跑8步的路程猎狗只需跑3步,猎狗跑4步的时间兔子能跑9步。

猎狗至少要跑多少步才能追上野兔?解:狗跑12步的路程等于兔跑32步的路程,狗跑12步的时间等于兔跑27步的时间。

所以兔每跑27步,狗追上5步(兔步),狗要追上80步(兔步)需跑[27×(80÷5)+80]÷8×3=192(步)。

27.甲、乙两人在铁路旁边以同样的速度沿铁路方向相向而行,恰好有一列火车开来,整个火车经过甲身边用了18秒,2分后又用15秒从乙身边开过。

问:(1)火车速度是甲的速度的几倍?(2)火车经过乙身边后,甲、乙二人还需要多少时间才能相遇?解:(1)设火车速度为a米/秒,行人速度为b米/秒,则由火车的是行人速度的11倍;(2)从车尾经过甲到车尾经过乙,火车走了135秒,此段路程一人走需1350×11=1485(秒),因为甲已经走了135秒,所以剩下的路程两人走还需(1485-135)÷2=675(秒)。

28.辆车从甲地开往乙地,如果把车速提高20%,那么可以比原定时间提前1时到达;如果以原速行驶100千米后再将车速提高30%,那么也比原定时间提前1时到达。

求甲、乙两地的距离。

29.完成一件工作,需要甲干5天、乙干 6天,或者甲干 7天、乙干2天。

问:甲、乙单独干这件工作各需多少天?解:甲需要(7*3-5)/2=8(天)乙需要(6*7-2*5)/2=16(天)30.一水池装有一个放水管和一个排水管,单开放水管5时可将空池灌满,单开排水管7时可将满池水排完。

如果放水管开了2时后再打开排水管,那么再过多长时间池内将积有半池水?31.小松读一本书,已读与未读的页数之比是3∶4,后来又读了33页,已读与未读的页数之比变为5∶3。

这本书共有多少页?解:开始读了3/7 后来总共读了5/833/(5/8-3/7)=33/(11/56)=56*3=168页32.一件工作甲做6时、乙做12时可完成,甲做8时、乙做6时也可以完成。

如果甲做3时后由乙接着做,那么还需多少时间才能完成?解:甲做2小时的等于乙做6小时的,所以乙单独做需要6*3+12=30(小时)甲单独做需要10小时因此乙还需要(1-3/10)/(1/30)=21天才可以完成。

相关文档
最新文档