嵌入式Linux设备驱动程序开发

合集下载

嵌入式Linux驱动开发教程PDF

嵌入式Linux驱动开发教程PDF

嵌入式Linux驱动开发教程PDF嵌入式Linux驱动开发教程是一本非常重要和实用的教材,它主要介绍了如何在Linux操作系统上开发嵌入式硬件设备的驱动程序。

嵌入式系统是指将计算机系统集成到其他设备或系统中的特定应用领域中。

嵌入式设备的驱动程序是连接操作系统和硬件设备的关键接口,所以对于嵌入式Linux驱动开发的学习和理解非常重要。

嵌入式Linux驱动开发教程通常包括以下几个主要的内容:1. Linux驱动程序的基础知识:介绍了Linux设备模型、Linux内核模块、字符设备驱动、块设备驱动等基本概念和原理。

2. Linux驱动编程的基本步骤:讲解了如何编译和加载Linux内核模块,以及编写和注册设备驱动程序所需的基本代码。

3. 设备驱动的数据传输和操作:阐述了如何通过驱动程序与硬件设备进行数据的传输和操作,包括读写寄存器、中断处理以及与其他设备的通信等。

4. 设备驱动的调试和测试:介绍了常用的驱动调试和测试技术,包括使用调试器进行驱动程序的调试、使用模拟器进行驱动程序的测试、使用硬件调试工具进行硬件和驱动的联合调试等。

通常,嵌入式Linux驱动开发教程的PDF版本会提供示例代码、实验步骤和详细的说明,以帮助读者更好地理解和掌握嵌入式Linux驱动开发的核心技术和要点。

读者可以通过跟随教程中的示例代码进行实际操作和实验,深入了解和体验嵌入式Linux驱动开发的过程和方法。

总之,嵌入式Linux驱动开发教程是一本非常重要和实用的教材,对于想要在嵌入式领域从事驱动开发工作的人员来说,具有非常重要的指导作用。

通过学习嵌入式Linux驱动开发教程,读者可以系统地了解和学习嵌入式Linux驱动开发的基本原理和技术,提高自己在嵌入式Linux驱动开发方面的能力和水平。

嵌入式linux开发教程pdf

嵌入式linux开发教程pdf

嵌入式linux开发教程pdf嵌入式Linux开发是指在嵌入式系统中使用Linux操作系统进行开发的过程。

Linux作为一种开源操作系统,具有稳定性、可靠性和灵活性,因此在嵌入式系统中得到了广泛的应用。

嵌入式Linux开发教程通常包括以下内容:1. Linux系统概述:介绍Linux操作系统的发展历程和基本原理,包括内核、文件系统、设备驱动等方面的知识。

了解Linux系统的基本结构和工作原理对后续的开发工作至关重要。

2. 嵌入式开发环境搭建:通过搭建开发环境,包括交叉编译器、调试器、仿真器等工具的配置,使得开发者可以在本机上进行嵌入式系统的开发和调试。

同时,还需要了解各种常用的开发工具和调试技术,如Makefile的编写、GDB的使用等。

3. 嵌入式系统移植:嵌入式系统往往需要根据不同的硬件平台进行移植,以适应各种不同的硬件环境。

这个过程包括引导加载程序的配置、设备驱动的移植和内核参数的调整等。

移植成功后,就可以在目标硬件上运行Linux系统。

4. 应用程序开发:在嵌入式Linux系统上进行应用程序的开发。

这包括编写用户空间的应用程序,如传感器数据采集、数据处理、网络通信等功能。

还需要熟悉Linux系统提供的各种库函数和API,如pthread库、socket编程等。

5. 系统优化和性能调优:在开发过程中,经常需要对系统进行调优和优化,以提高系统的性能和稳定性。

这包括对内核的优化、内存管理的优化、性能分析和调试等。

只有深入了解和熟练掌握这些技术,才能使得嵌入式系统运行得更加高效和稳定。

嵌入式Linux开发教程PDF通常会结合理论和实践相结合的方式进行教学,通过实际的案例和实践操作,帮助开发者快速掌握嵌入式Linux开发的技术和方法。

同时还会介绍一些常见的开发板和硬件平台,以及开源项目等,帮助开发者在实际项目中应用所学的技术。

总之,嵌入式Linux开发教程PDF提供了系统而详细的指导,帮助开发者快速入门嵌入式Linux开发,掌握相关的技术和方法,以便更好地进行嵌入式系统的开发工作。

《嵌入式Linux开发》课件

《嵌入式Linux开发》课件

交叉编译工具链的安装
指导如何安装适用于目标板的交叉编译工具 链。
测试交叉编译环境
提供一种简单的方法来测试交叉编译环境是 否设置成功。
目标板与宿主机的连接方式
串口通信
介绍如何通过串口连接目标板和宿主机 ,以及串口通信的配置和常用命令。
USB连接
介绍如何通过USB连接目标板和宿主 机,以及USB通信的配置和常用命令
02
03
嵌入式系统
是一种专用的计算机系统 ,主要用于控制、监视或 帮助操作机器与设备。
特点
具有实时性、硬件可裁剪 、软件可定制、低功耗、 高可靠性等特点。
应用
汽车电子、智能家居、医 疗设备、工业自动化等领 域。
Linux作为嵌入式操作系统的优势
开源
Linux是开源的,可以免费使用和定制,降 低了开发成本。
路由与交换
介绍路由器和交换机的原理及在网 络中的作用。
03
02
IP地址
解释IP地址的分类、寻址方式以及子 网掩码的作用。
网络安全
简述常见的网络安全威胁和防范措 施。
04
TCP/IP协议栈简介
TCP/IP协议栈结构
详细描述TCP/IP协议栈的层次结构,包括应 用层、传输层、网络层和链路层。
IP协议
解释IP协议的核心功能,如地址解析、路由 选择等。
调试工具
介绍常用的调试工具,如gdbserver和gdb等,并说明如何使用这些 工具进行远程调试。
调试过程
详细描述调试过程,包括启动调试会话、设置断点、单步执行代码等 操作。
调试技巧与注意事项
提供调试过程中的一些技巧和注意事项,以提高调试效率和准确性。
03
嵌入式Linux系统开发基础

嵌入式系统中的驱动程序设计与实现

嵌入式系统中的驱动程序设计与实现

嵌入式系统中的驱动程序设计与实现第一章:嵌入式系统概述嵌入式系统是一种专用型计算机系统,通常包含微处理器、存储器、输入/输出接口和其他外围设备。

这些系统被设计用于执行特定的任务或实现特定的功能。

相对于一般的计算机系统,嵌入式系统通常更加小巧、节能、稳定和高效。

嵌入式系统的应用领域非常广泛,涉及到自动控制、计算机网络、医疗、工业自动化、汽车电子、智能家居等众多领域。

从智能手机和平板电脑,到高铁和飞机上的控制系统,嵌入式系统已经成为现代社会中不可或缺的一部分。

在开发嵌入式系统时,驱动程序是一个非常重要的部分。

驱动程序是一种软件模块,用于控制硬件设备的操作和管理。

它将应用程序与底层硬件之间进行了有效的沟通。

在接下来的章节中,我们将详细介绍嵌入式系统中的驱动程序设计与实现。

第二章:驱动程序的架构嵌入式系统中的驱动程序通常包含两个部分:设备驱动和主程序。

设备驱动负责控制硬件设备的操作和管理。

它向主程序提供硬件抽象层,屏蔽了硬件底层的细节。

主程序则利用设备驱动提供的接口,完成相应的应用功能。

驱动程序的架构通常遵循一般软件工程的设计原则,实现结构分层、模块化、可复用的代码。

设备驱动可以按照不同的硬件设备进行分类,比如网络设备驱动、磁盘设备驱动、串口设备驱动等。

在实现时,可以采用面向对象编程思想,使得代码的设计更加清晰明了。

第三章:驱动程序的实现实现驱动程序的过程通常可以分为以下四个步骤:1. 设备地址映射在计算机系统中,设备通常被映射到一定的地址空间中。

驱动程序需要获取设备的物理地址,并将其映射到操作系统的虚拟地址空间中。

这样,驱动程序才能正确地与硬件设备进行交互。

2. 硬件的初始化和配置在设备地址映射成功后,驱动程序需要对硬件进行初始化和配置,以确保硬件设备能够正常运行。

比如,对于一个串口设备,驱动程序需要配置波特率、数据位、校验位等参数。

3. 设备操作的实现驱动程序的核心是硬件设备的操作函数实现。

驱动程序需要对不同的设备类型实现不同的操作函数,例如对于网络设备,包括接收和发送数据的实现;对于磁盘设备,包括读写数据的实现。

基于ARM9和嵌入式Linux的字符驱动程序开发

基于ARM9和嵌入式Linux的字符驱动程序开发

成设备 的注册 . 同样模 块在调用 r m m o d 命令 时被卸载 . 此 时的人 口点 是e x i tm o d u l e 0  ̄数 , 在该 函数 中完成设备 的卸载 。
_
模块
内核
i n s o t o d L _ 一i n i t _ m o d u 1 e 0 r一 — 注 册 设 备 1
h e l p wr i t e c o mp l e x d r i v e r s .
【 K e y w o r d s 】 A R M; “ n u x o p e r a t i n g s y s t e m; C h a r a c t e r d r i v e r s
0 引 言
操作系统是通过各种驱动程序来驾驭硬件设备的 . 它为用户 屏蔽 了各种各样 的设备 . 驱动硬件 是操作 系统 最基本 的功 能 . 并且提供 统 的操作方式。设 备驱动程序是内核的一部分 . 硬件驱动程 序是 操作 系统最基本 的组成部 分 . 在L i n u x内核源程序 中也有 6 0 %以上 因此 熟悉驱动的便携式很重要的。 L i n u x 内核采用可加载的模块化设计 , 一 般情 况下编译 的 “n u x 内核是 支持可插入模块 的 . 也 就是将最基本 的 核心代码编译在 内核中 . 其他 的代码可 以编译到 内核 中 . 或者编译 为 内核 的模块文 件 L i n u x 的一个重要 特点就是将所 有的设备都 当做 文 件进行处理 . 这一类特殊文件就是设备文件 . L i n u x 系统的设备分为 三 类: 字符设备 . 块设备 和网络设备 。
【 摘 要】 本文介 绍了嵌入 式 l i n u x下字符驱动程序 的设计 , 详 细介 绍了驱动程序的编写步骤 , 对于编写复杂的驱 动程序 有一 定的帮助 。 ( 关键词 】 A RM; l i n u x 操作 系统 ; 字符驱动 【 A b s t r a c t ] T h i s a r t i c l e d e s c i r b e s t h e c h a r a c t e r s i n t h e e m b e d d e d L i n u x d r i v e r d e s i g n , d e t a i l i n g t h e p r e p a r a t i o n o f t h e d i r v e r s t e p s w i l l c e r t a i n l y

嵌入式linux驱动开发流程

嵌入式linux驱动开发流程
当应用程序使用open、release等函数打开某个设备时,设备驱动程序的file_operations结构中的相应成员就会被调用。
三、设备的中断和轮询处理
对于不支持中断的设备,读写时需要轮询设备状态,以及是否需要继续进行数据传输。例如,打印机。如果设备支持中断,则可按照中断方式进行。
struct file_operations Key7279_fops =
{
.open = Key7279_Open,
.ioctl = Key7279_Ioctl,
.release = Key7279_Close,
.read = Key7279_Read,
};
1、 设备的打开和释放
模块在使用中断前要先请求一个中断通道(或者 IRQ中断请求),并在使用后释放它。通过request_irq()函数来注册中断,free_irq()函数来释放。
四、驱动程序的测试
对驱动程序的调试可以通过打印的方式来进行,就是通过在驱动程序中添加printk()打印函数,来跟踪驱动程序的执行过程,以此来判断问题。
◇ 设备的打开和释放。
ห้องสมุดไป่ตู้◇ 设备的读写操作。
◇ 设备的控制操作。
◇ 设备的中断和轮询处理。
Linux主要将设备分为三类:字符设备、块设备和网络设备。字符设备是指发送和接收数据以字符的形式进行,没有缓冲区的设备;块设备是指发送和接收数据以整个数据缓冲区的形式进行的设备;网络设备是指网络设备访问的BSD socket 接口。下面以字符设备为例,写出其驱动编写框架:
二、 构造file_operations结构中要用到的各个成员函数
Linux操作系统将所有的设备都看成文件,以操作文件的方式访问设备。应用程序不能直接操作硬件,使用统一的接口函数调用硬件驱动程序,这组接口被成为系统调用。每个系统调用中都有一个与之对应的函数(open、release、read、write、ioctl等),在字符驱动程序中,这些函数集合在一个file_operations类型的数据结构中。以一个键盘驱动程序为例:

基于嵌入式Linux的LED驱动开发与应用

基于嵌入式Linux的LED驱动开发与应用

基于嵌入式Linux的LED驱动开发与应用摘要:简要介绍了基于嵌入式ARM处理器芯片LPC3250的嵌入式Linux的LED驱动程序的开发原理、流程以及相关主要接口硬件电路的设计。

实际运行结果表明,该设计完全达到预期效果。

关键词:嵌入式Linux;LED;硬件;驱动程序0引言随着IT技术和嵌入式技术的快速发展,嵌入式产品已经广泛应用于工业、能源、环保、通信等各个行业,显示出其强大的生命力。

Linux是当今流行的操作系统之一,具有源代码开放、内核稳定、功能强大和可裁减等优点而成为众多应用的首选。

同样嵌入式Linux也继承了Linux的诸多优点。

对Linux应用程序来说,由于设备驱动程序屏蔽了硬件的细节,其硬件设备将作为一个特殊的文件,因此应用程序可以像操作普通文件一样对硬件设备进行操作。

本设计中驱动的设备是基于NXP公司的LPC3250微处理器开发的LED信号指示灯,利用这些指示灯来显示仪器的运行状态,方便用户了解仪器的工作状况。

1LPC3250简介及接口电路设计本设计中主控芯片采用LPC3250微处理器,具有高集成度、高性能、低功耗等特点。

它采用90nm工艺和ARM926EJS内核,主频最高为208MHz,具有全系列标准外设。

其中包括带专用DMA控制器的24位LCD控制器,可支持STN和TFT面板。

充分满足本设计的需要,外部只需加入很少芯片就可实现系统功能<sup>[1]</sup>。

LPC3250共有296个管脚。

对于4个LED灯来说需要用到4个引脚,这里使用GPIO端口来设计,GPM1~GPM3作为LED灯的控制端口,另外还需要为LED提供电源,这里需要3.3V的直流电源。

接口电路设计如图1所示。

GPM0~GPM3分别与电阻、LED连接,当GPM0~GPM3置为低电平时,相应的LED灯点亮。

2驱动程序设计在嵌入式Linux操作系统下,有三类主要的设备文件类型:字符设备、块设备和网络设备<sup>[2]</sup>。

嵌入式Linux设备驱动程序开发指南(原书第2版)

嵌入式Linux设备驱动程序开发指南(原书第2版)

orm.c
5.20
2
ledRGB_sam_
class_platf
orm.ko演示
3 5.21用户态中
的平台设备驱 动
4
5.22用户定义 的I/O:UIO
5 5.23实验5-4:
“LED UIO平 台”模块
5.25代码清单5-5: UIO_app.c
5.24代码清单5-4: led_sam_UIO_plat
7.12
1
int_imx_key
_wait.ko演示
2
7.13内核线程
3 7.14实验7-3:
“keyled类” 模块
4 7.15代码清单
7-3: keyled_imx_ class.c
5 7.16
keyled_imx_ class.ko演示
8.1查询ARM的MMU转 换表
8.2 Linux地址的类 型
7.5代码清单7-1: int_imx_key.c
7.4实验7-1:“按 钮中断设备”模块
7.6 int_imx_key.ko演

1
7.7延迟工作
2
7.8内核中的 锁
3
7.9内核中的 睡眠
4 7.10实验7-2:
“睡眠设备” 模块
5 7.11代码清单
7-2: int_imx_key _wait.c
imx_with_pa
rameters.c
5
3.8 helloworld_
imx_with_pa
rameters.ko
演示
3.10代码清单3-4: helloworld_imx_w
ith_timing.c
3.9实验3-3: “helloworld计时”
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一种是通用的,不依赖于硬件架构 一种是架构相关的

10.1 嵌入式Linux驱动程序开发基础
读写信号量的相关API有: DECLARE_RWSEM(name) 该宏声明一个读写信号量name并对其进行初始化。 void init_rwsem(struct rw_semaphore *sem); 该函数对读写信号量sem进行初始化。 void down_read(struct rw_semaphore *sem); 在Linux中,每一个进程都用一个类型为task_t或struct task_struct的结构来描述
10.1 嵌入式Linux驱动程序开发基础
(3)I/O端口
根据CPU体系结构的不同,CPU对IO端口的编址方式 有两种:I/O映射方式(I/O-mapped)和内存映射方 式(Memory-mapped)。 下面主要讨论一下内存映射方式访问I/O端口的方法, 我们称之为I/O内存操作。


10.1 嵌入式Linux驱动程序开发基础
10.2.5 中断处理 在Linux系统里,对中断的处理是属于系统核心部分, 因而如果设别与系统之间以中断方式进行数据交换, 就必须把该设备的驱动程序作为系统核心的一部分。 设备驱动程序通过调用request_irq函数来申请中断, 通过free_irq来释放中断。它们被定义为: #include <linux/sched.h> int request_irq(unsigned int irq, void (*handler)(int irq, void dev_id, struct pt_regs *regs),unsigned long flags,const char *device,void *dev_id); void free_irq(unsigned int irq, void *dev_id);
嵌入式系统原理及应用教程
(第2版)
主讲内容
第8章 嵌入式系统Boot Loader技术 第9章 嵌入式Linux操作系统移植
第10章 嵌入式Linux设备驱动程序开发
第11章 嵌入式Linux应用程序设计
10.1 嵌入式Linux驱动程序开发基础
10.1.1 嵌入式Linux设备驱动程序分类 静态加载的驱动程序 动态加载的驱动程序 Linux将设备按照功能特性划分为三种类型:字符设 备,块设备和网络设备。 10.1.2 最简单的内核模块 1.helloworld模块源代码 2.模块的编译 3.模块的加载和卸载
10.1 嵌入式Linux驱动程序开发基础
1.原子操作 原子操作主要用于实现资源计数,很多引用计数(refcnt)就是 通过原子操作实现的。 原子类型定义如下: typedef struct { volatile int counter; } atomic_t; 原子操作通常用于实现资源的引用计数 2.信号量 信号量在创建时需要设置一个初始值. 3.读写信号量 读写信号量有两种实现:
10.1 嵌入式Linux驱动程序开发基础
4.自旋锁 一个执行单元要想访问被自旋锁保护的共享资源,必 须先得到锁,在访问完共享资源后,必须释放锁。 自旋锁的API有: spin_lock_init(x);
10.1 嵌入式Linux驱动程序开发基础
10.2.3 阻塞与非阻塞 1.阻塞操作 2.非阻塞操作 10.2.4 时间问题 1.延时操作: (1)长延时。 2.内核定时器
(2)短延时
内核提供给驱动许多函数来声明、注册、以及去除内核定时器。
3.工作队列 采用缺省工作者线程来实现工作队列 的API: ①INIT_WORK(_work, _func, _data)
10.1 嵌入式Linux驱动程序开发基础
② int schedule_work(struct work_struct *work) ③int schedule_delayed_work(struct work_struct *work, unsigned long delay)
I/O 内存区必须在使用前分配
I/O内存映射 访问I/O内存 映射到用户空间
10.1 嵌入式Linux驱动程序开发基础
10.2.2 同步机制 Linux内核中包含的同步机制包括:原子操作、信号 量(semaphore)、读写信号量(rw_semaphore)Байду номын сангаас 自旋锁(spinlock)、大内核锁(Big Kernel Lock, BKL)、读写锁(rwlock)、读拷贝更新(Read-Copy Update,RCU)和seqlock(顺序锁)等。

10.1 嵌入式Linux驱动程序开发基础
10.2 嵌入式Linux设备驱动重要技术 10.2.1 内存与I/O端口 (1)内核空间和用户空间 (2)内核中内存分配 内核中获取内存的几种方式如下。 ①通过伙伴算法分配大片物理内存 ②通过slab缓冲区分配小片物理内存 ③非连续内存区分配 ④高端内存映射 ⑤固定线性地址映射
④void flush_scheduled_work(void)
⑤int cancel_delayed_work(struct work_struct *work)
创建自己的工作者线程和工作队列,API:
①struct workqueue_struct *create_workqueue(const char *name) ② int queue_work(struct workqueue_struct *wq, struct work_struct *work) ③int queue_delayed_work(struct workqueue_struct *wq, struct work_struct *work, unsigned long delay) ④void flush_workqueue(struct workqueue_struct *wq) ⑤void destroy_workqueue(struct workqueue_struct *wq)
相关文档
最新文档