嵌入式Linux驱动开发基础总结(上篇)

合集下载

!嵌入式系统开发资料(入门必备)

!嵌入式系统开发资料(入门必备)

获取更多权威电子书请登录ARM嵌入式系统开发综述ARM开发工程师入门宝典获取更多权威电子书请登录 前言嵌入式系统通常是以具体应用为中心,以处理器为核心且面向实际应用的软硬件系统,其硬件是整个嵌入式系统运行的基础和平台,提供了软件运行所需的物理平台和通信接口;而嵌入式系统的软件一般包括操作系统和应用软件,它们是整个系统的控制核心,提供人机交互的信息等。

所以,嵌入式系统的开发通常包括硬件和软件两部分的开发,硬件部分主要包括选择合适的MCU或者SOC 器件、存储器类型、通讯接口及I/O、电源及其他的辅助设备等;软件部分主要涉及OS porting和应用程序的开发等,与此同时,软件中断调试和实时调试、代码的优化、可移植性/可重用以及软件固化等也是嵌入式软件开发的关键。

嵌入式系统开发的每一个环节都可以独立地展开进行详细的阐述,而本文的出发点主要是为嵌入式开发的初学者者提供一个流程参考。

因为对于初学者在面对一个嵌入式开发项目的时候,往往面临着诸多困难,如选择什么样的开发平台?什么样的器件类型?在进行编译时怎样实现代码优化?开发工具该如何选择和使用?在进行程序调试时应该注意那些问题以及选择什么样的嵌入式OS 等等。

希望通过本文,能帮助初学者了解有关ARM嵌入式系统开发流程。

获取更多权威电子书请登录目录前言 (2)1 嵌入式开发平台 (4)1.1 ARM的开发平台: (4)1.2 器件选型 (7)2 工具选择 (11)3 编译和连接 (13)3.1 RVCT的优化级别与优化方向 (16)3.2 Multifile compilation (21)3.3调试 (22)4 操作系统 (23)4.1 哪里可以得到os 软件包 (Open Source and LinuxKernel) (25)4.2 安装镜像 (26)4.3 交叉编译 (26)总结 (27)获取更多权威电子书请登录 1 嵌入式开发平台通常嵌入式开发的平台主要包括基于SoC或MCU开发板,板上提供常用的外设、接口和其他功能模块,开发者一般根据自己的应用需要选择适合自己板级开发平台。

嵌入式系统软件开发技术BSP和驱动

嵌入式系统软件开发技术BSP和驱动

编写BSP函数
BSP对板卡中每个芯片的操作都通过多个函数 来完成
如果应用程序对板卡的操作都直接通过调用 BSP中的函数来完成,那将很不利于源程序的 调试 ,并降低了程序的可移植性
把能完成某个特定功能的函数封装在一个库文 件中,并放在应用程序与BSP之间
对每个芯片来说,都应当有初始化函数和状态 读取函数
Linux驱动程序的加载方式
驱动程序直接编译入内核
驱动程序在内核启动时就已经在内存中 可以保留专用存储器空间
驱动程序以模块形式存储在文件系 统里,需要时动态载入内核
驱动程序按需加载,不用时节省内存 驱动程序相对独立于内核,升级灵活
Linux驱动程序模块加载
Linux驱动程序开发的任务
Linux驱动程序开发的任务
移植驱动程序到新的平台
GPL对驱动程序开发的影响
实现非GPL授权的方法——模块形 式动态加载
驱动程序可以以私有产权形式进行 商业授权
设备驱动程序的代码
驱动程序的注册与注销
register_chrdev() register_blkdev()
设备的打开与释放
Linux驱动程序的开发环境
本机编译调试
开发环境配置简单 无需网络环境 适用于配置较高的x86机器
主机+目标机
主机可以自由选择Linux或Windows+Cygwin 主机和目标机通过网络共享文件系统 内核崩溃不会影响主机
Linux驱动程序的开发环境(续)
主机+目标机环境包括 主机运行的工具链∶cross gcc + glibc + gdb, 如果是windows主机还要有cygwin仿真环境 主机运行远程服务,常用的有tftp用来传送内 核映像、initrd,NFS用来共享文件系统 目标机运行ssh或telnet等远程登陆服务,用来 调试驱动程序

Linux设备驱动程序原理及框架-内核模块入门篇

Linux设备驱动程序原理及框架-内核模块入门篇

Linux设备驱动程序原理及框架-内核模块入门篇内核模块介绍应用层加载模块操作过程内核如何支持可安装模块内核提供的接口及作用模块实例内核模块内核模块介绍Linux采用的是整体式的内核结构,这种结构采用的是整体式的内核结构,采用的是整体式的内核结构的内核一般不能动态的增加新的功能。

为此,的内核一般不能动态的增加新的功能。

为此,Linux提供了一种全新的机制,叫(可安装) 提供了一种全新的机制,可安装) 提供了一种全新的机制模块” )。

利用这个机制“模块”(module)。

利用这个机制,可以)。

利用这个机制,根据需要,根据需要,在不必对内核重新编译链接的条件将可安装模块动态的插入运行中的内核,下,将可安装模块动态的插入运行中的内核,成为内核的一个有机组成部分;成为内核的一个有机组成部分;或者从内核移走已经安装的模块。

正是这种机制,走已经安装的模块。

正是这种机制,使得内核的内存映像保持最小,的内存映像保持最小,但却具有很大的灵活性和可扩充性。

和可扩充性。

内核模块内核模块介绍可安装模块是可以在系统运行时动态地安装和卸载的内核软件。

严格来说,卸载的内核软件。

严格来说,这种软件的作用并不限于设备驱动,并不限于设备驱动,例如有些文件系统就是以可安装模块的形式实现的。

但是,另一方面,可安装模块的形式实现的。

但是,另一方面,它主要用来实现设备驱动程序或者与设备驱动密切相关的部分(如文件系统等)。

密切相关的部分(如文件系统等)。

课程内容内核模块介绍应用层加载模块操作过程内核如何支持可安装模块内核提供的接口及作用模块实例内核模块应用层加载模块操作过程内核引导的过程中,会识别出所有已经安装的硬件设备,内核引导的过程中,会识别出所有已经安装的硬件设备,并且创建好该系统中的硬件设备的列表树:文件系统。

且创建好该系统中的硬件设备的列表树:/sys 文件系统。

(udev 服务就是通过读取该文件系统内容来创建必要的设备文件的。

)。

嵌入式系统-2-嵌入式软件基础

嵌入式系统-2-嵌入式软件基础

嵌入式软件体系结构
无操作系统的体系结构--轮询结构
轮询结构是最简单的结构,程序一次检查每个I/O设备,并且为需要服 务的设备提供服务。
特点:没有中断,没有共享数据,无须考虑延迟时间。例如在数字万用表中 用于连续的测量并可改变显示的内容。
缺点: • 如果一个设备需要比微处理器在最坏情况下完成一个循环的时间更短的响
嵌入式系统
第一部分 嵌入式系统基础
1.3 嵌入式系统软件基础
嵌入式软件分类 嵌入式软件体系结构 嵌入式软件开发 嵌入式软件开发实例
嵌入式软件分类
嵌入式软件
单线程程序
• 分支多 • 技术差系统
多任务系统
单机多任务系统
分布式系统
• 操作系统: Linux、μC/OS-II/III、VxWorks、Android、IOS、WinCE • 硬件平台: ARM、单片机、FPGA、DSP、POWERPC、XScale • 编程语言: C、C++、Object-C、Java、汇编
缺点:若某个较低优先级的运行时间较长,就有可能 影 响较高优先级函数的响应时间。
嵌入式软件体系结构
无操作系统的体系结构--有限状态机 (FSM,Finite State Machine)
控制门状态的有限状态机示意图:
优点: • 对小系统便于编程和理解。 • 以快速执行。 • 只是通过改变输出功能来改变机器的响应。
缺点:所有的任务代码以同样的优先级来执行。
嵌入式软件体系结构
无操作系统的体系结构--函数队列调度结构
在这种结构中,中断程序在一个函数指针队列中添加 一个函数指针,以供程序调用,主程序仅需要从该队列中读 取相应的指针并且调用相关的函数。
优点:该结构没有规定主程序必须按中断程序发生的顺序 来调用函数,主函数可以根据任何达到目的的优先级方案 来调用函数,这样人和需要更快响应的任务代码都可以被 更早地执行。

嵌入式linux开发教程pdf

嵌入式linux开发教程pdf

嵌入式linux开发教程pdf嵌入式Linux开发是指在嵌入式系统中使用Linux操作系统进行开发的过程。

Linux作为一种开源操作系统,具有稳定性、可靠性和灵活性,因此在嵌入式系统中得到了广泛的应用。

嵌入式Linux开发教程通常包括以下内容:1. Linux系统概述:介绍Linux操作系统的发展历程和基本原理,包括内核、文件系统、设备驱动等方面的知识。

了解Linux系统的基本结构和工作原理对后续的开发工作至关重要。

2. 嵌入式开发环境搭建:通过搭建开发环境,包括交叉编译器、调试器、仿真器等工具的配置,使得开发者可以在本机上进行嵌入式系统的开发和调试。

同时,还需要了解各种常用的开发工具和调试技术,如Makefile的编写、GDB的使用等。

3. 嵌入式系统移植:嵌入式系统往往需要根据不同的硬件平台进行移植,以适应各种不同的硬件环境。

这个过程包括引导加载程序的配置、设备驱动的移植和内核参数的调整等。

移植成功后,就可以在目标硬件上运行Linux系统。

4. 应用程序开发:在嵌入式Linux系统上进行应用程序的开发。

这包括编写用户空间的应用程序,如传感器数据采集、数据处理、网络通信等功能。

还需要熟悉Linux系统提供的各种库函数和API,如pthread库、socket编程等。

5. 系统优化和性能调优:在开发过程中,经常需要对系统进行调优和优化,以提高系统的性能和稳定性。

这包括对内核的优化、内存管理的优化、性能分析和调试等。

只有深入了解和熟练掌握这些技术,才能使得嵌入式系统运行得更加高效和稳定。

嵌入式Linux开发教程PDF通常会结合理论和实践相结合的方式进行教学,通过实际的案例和实践操作,帮助开发者快速掌握嵌入式Linux开发的技术和方法。

同时还会介绍一些常见的开发板和硬件平台,以及开源项目等,帮助开发者在实际项目中应用所学的技术。

总之,嵌入式Linux开发教程PDF提供了系统而详细的指导,帮助开发者快速入门嵌入式Linux开发,掌握相关的技术和方法,以便更好地进行嵌入式系统的开发工作。

天津科技大学嵌入式操作系统---第3章 基于linux的嵌入式软件开发

天津科技大学嵌入式操作系统---第3章 基于linux的嵌入式软件开发
3.1.1 嵌入式软件体系结构 3.1.2 基于Linux的嵌入式软件
18:19
4
3.1.1 嵌入式软件体系结构
18:19
5
1. 设备驱动层
设备驱动层是嵌入式系统中必不可少的重 要部分,使用任何外部设备都需要有相应 驱动程序的支持,它为上层软件提供了设 备的操作接口。 上层软件不用理会设备的具体内部操作, 只需调用驱动层程序提供的接口即可。 驱动层一般包括硬件抽象层HAL、板级支 持包BSP和设备驱动程序。
18
3.2.2 基于开发板的二次开发
所谓二次开发是利用现成的开发板进行开发,不同于通用 计算机和工作站上的软件开发工程,一个嵌入式软件的开 发过程具有很多特点和不确定性。其中最重要的一点是软 件跟硬件的紧密耦合特性。 由于嵌入式系统的灵活性和多样性,这样就给软件设计人 员带来了极大地困难。第一,在软件设计过程中过多地考 虑硬件,给开发和调试都带来了很多不便;第二,如果所 有的软件工作都需要在硬件平台就绪之后进行,自然就延 长了整个的系统开发周期。这些都是应该从方法上加以改 进和避免的问题。 为了解决这个问题,通常的做法是基于某种开发板做二次 开发,从这个角度看,硬件开发所占的比重不到20%,而 软件开发的比重占到了80%。
3.1 嵌入式软件结构 3.2 嵌入式软件开发流程 3.3 嵌入式linux开发环境 3.4 嵌入式系统引导代码 3.5 linux内核结构及移植 3.6 嵌入式文件系统及移植 3.7 linux设备驱动概述 3.8 设备驱动程序接口 3.9 linux设备驱动开发流程
18:19 3
3.1 嵌入式软件结构
?在嵌入式开发中经常要面对设备驱动程序的开发嵌入式系统通常有许多设备用于与用户交互象触摸屏小键盘滚动轮传感器在嵌入式开发中经常要面对设备驱动程序的开发嵌入式系统通常有许多设备用于与用户交互象触摸屏小键盘滚动轮传感器rs232接口lcd等等

基于rk3568的linux驱动开发——gpio知识点 -回复

基于rk3568的linux驱动开发——gpio知识点 -回复

基于rk3568的linux驱动开发——gpio知识点-回复基于rk3568的Linux驱动开发——GPIO知识点GPIO(General Purpose Input/Output)是通用输入输出的意思,是嵌入式系统中的常用功能。

在rk3568芯片上,GPIO用于实现与外部设备的通信和控制,比如控制LED灯、键盘、电机等。

本文将介绍rk3568芯片上的GPIO控制器、GPIO驱动的开发以及GPIO 在Linux系统中的应用。

一、GPIO控制器在rk3568芯片中,GPIO控制器是用来控制GPIO端口的硬件模块。

每个GPIO控制器可以管理多个GPIO端口,每个GPIO端口可以被配置为输入或输出。

GPIO控制器通常包含寄存器用于配置和控制GPIO端口的功能,比如方向、电平等。

二、GPIO驱动的开发GPIO驱动是用于控制和管理GPIO功能的软件模块。

在Linux内核中,GPIO驱动通过sysfs接口暴露给用户空间,以便用户可以通过文件系统访问和控制GPIO端口。

以下是GPIO驱动的开发过程:1. 确定GPIO控制器和GPIO端口:首先需要确定要使用的GPIO控制器和GPIO端口。

在rk3568芯片手册中可以找到相应的信息。

2. 创建GPIO设备:在Linux内核中,GPIO驱动是通过GPIO子系统来管理的。

首先需要在设备树中添加GPIO设备描述,并分配一个唯一的GPIO号码。

3. 注册GPIO设备:在驱动的初始化函数中,需要调用相应的函数注册GPIO设备,以便系统能够识别和管理该设备。

4. 设置GPIO模式和方向:通过调用GPIO控制器的寄存器,可以设置GPIO端口的模式和方向。

例如,可以将GPIO端口配置为输入模式或输出模式。

5. 读取和写入GPIO值:读取GPIO值可以通过读取GPIO控制器的寄存器来实现,写入GPIO值可以通过写入GPIO控制器的寄存器来实现。

例如,可以将GPIO端口的电平设置为高或低。

嵌入式Linux系统开发教程实验报告

嵌入式Linux系统开发教程实验报告

嵌入式实验报告:学号:学院:日期:实验一熟悉嵌入式系统开发环境一、实验目的熟悉Linux 开发环境,学会基于S3C2410 的Linux 开发环境的配置和使用。

使用Linux的armv4l-unknown-linux-gcc 编译,使用基于NFS 方式的下载调试,了解嵌入式开发的基本过程。

二、实验容本次实验使用Redhat Linux 9.0 操作系统环境,安装ARM-Linux 的开发库及编译器。

创建一个新目录,并在其中编写hello.c 和Makefile 文件。

学习在Linux 下的编程和编译过程,以及ARM 开发板的使用和开发环境的设置。

下载已经编译好的文件到目标开发板上运行。

三、实验设备及工具硬件::UP-TECH S2410/P270 DVP 嵌入式实验平台、PC 机Pentium 500 以上, 硬盘10G 以上。

软件:PC 机操作系统REDHAT LINUX 9.0+超级终端(或X-shell)+AMR-LINUX 开发环境。

四、实验步骤1、建立工作目录[rootlocalhost root]# mkdir hello[rootlocalhost root]# cd hello2、编写程序源代码我们可以是用下面的命令来编写hello.c的源代码,进入hello目录使用vi命令来编辑代码:[rootlocalhost hello]# vi hello.c按“i”或者“a”进入编辑模式,将上面的代码录入进去,完成后按Esc 键进入命令状态,再用命令“:wq!”保存并退出。

这样我们便在当前目录下建立了一个名为hello.c的文件。

hello.c源程序:#include <stdio.h>int main() {char name[20];scanf(“%s”,name);printf(“hello %s”,name);return 0;}3、编写Makefile要使上面的hello.c程序能够运行,我们必须要编写一个Makefile文件,Makefile文件定义了一系列的规则,它指明了哪些文件需要编译,哪些文件需要先编译,哪些文件需要重新编译等等更为复杂的命令。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

嵌入式Linux驱动开发基础总结(上篇)
1, linux驱动一般分为3大类:
*字符设备*块设备*网络设备
2, 开发环境构建:
*交叉工具链构建*NFS和tftp服务器安装
3, 驱动开发中设计到的硬件:
*数字电路知识*ARM硬件知识*熟练使用万用表和示波器*看懂芯片手册和原理图
4, linux内核源代码目录结构:
*arch/: arch子目录包括了所有和体系结构相关的核心代码。

它的每一个子目录都代表一种支持的体系结构,例如i386就是关于intel cpu及与之相兼容体系结构的子目录。

*block/: 部分块设备驱动程序;*crypto: 常用加密和散列算法(如AES、SHA等),还有一些压缩和CRC校验算法;*documentation/: 文档目录,没有内核代码,只是一套有用的文档;*drivers/: 放置系统所有的设备驱动程序;每种驱动程序又各占用一个子目录:如,/block 下为块设备驱动程序,比如ide(ide.c)。

如果你希望查看所有可能包含文件系统的设备是如何初始化的,你可以看drivers/block/genhd.c中的device_setup()。

*fs/: 所有的文件系统代码和各种类型的文件操作代码,它的每一个子目录支持一个文件系统, 例如fat和ext2;*include/: include子目录包括编译核心所需要的大部分头文件。

与平台无关的头文件在include/linux子目录下,与intel cpu相关的头文件在include/asm-i386子目录下,而include/scsi目录则是有关scsi设备的头文件目录;*init/: 这个目录包含核心的初始化代码(注:不是系统的引导代码),包含两个文件main.c和Version.c,这是研究核心如何工作的好的起点之一;*ipc/: 这个目录包含核心的进程间通讯的代码;*kernel/: 主要的核心代码,此目录下的文件实现了大多数linux系统的内核函数,其中最重要的文件当属sched.c;同样,和体系结构相关的代码在arch/i386/kernel下;*lib/: 放置核心的库代码;*mm/:这个目录包括所有独立于cpu 体系结构的内存管理代码,如页式存储。

相关文档
最新文档