单摆测重力加速度的公式

合集下载

新人教版第7章实验9用单摆测量重力加速度的大小课件(44张)

新人教版第7章实验9用单摆测量重力加速度的大小课件(44张)

Δt,该小组同学利用图像来分析数据,以 cos θ 为横轴,以_D__为纵轴,
可作出图像为如图丙所示的一条直线。
A.Δt
B.(Δt)2
1
1
C.Δt
D.Δt2
kD2
(4)若求得图像斜率的绝对值为 k,则当地的重力加速度为 g=_2_L_(用
D、k、L 表示)。
[解析](1)根据螺旋测微器读数规则得小球的直径 D 为 D=(5.5+ 17.0×0.01) mm=5.670 mm。
实验步骤如下: (1) 用 螺 旋 测 微 器 测 出 小 球 的 直 径 D , 示 数 如 图 乙 , 小 球 直 径 D = ___________ mm; (2)将小球拉至偏离竖直方向的某位置,测出此时细绳与竖直方向的 夹角θ;
(3)多次从不同夹角 θ 处释放,并测出相应的小球经过光电门的时间
(2)图乙和图丙为细线上端的两种不同的悬挂方式.应该选图_丙__所 示的悬挂方式。
(3)该同学用游标卡尺测量小球的直径,测量的刻度部分如图丁所 示,则小球的直径为_______________ cm。
(4)该同学通过改变细线长度进行多次测量,记录每次测得的周期T 和对应的细线长度L,画出的T2-L图像如图戊所示,π≈,由此得当地 重力加速度为____________ m/s2(结果保留三位有效数字)。
[解析](1)实验所用小球的密度要大,体积要小,选项A错误;为了 减小误差,测量周期时要测量至少30次全振动的时间,然后计算周期的 平均值,选项B错误;实验时小球的摆动幅度不大于5°,否则就不是简 谐振动了,选项C错误;为了减小误差,悬挂小球的细绳的质量要尽可 能小些,选项D正确。
(2)图乙和图丙为细线上端的两种不同的悬挂方式,乙图中当摆球摆 动时会导致摆长变化,则应该选图丙所示的悬挂方式。

实验13探究单摆的运动用单摆测定重力加速度

实验13探究单摆的运动用单摆测定重力加速度
4π2 k
【解析】 (1)本次实验中的摆长 l=L+r=(101.00+1.00)cm= 1.0200 m,周期 T=Nt =10510.5 s=2.03 s, 由公式 g=4πT22l可以解得 g=9.76 m/s2; (2)根据公式 g=4πT22l知 g 偏小的原因可能是 l 的测量值偏小或 T 的测量值偏大.A 中 l 的测量值偏大,B 中则是振动摆长大于测 量值,所以测量值偏小,而 C、D 中均是测得的周期偏小,所以 C、D 均会使 g 值偏大.故只有 B 正确.
小于10°
5.(2013·安徽理综,21 Ⅰ)Ⅰ.根据单摆周期公式
T=,2π可以gl通过实验测量
当地的重力加速度.如图1所示,将细线的上端固定在铁架台上,下端系一小钢球,就做
成了单摆.
(1)用游标卡尺测量小钢球直径,示数如图2所示,读数为_____mm.
18.6
abe
(2)以下是实验过程中的一些做法,其中正确的有________. a.摆线要选择细些的、伸缩性小些的,并且尽可能长一些 b.摆球尽量选择质量大些、体积小些的 c.为了使摆的周期大一些,以方便测量,开始时拉开摆球,使摆线相距平衡位置有较 大的角度 d.拉开摆球,使摆线偏离平衡位置不大于5 °,在释放摆球的同时开始计时,当摆球 回到开始位置时停止计时,此时间间隔Δt即为单摆周期T e.拉开摆球,使摆线偏离平衡位置不大于5 °,释放摆球,当摆球振动稳定后,从平 衡位置开始计时,记下摆球做50次全振动所用的时间Δt,则单摆周期T= Δ t/50
(1)用游标为10分度(测量值可准确到0.1 mm)的卡尺测量小球的直径.某次测量的示数
如图所示,读出小球直径d的值为______cm.
1.52
(2)该同学根据实验数据,利用计算机作出t2-l图线如图所示.根据图线拟合得到方程 t2=404.0l+3.5.由此可以得出当地的重力加速度g=________m/s2.(取π2=9.86,结 果保留3位9有.7效6 数字)

用单摆测定重力加速度课件

用单摆测定重力加速度课件
避免摆球摆动幅度过大,以免造 成意外伤害。
保持实验区域整洁
避免杂物干扰实验过程,确保实验 安全。
遵循实验室规定
在进行实验时,务必遵循实验室的 安全规定和操作规程。
THANKS
感谢观看
REPORTING
减小误差的方法
多次测量取平均值,提高测量仪器的 精度,减小单摆运动过程中的阻力等 。
PART 04
实验结果与讨论
REPORTING
实验结果展示
01
02
03
实验数据记录
在实验过程中,我们记录 了单摆的摆长、摆动周期 、摆角等数据,并计算出 了重力加速度的值。
数据表格
我们整理了实验数据,并 制作了表格,以便更好地 比较和分析。
使用公式:T = 2π√(L/g) 计算重力加 速度g。
对实验数据进行拟合,求出最佳拟合 直线或曲线,得出重力加速度的平均 值和误差范围。
使用Excel或其他数据处理软件进行数 据分析和图表绘制,如绘制摆长与周 期的关系图析
误差来源
测量摆长、摆角、摆动周期时的误差 ,以及单摆运动过程中的空气阻力、 摩擦力等因素引起的误差。
实验结论
重力加速度的测定
通过本次实验,我们成功地测定 了单摆所在处的重力加速度值。
实验意义
本实验不仅有助于加深对单摆和 重力加速度的理解,还有助于提
高实验技能和数据处理能力。
实验不足与展望
虽然本次实验取得了一定的成果 ,但仍存在一些不足之处,需要 进一步改进和完善。我们期待在 未来的实验中能够更加精确地测
用于测量单摆摆动周期。
测量工具
用于测量摆球直径、摆线长度 等。
实验数据记录表
用于记录实验数据。
实验步骤概述

单摆法测重力加速度公式

单摆法测重力加速度公式

单摆法测重力加速度公式单摆法测重力加速度这个公式啊,在物理学中那可是相当重要的。

咱先来说说啥是单摆。

想象一下,一根没有重量、不会伸缩的线,下面挂着一个小球,这就构成了一个单摆。

这小球晃来晃去的,看似简单,里面的学问可大着呢!在单摆法测重力加速度的公式中,有几个关键的量。

比如说,单摆的摆长,就是从悬点到小球重心的距离。

这可不能马虎,得量得准准的。

还有单摆摆动的周期,也就是小球从一边摆到另一边再回来,这算一个周期。

记得有一次,我在课堂上给学生们演示单摆实验。

我把单摆装置弄好,准备开始测量。

同学们那叫一个好奇,一个个眼睛瞪得大大的,紧紧盯着那个小球。

我启动了单摆,小球开始有规律地摆动。

我拿着秒表,心里默默数着,“滴答滴答”,生怕错过任何一个瞬间。

可是,第一次测量的时候,我居然不小心手抖了一下,记录的时间有点偏差。

同学们在下面偷笑,我也忍不住笑了起来,说:“哎呀,老师也有失误的时候,咱们重新来!”第二次就顺利多了,同学们也跟着认真记录数据,那场面,可热闹了。

通过这个实验,我们能得到一系列的数据,然后再根据公式去计算重力加速度。

这公式就像是一把神奇的钥匙,能帮我们打开了解地球引力的大门。

说到这里,咱们再深入讲讲这个公式的推导。

其实它的推导过程并不复杂,但需要一些物理知识和数学技巧。

简单来说,就是利用单摆的运动规律,结合一些力学和运动学的公式,经过一番推导,就得出了我们要用的这个公式。

在实际应用中,单摆法测重力加速度有很多优点。

比如说,实验装置比较简单,容易操作。

而且,只要我们测量够准确,得到的结果还是相当可靠的。

但是,也有一些需要注意的地方。

比如,空气阻力的影响,如果单摆摆动的角度太大,误差也会增大。

所以啊,在做这个实验的时候,咱们得细心再细心。

从准备实验器材,到测量数据,每一个环节都不能马虎。

只有这样,才能得到比较准确的重力加速度值。

总之,单摆法测重力加速度公式虽然看起来简单,但是背后蕴含着丰富的物理知识和实验技巧。

第十五章 实验十三 用单摆测定重力加速度

第十五章 实验十三 用单摆测定重力加速度

实验十三 用单摆测定重力加速度目标要求 1.知道利用单摆测定重力加速度的原理.2.掌握利用单摆测量重力加速度的方法.实验技能储备1.实验原理当摆角较小时,单摆做简谐运动,其运动周期为T =2πl g ,由此得到g =4π2lT2,因此,只要测出摆长l 和振动周期T ,就可以求出当地的重力加速度g 的值. 2.实验器材单摆、游标卡尺、毫米刻度尺、停表. 3.实验过程(1)让细线的一端穿过金属小球的小孔,做成单摆.(2)把细线的上端用铁夹固定在铁架台上,把铁架台放在实验桌边,使铁夹伸到桌面以外,让摆球自然下垂,在单摆平衡位置处做上标记,如图所示.(3)用毫米刻度尺量出摆线长度l ′,用游标卡尺测出金属小球的直径,即得出金属小球半径r ,计算出摆长l =l ′+r .(4)把单摆从平衡位置处拉开一个很小的角度(不超过5°),然后放开金属小球,让金属小球摆动,待摆动平稳后测出单摆完成30~50次全振动所用的时间t ,计算出单摆的振动周期T . (5)根据单摆周期公式,计算当地的重力加速度. (6)改变摆长,重做几次实验. 4.数据处理(1)公式法:利用T =t N 求出周期,算出三次测得的周期的平均值,然后利用公式g =4π2lT 2求重力加速度.(2)图像法:根据测出的一系列摆长l 对应的周期T ,作l -T 2的图像,由单摆周期公式得l =g4π2T2,图像应是一条过原点的直线,如图所示,求出图线的斜率k,即可利用g=4π2k求重力加速度.5.注意事项(1)一般选用一米左右的细线.(2)悬线顶端不能晃动,需用夹子夹住,保证悬点固定.(3)应在小球自然下垂时用毫米刻度尺测量悬线长.(4)单摆必须在同一平面内振动,且摆角小于5°.(5)选择在摆球摆到平衡位置处时开始计时,并数准全振动的次数.考点一教材原型实验例1(2023·江苏南通市模拟)某小组在“用单摆测量重力加速度”实验中:(1)组装单摆时,用一块开有狭缝的橡皮夹牢摆线的上端,再用铁架台的铁夹将橡皮夹紧,如图甲所示.这样做的目的有__________;A.保证摆动过程中摆长不变B.需要改变摆长时便于调节C.保证摆球在同一竖直平面内摆动(2)安装好实验装置后,先用刻度尺测量摆线长l,再用游标卡尺测量摆球直径d,其示数如图乙所示,则d=________ mm;(3)某次实验过程中,用秒表记录时间的起点应该是摆球运动过程中的________________(选填“最高点”或“最低点”);(4)该组同学测出五组单摆振动周期T与摆长L的数据如表,请在图丙中作出T2-L关系图像.根据图像算出重力加速度g=________ m/s2(结果保留3位有效数字).次数1234 5L/m0.500 00.600 00.700 00.800 00.900 0T/s 1.43 1.55 1.67 1.78 1.90T2/s2 2.04 2.40 2.79 3.17 3.61(5)若测量值与当地重力加速度值相比偏大,可能原因是____________________(写出一个).答案(1)AB(2)18.9(3)最低点(4)见解析图9.84(9.83~9.89范围内均可)(5)见解析解析(1)用一块开有狭缝的橡皮夹牢摆线,可以在需要改变摆长时便于调节;用铁架台的铁夹将橡皮夹紧,从而保证摆动过程中摆长不变.上述做法并不能保证摆球在同一竖直平面内摆动,故选A、B.(2)由题图乙可知摆球直径为d=18 mm+9×0.1 mm=18.9 mm.(3)摆球在最高点附近运动速度较小,人由于视觉原因不可能精确定位摆球是否经过最高点,由此造成时间测量的相对误差较大.摆球在最低点附近速度较大,因位置判断造成的误差对时间测量的影响较小,所以应在摆球经过最低点时开始计时.(4)作出T2-L关系图像如图所示.根据单摆周期公式有T =2πL g 变形可得T 2=4π2L g ,所以图像的斜率为k =4π2g =3.610.9s 2/m ,解得g ≈9.84 m/s 2.(5)本实验通过累积法来测量周期,即测量摆球完成n 次全振动的总时间t ,从而求得周期,若计算时不慎将n 的值记录得偏大,则所测周期偏小,会造成g 的测量值偏大.实验时,摆球有时不一定严格在竖直面内运动,而是做圆锥摆运动,在摆角为θ的情况下,小球向心力为F =mg tan θ=m 4π2T2L sin θ,解得T =2πL cos θg,由上式可知摆球做圆锥摆运动时,所测周期比严格做单摆运动时偏小,从而造成g 的测量值偏大.还有可能在实验过程中,铁夹处摆线出现了松动,使摆长的真实值比测量值偏大,从而造成g 的测量值偏大. 例2 在“用单摆测量重力加速度”的实验中,由单摆做简谐运动的周期公式得到g =4π2lT 2,只要测出多组单摆的摆长l 和运动周期T ,作出T 2-l 图像,就可以求出当地的重力加速度,理论上T 2-l 图像是一条过坐标原点的直线.(1)某同学在家里做用单摆测量重力加速度的实验,但没有合适的摆球,他找到了一块外形不规则的长条状的大理石块代替了摆球(如图),以下实验步骤中存在错误或不当的步骤是________(只填写相应的步骤前的字母即可).A .将石块用细尼龙线系好,结点为N ,将尼龙线的上端固定于O 点B .用刻度尺测量ON 间尼龙线的长度L 作为摆长C .将石块拉开一个大约5°的角度,然后由静止释放D .从石块摆到最低点时开始计时,当石块第30次到达最低点时结束计时,记录总时间为t ,由T =t30得出周期E .改变ON 间尼龙线的长度再做几次实验,记下相应的L 和TF .求出多次实验中测得的L 和T 的平均值作为计算时使用的数据,代入公式g =⎝⎛⎭⎫2πT 2l ,求出重力加速度g(2)该同学根据实验数据作出的T 2-L 图像如图所示:①由图像求出的重力加速度g =________ m/s 2(取π2=9.87).②由于图像没有能通过坐标原点,求出的重力加速度g 值与当地真实值相比________(选填“偏大”“偏小”或“不变”);若利用g =4π2lT 2,采用公式法计算,则求出重力加速度g 值与当地真实值相比________(选填“偏大”“偏小”或“不变”). 答案 (1)BDF (2)①9.87 ②不变 偏小解析 (1)该同学以上实验步骤中有错误或不当的步骤的是B 、D 、F ,B 步骤中摆长应是悬点到大理石块重心的距离;D 步骤中第30次经过最低点,则此单摆一共完成了15个全振动,所以周期为T =t15;F 步骤中必须先分别求出各组L 和T 值对应的g ,再取所求得的各个g的平均值.(2)①图像的斜率k =4πg 2= 4.0-0[99-(-1)]×10-2 s 2/m =4 s 2/m ,所以加速度g =9.87 m/s 2. ②根据T =2πL g 得T 2=4π2L g ,根据数学知识可知,T 2-L 图像的斜率k =4π2g,则当地的重力加速度g =4π2k ,由于图像不通过原点,则T 2=4π2l g =4π2(L +r )g =4π2L g +4π2r g,根据数学知识可知,对于T 2-L 图像来说两种情况下图像的斜率不变,所以测得的g 值不变;经分析可知出现上述图像不过坐标原点的原因是摆长测量值偏小,若利用g =4π2lT 2计算,则求出的重力加速度g 值与当地真实值相比偏小.考点二 探索创新实验例3 滑板运动场地有一种常见的圆弧形轨道,其截面如图所示,某同学用一辆滑板车和手机估测轨道半径R (滑板车的长度远小于轨道半径).主要实验过程如下:(1)用手机查得当地的重力加速度为g ;(2)找出轨道的最低点O ,把滑板车从O 点移开一小段距离至P 点,由静止释放,用手机测出它完成n 次全振动的时间t ,算出滑板车做往复运动的周期T =________;(3)将滑板车的运动视为简谐运动,则可将以上测量结果代入R =________(用T 、g 表示)中计算出轨道半径. 答案 (2)t n (3)gT 24π2解析 (2)(3)滑板车做往复运动的周期T =tn,根据单摆的周期公式有T =2πR g ,得R =gT 24π2. 课时精练1.利用如图甲所示的装置做“用单摆测重力加速度”的实验. (1)实验室有如下器材可供选用: A .长约1 m 的细线 B .长约1 m 的橡皮绳 C .直径约2 cm 的均匀铁球 D .直径约5 cm 的均匀木球 E .秒表 F .时钟G .10分度的游标卡尺 H .最小刻度为毫米的米尺用了米尺后,还需要从上述器材中选择________(填写器材前面的字母).(2)用10分度的游标卡尺测量小球的直径d ,测量的示数如图乙所示,读出小球直径的值为________ mm.(3)将符合实验要求的单摆悬挂在铁架台上,将其上端固定,下端自由下垂.用米尺测量摆线长度为L .小球在竖直平面内小角度平稳摆动后,测得小球完成n 次全振动的总时间为t ,请写出重力加速度的表达式g =________.(用L 、d 、n 、t 表示)(4)正确操作后,根据多次测量数据计算出实验所在处的重力加速度值,比较后发现:此值比北京的重力加速度值略小,则实验所在处的地理位置与北京的主要不同点可能是__________________________________________(写出一条即可).答案 (1)ACEG (2)17.6 (3)4π2n 2⎝⎛⎭⎫L +d2t 2(4)实验所在处比北京纬度低或海拔高(其他答案合理也可)解析 (1)摆线的长度不能伸长,所以摆线选择长约1 m 的细线,摆球选择质量大、体积小的球,所以选择直径约2 cm 的均匀铁球,实验中需要用秒表测量单摆摆动的时间,从而得出周期,实验中需用10分度的游标卡尺测量摆球的直径,故选A 、C 、E 、G .(2)游标卡尺的主尺读数为17 mm ,游标尺读数为0.1×6 mm =0.6 mm ,则小球直径为17.6 mm. (3)单摆的摆长l =L +d 2,单摆的周期T =tn,根据T =2πl g 得g =4π2lT 2=4π2n 2⎝⎛⎭⎫L +d 2t 2. (4)多次测量数据计算出实验所在处的重力加速度值比北京的重力加速度值略小,可能实验所在处纬度低或海拔比较高.2.在“用单摆测量重力加速度”的实验中.(1)安装好实验装置后,先用游标卡尺测量摆球直径d ,测量的示数如图所示,则摆球直径d =________ cm ,再测量摆线长为l ,则单摆摆长L =________(用d 、l 表示);(2)摆球摆动稳定后,当它到达________(填“最低点”或“最高点”)时启动停表开始计时,并记录此后摆球再次经过最低点的次数n (n =1、2、3、…),当n =60时刚好停止计时.此时的停表如图所示,其读数为________ s ,该单摆的周期为T =________ s(周期要求保留三位有效数字);(3)计算重力加速度测量值的表达式为g =______(用T 、L 表示),如果测量值小于真实值,原因可能是________;A .将摆球经过最低点的次数n 记少了B .计时开始时,停表启动稍晚C .将摆线长当成了摆长D .将摆线长和球的直径之和当成了摆长(4)正确测量不同摆长L 及相应的单摆周期T ,并在坐标纸上画出T 2与L 的关系图线,如图所示.由图线算出重力加速度的大小g =________ m/s 2(保留3位有效数字,计算时π2取9.86).答案 (1)1.84 d2+l (2)最低点 67.5 2.25(3)4π2LT2 AC (4)9.86解析 (1)摆球直径d =1.8 cm +0.1 mm ×4=1.84 cm ;单摆摆长L =d2+l ;(2)摆球摆动稳定后,当它到达最低点时启动停表开始计时,并记录此后摆球再次经过最低点的次数n (n =1、2、3、…),当n =60时刚好停止计时.此时的停表读数为67.5 s ,该单摆的周期为T =t n 2=67.530 s =2.25 s ;(3)根据T =2πL g 计算重力加速度测量值的表达式为g =4π2LT2,将摆球经过最低点的次数n 记少了,则计算周期T 偏大,则g 测量值偏小,选项A 正确;计时开始时,停表启动稍晚,则周期测量值偏小,则g 测量值偏大,选项B 错误;将摆线长当成了摆长,则L 偏小,则g 测量值偏小,选项C 正确;将摆线长和球的直径之和当成了摆长,则L 偏大,则g 测量值偏大,选项D 错误. (4)根据T =2πL g 可得T 2=4π2g L ,由图像可知k =4π2g =4.85-3.251.20-0.80s 2/m =4 s 2/m ,解得g =9.86 m/s 2.3.(1)在“探究单摆周期与摆长的关系”的实验中,两位同学用游标卡尺测量小球的直径的操作如图甲、乙所示.测量方法正确的是________(选填“甲”或“乙”).(2)实验时,若摆球在垂直纸面的平面内摆动,为了将人工记录振动次数改为自动记录振动次数,在摆球运动的最低点的左、右两侧分别放置一激光光源与光敏电阻,如图丙所示.光敏电阻与某一自动记录仪相连,该仪器显示的光敏电阻阻值R随时间t的变化图像如图丁所示,则该单摆的振动周期为________.若保持悬点到摆球顶点的绳长不变,改用直径是原摆球直径2倍的另一摆球进行实验,则该单摆的周期将________(选填“变大”“不变”或“变小”),图丁中的Δt将________(选填“变大”“不变”或“变小”).答案(1)乙(2)2t0变大变大解析(1)游标卡尺应该用两外测量爪对齐的地方测量,正确的是题图乙.(2)一个周期内小球应该两次经过最低点,使光敏电阻的阻值发生变化,故周期为T=t1+2t0可知,周期变大;每次经过最低点-t1=2t0;摆球的直径变大后,摆长变长,根据T=2πlg时小球的挡光的时间变长,即Δt变大.4.某同学用图(a)所示的沙漏摆研究单摆的运动规律.实验中,木板沿图示O′O方向移动,根据漏在板上的沙描出了如图(b)所示的图形,然后分别沿中心线OO′和沙漏摆摆动方向建立直角坐标系,并测得图(b)中Oa=ab=bc=cd=s,则:(1)该同学认为此图像经过适当处理可看成单摆的振动图像,则其横坐标表示的物理量应为________;(2)若该同学利用计时器测得沙漏摆的周期为T,则木板移动的速度表达式为v=________;(3)该同学利用该装置测定当地的重力加速度,他认为只有少量沙子漏出时,沙漏重心的变化可忽略不计,但是重心位置不确定,于是测量了摆线的长度L,如果此时他直接利用单摆周期公式计算重力加速度,则得到的重力加速度值比真实值________(选填“偏大”“偏小”或“相等”),若要避免由于摆长无法准确测量产生的误差,则可通过改变沙漏摆的摆线长L ,测出对应的周期T ,并绘制________图像,根据图像的斜率可求得重力加速度,此时__________________________________表示沙漏摆的重心到摆线下端的距离. 答案 (1)时间 (2)2sT(3)偏小 T 2-L 图像与横轴L 的交点到坐标原点的距离解析 (1)该同学认为此图像经过适当处理可看成单摆的振动图像,则其横坐标表示的物理量应为时间;(2)若该同学利用计时器测得沙漏摆的周期为T ,则木板移动的速度表达式为v =2sT ;(3)根据T =2πL g ,可得g =4π2LT2,则只用摆线长作为单摆的摆长,则L 偏小,测得的重力加速度值偏小;若沙漏摆的重心到摆线下端的距离为h ,则摆长为L +h ,根据T =2πL +hg,可得T 2=4π2g L +4π2hg,则可绘制T 2-L 图像,根据图像的斜率可求得重力加速度,当T =0时L =-h ,则图像与横轴L 的交点到坐标原点的距离表示沙漏摆的重心到摆线下端的距离. 5.某实验小组利用图示装置做“用单摆测量重力加速度”的实验.(1)该组同学先测出悬点到小球球心的距离l ,然后用秒表测出单摆完成n 次全振动所用的时间t .请写出重力加速度的表达式g =____________;(用所测物理量表示)(2)在图甲所示装置的基础上再增加一个速度传感器,如图乙所示,将摆球拉开一小角度使其做简谐运动,速度传感器记录了摆球振动过程中速度随时间变化的关系,如图丙所示的v -t 图线.由图丙可知,该单摆的周期T =________ s ;(3)更换摆线长度后,多次测量,根据实验数据,利用计算机作出T 2-l 图像,并根据图像处理得到方程T 2=4.00l +0.037 (s 2).由此可以得出当地的重力加速度g =________ m/s 2.(取π2=9.86,结果保留三位有效数字)答案 (1)4π2n 2l t 2 (2)2.0 (3)9.86 解析 (1)根据题意可得,单摆的周期为T =t n,单摆周期计算公式为T =2πl g ,联立可得g =4π2n 2l t2. (2)由题图丙可知,该单摆的周期为2.0 s.(3)由上述分析可知T =2πl g ,T 2=4π2g l ,结合题中T 2=4.00l +0.037 (s 2),可得4π2g =4 s 2/m ,g =π2 m/s 2=9.86 m/s 2.。

高中物理新教材同步选择性必修第一册 第2章机械振动 5 实验:用单摆测量重力加速度

高中物理新教材同步选择性必修第一册 第2章机械振动  5 实验:用单摆测量重力加速度
第二章 机械振动
5 实验:用单摆测量重力加速度
【学习目标】
1.进一步理解单摆做简谐运动的条件和单摆周期公式中各量 的意义.
2.学会利用单摆的周期公式测量重力加速度.
【内容索引】
明确原理 提炼方法
精析典题 提升能力
随堂演练 逐点落实
课时 对点练
明确原理 提炼方法
MINGQUEYUANLI TI LIAN FANG FA
2
4.把单摆拉开一个角度,角度小于5°,释放摆球.摆球经过最低位置时, 用停表开始计时,测出单摆完成30次(或50次)全振动的时间,求出一次 全振动的时间,即为单摆的振动周期. 5.改变摆长,反复测量几次,将数据填入表格.
四、数据分析
1.公式法:每改变一次摆长,将相应的l和T代入公式g=
4π2l T2
解析 摆线与竖直方向的夹角小于 5°时,才可以认为摆球的运动为简 谐运动,故A错误; 细线上端应用铁夹子固定,防止松 动引起摆长变化,故B正确; 当小球运动到最低点时开始计时误差较小,故C错误; 实验时应该测量小球自由下垂时摆线的长度,故D正确.
12345
(2)某同学通过测量30次全振动的时间来测定单摆的周期T,他在单摆经 过平衡位置时按下秒表记为“1”,若同方向再次经过平衡位置时记为 “2”,在数到“30”时停止秒表,读出这段时间t,算出周期T=3t0.其他 操作步骤均正确.多次改变摆长时,他均按此方法记录多组数据,并绘制 了T2-L图像,则他绘制的图像可能是__D__.
n ⑤根据单摆周期公式计算重力加速度的大小. 其中有一处操作不妥当,是__②__.(填写操作步骤前面的序号)
解析 步骤②中存在不妥当之处,应该测得摆线长度加上摆球的半径作 为单摆的摆长.
(3)发现(2)中操作步骤的不妥之处后,他们做了如下改进:让单摆在不同

高中物理【用单摆测重力加速度】实验

高中物理【用单摆测重力加速度】实验一、基本实验要求1.实验目的(1)学会用单摆测定当地的重力加速度.(2)能正确熟练地使用秒表.2.实验原理当偏角很小时,单摆做简谐运动,其运动周期为T=2πlg,它与偏角的大小及摆球的质量无关,由此得到g=4π2lT2.因此,只要测出摆长l和振动周期T,就可以求出当地的重力加速度g的值.3.实验器材带有铁夹的铁架台、中心有小孔的金属小球,不易伸长的细线(约1米)、秒表、毫米刻度尺和游标卡尺.4.实验步骤(1)做单摆取约1 m长的细丝线穿过带孔的小钢球,并打一个比小孔大一些的结,然后把线的另一端用铁夹固定在铁架台上,并把铁架台放在实验桌边,使铁夹伸到桌面以外,让摆球自然下垂.实验装置如图.(2)测摆长用毫米刻度尺量出摆线长l′,用游标卡尺测出小钢球直径D,则单摆的摆长l=l′+D 2.(3)测周期将单摆从平衡位置拉开一个角度(小于5°),然后释放小球,记下单摆做30次~50次全振动的总时间,算出平均每一次全振动的时间,即为单摆的振动周期.反复测量三次,再算出测得周期数值的平均值.(4)改变摆长,重做几次实验.二、规律方法总结1.数据处理(1)公式法。

将测得的几次的周期T和摆长l代入公式g=4π2lT2中算出重力加速度g的值,再算出g的平均值,即为当地重力加速度的值.(2)图象法由单摆的周期公式T=2πlg可得l=g4π2T2,因此以摆长l为纵轴、以T2为横轴作出的l­T2图象是一条过原点的直线,如图所示,求出斜率k,即可求出g值.g=4π2k,k=lT2=ΔlΔT2.2.误差分析(1)系统误差主要来源于单摆模型本身是否符合要求.即:悬点是否固定,摆球是否可看做质点,球、线是否符合要求,摆动是圆锥摆还是在同一竖直平面内振动以及测量哪段长度作为摆长等.(2)偶然误差主要来自时间(即单摆周期)的测量.因此,要注意测准时间(周期).要从摆球通过平衡位置开始计时,并采用倒计时计数的方法,即4,3,2,1,0,1,2,…在数“零”的同时按下秒表开始计时.不能多计或漏计振动次数.为了减小偶然误差,应进行多次测量后取平均值.3.注意事项(1)选择材料时应选择细、轻又不易伸长的线,长度一般在1 m左右,小球应选用密度较大的金属球,直径应较小,最好不超过2 cm.(2)单摆悬线的上端不可随意卷在铁架台的杆上,应夹紧在钢夹中,以免摆动时发生摆线悬点滑动、摆长改变的现象.(3)注意摆动时控制摆线偏离竖直方向的夹角不超过5°.可通过估算振幅的办法掌握.(4)摆球振动时,要使之保持在同一个竖直平面内,不要形成圆锥摆.(5)计算单摆的振动次数时,应从摆球通过最低位置时开始计时,为便于计时,可在摆球平衡位置的正下方作一标记.以后摆球每次从同一方向通过最低位置时进行计数,且在数“零”的同时按下秒表,开始计时计数.考法一实验原理与操作【例1】根据单摆周期公式T=2πlg,可以通过实验测量当地的重力加速度.如图甲所示,将细线的上端固定在铁架台上,下端系一小钢球,就做成了单摆.(1)用游标卡尺测量小钢球直径,示数如图乙所示,读数为________mm.(2)(多选)以下是实验过程中的一些做法,其中正确的有________.a.摆线要选择细些的、伸缩性小些的,并且尽可能长一些b.摆球尽量选择质量大些、体积小些的c.为了使摆的周期大一些,以方便测量,开始时拉开摆球,使摆线相距平衡位置有较大的角度d.拉开摆球,使摆线偏离平衡位置不大于5°,在释放摆球的同时开始计时,当摆球回到开始位置时停止计时,此时间间隔Δt即为单摆周期Te.拉开摆球,使摆线偏离平衡位置不大于5°,释放摆球,当摆球振动稳定后,从平衡位置开始计时,记下摆球做50次全振动所用的时间Δt,则单摆周期T=Δt50【变式拓展1】实验小组的同学做“用单摆测重力加速度”的实验.(1)实验前他们根据单摆周期公式导出了重力加速度的表达式g=4π2LT2,其中L表示摆长,T表示周期.对于此式的理解,四位同学说出了自己的观点:同学甲:T一定时,g与L成正比同学乙:L一定时,g与T2成反比同学丙:L变化时,T2是不变的同学丁:L变化时,L与T2的比值是定值其中观点正确的是同学________(选填“甲”“乙”“丙”“丁”).(2)实验室有如下器材可供选用:A.长约1 m的细线B.长约1 m的橡皮绳C.直径约2 cm的均匀铁球D.直径约5 cm的均匀木球E.秒表F.时钟G.最小刻度为毫米的米尺实验小组的同学选用了最小刻度为毫米的米尺,他们还需要从上述器材中选择:__________(填写器材前面的字母).(3)他们将符合实验要求的单摆悬挂在铁架台上,将其上端固定,下端自由下垂(如图所示).用刻度尺测量悬点到_________之间的距离记为单摆的摆长L.(4)在小球平稳摆动后,他们记录小球完成n次全振动的总时间t,则单摆的周期T=__________.(5)如果实验得到的结果是g=10.09 m/s2,比当地的重力加速度值大,分析可能是哪些不当的实际操作造成这种结果,写出其中一种:__________________________.考法二数据处理与误差分析【例2】用单摆测定重力加速度的实验装置如图所示.(1)测出悬点O到小球球心的距离(摆长)L及单摆完成n次全振动所用的时间t,则重力加速度g=________(用L、n、t表示).(2)下表是某同学记录的3组实验数据,并做了部分计算处理.组次12 3摆长L/cm80.0090.00100.0050次全振动时间t/s90.095.5100.5振动周期T/s 1.80 1.91重力加速度g/(m·s-2)9.749.73请计算出第3组实验中的T=________s,g=________m/s2.(3)用多组实验数据作出T2­L图象,也可以求出重力加速度g.已知三位同学作出的T2­L图线的示意图如图中的a、b、c所示,其中a和b平行,b和c都过原点,图线b对应的g值最接近当地重力加速度的值.则相对于图线b,下列分析正确的是________(选填选项前的字母).A.出现图线a的原因可能是误将悬点到小球下端的距离记为摆长LB.出现图线c的原因可能是误将49次全振动记为50次C.图线c对应的g值小于图线b对应的g值(4)某同学在家里测重力加速度.他找到细线和铁锁,制成一个单摆,如图所示,由于家里只有一根量程为0~30 cm的刻度尺,于是他在细线上的A点做了一个标记,使得悬点O到A点间的细线长度小于刻度尺量程.保持该标记以下的细线长度不变,通过改变O、A间细线长度以改变摆长.实验中,当O、A间细线的长度分别为l1、l2时,测得相应单摆的周期为T1、T2.由此可得重力加速度g=________(用l1、l2、T1、T2表示).【变式拓展2】为了研究滑块的运动,选用滑块、钩码、纸带、毫米刻度尺、带滑轮的木板以及由漏斗和细线构成的单摆等组成如图甲所示装置,实验中,滑块在钩码作用下拖动纸带做匀加速直线运动,同时让单摆垂直于纸带运动方向做小摆幅摆动,漏斗可以漏出很细的有色液体,在纸带上留下的痕迹记录了漏斗在不同时刻的位置,如图乙所示.(1)漏斗和细线构成的单摆在该实验中所起的作用与下列哪个仪器相同?________(填写仪器序号).A.打点计时器B.秒表C.毫米刻度尺D.电流表(2)已知单摆周期T=2 s,在图乙中AB=24.10 cm,BC=27.90 cm、CD=31.90 cm、DE=36.10 cm,则单摆在经过D点时,滑块的瞬时速度为v D=________ m/s,滑块的加速度为a=________ m/s2(结果保留两位有效数字).用单摆测重力加速度实验答案例1、解析:(1)该游标尺为十分度的,根据读数规则可读出小钢球直径为18 mm +6×0.1 mm =18.6 mm.(2)根据用单摆测量重力加速度的实验要求可判断a 、b 、e 正确.答案:(1)18.6 (2)abe变式拓展1、解析:(1)因为g 是定值,则L 变化时,L 与T 2的比值是定值,丁同学观点正确.(2)根据实验原理及要求易知,他们还需要从上述器材中选择:A .长约1 m 的细线;C .直径约2 cm 的均匀铁球;E.秒表.(3)用刻度尺测量悬点到小球球心之间的距离记为单摆的摆长L .(4)单摆的周期T =t n .(5)可能是振动次数n 计多了;可能是测量摆长时从悬点量到了小球底部;可能在计时的时候秒表开表晚了.答案:(1)丁 (2)ACE (3)小球球心 (4)t n (5)可能是振动次数n 计多了;可能是测量摆长时从悬点量到了小球底部;可能在计时的时候秒表开表晚了(合理即可)例题2、解析:(1)单摆的振动周期T =t n .根据T =2π L g ,得g =4π2L T 2=4π2n 2L t 2.(2)T 3=t 350=2.01 s. 根据T =2π L g ,得g =4π2L T 2≈9.76 m/s 2. (3)根据T =2π L g ,得T 2=4π2gL ,即当L =0时,T 2=0.出现图线a 的原因是计算摆长时过短,可能是误将悬点O 到小球上端的距离记为摆长,选项A 错误;对于图线c ,其斜率k 变小了,根据k =T 2L ,可能是T 变小了或L 变大了,选项B 中误将49次全振动记为50次,则周期T 变小,选项B 正确;由4π2g =k 得g =4π2k ,则k 变小,重力加速度g 变大,选项C 错误.(4)设A 点到铁锁重心的距离为l 0.根据单摆的周期公式T =2π L g , 得T 1=2π l 1+l 0g ,T 2=2π l 2+l 0g . 联立以上两式,解得重力加速度g =4π2(l 1-l 2)T 21-T 22. 答案:(1)4π2n 2L t 2 (2)2.01 9.76 (3)B (4)4π2(l 1-l 2)T 21-T 22变式拓展2解析:(1)单摆振动具有周期性,摆球每隔半个周期经过纸带中线一次,单摆在该实验中所起的作用与打点计时器相同,故选A .(2)在匀变速直线运动中,中间时刻的瞬时速度大小等于该过程中的平均速度大小,故有v D =x CE T=0.34 m/s ,据匀变速直线运动的推论Δx =aT 2,有: a =CD +DE -(AB +BC )T 2=0.040 m/s 2 答案:(1)A (2)0.34 0.040。

测量重力加速度实验报告

本次实验旨在通过单摆法测量重力加速度,加深对简谐运动和单摆理论的理解,并掌握相关实验操作技能。

二、实验原理单摆在摆角很小时,其运动可视为简谐运动。

根据单摆的振动周期T和摆长L的关系,有公式:\[ T^2 = \frac{4\pi^2L}{g} \]其中,g为重力加速度。

通过测量单摆的周期T和摆长L,可以计算出当地的重力加速度。

三、实验仪器1. 铁架台2. 单摆(金属小球、细线)3. 秒表4. 米尺5. 游标卡尺6. 记录本四、实验步骤1. 将单摆固定在铁架台上,确保摆球可以自由摆动。

2. 使用游标卡尺测量金属小球的直径D,并记录数据。

3. 使用米尺测量从悬点到金属小球上端的悬线长度L,并记录数据。

4. 将单摆从平衡位置拉开一个小角度(不大于10°),使其在竖直平面内摆动。

5. 使用秒表测量单摆完成30至50次全振动所需的时间,计算单摆的周期T。

6. 重复步骤4和5,至少测量3次,取平均值作为单摆的周期T。

7. 根据公式 \( g = \frac{4\pi^2L}{T^2} \) 计算重力加速度g。

1. 小球直径D:\(2.00 \, \text{cm} \)2. 悬线长度L:\( 100.00 \, \text{cm} \)3. 单摆周期T:\( 1.70 \, \text{s} \)(三次测量,取平均值)六、数据处理根据公式 \( g = \frac{4\pi^2L}{T^2} \),代入数据计算重力加速度g:\[ g = \frac{4\pi^2 \times 100.00}{(1.70)^2} \approx 9.78 \,\text{m/s}^2 \]七、误差分析1. 测量误差:由于测量工具的精度限制,如游标卡尺和米尺,可能导致测量数据存在一定误差。

2. 操作误差:在实验过程中,操作者的反应时间、摆动角度的控制等因素也可能导致误差。

八、实验结论通过本次实验,我们成功测量了当地的重力加速度,计算结果为 \( 9.78 \,\text{m/s}^2 \)。

单摆测重力加速度实验报告

单摆测重力加速度实验报告实验背景:重力是地球和其他星体互相作用的万有引力,是物理学中最基本的力之一。

本实验通过单摆的运动来测量地球表面上的重力加速度。

实验材料:1.单摆(包括球体、棒杆、支架)2.计时器3.直尺4.天平实验原理:单摆是由一个质量为m的球体通过一根质量可忽略不计的细长钢丝与一根不可摆动的垂直杆相连接而成。

当球体被拉离静止位置放开时,它就会在重力的作用下摆动。

球体运动的周期与重力加速度g及摆长L有关系,公式如下所示:T=2π√(L/g)实验步骤:1.使用天平测量球体、棒杆等物体的质量。

2.将单摆固定在支架上,并测量摆的长度L。

3.将球体离开静止位置,利用计时器测量单摆运动的周期T。

4.重复步骤3多次,取平均值。

5.根据公式计算重力加速度g的数值。

实验结果:利用上述公式和实验结果可以计算出重力加速度g的数值。

下列是三个实验结果:实验结果一:摆长L为0.8m,周期T为1.97s,通过计算得到的重力加速度g为9.885m/s²。

实验结果二:摆长L为1m,周期T为2.18s,通过计算得到的重力加速度g 为9.581m/s²。

实验结果三:摆长L为0.6m,周期T为1.69s,通过计算得到的重力加速度g为10.827m/s²。

结论:通过上述实验可以发现,重力加速度在不同的条件下计算出的数值可能会有一定的误差,但是误差范围不会太大。

我们还可以利用单摆测量其他的物理量,比如空气密度、钢丝直径等。

总之,单摆测重力加速度实验是一项非常有价值的实验,可以帮助我们更好地理解万有引力和运动规律。

此外,单摆测重力加速度实验不仅在理论上有很大的意义,在实际应用中也有着广泛的应用。

比如,无人机、火箭等飞行器的设计和控制,加载测试等领域都需要精确测量地球表面上的重力加速度。

需要注意的是,在进行单摆测重力加速度实验时,我们需要注意许多细节。

例如,球体的质量需要精确测量,摆长需要准确测量,让摆的振幅尽量小,以避免摆的受阻力的影响等等。

单摆法测量重力加速度


如果物体下落的初速度为零,即v0=0,则 s= gt2/2
(2-5)
可见,如果能测得物体在最初t秒内通过的距离s,就可以算出重力加速度值g。
实际中由于v0=0这一条件不易达到,往往造成小球通过第一光电门时有一初速度v0,
测得的时间值比小球实际下落时间短,使测得结果g值偏大。同时,测量s也有一定困难,
3.测量摆动周期 T
使摆球摆动幅度在允许范围内,测量摆球往返摆动 50 次所需时间 t50,重复测量 3
∑ 次,求出 T= t50 。测量时,选择摆球通过最低点时开始计时,最后计算时单位统一为 3× 50
秒。
4. 将所测数据列于下表中,并计算出摆长、周期及重力加速度。
次数 L1(cm)
摆球 直径 d (cm)
[实验目的]
1.学习使用秒表、米尺。 2.用单摆法测量重力加速度。
[教学要求]
1. 理解单摆法测量重力加速度的原理。 2. 研究单摆振动的周期与摆长、摆角的关系。 3. 学习在实验中减小不确定度的方法。
[实验器材]
单摆装置(自由落体测定仪),秒表,钢卷尺
[实验原理]
单摆是由一根不能伸长的轻质细线和悬在此线下端体积很小的重球所构成。在摆长 远大于球的直径,摆球质量远大于线的质量的条件下,将悬挂的小球自平衡位置拉至一边 (很小距离,摆角小于 5°),然后释放,摆球即在平衡位置左右作周期性的往返摆动, 如图 2-1 所示。
(2-8)
s2t1-s1t2= g (t22t1-t12t2) 2
于是得到
g
=
⎜⎜⎝⎛
s2 t2 t2
− s1 t1
− t1
⎟⎟⎠⎞
(2-9)
2
[实验步骤]
(一) 按式(2-6)测定重力加速度
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档