微波技术课后习题答案-第一章习题参考答案
微波(第一章第一节)(12-13-2)

微波技术与天线
u( z , t ) Re[U ( z ) e jt ]
A1 e z cos(t z 1 ) A2 ez cos(t z 2 )
ui ( z, t ) ur ( z, t )
表明传输线上任意位置的电压都是入射波和反射波的 叠加。
返 回 上一页 下一页
微波技术与天线
U1 I1 Z0 z U1 I1 Z0 z I (z) e e 2 Z0 2 Z0 U1 shz I1 ch z Z0
(2)已知终端条件的解 U(l)=U2,I(l)=I2,得 U 2 I 2 Z 0 l U 2 I 2 Z 0 l A2 e A1 e , 2 2 U 2 I 2 Z0 ( l z ) U 2 I 2 Z0 ( l z ) U (z) e e 2 2 U 2 I 2 Z0 ( l z ) U 2 I 2 Z0 ( l z ) I (z) e e 2 Z0 2 Z0
返 回 上一页 下一页
微波技术与天线
1.1 长线理论
1.1.1 分布参数电路的模型
1、TEM波传输线的结构特点 结构上的最大特点是:都是双导体结构。 几种常见的TEM波传输线单位长度的等效电感和 等效电容: 表示单位长度 2D , C1 。 (1)双导线: L1 ln d ln(2 D d ) D和d分别是两导线间的距离和导线的直径。 2 D 。 ln , C1 (2)同轴线:L1 ln(D d ) 2 d D和d分别是外导体和内导体的直径。
Ui ( z) Ur ( z)
U ( z) U2 ch z I2 Z0 shz
U2 I ( z ) shz I 2 ch z Z0
微波技术习题解答(部分)

率的波,而是一个含有多种频率的波。这些多种频率成分构成一个“波群”
又称为波的包络,其传播速度称为群速,用 vg 表示,即 vg v 1 c 2
第三章 微波传输线
TEM波:相速
vp
1 v
相波长
p
2
v f
群速 vg vp v
即导波系统中TEM波的相速等于电磁波在介质中的传播速度,而相波长 等于电磁波在介质中的波长(工作波长)
插入衰减 A
A
1 S21 2
A%11 A%12 A%21 A%22 2 4
对于可逆二端口网络,则有
A
1 S21 2
1 S12 2
第四章 微波网络基础
插入相移 argT arg S21
对于可逆网络,有 S21 S12 T ,故
T T e j S12 e j12 S21 e j21
何不同?
答案:截止波长:对于TEM波,传播常数 为虚数;对于TE波和TM波,对 于一定的 kc 和 、 ,随着频率的变化,传播长数 可能为虚数,也可能为实
数,还可以等于零。当 0 时,系统处于传输与截止状态之间的临界状态,此 时对应的波长为截止波长。
当 c 时,导波系统中传输该种波型。 当 c 时,导波系统中不能传输该种波型。
第三章 微波传输线
3-3 什么是相速、相波长和群速?对于TE波、TM波和TEM波,它们的相速 相波长和群速有何不同?
答案: 相速 vp 是指导波系统中传输的电磁波的等相位面沿轴向移动的速
度,公式表示为
vp
相波长 p
是等相位面在一个周期T内移动的距离,有
p
2
欲使电磁波传输信号,必须对波进行调制,调制后的波不再是单一频
T S21 0.98e j 0.98
微波技术基础习题答案华科

微波技术基础习题答案华科微波技术基础习题答案华科微波技术是现代通信领域中的重要一环,它涉及到无线通信、雷达、卫星通信等众多应用。
在学习微波技术的过程中,习题是一个非常重要的辅助工具,通过解答习题可以帮助我们巩固所学的知识,并且提高我们的解决问题的能力。
下面是华中科技大学微波技术基础习题的答案,希望对大家的学习有所帮助。
一、选择题1. 以下哪项不是微波技术的应用领域?A. 无线通信B. 雷达C. 卫星通信D. 电视广播答案:D2. 微波技术中,波长范围一般为:A. 1 mm - 1 cmB. 1 cm - 1 mC. 1 m - 1 kmD. 1 km - 1 m答案:A3. 微波传输线的特点是:A. 传输损耗小B. 传输速度快C. 传输带宽大D. 以上都是答案:D4. 以下哪个是微波技术中常用的天线类型?A. 偶极子天线B. 棱角天线C. 高增益天线D. 以上都是答案:D5. 在微波技术中,常用的传输介质是:A. 真空B. 空气C. 金属D. 介质答案:D二、填空题1. 微波技术中,一般使用的频率范围是______ GHz。
答案:1-3002. 微波传输线的特点之一是传输损耗______。
答案:小3. 微波技术中,常用的天线类型之一是______天线。
答案:偶极子4. 微波技术中,常用的传输介质是______。
答案:介质5. 微波技术中,常用的调制方式之一是______调制。
答案:频率三、简答题1. 请简述微波技术的应用领域。
微波技术广泛应用于无线通信、雷达、卫星通信等领域。
在无线通信中,微波技术被用于移动通信、无线局域网等,可以实现高速、稳定的无线数据传输。
在雷达领域,微波技术可以实现目标的探测、跟踪和定位,广泛应用于军事、航空等领域。
在卫星通信中,微波技术实现了地球与卫星之间的长距离通信,使得人们可以通过卫星实现远距离的通信和数据传输。
2. 请简述微波传输线的特点。
微波传输线具有传输损耗小、传输速度快和传输带宽大的特点。
微波技术与天线部分课后答案

微波技术与天线
* 1、1设一特性阻抗为得均匀传输线终端接负载,求负载反射系数,在离负载,及处得输入阻抗及反射系数分别为多少?
解:
1、3设特性阻抗为得无耗传输线得驻波比,第一个电压波节点离负载得距离为,试证明此时得终端负载应为
证明:
* 1、5试证明无耗传输线上任意相距λ/4得两点处得阻抗得乘积等于传输线特性阻抗得平方。
证明:令传输线上任意一点瞧进去得输入阻抗为,与其相距λ/4处瞧进去得输入阻抗为,则有:
=
所以有:
故可证得传输线上相距得二点处阻抗得乘积等于传输线得特性阻抗。
1、6 设某一均匀无耗传输线特性阻抗为Z0=50Ω,终端接有未知负载Z1。
现在传输线上测得电压最大值与最小值分别为100mV与20mV,第一个电压波节得位置离负载l min1=λ/3,试求该负载阻抗Z1。
解: 根据驻波比得定义: ρ=|U max|/|U min|=100/20=5
反射系数得模值 |Г1|=ρ-1/ρ+1=2/3
由 l min1=λФ1/4(pai)+λ/4=λ/3
求得反射系数得相位Ф1=(pai)/3,因而复反射系数Г1=2e j(pai)/3/3
负载阻抗为 Z1=Z0(1+Г1)/(1-Г1)=82、4 64、30
*
*例2-1 设某矩形波导得尺寸为a=8cm,b=4cm,试求工作频率在3GHz时该波导能传输得模式。
解: 由f=3GHz,得λ=c/f=0、1m
λcTE10=2a=0、16m>λλcTE01=2b=0、08m<λλcTM11=2ab/ a2+b2=0、0715m<λ
可见,该波导在工作频率为3GHz时只能传输TE10模。
*。
微波技术基础—第11次课A——习题课 ppt课件

ppt课件
25
2.12
ppt课件
26
ppt课件
27
2.13
磁场与电流的分布关系
正交ppt课件282.16ppt课件
29
2.18
P52页,第一行。第二行,TE01应为TM01
ppt课件
30
2.22 圆波导中三种常用模式的特点
1) TE01模的特点及应用
(1)场分量仅有Hz、Hr、Eφ ;m=0,场结构简 单且呈圆周对称分布。无极化简并,与TM11 模简并。
ppt课件
34
扇形波导
分析扇形波导的方法与分析圆波导完全类似 ,只是m不是 正整数,而由φ=0和φ=ψ 边界条件确定。
1)ψ = 2π的扇形波导,其主模为 TE 模 11 ,λc = 5.41a , 比圆波导主模的截止波长增加了许多2 。
2)ψ = π的半圆扇形波导 ,其主模为TE11模 。第一高次
传播特性
截止特性 群速度、相速度、波导波长、色散
ppt课件
17
TE、TM波截止场特性
ppt课件
18
ppt课件
19
第二章作业
2.1 同轴线中的场延方向单位矢量的变化规 律
E呈辐射状圆对称,沿r方向与r呈反比变化, 沿φ方向不变,沿z方向呈余弦变化;H为围 绕内导体的同心圆,沿r方向与r呈反比变化, 沿φ方向不变,沿z方向呈余弦变化;
E H n dS
2 s1 s2 s'
1
2
s1
Et
Ht
az dS
1 2
s2 Et Ht az dS
j2 Wm We
不难看出,该式的左端两项积分相等反号, Wm We 。
微波技术(陈章友)部分习题答案

所以,T2 :
v , t 10 cost 2 10 sin t
4
4
i , t 0.1sin t
4
iz,t
A1 Zc
cost
1
0.1cost
z
v , t 10 cost 2 10 cos t
T3 :
2
i , t 0.1cos t
2
2
1.3、解:
Z in
1 j tan z2 1 tan 2 z 2 j tan z
1 tan 2 z
1 tan 2 z
cos 2z j sin 2z e j2z
L
ZL Zc ZL Zc
Zbb' Zc Zbb' Zc
1
(III)段:短路 z Le j2z e j2z
Z inaa'
jZc tan z
2
Zbb' II 2Zc 300
总阻抗 Zbb' Zbb' II 300
L
ZL ZL
Zc Zc
300 150 300 150
1 3
z
Le j 2z
1 e j2z 3
(III)段:
Z inaa'
Zbb' j tan z 1 jZbb' tan z
2 j tan 2
1 j2 tan
8
即 2
,输入阻抗落在圆图实轴上,即
X
0 ,为纯电阻。
1.15、解: (1)
Z L 1.5 2 j
L
ZL ZL
1 1
0.5 2.5
2 2
j j
0.51
0.39
j
微波技术与天线,课后答案
1 第二章
2-3 传 输 线 电 路 图 如 图1所 示 。 问 : 图a中ab间 的 阻 抗Zab = 0对 吗 ? 图b中ab间 的阻抗Zab = ∞对吗?为什么? 解:
图 1: 题2-3图
Zin(z)
=
Z0
ZL Z0
+ jZ0tan(βz) + jZLtan(βz)
所以传输线上的电流、电压分布如图10所示。 2-31 ( ) 传输线阻抗匹配的方法有哪几种?哪些是窄频带的?哪些是 宽频带的? 答:
传输线阻抗匹配的方法主要有:λ/4阻抗变换器;宽带λ/4阻抗变换器;支 节匹配器和渐变匹配器。 其中λ/4阻抗变换器、 支节匹配器是窄带匹配; 宽带λ/4阻抗变换器、渐 变匹配器是宽带匹配;
(24)
所以有
ρ
=
ZL + jZ0tan(βz) Z0 + jZLtan(βz)
=
2
(25)
将z = λ/12,ZL = √RL + jXL,Z0 = 70代入式(25)中得: RL = 80,XL = 30 3
2-21 (√ ) 传输线长λ,特性阻抗为Z0,当终端负载分别为ZL = Z0,ZL = 0,ZL = j 3Z0时。 (1)计算相应的终端反射系数和驻波比; (2)画出相对电压振幅|U/U +|、相对电流振幅|I/I+|的沿线分布并标出其最
(20)
Γ
=
RL RL
− Z0 + Z0
当RL > Z0时 ,Γ(z)为 正 实 数 , 终 端 为 电 压 的 波 腹 点 , 则 有RL = Z0ρ,所以ρ = RL/Z0 当RL < Z0时,Γ(z)为负实数,终端为电压的波节点,则有RL = Z0/ρ,所 以ρ = Z0/RL 证毕。
微波技术基础课后答案 李秀萍版
0.22
0.013 j0.004
42.5 - j19
(c) YL
(d) Zin
(e) 0.201 (f) 0.451 4.4 4.5 4.6 略,同 4.3 如果传输线长度为 1.5,重做习题 4.3 略,同 4.3 短路线 (1) (2) (3) (4) (5) 如果 ZL (20 j100) ,重做习题 4.3。
400
L 1 =
第四章
4.1 (1) Zin
60 j35 , Yin 0.0125 j 0.0075
(2) Z L (3)
30 j18.5
o
0 0.27e j 26
0.454
,
0.35 0.27e j 82
o
,
1.9
] 13.99 cos(8t 30.4o ) ] 7.6 cos(2t 48.9o )
j 2t
2.5 电路的稳态电压为: 32cos(t ) 2.6 (1)
10
2 .5
(2) 10 (3) 10 (4) 10 2.7 (1) 10
5
7 .5
0.7
(2) 10 (3) 10 (1)
o
o
(1) A(t ) Re[ Ae
j 6t
] 2 5 cos(6t 3.43o )
(2) B(t ) Re[ Be (3) C (t ) Re[Ce 2.4 (1) 40cos(100t ) (2) 4000sin(100t ) (3)
1 sin(100t ) 1000
j 8t
3.19
1 V0 Z in Z 0 P 2 Z 0 Z in Z 0 2
《微波技术与天线》习题答案
《微波技术与天线》习题答案章节 微波传输线理路1.1设一特性阻抗为Ω50的均匀传输线终端接负载Ω=1001R ,求负载反射系数1Γ,在离负载λ2.0,λ25.0及λ5.0处的输入阻抗及反射系数分别为多少?解:31)()(01011=+-=ΓZ Z Z Zπβλ8.02131)2.0(j z j e e --=Γ=Γ31)5.0(=Γλ (二分之一波长重复性)31)25.0(-=ΓλΩ-∠=++= 79.2343.29tan tan )2.0(10010ljZ Z ljZ Z Z Z in ββλΩ==25100/50)25.0(2λin Z (四分之一波长阻抗变换性)Ω=100)5.0(λin Z (二分之一波长重复性)1.2求外导体直径分别为0.25cm 和0.75cm 的空气同轴线的特性阻抗;若在两导体间填充介电常数25.2=r ε的介质,求其特性阻抗及MHz f 300=时的波长。
解:同轴线的特性阻抗abZ rln600ε= 则空气同轴线Ω==9.65ln 600abZ 当25.2=r ε时,Ω==9.43ln600abZ rε 当MHz f 300=时的波长:m f c rp 67.0==ελ1.3题设特性阻抗为0Z 的无耗传输线的驻波比ρ,第一个电压波节点离负载的距离为1m in l ,试证明此时的终端负载应为1min 1min 01tan tan 1l j l j Z Z βρβρ--⨯=证明:1min 1min 010)(1min 101min 010in tan l tan j 1/tan tan 1min 1min l j Z Z Z Z l j Z Z l j Z Z Z Z l in l βρβρρββ--⨯=∴=++⨯=由两式相等推导出:对于无耗传输线而言:)(1.4传输线上的波长为:m fr2cg ==ελ因而,传输线的实际长度为: m l g5.04==λ终端反射系数为: 961.0514901011≈-=+-=ΓZ R Z R输入反射系数为: 961.0514921==Γ=Γ-lj in eβ 根据传输线的4λ的阻抗变换性,输入端的阻抗为:Ω==2500120R ZZ in1.5试证明无耗传输线上任意相距λ/4的两点处的阻抗的乘积等于传输线特性阻抗的平方。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章习题参考答案
1.3
截止频率c f :
导行系统中某导模无衰减所能传播的最低频率为该导模的截止频率。
截止波长c λ:
导行系统中某导模无衰减所能传播的最大波长为该导模的截止波长。
导模的传输条件:工作波长小于截止波长c λλ<,工作频率大于截止频率c f f >。
1.4
导行系统中纵横场的关系式可具体表示为:
)ˆ(1
2z
H j E j k E z t z t c
t ⨯∇-∇-=ωμβ )ˆ(1
2z
E j H j k H z t z t c
t ⨯∇+∇-=ωεβ 其中有 222β+=c k k
在广义柱坐标系中,考虑到拉普拉斯算符v
h v
u h u
t ∂∂
+∂∂=∇211ˆ1ˆ,以及单位矢量的右手正交关系v u z u z v z v u
ˆˆˆ,ˆˆˆ,ˆˆˆ=⨯=⨯=⨯ 所以纵横场的关系可具体表示为
)(212
v H h u
E h k j E z
z c u ∂∂+∂∂-=
ωμβ )(122μωμβ∂∂-∂∂-=
z
z c v H h v
E h k j E
)(212
v E h u
H h k j H z
z c u ∂∂-∂∂-=
ωεβ
)(122
μωεβ∂∂+∂∂-=
z
z c v E h v
H h k j H 表示成矩阵形式为:
⎥⎥⎥
⎥
⎥⎥⎥⎥⎦
⎤
⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡∂∂∂∂∂∂∂∂⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎦⎤
⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎣
⎡---=⎥
⎥⎥⎥
⎦
⎤⎢⎢⎢⎢⎣⎡v E u H u E v H h h h h h h h h k j E H H E z z z z c v u v u 2121
121
22000000
00βωμωεβ
ωε
ββωμ。