Kronecker product - Wikipedia, the free encyclopedia

合集下载

克罗内克符号kronecker_delta

克罗内克符号kronecker_delta
Result:
[[[[1 0 0] [0 1 0] [0 0 1]]
[[0 0 0] [0 0 0] [0 0 0]]
[[0 0 0] [0 0 0] [0 0 0]]]
[[[0 0 0] [0 0 0] [0 0 0]]
[[1 0 0] [0 1 0] [0 0 1]]
[[0 0 0] [0 0 0] [0 0 0]]]
res[i, i, i] = 1 print(res)
<img width="320" height="500" src="https:///blog/1372901/201811/1372901-20181121224458867-535758943.jpg">
{δij =
0 1
if i ≠ j, if i = j.
### Python3 代码实现 **函数设计** ```python kronecker_delta_ij = lambda i, j: 1 if i==j else 0 ``` **函数使用** ``` kronecker_delta_ij(1, 1) # 结果为 1 kronecker_delta_ij(1, 3) # 结果为 0 ``` δij**张量定义** ```python def delta_ij(n): Delta_ij = [] for i in range(n): for j in range(n): Delta_ij.append(kronecker_delta_ij(i, j)) return [Delta_ij[:3], Delta_ij[3:6], Delta_ij[-3:]] ``` example: ``` deltaij = delta_ij(3) print(deltaij)

外森比克不等式推论

外森比克不等式推论

外森比克不等式推论英文回答:The Jensen's inequality is a fundamental result in mathematical analysis that relates the convexity of a function to the inequality of its expected value. The inequality states that for any convex function f(x) and any probability distribution P, the expected value of f(X) is greater than or equal to f(E(X)), where X is a random variable with distribution P.One important consequence of the Jensen's inequality is the Hölder's inequality, which provides a bound on the product of two functions. Hölder's inequality states that for any two functions f(x) and g(x), both of which are non-negative and integrable over a given interval, the integral of their product is less than or equal to the product of their integrals raised to a certain exponent.Mathema tically, it can be expressed as ∫(f(x)g(x))dx ≤ ( ∫f(x)^p dx )^(1/p) ( ∫g(x)^q dx )^(1/q), where p and qare positive real numbers such that 1/p + 1/q = 1.Another consequence of the Jensen's inequality is the Cauchy-Schwarz inequality, which provides a bound on the inner product of two vectors. The Cauchy-Schwarz inequality states that for any two vectors u and v in a given inner product space, the absolute value of their inner product is less than or equal to the product of their norms. Mathematical ly, it can be expressed as |<u, v>| ≤ ||u|| ||v||, where <u, v> denotes the inner product of u and v, and ||u|| and ||v|| denote the norms of u and v, respectively.In addition, the Jensen's inequality is also used in probability theory to prove the subadditivity of entropy. The entropy of a random variable measures the amount of uncertainty associated with its outcomes. The subadditivity of entropy states that the entropy of the sum of two random variables is less than or equal to the sum of their individual entropies. This property is important in the study of information theory and has applications in various fields, including data compression and cryptography.Overall, the Jensen's inequality is a powerful tool in mathematical analysis and has numerous applications in various branches of mathematics and other fields. It provides a framework for understanding the relationship between convexity and inequality, and its consequences have wide-ranging implications.中文回答:外森比克不等式是数学分析中的一个基本结果,它将函数的凸性与其期望值的不等式联系起来。

(完整版)Kronecker积及其应用

(完整版)Kronecker积及其应用

矩阵的Kronecker 积及其应用陈蔚(集美大学理学院数学系2005届,厦门 361021)[摘要] 本文主要介绍了矩阵理论中的Kronecker 积,通过对概念的引入,性质、定理的推导,简单地体现出矩阵的Kronecker 积在求解几类矩阵方程中的应用.[关键词] Kronecker 积,特征值,拉直,1ti i i A XB F ==∑矩阵方程,AX +F XB =矩阵方程,X-F AXB =矩阵方程,矩阵微分方程0、引言众所周知,我们学习到的矩阵运算中,普遍提及的均是乘积问题,两矩阵可以相乘的条件是:前面矩阵的列数必须等于后面矩阵的行数,如果不满足这个条件,则我们就无法求解这两个矩阵的乘积,但我们却可以求它们的Kronecker 积。

对于矩阵的Kronecker 积问题,绝大多数人是陌生的。

本文主要介绍了Kronecker 积的定义、性质、应用,让大家一起来领略这个新知识点的风采。

文中所用到的符号均可从参考文献[1—11]中找到。

一、 矩阵的Kronecker 积的概念[1]1.1定义 设()m n ij A a C ⨯=∈, C b B qp ij ⨯∈=)(,则称如下的分块矩阵111212122212n n mp nq m m mn B B a a a B a a a BB B A BC a a a BBB ⨯⎛⎫⎪⎪⊗=∈ ⎪⎪⎝⎭为A 与B 的Kronecker 积(也称为直积或张量积)。

B A ⊗是一个n m ⨯块的分块矩阵,所以上式还可以简写为B A ⊗=()ij a B 。

例1.1 设),,(321a a a T A =, ),(21b b B T =,求B A ⊗和A B ⊗.解 B A ⊗=()111221223132123T a Ba ab a b a b a b a b a b Ba B⎛⎫⎪= ⎪ ⎪⎝⎭,,,,,,A B ⊗=()11121321222312Tb A b a b a b a b a b a b a b A ⎛⎫=⎪⎝⎭,,,,,。

-矩阵的Kronecker乘积的性质与应用

-矩阵的Kronecker乘积的性质与应用

摘要按照矩阵乘法的定义,我们知道要计算矩阵的乘积AB,就要求矩阵A的列数和矩阵B的行数相等,否则乘积AB是没有意义的。

那是不是两个矩阵不满足这个条件就不能计算它们的乘积呢本文将介绍矩阵的一种特殊乘积BA ,它对矩阵的行数和列数的并没有具体的要求,它叫做矩阵的Kronecker积(也叫直积或张量积)。

本文将从矩阵的Kronecker积的定义出发,对矩阵的Kronecker积进行介绍和必要的说明。

之后,对Kronecker积的运算规律,可逆性,秩,特征值,特征向量等性质进行了具体的探究,得出结论并加以证明。

此外,还对矩阵的拉直以及矩阵的拉直的性质进行了说明和必要的证明。

矩阵的Kronecker积是一种非常重要的矩阵乘积,它应用很广,理论方面在诸如矩阵方程的求解,矩阵微分方程的求解等矩阵理论的研究中有着广泛的应用,实际应用方面在诸如图像处理,信息处理等方面也起到重要的作用。

本文讨论矩阵的Kronecker积的性质之后还会具体介绍它在矩阵方程中的一些应用。

关键词:矩阵;Kronecker积;矩阵的拉直;矩阵方程;矩阵微分方程Properties and Applications of matrix KroneckerproductAbstractAccording to the definition of matrix multiplication, we know that to calculate the matrix product AB, requires the number of columns of the matrix A and matrix B is equal to the number of rows, otherwise the product AB makes no is not two matrices not satisfy this condition will not be able to calculate their product doThis article will describe a special matrix product BA , the number of rows and columns of a matrix and its no specific requirements, it is called the matrix Kronecker product (also called direct product or tensor product).This paper will define the matrix Kronecker product of view, the Kronecker product matrix are introduced and the necessary instructions. Thereafter, the operation rules Kronecker product, the nature of reversibility, rank, eigenvalues, eigenvectors, etc. specific inquiry, draw conclusions and to prove it. In addition, the properties of the stretch of matrix and its nature have been described and the necessary proof.Kronecker product matrix is a very important matrix product, its use is very broad, theoretical research, and other matrix solving differential equations, such as solving the matrix equation matrix theory has been widely applied in practical applications such as image processing aspects of information processing, also play an important role. After the article discusses the nature of the matrix Kronecker product it will introduce a number of specific applications in the matrix equation. Keywords:Matrix; Kronecker product; Stretch of matrix; Matrix equation; Matrix Differential Equations目录摘要 ........................................................................ I Abstract ................................................................... II 第一章 矩阵的Kronecker 积 . (1)矩阵的Kronecker 积的定义 ................................................ 1 矩阵的Kronecker 积的性质 ................................................ 1 第二章 Kronecker 积的有关定理及推论 .......................................... 6 第三章 矩阵的拉直 (9)矩阵的拉直的定义 ......................................................... 9 矩阵的拉直的性质 ......................................................... 9 第四章 矩阵的Kronecker 积与矩阵方程 .. (11)矩阵的Kronecker 积与Lyapunov 矩阵方程 ................................... 11 矩阵的Kronecker 积与一般线性矩阵方程 .................................... 13 矩阵的Kronecker 积与矩阵微分方程 ........................................ 14 参考文献.................................................................... 16 致谢 .. (18)符号说明W a W a 属于集合元素nm ij a A ⨯=)( 矩阵的记法列元素的行为以n m j i a ij⨯ij A )( 列的元素行的矩阵j i AT A 的转置矩阵A H A 的共轭转置矩阵A1-A 的逆矩阵矩阵A→A 按行拉直得到的列向量矩阵AA det 的行列式方阵AtrA 的主对角元素之和的迹,方阵A A)(A rank 的秩矩阵A)(A λ 的特征值方阵An I 阶单位矩阵nR 实数域 C 复数域n C 维复向量的全体n n m C ⨯ 复矩阵全体n m ⨯O 零矩阵B A ⊗ 的和矩阵B A Kronecker 积第一章 矩阵的Kronecker 积矩阵的Kronecker 积的定义定义设矩阵n m C A ⨯∈,矩阵q p C B ⨯∈,定义A 和B 的Kronecker 积(或直积,张量积)B A ⊗为:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⊗B a B a B a B a B a B a B a B a B a B A mn m m n n 212222111211 可以看出,其结果是一个)()(nq mp ⨯矩阵,同时也是一个以B a ij 为子块的分块矩阵.例 设⎥⎦⎤⎢⎣⎡-=1201A ,[]31-=B ,则 ⎥⎦⎤⎢⎣⎡---=⎥⎦⎤⎢⎣⎡-=⊗316200312B B O BB A []⎥⎦⎤⎢⎣⎡---=-=⊗361203013A A A B 由此可见,B A ⊗与A B ⊗具有相同的阶数,但是它们并不相等,也就是说,Kronecker 积不满足交换律.矩阵的Kronecker 积的性质虽然Kronecker 积不满足交换律,但是具有以下一些性质: 性质 设矩阵n m C A ⨯∈,矩阵q p C O ⨯∈,则O O A A O =⊗=⊗(这个O 为)()(nq mp ⨯矩阵).证明:略.性质 设k 为任一常数,矩阵n m C A ⨯∈,矩阵q p C B ⨯∈,则)()()(B A k kB A B kA ⊗=⊗=⊗.证明:不失一般性,设⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=mn m m n n a a a a a aa a a A 212222111211,则:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=mn m m n n ka ka ka ka ka ka ka ka ka kA 212222111211, 根据Kronecker 积的定义可以得到:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⊗B ka B ka B ka B ka B ka B ka B ka B ka B ka B ka B ka B ka B ka B ka B ka B ka B ka B ka B kA mn m m n n mn m m n n 212222111211212222111211)()()()()()()()()()(, ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⊗B ka B ka B ka B ka B ka B ka B ka B ka B ka kB a kB a kB a kB a kB a kB a kB a kB a kB a kB A mn m m n n mn m m n n 212222111211212222111211)()()()()()()()()()(, 即)(B A k B kA ⊗=⊗,)()(B A k kB A ⊗=⊗. 所以)()()(B A k kB A B kA ⊗=⊗=⊗.性质 设A ,B 为同阶矩阵(同阶是为了可以做加法),则C B C A C B A ⊗+⊗=⊗+)(,B C A C B A C ⊗+⊗=+⊗)(.证明:不失一般性,设⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=mn m m n n a a a a a aa a a A 212222111211,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=mn m m n n b b b b b b b b b B 212222111211,则:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+++++++++=+mn mn m m m m n n n n b a b a b a b a b a ba b a b a b a B A221122222221211112121111,根据Kronecker 积的定义可以得到:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+++++++++=⊗+C b a C b a C b a C b a Cb aC b a C b a C b a C b a C B A mn mn m m m m n n n n )()()()()()()()()()(221122222221211112121111*,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⊗C a C a C a C a C a C a C a C a C a C A mn m m n n 212222111211 *, ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⊗C b C b C b C b C b C b C b C b C b C B mn m m n n 212222111211 *,由*,*得:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+++++++++=⊗C b C a C b C a C b C a C b C a C b C a C b C a C b C a C b C a C b C a C A mn mn m m m m n n n n 221122222221211112121111 *, 由*,*可得:C B C A C B A ⊗+⊗=⊗+)(.同理设⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=mn m m n n c c c c c cc c c C 212222111211可证:B C A C B A C ⊗+⊗=+⊗)(.性质 设矩阵n m C A ⨯∈,矩阵q p C B ⨯∈,矩阵s r C F ⨯∈,则)()(F B A F B A ⊗⊗=⊗⊗证明:不失一般性,设⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=mn m m n n a a a a a aa a a A 212222111211,则:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⊗⊗⊗⊗⊗⊗⊗⊗⊗=⊗⊗)()()()()()()()()()(212222111211F B a F B a F B a F B a F B a F B a F B a F B a F B a F B A mn m m n n)(212222111211F B A F B a B a B a B a B a B a B a B a B a mn m m n n ⊗⊗=⊗⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡= 得证.性质设矩阵n m C A ⨯∈,矩阵q p C B ⨯∈,矩阵s n C F ⨯∈,矩阵t q C D ⨯∈,则)()())((BD AF D F B A ⊗=⊗⊗证明:不失一般性,设⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=mn m m n n a a a a a aa a a A 212222111211,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=ns n n s s f f f f f f f f f F212222111211, 则:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⊗⊗D f D f Df D f D f Df D f D f D f B a B a B a B a B a B a B a B a B a D F B A ns n n s s mn m m n n212222111211212222111211))(()()()()()()()()()()()(112111112211211121111BD AF BD f a BD f a BD f a BD c a BD f a BD f a BD f a BD f a BD f a nk ks mk n k k mk n k k mk nk ks k n k k k n k k k n k ks k n k k k n k k k ⊗=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=∑∑∑∑∑∑∑∑∑=========得证.性质 设矩阵m m C A ⨯∈可逆, 且矩阵n n C B ⨯∈可逆,则B A ⊗可逆,且111)(---⊗=⊗B A B A .证明:mn n m I I I BB AA B A B A =⊗=⊗=⊗⊗----)()())((1111(这里I n 与数的乘法中的1起到相同的作用), 故111)(---⊗=⊗B A B A .性质 设矩阵n m C A ⨯∈,矩阵q p C B ⨯∈,则T T T B A B A ⊗=⊗)(H H H B A B A ⊗=⊗)(证明: ij T T T ji ij T B A B a B A ][])[(⊗==⊗ 得证.同理可证:H H H B A B A ⊗=⊗)(.性质 两个正交(酉)矩阵的Kronecker 积还是正交(酉)矩阵. 证明:设矩阵m m C A ⨯∈,矩阵n n C B ⨯∈.因为A ,B 都是正交(酉)矩阵,所以有m T T I A A AA ==,n T T I B B BB ==. 由性质和性质可得:mn n m T T T T T I I I BB AA B A B A B A B A =⊗=⊗=⊗⊗=⊗⊗))(())((. mn m n T T T T T I I I B B A A B A B A B A B A =⊗=⊗=⊗⊗=⊗⊗))(()()(.故mn T T I B A B A B A B A =⊗⊗=⊗⊗)()())((. 得证.第二章 Kronecker 积的有关定理及推论定理 设矩阵n m C A ⨯∈,矩阵q p C B ⨯∈,则)()()(B rank A rank B A rank =⊗.证明:设rank A=r ,rank B=s ,A ,B 的标准形分别为:1111--⎥⎦⎤⎢⎣⎡=Q O O O I P A r ,1212--⎥⎦⎤⎢⎣⎡=Q O O O I P B s其中i P ,i Q =i (1,2)均为非奇异矩阵,则由性质和可以得:`1211211211121112121111)()()()(----------⊗⎥⎦⎤⎢⎣⎡⊗=⊗⎪⎪⎭⎫ ⎝⎛⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡⊗=⎪⎪⎭⎫⎝⎛⎥⎦⎤⎢⎣⎡⊗⎪⎪⎭⎫ ⎝⎛⎥⎦⎤⎢⎣⎡=⊗Q Q O O O I P P Q Q O O O I O O O I P P Q O O O I P Q O O O I P B A rss r s r 所以)()()(B rank A rank s r B A rank =•=⊗ 得证.定理 设矩阵m m C A ⨯∈,矩阵n n C B ⨯∈,对于向量m C x ∈和n C y ∈,若x 是A 关于特征值λ的一个特征向量,y 是A 关于特征值μ的一个特征向量,则y x ⊗是B A ⊗对应特征值λμ的一个特征向量.证明:因为x ,y 都是非零向量,所以x ⊗y 也是非零向量,由性质和性质可得:)()()()()())((y x y x By Ax y x B A ⊗=⊗=⊗=⊗⊗λμμλ.所以,y x ⊗是B A ⊗对应特征值λμ的一个特征向量.推论 设矩阵m m C A ⨯∈,矩阵n n C B ⨯∈,对于向量m C x ∈和n C y ∈,若A 的特征值是1λ,2λ,…,m λ;B 的特征值是1μ,2μ,…,n μ,则B A ⊗的特征值为t s μλ,m s ≤≤1,n t ≤≤1(k 重根算k 个).定理 设矩阵m m C A ⨯∈,矩阵n n C B ⨯∈,对于向量m C x ∈和n C y ∈,若x 是A 关于特征值λ的一个特征向量,y 是A 关于特征值μ的一个特征向量,则y x ⊗是B I I A m n ⊗+⊗对应特征值μλ+的一个特征向量.证明:由性质,性质可以得到:)()()()())((y x y x y I Ax y x I A n n ⊗=⊗=⊗=⊗⊗λλ, )()()()())((y x y x By x I y x B I m m ⊗=⊗=⊗=⊗⊗μμ,故))(())(())(())((y x y x B I y x I A y x B I I A m n m n ⊗+=⊗⊗+⊗⊗=⊗⊗+⊗μλ.所以,y x ⊗是B I I A m n ⊗+⊗对应特征值μλ+的一个特征向量.推论 设矩阵m m C A ⨯∈,矩阵n n C B ⨯∈,对于向量m s C x ∈和n t C y ∈,若1x ,2x ,…,m x 是A 关于特征值1λ,2λ,…,m λ的特征向量,1y ,2y ,…,n y 是B 关于特征值1μ,2μ,…,n μ的特征向量,则B I I A m n ⊗+⊗的n m •个特征值为{t s μλ+}.(s=1,2,…,m ;t=1,2,…,n ).例 设矩阵m m C A ⨯∈,矩阵n n C B ⨯∈,对于向量m i C x ∈和n j C y ∈,若1x ,2x ,…,m x 是A 关于特征值1λ,2λ,…,m λ的特征向量,1y , 2y ,…,n y 是B 关于特征值1μ,2μ,…,n μ的特征向量,证明:矩阵)()(B A I I n m ⊗-⊗的特征值是j i μλ-1,对应的特征向量为j i y x ⊗.(i=1,2,…,m ;j=1,2,…,n ).证明:由性质和性质可得:))(()()()()())((j i j i j j i i j i j i y x y x By Ax y x B A ⊗=⊗=⊗=⊗⊗μλμλ,故有:))(1())(()())(()())(())(())](()[(j i j i j i j i j i j i j i j i mn j i j i n m j i n m y x y x y x y x y x I y x B A y x I I y x B A I I ⊗-=⊗-⊗=⊗-⊗=⊗⊗-⊗⊗=⊗⊗-⊗μλμλμλ所以,矩阵)()(B A I I n m ⊗-⊗的特征值是j i μλ-1,对应的特征向量j i y x ⊗. 定理 设矩阵m m C A ⨯∈,矩阵n n C B ⨯∈,则trB trA B A tr •=⊗)(证明:由Kronecker 积和迹的定义可得:trBtrA trB a trB a trB a B a tr B a tr B a tr B A tr nn nn •=+++=+++=⊗ 22112211)()()()(得证.定理 设矩阵m m C A ⨯∈,矩阵n n C B ⨯∈,则m n B A B A )(det )(det )det(=⊗证明:设A 的特征值为1λ,2λ,…,m λ,B 的特征值为1μ,2μ,…,n μ, 由推论可得:mn m n n m n m m n n nj j m nj j mnji nj j j i B A B A )(det )(det )()()())(())(()()()()()det(21211212111112,11=====⊗∏∏∏∏===μμμλλλμλμλμλμλμλμλμλμλμλμλ得证.第三章 矩阵的拉直矩阵的拉直的定义定义 设n m ij a A ⨯=)(,定义矩阵A 的按行拉直为:T mn m n n a a a a a a A A vec )()(1221111,,,,,,,,, ==→即矩阵A 的拉直是一个mn 元的列向量,它是由矩阵A 所有元素按行顺序依次排成一列得到的.例如:⎥⎦⎤⎢⎣⎡=d c b a A ,则矩阵A 的拉直为T d c b a A )(,,,=→.矩阵的拉直的性质矩阵的拉直具有以下性质: 性质 设矩阵nm C A ⨯∈,矩阵nm CB ⨯∈,k 和l 是常数,则(lB kA +=→→+B l A k .证明:略.性质 设n m ij t a t A ⨯=))(()(,则dtt dA (=dt d)(t A . 证明:左边==))((dtt dA vet ij a vet ((′)))(n m t ⨯ = [(a 11′(t ),…,a n 1′(t ),a 21′(t ),…,a n 2′(t ),…,a 1m ′(t ),…,a mn ′(t ) ]T=[(a 11(t ),…,a n 1(t ),a 21(t ),…,a n 2(t ),…,a 1m (t ),…,a mn (t ) )T ]′ = ))](([t A vet ′=))](([t A vec dtd=右边,得证. 性质设矩阵nm C A ⨯∈,矩阵pn CX ⨯∈,矩阵qp CB ⨯∈,则→⊗=X B A T)(.证明:设⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=mn m m n n a a a a a aa a a A 212222111211,T n x x X )(1,, =→,其中,T i x 是X 的第i 行=i (1,2,…,)n ,则⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++++=B x a x a B x a x a AXB T n mn T m Tn n T )()(111111 ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=→n x x X 1 所以T Tn mn T m T n n T B x a x a B x a x a ])()[(111111++++= ,, →⊗=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++++=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++++=X B A x x B a B a B a B a x a x a B x a x a B n T mn T m T n T n mn m T n n T )()()()()(11111111111 得证. 推论 设矩阵m m C A ⨯∈,矩阵n m C X ⨯∈,矩阵n n C B ⨯∈,则有1.AX →⊗=X I A n )( 2.→⊗=X B I Tm )(.3(AX +)→⊗+⊗=X B I I A Tm n )(.第四章 矩阵的Kronecker 积与矩阵方程矩阵的Kronecker 积与Lyapunov 矩阵方程设矩阵m m C A ⨯∈,矩阵n n C B ⨯∈,矩阵n m C F ⨯∈,解Lyapunov 矩阵方程:AX+XB=F.第一步:将方程两边拉直,由推论可得:→→=⊗+⊗C X B I I A Tm n )(.第二步:判断是否有解,根据线性方程组是否有解的判别条件可得:矩阵方程有解的充要条件是:Tm n B I I A rank ⊗+⊗(┊)()T m n B I I A rank C ⊗+⊗=→,:有唯一解的充要条件是det(A ⊗I n + I m ⊗B T )≠0,即A 和(-B )没有公共的特征值或者说A 和B 无互为相反数的特征值.例 分别在下2列条件下解矩阵方程AX+XB=C.(1) ⎥⎦⎤⎢⎣⎡-=0112A ,⎥⎦⎤⎢⎣⎡=42-1-3B ,⎥⎦⎤⎢⎣⎡--=1081710C (2) ⎥⎦⎤⎢⎣⎡=3201A ,⎥⎦⎤⎢⎣⎡--=1052B ,⎥⎦⎤⎢⎣⎡--=11353C 解:(1) 首先计算A 和B 的特征值,解0=-A I λ得:121==λλ,解0=-B I μ得:5221==μμ,.观察有无互为相反数的特征值发现,A 和B 没有互为相反数的特征值,所以矩阵方程有唯一解. 将矩阵方程两边拉直,得到:→→=⊗+⊗C X B I I A Tm n )(.设⎥⎦⎤⎢⎣⎡=4321x x x x X ,计算⎥⎦⎤⎢⎣⎡--=4123TB ,将A ,T B ,X ,C 代入得: ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎥⎦⎤⎢⎣⎡--⊗⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡⊗⎥⎦⎤⎢⎣⎡-108171041231001100101124321x x x x ,计算得到:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------108171041102301106101254321x x x x , 根据矩阵的乘法的定义可以求得:21314321-===-=x x x x ,,,. 故矩阵方程AX+XB=C 的唯一解为:⎥⎦⎤⎢⎣⎡--=2131X . (2) 同样先计算A 和B 的特征值,解0=-A I λ得:3121==λλ,, 解0=-B I μ得:1221-==μμ,.通过观察可知:021=+μλ. 一所以矩阵方程的解不唯,即存在通解. 将矩阵方程两边拉直,得到:→→=⊗+⊗C X B I I A Tm n )(.设⎥⎦⎤⎢⎣⎡=4321x x x xX ,计算⎥⎦⎤⎢⎣⎡--=1502TB ,将A ,T B ,X ,C 代入得: ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎥⎦⎤⎢⎣⎡--⊗⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡⊗⎥⎦⎤⎢⎣⎡1135315021001100132014321x x x x , - 计算得到:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--113532520050200050034321x x x x ,根据矩阵的乘法的定义可以求得:c x x c x x -=-===3114321,,,. 故矩阵方程AX+XB=C 的通解为:⎥⎦⎤⎢⎣⎡--=c c X 311(c 为任意常数).矩阵的Kronecker 积与一般线性矩阵方程设矩阵n m k C A ⨯∈,矩阵q p C B ⨯∈,矩阵q m C F ⨯=,解一般线性矩阵方程:F XB Ark k k=∑=1(r = 1,2,…).第一步,将矩阵方程两边拉直,由性质可以得到:∑=→→=⊗rk T kk F X B A 1)][(.第二步:判断是否有解,根据线性方程组是否有解的判别条件可得:矩阵方程有解的充要条件是:∑⊗)((Tkk B A rank ┊))(()1∑=→⊗=rk Tkk B A rank F . 即∑=⊗rk Tkk B A 1)(的所有特征值均不为0. 例 设A 和C 都是n ⨯n 矩阵,A 的特征值λi (i=0,1,2,…,n )R ∈(实数),求证:矩阵方程C XA A AXA X =++22有唯一解.证明:将两边方程拉直得到:→→=⊗+⊗+⊗C X A A A A I I T T n n ])([(22,化简得到:→→=⊗+⊗+C X A A A A I TTn ])()([22.由定义可知:T A A ⊗的2n 个特征值是=j i j i ,(λλ0,1,2,…,n ). 故:2)()(2T T n A A A A I ⊗+⊗+的2n 个特征值是:22)21(43)()(1j i j i j i λλλλλλ++=++>00(=j i ,,1,2,…,n ). 即2)()(2T T n A A A A I ⊗+⊗+是可逆的,由唯一解的判断方法可知:矩阵方程C XA A AXA X =++22有唯一解.例 在下列条件下解矩阵方程C XB A XB A =+2211.已知:⎥⎦⎤⎢⎣⎡-=20311A ,⎥⎦⎤⎢⎣⎡-=13101B ,⎥⎦⎤⎢⎣⎡-=11022A ,⎥⎦⎤⎢⎣⎡-=01232B ,⎥⎦⎤⎢⎣⎡--=48213C . 解:将矩阵方程两边拉直得到:→→=⊗+⊗C X B A B A T T)(2211. *设⎥⎦⎤⎢⎣⎡=4321x x x xX ,计算⎥⎦⎤⎢⎣⎡-=11301T B 和 ⎥⎦⎤⎢⎣⎡-=02132TB 代入*得到:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎥⎦⎤⎢⎣⎡-⊗⎥⎦⎤⎢⎣⎡-+⎥⎦⎤⎢⎣⎡-⊗⎥⎦⎤⎢⎣⎡-4821302131102113020314321x x x x .计算化简得:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------4821320027313331390564321x x x x . 根据矩阵的乘法的定义可以求得:10214321===-=x x x x ,,,.计算T T B A B A rank 2211(⊗+⊗┊4)()2211=⊗+⊗=TT B A B A rank C , 所以方程有唯一解:⎥⎦⎤⎢⎣⎡-=1021X . 矩阵的Kronecker 积与矩阵微分方程设m m C A ⨯∈矩阵,n n C B ⨯∈矩阵,n m C t X ⨯∈)(,求下列矩阵微分方程初值问题的解:⎪⎩⎪⎨⎧=+=0)0()()()(X X B t X t AX dt t dX 引理:设m m C A ⨯∈矩阵A ,矩阵n m C B ⨯∈,则n A I A I e e n ⊗=⊗,B m B I e I e m ⊗=⊗. 证明:因为性质可得:∑∑∞=∞=⊗⊗=⊗=11)(!1)(!1k k k k kI A I A k I A k enn A k kI e I A k ⊗=⊗=∑∞=1)!1(. 同理可证:B m B I e I e m ⊗=⊗.将矩阵微分方程两边拉直,由推论可以得到:⎪⎩⎪⎨⎧=⊗+⊗=→00(()()(X X t X B I I A dt t X d T m n 由引理可得:T t B At tB AtB I I A t TT m n e X e X ee X et X )()()(000)(=⊗==→→⊗+⊗,又因为∑∑∞=∞====11!1))(!1()(k Bt k k T k k k T Tt B e t B k t B k eT ,故Bt At e X e t X 0)(= 这就是微分方程的解.例 求解下列矩阵微分方程的初值问题:⎪⎩⎪⎨⎧=+=0)0()()()(X X B t X t AX dt t dX已知:⎥⎦⎤⎢⎣⎡=0011A ,⎥⎦⎤⎢⎣⎡-=0011B ,⎥⎦⎤⎢⎣⎡=10010X . 解:可计算得到:⎥⎦⎤⎢⎣⎡-=101t tAte e e,⎥⎦⎤⎢⎣⎡-=101t t Bte e e .由式可以得到: ⎥⎦⎤⎢⎣⎡--==10)1()(220t tBtAt e e eX e t X . 即的解为⎥⎦⎤⎢⎣⎡--=10)1()(22t te e t X . 通过本章的学习,我们知道矩阵的Kronecker 积在解矩阵方程领域有很大的作用,利用Kronecker 积的性质,我们可以解决Lyapunov 矩阵方程,一般矩阵方程,矩阵微分方程的初值问题等问题.参考文献[1]矩阵论简明教程(第三版).徐仲等编.北京:科学出版社..[2]矩阵论教程(第2版).张绍飞,赵迪编.北京:机械工业出版社..[3]矩阵论引论(第2版).陈祖明,周家胜编.北京:北京航空航天大学出版社..[4]矩阵论十讲.李乔,张晓东编.合肥:中国科学技术大学出版社..[5]矩阵理论及方法.谢冬秀,雷纪刚,陈桂芝编.北京:科学出版社.2012.[6]H-矩阵类的理论及应用.徐仲等编.北京:科学出版社.2013.[7]高等代数教程(上).王萼芳编.北京:清华大学出版社.1997(2008重印).[8]常微分方程(第二版).东北师范大学微分方程教研室.北京:高等教育出版社.(重印).[9]矩阵分析与应用(第2版).张贤达编.北京:清华大学出版社.2013(重印).[10]线性代数及其应用.毛立新,咸美新编.北京:高等教育出版社..[11]线性代数(第2版).钟玉泉,周建编.北京:科学出版社..[12]矩阵理论与方法(第2版).吴昌悫,魏洪增编.北京:电子工业出版社..[13]线性代数学习指导.赵春燕,单净,王麟编.哈尔滨:哈尔滨工程大学出版社..[14]矩阵论.张凯院等编.北京:科学出版社.2013.[15]矩阵论导教·导学·导考.张凯院,徐仲编.西安:西北工业大学出版社..[16]矩阵函数与矩阵方程.柏兆俊,高卫国,苏仰锋编.北京:高等教育出版社..[17]矩阵分析.姜志侠,孟品超,李延忠编.北京:清华大学出版社.2015.[18]矩阵论札论.梁昌洪编.北京:科学出版社.2014.[19]线性代数及其应用.马新顺,王涛,郭燕编.北京:高等教育出版社..[20]矩阵论引论.田振际,王永铎,吴德军编.北京:科学出版社.2013.[21]线性代数及其应用(第2版).河北农业大学理学院编.北京:高等教育出版社..(重印).[22]线性代数及其应用.王坤龙编.北京:电子工业出版社..[23]线性代数(第2版).许峰,范爱华编.合肥:中国科学技术大学出版社..[24]线性代数及其应用.俞方元编.上海:同济大学出版社..[25]线性代数学习指导.谢政,陈挚编.北京:清华大学出版社..[26]高等线性代数学.黎景辉,白正简,周国晖编.北京:高等教育出版社..[27]线性代数讲义.江惠坤,邵荣,范红军编.北京:科学出版社.2013.[28]线性代数.贾屹峰编.上海:上海交通大学出版社.2012.[29]线性代数.侯亚君,艾玲,沙萍,林洪娟编.北京:机械工业出版社.(重印).[30]线性代数.郝秀敏,姜庆华编.北京:经济科学出版社..[31]线性代数.韩旸,王静宇,周莉编.北京:化学工业出版社..[32]线性代数重点难点考点辅导与精析.高淑萍,张剑湖编.西安:西北工业大学出版社..[33]线性代数.傅媛编.武汉:武汉大学出版社.(重印).[34]跟我学线性代数:导学与习题精解.董晓波编.北京:机械工业出版社..[35]线性代数同步学习辅导.陈绍林,唐道远编.北京:科学出版社,.[36]线性代数及应用.刘三明编.南京:南京大学出版社..[37]线性代数.谭福锦,黎进香编.北京.人民邮电出版社..[38]工程数学.线性代数(第6版).同济大学数学系编.北京:高等教育出版社..[39]矩阵分析与计算.李继根,张新发编.武汉:武汉大学出版社..[40]矩阵计算的理论与方法.徐树方编.北京:北京大学出版社..[41]矩阵分析及其应用.曾祥金,吴华安编.武汉:武汉大学出版社..[42]矩阵理论与应用.张跃辉编.北京:科学出版社..致谢通过一个月来不断的努力,终于完成了这篇毕业论文。

_矩阵的Kronecker乘积的性质与应用

_矩阵的Kronecker乘积的性质与应用

矩阵Kronecker乘积的性质与应用摘要按照矩阵乘法的定义,我们知道要计算矩阵的乘积AB,就要求矩阵A的列数和矩阵B的行数相等,否则乘积AB是没有意义的。

那是不是两个矩阵不满足这个条件就不能计算它们的乘积呢?本文将介绍矩阵的一种特殊乘积BA ,它对矩阵的行数和列数的并没有具体的要求,它叫做矩阵的Kronecker积(也叫直积或张量积)。

本文将从矩阵的Kronecker积的定义出发,对矩阵的Kronecker 积进行介绍和必要的说明。

之后,对Kronecker积的运算规律,可逆性,秩,特征值,特征向量等性质进行了具体的探究,得出结论并加以证明。

此外,还对矩阵的拉直以及矩阵的拉直的性质进行了说明和必要的证明。

矩阵的Kronecker积是一种非常重要的矩阵乘积,它应用很广,理论方面在诸如矩阵方程的求解,矩阵微分方程的求解等矩阵理论的研究中有着广泛的应用,实际应用方面在诸如图像处理,信息处理等方面也起到重要的作用。

本文讨论矩阵的Kronecker积的性质之后还会具体介绍它在矩阵方程中的一些应用。

关键词:矩阵;Kronecker积;矩阵的拉直;矩阵方程;矩阵微分方程Properties and Applications of matrix KroneckerproductAbstractAccording to the definition of matrix multiplication, we know that to calculate the matrix product AB, requires the number of columns of the matrix A and matrix B is equal to the number of rows, otherwise the product AB makes no sense.That is not two matrices not satisfy this condition will not be able to calculate their product do?This article will describe a special matrix product BA , the number of rows and columns of a matrix and its no specific requirements, it is called the matrix Kronecker product (also called direct product or tensor product).This paper will define the matrix Kronecker product of view, the Kronecker product matrix are introduced and the necessary instructions. Thereafter, the operation rules Kronecker product, the nature of reversibility, rank, eigenvalues, eigenvectors, etc. specific inquiry, draw conclusions and to prove it. In addition, the properties of the stretch of matrix and its nature have been described and the necessary proof.Kronecker product matrix is a very important matrix product, its use is very broad, theoretical research, and other matrix solving differential equations, such as solving the matrix equation matrix theory has been widely applied in practical applications such as image processing aspects of information processing, also play an important role. After the article discusses the nature of the matrix Kronecker product it will introduce a number of specific applications in the matrix equation. Keywords:Matrix; Kronecker product; Stretch of matrix; Matrix equation; Matrix Differential Equations目录摘要 .................................................................................................................................................. I Abstract ........................................................................................................................................... II 第一章 矩阵的Kronecker 积 (1)1.1 矩阵的Kronecker 积的定义 ........................................................................................... 1 1.2 矩阵的Kronecker 积的性质 ........................................................................................... 1 第二章 Kronecker 积的有关定理及推论 ...................................................................................... 6 第三章 矩阵的拉直 . (9)3.1矩阵的拉直的定义 ............................................................................................................ 9 3.2矩阵的拉直的性质 ............................................................................................................ 9 第四章 矩阵的Kronecker 积与矩阵方程 .. (11)4.1矩阵的Kronecker 积与Lyapunov 矩阵方程 ................................................................ 11 4.2矩阵的Kronecker 积与一般线性矩阵方程 .................................................................. 13 4.3矩阵的Kronecker 积与矩阵微分方程 .......................................................................... 14 参考文献......................................................................................................................................... 16 致谢 (18)符号说明W a W a 属于集合元素nm ij a A ⨯=)( 矩阵的记法列元素的行为以n m j i a ij⨯ij A )( 列的元素行的矩阵j i AT A 的转置矩阵A H A 的共轭转置矩阵A 1-A 的逆矩阵矩阵A→A 按行拉直得到的列向量矩阵AA det 的行列式方阵AtrA 的主对角元素之和的迹,方阵A A)(A rank 的秩矩阵A)(A λ 的特征值方阵An I 阶单位矩阵nR 实数域 C 复数域n C 维复向量的全体n n m C ⨯ 复矩阵全体n m ⨯O 零矩阵B A ⊗ 的和矩阵B A Kronecker 积第一章 矩阵的Kronecker 积1.1 矩阵的Kronecker 积的定义定义1.1设矩阵n m C A ⨯∈,矩阵q p C B ⨯∈,定义A 和B 的Kronecker 积(或直积,张量积)B A ⊗为:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⊗B a B a B a B a B a B a B a B a B a B A mn m m n n 212222111211 可以看出,其结果是一个)()(nq mp ⨯矩阵,同时也是一个以B a ij 为子块的分块矩阵.例1.1 设⎥⎦⎤⎢⎣⎡-=1201A ,[]31-=B ,则 ⎥⎦⎤⎢⎣⎡---=⎥⎦⎤⎢⎣⎡-=⊗316200312B B O BB A []⎥⎦⎤⎢⎣⎡---=-=⊗361203013A A A B 由此可见,B A ⊗与A B ⊗具有相同的阶数,但是它们并不相等,也就是说,Kronecker 积不满足交换律.1.2 矩阵的Kronecker 积的性质虽然Kronecker 积不满足交换律,但是具有以下一些性质: 性质1.2.1 设矩阵n m C A ⨯∈,矩阵q p C O ⨯∈,则O O A A O =⊗=⊗(这个O 为)()(nq mp ⨯矩阵).证明:略.性质1.2.2 设k 为任一常数,矩阵n m C A ⨯∈,矩阵q p C B ⨯∈,则)()()(B A k kB A B kA ⊗=⊗=⊗.证明:不失一般性,设⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=mn m m n n a a a a a aa a a A 212222111211,则:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=mn m m n n ka ka ka ka ka ka ka ka ka kA 212222111211,根据Kronecker 积的定义可以得到:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⊗B ka B ka B ka B ka B ka B ka B ka B ka B ka B ka B ka B ka B ka B ka B ka B ka B ka B ka B kA mn m m n n mn m m n n 212222111211212222111211)()()()()()()()()()(, ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⊗B ka B ka B ka B ka B ka B ka B ka B ka B ka kB a kB a kB a kB a kB a kB a kB a kB a kB a kB A mn m m n n mn m m n n 212222111211212222111211)()()()()()()()()()(, 即)(B A k B kA ⊗=⊗,)()(B A k kB A ⊗=⊗. 所以)()()(B A k kB A B kA ⊗=⊗=⊗.性质1.2.3 设A ,B 为同阶矩阵(同阶是为了可以做加法),则C B C A C B A ⊗+⊗=⊗+)(,B C A C B A C ⊗+⊗=+⊗)(.证明:不失一般性,设⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=mn m m n n a a a a a aa a a A 212222111211,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=mn m m n n b b b b b b b b b B 212222111211,则:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+++++++++=+mn mn m m m m n n n n b a b a b a b a b a b a b a b a b a B A221122222221211112121111,根据Kronecker 积的定义可以得到:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+++++++++=⊗+C b a C b a C b a C b a C b aC b a C b a Cb a C b a C B A mn mn m m m m n n n n )()()()()()()()()()(221122222221211112121111(1.1)*,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⊗C a C a C a C a C a C a C a C a C a C A mn m m n n 212222111211 (1.2)*, ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⊗C b C b C b C b C b C b C b C b C b C B mn m m n n 212222111211 (1.3)*,由(1.2)*,(1.3)*得:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+++++++++=⊗C b C a C b C a C b C a C b C a C b C a C b C a C b C a C b C a C b C a C A mn mn m m m m n n n n 221122222221211112121111 (1.4)*, 由(1.1)*,(1.4)*可得:C B C A C B A ⊗+⊗=⊗+)(.同理设⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=mn m m n n c c c c c cc c c C 212222111211可证:B C A C B A C ⊗+⊗=+⊗)(.性质1.2.4 设矩阵n m C A ⨯∈,矩阵q p C B ⨯∈,矩阵s r C F ⨯∈,则)()(F B A F B A ⊗⊗=⊗⊗证明:不失一般性,设⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=mn m m n n a a a a a aa a a A 212222111211,则:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⊗⊗⊗⊗⊗⊗⊗⊗⊗=⊗⊗)()()()()()()()()()(212222111211F B a F B a F B a F B a F B a F B a F B a F B a F B a F B A mn m m n n)(212222111211F B A F B a B a B a B a B a B a B a B a B a mn m m n n ⊗⊗=⊗⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡= 得证.性质1.2.5设矩阵n m C A ⨯∈,矩阵q p C B ⨯∈,矩阵s n C F ⨯∈,矩阵t q C D ⨯∈,则)()())((BD AF D F B A ⊗=⊗⊗证明:不失一般性,设⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=mn m m n n a a a a a aa a a A 212222111211,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=ns n n s s f f f f f f f f f F212222111211, 则:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⊗⊗D f D f D f D f D f Df D f D f D f B a B a B a B a B a B a B a B a B a D F B A ns n n s s mn m m n n212222111211212222111211))(()()()()()()()()()()()(112111112211211121111BD AF BD f a BD f a BD f a BD c a BD f a BD f a BD f a BD f a BD f a nk ks mk n k k mk n k k mk nk ks k n k k k n k k k n k ks k n k k k n k k k ⊗=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=∑∑∑∑∑∑∑∑∑=========得证.性质1.2.6 设矩阵m m C A ⨯∈可逆, 且矩阵n n C B ⨯∈可逆,则B A ⊗可逆,且111)(---⊗=⊗B A B A .证明:mn n m I I I BB AA B A B A =⊗=⊗=⊗⊗----)()())((1111(这里I n 与数的乘法中的1起到相同的作用), 故111)(---⊗=⊗B A B A .性质1.2.7 设矩阵n m C A ⨯∈,矩阵q p C B ⨯∈,则T T T B A B A ⊗=⊗)(H H H B A B A ⊗=⊗)(证明: ij T T T ji ij T B A B a B A ][])[(⊗==⊗ 得证.同理可证:H H H B A B A ⊗=⊗)(.性质1.2.8 两个正交(酉)矩阵的Kronecker 积还是正交(酉)矩阵. 证明:设矩阵m m C A ⨯∈,矩阵n n C B ⨯∈.因为A ,B 都是正交(酉)矩阵,所以有m T T I A A AA ==,n T T I B B BB ==. 由性质1.2.7和性质1.2.5可得:mn n m T T T T T I I I BB AA B A B A B A B A =⊗=⊗=⊗⊗=⊗⊗))(())((. mn m n T T T T T I I I B B A A B A B A B A B A =⊗=⊗=⊗⊗=⊗⊗))(()()(.故mn T T I B A B A B A B A =⊗⊗=⊗⊗)()())((. 得证.第二章 Kronecker 积的有关定理及推论定理2.2.2 设矩阵n m C A ⨯∈,矩阵q p C B ⨯∈,则)()()(B rank A rank B A rank =⊗.证明:设rank A =r ,rank B=s ,A ,B 的标准形分别为:1111--⎥⎦⎤⎢⎣⎡=Q O O O I P A r ,1212--⎥⎦⎤⎢⎣⎡=Q O O O I P B s其中i P ,i Q =i (1,2)均为非奇异矩阵,则由性质1.2.5和1.2.6可以得:`1211211211121112121111)()()()(----------⊗⎥⎦⎤⎢⎣⎡⊗=⊗⎪⎪⎭⎫ ⎝⎛⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡⊗=⎪⎪⎭⎫⎝⎛⎥⎦⎤⎢⎣⎡⊗⎪⎪⎭⎫ ⎝⎛⎥⎦⎤⎢⎣⎡=⊗Q Q O OO I P P Q Q O O O I O OO I P P Q O O O I P Q O OO I P B A rssrsr所以)()()(B rank A rank s r B A rank =•=⊗ 得证.定理2.2.3 设矩阵m m C A ⨯∈,矩阵n n C B ⨯∈,对于向量m C x ∈和n C y ∈,若x 是A 关于特征值λ的一个特征向量,y 是A 关于特征值μ的一个特征向量,则y x ⊗是B A ⊗对应特征值λμ的一个特征向量.证明:因为x ,y 都是非零向量,所以x ⊗y 也是非零向量,由性质1.2.2和性质1.2.5可得:)()()()()())((y x y x By Ax y x B A ⊗=⊗=⊗=⊗⊗λμμλ.所以,y x ⊗是B A ⊗对应特征值λμ的一个特征向量.推论2.2.4 设矩阵m m C A ⨯∈,矩阵n n C B ⨯∈,对于向量m C x ∈和n C y ∈,若A 的特征值是1λ,2λ,…,m λ;B 的特征值是1μ,2μ,…,n μ,则B A ⊗的特征值为t s μλ,m s ≤≤1,n t ≤≤1(k 重根算k 个).定理2.2.5 设矩阵m m C A ⨯∈,矩阵n n C B ⨯∈,对于向量m C x ∈和n C y ∈,若x 是A 关于特征值λ的一个特征向量,y 是A 关于特征值μ的一个特征向量,则y x ⊗是B I I A m n ⊗+⊗对应特征值μλ+的一个特征向量.证明:由性质1.2.3,性质1.2.5可以得到:)()()()())((y x y x y I Ax y x I A n n ⊗=⊗=⊗=⊗⊗λλ, )()()()())((y x y x By x I y x B I m m ⊗=⊗=⊗=⊗⊗μμ,故))(())(())(())((y x y x B I y x I A y x B I I A m n m n ⊗+=⊗⊗+⊗⊗=⊗⊗+⊗μλ.所以,y x ⊗是B I I A m n ⊗+⊗对应特征值μλ+的一个特征向量.推论2.2.6 设矩阵m m C A ⨯∈,矩阵n n C B ⨯∈,对于向量m s C x ∈和n t C y ∈,若1x ,2x ,…,m x 是A 关于特征值1λ,2λ,…,m λ的特征向量,1y ,2y ,…,n y 是B 关于特征值1μ,2μ,…,n μ的特征向量,则B I I A m n ⊗+⊗的n m •个特征值为{t s μλ+}.(s=1,2,…,m ;t=1,2,…,n ).例2.2 设矩阵m m C A ⨯∈,矩阵n n C B ⨯∈,对于向量m i C x ∈和n j C y ∈,若1x ,2x ,…,m x 是A 关于特征值1λ,2λ,…,m λ的特征向量,1y , 2y ,…,n y 是B 关于特征值1μ,2μ,…,n μ的特征向量,证明:矩阵)()(B A I I n m ⊗-⊗的特征值是j i μλ-1,对应的特征向量为j i y x ⊗.(i=1,2,…,m ;j=1,2,…,n ).证明:由性质1.2.3和性质1.2.5可得:))(()()()()())((j i j i j j i i j i j i y x y x By Ax y x B A ⊗=⊗=⊗=⊗⊗μλμλ,故有:))(1())(()())(()())(())(())](()[(j i j i j i j i j i j i j i j i mn j i j i n m j i n m y x y x y x y x y x I y x B A y x I I y x B A I I ⊗-=⊗-⊗=⊗-⊗=⊗⊗-⊗⊗=⊗⊗-⊗μλμλμλ所以,矩阵)()(B A I I n m ⊗-⊗的特征值是j i μλ-1,对应的特征向量j i y x ⊗. 定理2.2.7 设矩阵m m C A ⨯∈,矩阵n n C B ⨯∈,则trB trA B A tr •=⊗)(证明:由Kronecker 积和迹的定义可得:trBtrA trB a trB a trB a B a tr B a tr B a tr B A tr nn nn •=+++=+++=⊗ 22112211)()()()(得证.定理2.2.8 设矩阵m m C A ⨯∈,矩阵n n C B ⨯∈,则m n B A B A )(det )(det )det(=⊗证明:设A 的特征值为1λ,2λ,…,m λ,B 的特征值为1μ,2μ,…,n μ, 由推论2.2.4可得:mn m n n m n m m n n nj j m nj j mnji nj j j i B A B A )(det )(det )()()())(())(()()()()()det(21211212111112,11=====⊗∏∏∏∏===μμμλλλμλμλμλμλμλμλμλμλμλμλ得证.第三章 矩阵的拉直3.1矩阵的拉直的定义定义3.1 设n m ij a A ⨯=)(,定义矩阵A 的按行拉直为:T mn m n n a a a a a a A A vec )()(1221111,,,,,,,,, ==→即矩阵A 的拉直是一个mn 元的列向量,它是由矩阵A 所有元素按行顺序依次排成一列得到的.例如:⎥⎦⎤⎢⎣⎡=d c b a A ,则矩阵A 的拉直为T d c b a A )(,,,=→.3.2矩阵的拉直的性质矩阵的拉直具有以下性质:性质 3.2.1 设矩阵n m C A ⨯∈,矩阵n m C B ⨯∈,k 和l 是常数,则)(lB kA +=→→+B l A k .证明:略.性质3.2.2 设n m ij t a t A ⨯=))(()(,则dtt dA )(=dt d)(t A . 证明:左边==))((dtt dA vet ij a vet ((′)))(n m t ⨯ = [(a 11′(t ),…,a n 1′(t ),a 21′(t ),…,a n 2′(t ),…,a 1m ′(t ),…,a mn ′(t ) ]T =[(a 11(t ),…,a n 1(t ),a 21(t ),…,a n 2(t ),…,a 1m (t ),…,a mn (t ) )T ]′ = ))](([t A vet ′=))](([t A vec dtd=右边,得证. 性质 3.2.3设矩阵n m C A ⨯∈,矩阵p n C X ⨯∈,矩阵q p C B ⨯∈,则AXB →⊗=X B A T)(.证明:设⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=mn m m n n a a a a a aa a a A 212222111211,T n x x X )(1,, =→,其中,T i x 是X 的第i 行=i (1,2,…,)n ,则⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++++=B x a x a B x a x a AXB T n mn T m Tn n T )()(111111 ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=→n x x X 1 所以AXB T Tn mn T m T n n T B x a x a B x a x a ])()[(111111++++= ,, →⊗=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++++=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++++=X B A x x B a B a B a B a x a x a B x a x a B n T mn T m T n T n mn m T n n T )()()()()(11111111111 得证. 推论3.2.4 设矩阵m m C A ⨯∈,矩阵n m C X ⨯∈,矩阵n n C B ⨯∈,则有1.AX →⊗=X I A n )( 2.XB →⊗=X B I Tm )(.3(AX +XB )→⊗+⊗=X B I I A Tm n )(.第四章 矩阵的Kronecker 积与矩阵方程4.1矩阵的Kronecker 积与Lyapunov 矩阵方程设矩阵m m C A ⨯∈,矩阵n n C B ⨯∈,矩阵n m C F ⨯∈,解Lyapunov 矩阵方程: AX+XB=F .第一步:将方程两边拉直,由推论3.2.4可得:→→=⊗+⊗C X B I I A Tm n )(. (4.1) 第二步:判断是否有解,根据线性方程组是否有解的判别条件可得:矩阵方程(4.1)有解的充要条件是:Tm n B I I A rank ⊗+⊗(┊)()T m n B I I A rank C ⊗+⊗=→,:有唯一解的充要条件是det(A ⊗I n + I m ⊗B T )≠0,即A 和(-B )没有公共的特征值或者说A 和B 无互为相反数的特征值.例4.1 分别在下2列条件下解矩阵方程AX+XB=C.(1) ⎥⎦⎤⎢⎣⎡-=0112A ,⎥⎦⎤⎢⎣⎡=42-1-3B ,⎥⎦⎤⎢⎣⎡--=1081710C (2) ⎥⎦⎤⎢⎣⎡=3201A ,⎥⎦⎤⎢⎣⎡--=1052B ,⎥⎦⎤⎢⎣⎡--=11353C 解:(1) 首先计算A 和B 的特征值,解0=-A I λ得:121==λλ,解0=-B I μ得:5221==μμ,.观察有无互为相反数的特征值发现,A 和B 没有互为相反数的特征值,所以矩阵方程有唯一解. 将矩阵方程两边拉直,得到:→→=⊗+⊗C X B I I A Tm n )(. (4.1)设⎥⎦⎤⎢⎣⎡=4321x x x x X ,计算⎥⎦⎤⎢⎣⎡--=4123TB ,将A ,T B ,X ,C 代入(4.1)得: ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎥⎦⎤⎢⎣⎡--⊗⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡⊗⎥⎦⎤⎢⎣⎡-108171041231001100101124321x x x x ,计算得到:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------108171041102301106101254321x x x x , 根据矩阵的乘法的定义可以求得:21314321-===-=x x x x ,,,. 故矩阵方程AX+XB=C 的唯一解为:⎥⎦⎤⎢⎣⎡--=2131X . (2) 同样先计算A 和B 的特征值,解0=-A I λ得:3121==λλ,, 解0=-B I μ得:1221-==μμ,.通过观察可知:021=+μλ. 一所以矩阵方程的解不唯,即存在通解. 将矩阵方程两边拉直,得到:→→=⊗+⊗C X B I I A Tm n )(. (4.1)设⎥⎦⎤⎢⎣⎡=4321x x x xX ,计算⎥⎦⎤⎢⎣⎡--=1502TB ,将A ,T B ,X ,C 代入(4.1)得: ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎥⎦⎤⎢⎣⎡--⊗⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡⊗⎥⎦⎤⎢⎣⎡1135315021001100132014321x x x x , - 计算得到:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--113532520050200050034321x x x x ,根据矩阵的乘法的定义可以求得:c x x c x x -=-===3114321,,,. 故矩阵方程AX+XB=C 的通解为:⎥⎦⎤⎢⎣⎡--=c c X 311(c 为任意常数).4.2矩阵的Kronecker 积与一般线性矩阵方程设矩阵n m k C A ⨯∈,矩阵q p C B ⨯∈,矩阵q m C F ⨯=,解一般线性矩阵方程:F XB Ark k k=∑=1(r = 1,2,…).第一步,将矩阵方程两边拉直,由性质3.2.3可以得到:∑=→→=⊗rk T kkF X B A1)][(. (4.2)第二步:判断是否有解,根据线性方程组是否有解的判别条件可得:矩阵方程(4.2)有解的充要条件是:∑⊗)((Tkk B A rank ┊))(()1∑=→⊗=rk Tkk B A rank F . 即∑=⊗rk Tkk B A 1)(的所有特征值均不为0. 例4.2 设A 和C 都是n ⨯n 矩阵,A 的特征值λi (i=0,1,2,…,n )R ∈(实数),求证:矩阵方程C XA A AXA X =++22有唯一解.证明:将两边方程拉直得到:→→=⊗+⊗+⊗C X A A A A I I T T n n ])([(22,化简得到:→→=⊗+⊗+C X A A A A I TTn ])()([22.由定义3.1可知:T A A ⊗的2n 个特征值是=j i j i ,(λλ0,1,2,…,n ). 故:2)()(2T T n A A A A I ⊗+⊗+的2n 个特征值是:22)21(43)()(1j i j i j i λλλλλλ++=++>00(=j i ,,1,2,…,n ). 即2)()(2T T n A A A A I ⊗+⊗+是可逆的,由唯一解的判断方法可知:矩阵方程C XA A AXA X =++22有唯一解.例4.3 在下列条件下解矩阵方程C XB A XB A =+2211.已知:⎥⎦⎤⎢⎣⎡-=20311A ,⎥⎦⎤⎢⎣⎡-=13101B ,⎥⎦⎤⎢⎣⎡-=11022A ,⎥⎦⎤⎢⎣⎡-=01232B ,⎥⎦⎤⎢⎣⎡--=48213C . 解:将矩阵方程两边拉直得到:→→=⊗+⊗C X B A B A T T)(2211. (4.3)*设⎥⎦⎤⎢⎣⎡=4321x x x xX ,计算⎥⎦⎤⎢⎣⎡-=11301T B 和 ⎥⎦⎤⎢⎣⎡-=02132TB 代入(4.3)*得到:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎥⎦⎤⎢⎣⎡-⊗⎥⎦⎤⎢⎣⎡-+⎥⎦⎤⎢⎣⎡-⊗⎥⎦⎤⎢⎣⎡-4821302131102113020314321x x x x .计算化简得:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------4821320027313331390564321x x x x . 根据矩阵的乘法的定义可以求得:10214321===-=x x x x ,,,.计算T T B A B A rank 2211(⊗+⊗┊4)()2211=⊗+⊗=TT B A B A rank C , 所以方程有唯一解:⎥⎦⎤⎢⎣⎡-=1021X . 4.3矩阵的Kronecker 积与矩阵微分方程设m m C A ⨯∈矩阵,n n C B ⨯∈矩阵,n m C t X ⨯∈)(,求下列矩阵微分方程初值问题的解:⎪⎩⎪⎨⎧=+=0)0()()()(X X B t X t AX dt t dX (4.3)引理:设m m C A ⨯∈矩阵A ,矩阵n m C B ⨯∈,则n A I A I e e n ⊗=⊗,B m B I e I e m ⊗=⊗. 证明:因为性质1.2.5可得:∑∑∞=∞=⊗⊗=⊗=11)(!1)(!1k k k k kI A I A k I A k enn A k kI e I A k ⊗=⊗=∑∞=1)!1(. 同理可证:B m B I e I e m ⊗=⊗.将矩阵微分方程(4.3)两边拉直,由推论3.2.4可以得到:⎪⎩⎪⎨⎧=⊗+⊗=→0)0()()()(X X t X B I I A dt t X d T m n (4.4)由引理可得:T t B At tB AtB I I A t TT m n e X e X ee X et X )()()(000)(=⊗==→→⊗+⊗,又因为∑∑∞=∞====11!1))(!1()(k Bt k k T k k k T Tt B e t B k t B k eT ,故Bt At e X e t X 0)(= (4.5) 这就是微分方程(4.3)的解.例4.4 求解下列矩阵微分方程的初值问题:⎪⎩⎪⎨⎧=+=0)0()()()(X X B t X t AX dt t dX (4.6)已知:⎥⎦⎤⎢⎣⎡=0011A ,⎥⎦⎤⎢⎣⎡-=0011B ,⎥⎦⎤⎢⎣⎡=10010X . 解:可计算得到:⎥⎦⎤⎢⎣⎡-=101t tAte e e,⎥⎦⎤⎢⎣⎡-=101t t Bte e e .由(4.5)式可以得到: ⎥⎦⎤⎢⎣⎡--==10)1()(220t tBtAt e e eX e t X . 即(4.6)的解为⎥⎦⎤⎢⎣⎡--=10)1()(22t te e t X . 通过本章的学习,我们知道矩阵的Kronecker 积在解矩阵方程领域有很大的作用,利用Kronecker 积的性质,我们可以解决Lyapunov 矩阵方程,一般矩阵方程,矩阵微分方程的初值问题等问题.参考文献[1]矩阵论简明教程(第三版).徐仲等编.北京:科学出版社.2014.1.[2]矩阵论教程(第2版).张绍飞,赵迪编.北京:机械工业出版社.2012.5.[3]矩阵论引论(第2版).陈祖明,周家胜编.北京:北京航空航天大学出版社.2012.10.[4]矩阵论十讲.李乔,张晓东编.合肥:中国科学技术大学出版社.2015.3.[5]矩阵理论及方法.谢冬秀,雷纪刚,陈桂芝编.北京:科学出版社.2012.[6]H-矩阵类的理论及应用.徐仲等编.北京:科学出版社.2013.[7]高等代数教程(上).王萼芳编.北京:清华大学出版社.1997(2008重印).[8]常微分方程(第二版).东北师范大学微分方程教研室.北京:高等教育出版社.2005.4(2012.12重印).[9]矩阵分析与应用(第2版).张贤达编.北京:清华大学出版社.2013(2014.6重印).[10]线性代数及其应用.毛立新,咸美新编.北京:高等教育出版社.2015.8.[11]线性代数(第2版).钟玉泉,周建编.北京:科学出版社.2015.1.[12]矩阵理论与方法(第2版).吴昌悫,魏洪增编.北京:电子工业出版社.2013.8.[13]线性代数学习指导.赵春燕,单净,王麟编.哈尔滨:哈尔滨工程大学出版社.2012.2.[14]矩阵论.张凯院等编.北京:科学出版社.2013.[15]矩阵论导教·导学·导考.张凯院,徐仲编.西安:西北工业大学出版社.2014.8.[16]矩阵函数与矩阵方程.柏兆俊,高卫国,苏仰锋编.北京:高等教育出版社.2015.5.[17]矩阵分析.姜志侠,孟品超,李延忠编.北京:清华大学出版社.2015.[18]矩阵论札论.梁昌洪编.北京:科学出版社.2014.[19]线性代数及其应用.马新顺,王涛,郭燕编.北京:高等教育出版社.2014.7.[20]矩阵论引论.田振际,王永铎,吴德军编.北京:科学出版社.2013.[21]线性代数及其应用(第2版).河北农业大学理学院编.北京:高等教育出版社.2006.11.(2015.2重印).[22]线性代数及其应用.王坤龙编.北京:电子工业出版社.2014.10.[23]线性代数(第2版).许峰,范爱华编.合肥:中国科学技术大学出版社.2013.4.[24]线性代数及其应用.俞方元编.上海:同济大学出版社.2014.8.[25]线性代数学习指导.谢政,陈挚编.北京:清华大学出版社.2012.10.[26]高等线性代数学.黎景辉,白正简,周国晖编.北京:高等教育出版社.2014.9.[27]线性代数讲义.江惠坤,邵荣,范红军编.北京:科学出版社.2013.[28]线性代数.贾屹峰编.上海:上海交通大学出版社.2012.[29]线性代数.侯亚君,艾玲,沙萍,林洪娟编.北京:机械工业出版社.2012.1(2012.7重印).[30]线性代数.郝秀敏,姜庆华编.北京:经济科学出版社.2013.7.[31]线性代数.韩旸,王静宇,周莉编.北京:化学工业出版社.2013.8.[32]线性代数重点难点考点辅导与精析.高淑萍,张剑湖编.西安:西北工业大学出版社.2014.5.[33]线性代数.傅媛编.武汉:武汉大学出版社.2013.2(2013.11重印).[34]跟我学线性代数:导学与习题精解.董晓波编.北京:机械工业出版社.2014.1.[35]线性代数同步学习辅导.陈绍林,唐道远编.北京:科学出版社,2014.7.[36]线性代数及应用.刘三明编.南京:南京大学出版社.2012.8.[37]线性代数.谭福锦,黎进香编.北京.人民邮电出版社.2012.8.[38]工程数学.线性代数(第6版).同济大学数学系编.北京:高等教育出版社.2014.6.[39]矩阵分析与计算.李继根,张新发编.武汉:武汉大学出版社.2013.10.[40]矩阵计算的理论与方法.徐树方编.北京:北京大学出版社.1995.8.[41]矩阵分析及其应用.曾祥金,吴华安编.武汉:武汉大学出版社.2007.8.[42]矩阵理论与应用.张跃辉编.北京:科学出版社.2011.8.致谢通过一个月来不断的努力,终于完成了这篇毕业论文。

矩阵Kronecker乘积性质及应用

矩阵Kronecker乘积性质及应用

矩阵Kronecker乘积的性质与应用摘要按照矩阵乘法的定义,我们知道要计算矩阵的乘积AB,就要求矩阵A的列数和矩阵B的行数相等,否则乘积AB是没有意义的。

那是不是两个矩阵不满足这个条件就不能计算它们的乘积呢?本文将介绍矩阵的一种特殊乘积BA ,它对矩阵的行数和列数的并没有具体的要求,它叫做矩阵的Kronecker积(也叫直积或张量积)。

本文将从矩阵的Kronecker积的定义出发,对矩阵的Kronecker 积进行介绍和必要的说明。

之后,对Kronecker积的运算规律,可逆性,秩,特征值,特征向量等性质进行了具体的探究,得出结论并加以证明。

此外,还对矩阵的拉直以及矩阵的拉直的性质进行了说明和必要的证明。

矩阵的Kronecker积是一种非常重要的矩阵乘积,它应用很广,理论方面在诸如矩阵方程的求解,矩阵微分方程的求解等矩阵理论的研究中有着广泛的应用,实际应用方面在诸如图像处理,信息处理等方面也起到重要的作用。

本文讨论矩阵的Kronecker积的性质之后还会具体介绍它在矩阵方程中的一些应用。

关键词:矩阵;Kronecker积;矩阵的拉直;矩阵方程;矩阵微分方程Properties and Applications of matrix KroneckerproductAbstractAccording to the definition of matrix multiplication, we know that to calculate the matrix product AB, requires the number of columns of the matrix A and matrix B is equal to the number of rows, otherwise the product AB makes no sense.That is not two matrices not satisfy this condition will not be able to calculate their product do?This article will describe a special matrix product BA , the number of rows and columns of a matrix and its no specific requirements, it is called the matrix Kronecker product (also called direct product or tensor product).This paper will define the matrix Kronecker product of view, the Kronecker product matrix are introduced and the necessary instructions. Thereafter, the operation rules Kronecker product, the nature of reversibility, rank, eigenvalues, eigenvectors, etc. specific inquiry, draw conclusions and to prove it. In addition, the properties of the stretch of matrix and its nature have been described and the necessary proof.Kronecker product matrix is a very important matrix product, its use is very broad, theoretical research, and other matrix solving differential equations, such as solving the matrix equation matrix theory has been widely applied in practical applications such as image processing aspects of information processing, also play an important role. After the article discusses the nature of the matrix Kronecker product it will introduce a number of specific applications in the matrix equation. Keywords:Matrix; Kronecker product; Stretch of matrix; Matrix equation; Matrix Differential Equations目录摘要 .................................................................................................................................................... Abstract ............................................................................................................................................ I 第一章 矩阵的Kronecker 积 01.1 矩阵的Kronecker 积的定义 ........................................................................................... 0 1.2 矩阵的Kronecker 积的性质 ........................................................................................... 0 第二章 Kronecker 积的有关定理及推论 ...................................................................................... 5 第三章 矩阵的拉直 . (8)3.1矩阵的拉直的定义 ............................................................................................................ 8 3.2矩阵的拉直的性质 ............................................................................................................ 8 第四章 矩阵的Kronecker 积与矩阵方程 .. (10)4.1矩阵的Kronecker 积与Lyapunov 矩阵方程 ................................................................ 10 4.2矩阵的Kronecker 积与一般线性矩阵方程 .................................................................. 12 4.3矩阵的Kronecker 积与矩阵微分方程 .......................................................................... 13 参考文献......................................................................................................................................... 15 致谢 (17)符号说明W a W a 属于集合元素nm ij a A ⨯=)( 矩阵的记法列元素的行为以n m j i a ij⨯ij A )( 列的元素行的矩阵j i AT A 的转置矩阵A H A 的共轭转置矩阵A 1-A 的逆矩阵矩阵A→A 按行拉直得到的列向量矩阵AA det 的行列式方阵AtrA 的主对角元素之和的迹,方阵A A)(A rank 的秩矩阵A)(A λ 的特征值方阵An I 阶单位矩阵nR 实数域 C 复数域n C 维复向量的全体n n m C ⨯ 复矩阵全体n m ⨯O 零矩阵B A ⊗ 的和矩阵B A Kronecker 积第一章 矩阵的Kronecker 积1.1 矩阵的Kronecker 积的定义定义1.1设矩阵n m C A ⨯∈,矩阵q p C B ⨯∈,定义A 和B 的Kronecker 积(或直积,张量积)B A ⊗为:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⊗B a B a B a B a B a B a B a B a B a B A mn m m n n 212222111211 可以看出,其结果是一个)()(nq mp ⨯矩阵,同时也是一个以B a ij 为子块的分块矩阵.例1.1 设⎥⎦⎤⎢⎣⎡-=1201A ,[]31-=B ,则 ⎥⎦⎤⎢⎣⎡---=⎥⎦⎤⎢⎣⎡-=⊗316200312B B O BB A []⎥⎦⎤⎢⎣⎡---=-=⊗361203013A A A B 由此可见,B A ⊗与A B ⊗具有相同的阶数,但是它们并不相等,也就是说,Kronecker 积不满足交换律.1.2 矩阵的Kronecker 积的性质虽然Kronecker 积不满足交换律,但是具有以下一些性质: 性质1.2.1 设矩阵n m C A ⨯∈,矩阵q p C O ⨯∈,则O O A A O =⊗=⊗(这个O 为)()(nq mp ⨯矩阵).证明:略.性质1.2.2 设k 为任一常数,矩阵n m C A ⨯∈,矩阵q p C B ⨯∈,则)()()(B A k kB A B kA ⊗=⊗=⊗.证明:不失一般性,设⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=mn m m n n a a a a a aa a a A 212222111211,则:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=mn m m n n ka ka ka ka ka ka ka ka ka kA 212222111211,根据Kronecker 积的定义可以得到:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⊗B ka B ka B ka B ka B ka B ka B ka B ka B ka B ka B ka B ka B ka B ka B ka B ka B ka B ka B kA mn m m n n mn m m n n 212222111211212222111211)()()()()()()()()()(, ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⊗B ka B ka B ka B ka B ka B ka B ka B ka B ka kB a kB a kB a kB a kB a kB a kB a kB a kB a kB A mn m m n n mn m m n n 212222111211212222111211)()()()()()()()()()(, 即)(B A k B kA ⊗=⊗,)()(B A k kB A ⊗=⊗. 所以)()()(B A k kB A B kA ⊗=⊗=⊗.性质1.2.3 设A ,B 为同阶矩阵(同阶是为了可以做加法),则C B C A C B A ⊗+⊗=⊗+)(,B C A C B A C ⊗+⊗=+⊗)(.证明:不失一般性,设⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=mn m m n n a a a a a aa a a A 212222111211,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=mn m m n n b b b b b b b b b B 212222111211,则:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+++++++++=+mn mn m m m m n n n n b a b a b a b a b a ba b a b a b a B A221122222221211112121111,根据Kronecker 积的定义可以得到:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+++++++++=⊗+C b a C b a C b a C b a Cb aC b a C b a C b a C b a C B A mn mn m m m m n n n n )()()()()()()()()()(221122222221211112121111(1.1)*,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⊗C a C a C a C a C a C a C a C a C a C A mn m m n n 212222111211 (1.2)*, ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⊗C b C b C b C b C b C b C b C b C b C B mn m m n n 212222111211 (1.3)*,由(1.2)*,(1.3)*得:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+++++++++=⊗C b C a C b C a C b C a C b C a C b C a C b C a C b C a C b C a C b C a C A mn mn m m m m n n n n 221122222221211112121111 (1.4)*, 由(1.1)*,(1.4)*可得:C B C A C B A ⊗+⊗=⊗+)(.同理设⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=mn m m n n c c c c c cc c c C 212222111211可证:B C A C B A C ⊗+⊗=+⊗)(.性质1.2.4 设矩阵n m C A ⨯∈,矩阵q p C B ⨯∈,矩阵s r C F ⨯∈,则)()(F B A F B A ⊗⊗=⊗⊗证明:不失一般性,设⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=mn m m n n a a a a a aa a a A 212222111211,则:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⊗⊗⊗⊗⊗⊗⊗⊗⊗=⊗⊗)()()()()()()()()()(212222111211F B a F B a F B a F B a F B a F B a F B a F B a F B a F B A mn m m n n)(212222111211F B A F B a B a B a B a B a B a B a B a B a mn m m n n ⊗⊗=⊗⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡= 得证.性质1.2.5设矩阵n m C A ⨯∈,矩阵q p C B ⨯∈,矩阵s n C F ⨯∈,矩阵t q C D ⨯∈,则)()())((BD AF D F B A ⊗=⊗⊗证明:不失一般性,设⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=mn m m n n a a a a a aa a a A 212222111211,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=ns n n s s f f f f f f f f f F212222111211, 则:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⊗⊗D f D f D f D f D f Df D f D f D f B a B a B a B a B a B a B a B a B a D F B A ns n n s s mn m m n n212222111211212222111211))(()()()()()()()()()()()(112111112211211121111BD AF BD f a BD f a BD f a BD c a BD f a BD f a BD f a BD f a BD f a nk ks mk n k k mk n k k mk nk ks k n k k k n k k k n k ks k n k k k n k k k ⊗=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=∑∑∑∑∑∑∑∑∑=========得证.性质1.2.6 设矩阵m m C A ⨯∈可逆, 且矩阵n n C B ⨯∈可逆,则B A ⊗可逆,且111)(---⊗=⊗B A B A .证明:mn n m I I I BB AA B A B A =⊗=⊗=⊗⊗----)()())((1111(这里I n 与数的乘法中的1起到相同的作用), 故111)(---⊗=⊗B A B A .性质1.2.7 设矩阵n m C A ⨯∈,矩阵q p C B ⨯∈,则T T T B A B A ⊗=⊗)(H H H B A B A ⊗=⊗)(证明: ij T T T ji ij T B A B a B A ][])[(⊗==⊗ 得证.同理可证:H H H B A B A ⊗=⊗)(.性质1.2.8 两个正交(酉)矩阵的Kronecker 积还是正交(酉)矩阵. 证明:设矩阵m m C A ⨯∈,矩阵n n C B ⨯∈.因为A ,B 都是正交(酉)矩阵,所以有m T T I A A AA ==,n T T I B B BB ==. 由性质1.2.7和性质1.2.5可得:mn n m T T T T T I I I BB AA B A B A B A B A =⊗=⊗=⊗⊗=⊗⊗))(())((. mn m n T T T T T I I I B B A A B A B A B A B A =⊗=⊗=⊗⊗=⊗⊗))(()()(.故mn T T I B A B A B A B A =⊗⊗=⊗⊗)()())((. 得证.第二章 Kronecker 积的有关定理及推论定理2.2.2 设矩阵n m C A ⨯∈,矩阵q p C B ⨯∈,则)()()(B rank A rank B A rank =⊗.证明:设rank A =r ,rank B=s ,A ,B 的标准形分别为:1111--⎥⎦⎤⎢⎣⎡=Q O O O I P A r ,1212--⎥⎦⎤⎢⎣⎡=Q O O O I P B s其中i P ,i Q =i (1,2)均为非奇异矩阵,则由性质1.2.5和1.2.6可以得:`1211211211121112121111)()()()(----------⊗⎥⎦⎤⎢⎣⎡⊗=⊗⎪⎪⎭⎫ ⎝⎛⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡⊗=⎪⎪⎭⎫⎝⎛⎥⎦⎤⎢⎣⎡⊗⎪⎪⎭⎫ ⎝⎛⎥⎦⎤⎢⎣⎡=⊗Q Q O O O I P P Q Q O O O I O O O I P P Q O O O I P Q O O O I P B A rss r s r 所以)()()(B rank A rank s r B A rank =•=⊗ 得证.定理2.2.3 设矩阵m m C A ⨯∈,矩阵n n C B ⨯∈,对于向量m C x ∈和n C y ∈,若x 是A 关于特征值λ的一个特征向量,y 是A 关于特征值μ的一个特征向量,则y x ⊗是B A ⊗对应特征值λμ的一个特征向量.证明:因为x ,y 都是非零向量,所以x ⊗y 也是非零向量,由性质1.2.2和性质1.2.5可得:)()()()()())((y x y x By Ax y x B A ⊗=⊗=⊗=⊗⊗λμμλ.所以,y x ⊗是B A ⊗对应特征值λμ的一个特征向量.推论2.2.4 设矩阵m m C A ⨯∈,矩阵n n C B ⨯∈,对于向量m C x ∈和n C y ∈,若A 的特征值是1λ,2λ,…,m λ;B 的特征值是1μ,2μ,…,n μ,则B A ⊗的特征值为t s μλ,m s ≤≤1,n t ≤≤1(k 重根算k 个).定理2.2.5 设矩阵m m C A ⨯∈,矩阵n n C B ⨯∈,对于向量m C x ∈和n C y ∈,若x 是A 关于特征值λ的一个特征向量,y 是A 关于特征值μ的一个特征向量,则y x ⊗是B I I A m n ⊗+⊗对应特征值μλ+的一个特征向量.证明:由性质1.2.3,性质1.2.5可以得到:)()()()())((y x y x y I Ax y x I A n n ⊗=⊗=⊗=⊗⊗λλ, )()()()())((y x y x By x I y x B I m m ⊗=⊗=⊗=⊗⊗μμ,故))(())(())(())((y x y x B I y x I A y x B I I A m n m n ⊗+=⊗⊗+⊗⊗=⊗⊗+⊗μλ.所以,y x ⊗是B I I A m n ⊗+⊗对应特征值μλ+的一个特征向量.推论2.2.6 设矩阵m m C A ⨯∈,矩阵n n C B ⨯∈,对于向量m s C x ∈和n t C y ∈,若1x ,2x ,…,m x 是A 关于特征值1λ,2λ,…,m λ的特征向量,1y ,2y ,…,n y 是B 关于特征值1μ,2μ,…,n μ的特征向量,则B I I A m n ⊗+⊗的n m •个特征值为{t s μλ+}.(s=1,2,…,m ;t=1,2,…,n ).例2.2 设矩阵m m C A ⨯∈,矩阵n n C B ⨯∈,对于向量m i C x ∈和n j C y ∈,若1x ,2x ,…,m x 是A 关于特征值1λ,2λ,…,m λ的特征向量,1y , 2y ,…,n y 是B 关于特征值1μ,2μ,…,n μ的特征向量,证明:矩阵)()(B A I I n m ⊗-⊗的特征值是j i μλ-1,对应的特征向量为j i y x ⊗.(i=1,2,…,m ;j=1,2,…,n ).证明:由性质1.2.3和性质1.2.5可得:))(()()()()())((j i j i j j i i j i j i y x y x By Ax y x B A ⊗=⊗=⊗=⊗⊗μλμλ,故有:))(1())(()())(()())(())(())](()[(j i j i j i j i j i j i j i j i mn j i j i n m j i n m y x y x y x y x y x I y x B A y x I I y x B A I I ⊗-=⊗-⊗=⊗-⊗=⊗⊗-⊗⊗=⊗⊗-⊗μλμλμλ所以,矩阵)()(B A I I n m ⊗-⊗的特征值是j i μλ-1,对应的特征向量j i y x ⊗. 定理2.2.7 设矩阵m m C A ⨯∈,矩阵n n C B ⨯∈,则trB trA B A tr •=⊗)(证明:由Kronecker 积和迹的定义可得:trBtrA trB a trB a trB a B a tr B a tr B a tr B A tr nn nn •=+++=+++=⊗ 22112211)()()()(得证.定理2.2.8 设矩阵m m C A ⨯∈,矩阵n n C B ⨯∈,则m n B A B A )(det )(det )det(=⊗证明:设A 的特征值为1λ,2λ,…,m λ,B 的特征值为1μ,2μ,…,n μ, 由推论2.2.4可得:mn m n n m n m m n n nj j m nj j mnji nj j j i B A B A )(det )(det )()()())(())(()()()()()det(21211212111112,11=====⊗∏∏∏∏===μμμλλλμλμλμλμλμλμλμλμλμλμλ得证.第三章 矩阵的拉直3.1矩阵的拉直的定义定义3.1 设n m ij a A ⨯=)(,定义矩阵A 的按行拉直为:T mn m n n a a a a a a A A vec )()(1221111,,,,,,,,, ==→即矩阵A 的拉直是一个mn 元的列向量,它是由矩阵A 所有元素按行顺序依次排成一列得到的.例如:⎥⎦⎤⎢⎣⎡=d c b a A ,则矩阵A 的拉直为T d c b a A )(,,,=→.3.2矩阵的拉直的性质矩阵的拉直具有以下性质:性质 3.2.1 设矩阵n m C A ⨯∈,矩阵n m C B ⨯∈,k 和l 是常数,则)(lB kA +=→→+B l A k .证明:略.性质3.2.2 设n m ij t a t A ⨯=))(()(,则dtt dA )(=dt d)(t A . 证明:左边==))((dtt dA vet ij a vet ((′)))(n m t ⨯ = [(a 11′(t ),…,a n 1′(t ),a 21′(t ),…,a n 2′(t ),…,a 1m ′(t ),…,a mn ′(t ) ]T =[(a 11(t ),…,a n 1(t ),a 21(t ),…,a n 2(t ),…,a 1m (t ),…,a mn (t ) )T ]′ = ))](([t A vet ′=))](([t A vec dtd=右边,得证. 性质 3.2.3设矩阵n m C A ⨯∈,矩阵p n C X ⨯∈,矩阵q p C B ⨯∈,则AXB →⊗=X B A T)(.证明:设⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=mn m m n n a a a a a aa a a A 212222111211,T n x x X )(1,, =→,其中,T i x 是X 的第i 行=i (1,2,…,)n ,则⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++++=B x a x a B x a x a AXB T n mn T m Tn n T )()(111111 ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=→n x x X 1 所以AXB T Tn mn T m T n n T B x a x a B x a x a ])()[(111111++++= ,, →⊗=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++++=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++++=X B A x x B a B a B a B a x a x a B x a x a B n T mn T m T n T n mn m T n n T )()()()()(11111111111 得证. 推论3.2.4 设矩阵m m C A ⨯∈,矩阵n m C X ⨯∈,矩阵n n C B ⨯∈,则有1.AX →⊗=X I A n )( 2.XB →⊗=X B I Tm )(.3(AX +XB )→⊗+⊗=X B I I A Tm n )(.第四章 矩阵的Kronecker 积与矩阵方程4.1矩阵的Kronecker 积与Lyapunov 矩阵方程设矩阵m m C A ⨯∈,矩阵n n C B ⨯∈,矩阵n m C F ⨯∈,解Lyapunov 矩阵方程: AX+XB=F .第一步:将方程两边拉直,由推论3.2.4可得:→→=⊗+⊗C X B I I A Tm n )(. (4.1) 第二步:判断是否有解,根据线性方程组是否有解的判别条件可得:矩阵方程(4.1)有解的充要条件是:Tm n B I I A rank ⊗+⊗(┊)()T m n B I I A rank C ⊗+⊗=→,:有唯一解的充要条件是det(A ⊗I n + I m ⊗B T )≠0,即A 和(-B )没有公共的特征值或者说A 和B 无互为相反数的特征值.例4.1 分别在下2列条件下解矩阵方程AX+XB=C.(1) ⎥⎦⎤⎢⎣⎡-=0112A ,⎥⎦⎤⎢⎣⎡=42-1-3B ,⎥⎦⎤⎢⎣⎡--=1081710C (2) ⎥⎦⎤⎢⎣⎡=3201A ,⎥⎦⎤⎢⎣⎡--=1052B ,⎥⎦⎤⎢⎣⎡--=11353C 解:(1) 首先计算A 和B 的特征值,解0=-A I λ得:121==λλ,解0=-B I μ得:5221==μμ,.观察有无互为相反数的特征值发现,A 和B 没有互为相反数的特征值,所以矩阵方程有唯一解. 将矩阵方程两边拉直,得到:→→=⊗+⊗C X B I I A Tm n )(. (4.1)设⎥⎦⎤⎢⎣⎡=4321x x x x X ,计算⎥⎦⎤⎢⎣⎡--=4123TB ,将A ,T B ,X ,C 代入(4.1)得: ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎥⎦⎤⎢⎣⎡--⊗⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡⊗⎥⎦⎤⎢⎣⎡-108171041231001100101124321x x x x ,计算得到:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------108171041102301106101254321x x x x , 根据矩阵的乘法的定义可以求得:21314321-===-=x x x x ,,,. 故矩阵方程AX+XB=C 的唯一解为:⎥⎦⎤⎢⎣⎡--=2131X . (2) 同样先计算A 和B 的特征值,解0=-A I λ得:3121==λλ,, 解0=-B I μ得:1221-==μμ,.通过观察可知:021=+μλ. 一所以矩阵方程的解不唯,即存在通解. 将矩阵方程两边拉直,得到:→→=⊗+⊗C X B I I A Tm n )(. (4.1)设⎥⎦⎤⎢⎣⎡=4321x x x xX ,计算⎥⎦⎤⎢⎣⎡--=1502TB ,将A ,T B ,X ,C 代入(4.1)得: ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎥⎦⎤⎢⎣⎡--⊗⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡⊗⎥⎦⎤⎢⎣⎡1135315021001100132014321x x x x , - 计算得到:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--113532520050200050034321x x x x ,根据矩阵的乘法的定义可以求得:c x x c x x -=-===3114321,,,. 故矩阵方程AX+XB=C 的通解为:⎥⎦⎤⎢⎣⎡--=c c X 311(c 为任意常数).4.2矩阵的Kronecker 积与一般线性矩阵方程设矩阵n m k C A ⨯∈,矩阵q p C B ⨯∈,矩阵q m C F ⨯=,解一般线性矩阵方程:F XB Ark k k=∑=1(r = 1,2,…).第一步,将矩阵方程两边拉直,由性质3.2.3可以得到:∑=→→=⊗rk T kkF X B A1)][(. (4.2)第二步:判断是否有解,根据线性方程组是否有解的判别条件可得:矩阵方程(4.2)有解的充要条件是:∑⊗)((Tkk B A rank ┊))(()1∑=→⊗=rk Tkk B A rank F . 即∑=⊗rk Tkk B A 1)(的所有特征值均不为0. 例4.2 设A 和C 都是n ⨯n 矩阵,A 的特征值λi (i=0,1,2,…,n )R ∈(实数),求证:矩阵方程C XA A AXA X =++22有唯一解.证明:将两边方程拉直得到:→→=⊗+⊗+⊗C X A A A A I I T T n n ])([(22,化简得到:→→=⊗+⊗+C X A A A A I TTn ])()([22.由定义3.1可知:T A A ⊗的2n 个特征值是=j i j i ,(λλ0,1,2,…,n ). 故:2)()(2T T n A A A A I ⊗+⊗+的2n 个特征值是:22)21(43)()(1j i j i j i λλλλλλ++=++>00(=j i ,,1,2,…,n ). 即2)()(2T T n A A A A I ⊗+⊗+是可逆的,由唯一解的判断方法可知:矩阵方程C XA A AXA X =++22有唯一解.例4.3 在下列条件下解矩阵方程C XB A XB A =+2211.已知:⎥⎦⎤⎢⎣⎡-=20311A ,⎥⎦⎤⎢⎣⎡-=13101B ,⎥⎦⎤⎢⎣⎡-=11022A ,⎥⎦⎤⎢⎣⎡-=01232B ,⎥⎦⎤⎢⎣⎡--=48213C . 解:将矩阵方程两边拉直得到:→→=⊗+⊗C X B A B A T T)(2211. (4.3)*设⎥⎦⎤⎢⎣⎡=4321x x x xX ,计算⎥⎦⎤⎢⎣⎡-=11301T B 和 ⎥⎦⎤⎢⎣⎡-=02132TB 代入(4.3)*得到:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎥⎦⎤⎢⎣⎡-⊗⎥⎦⎤⎢⎣⎡-+⎥⎦⎤⎢⎣⎡-⊗⎥⎦⎤⎢⎣⎡-4821302131102113020314321x x x x .计算化简得:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------4821320027313331390564321x x x x . 根据矩阵的乘法的定义可以求得:10214321===-=x x x x ,,,.计算T T B A B A rank 2211(⊗+⊗┊4)()2211=⊗+⊗=TT B A B A rank C , 所以方程有唯一解:⎥⎦⎤⎢⎣⎡-=1021X . 4.3矩阵的Kronecker 积与矩阵微分方程设m m C A ⨯∈矩阵,n n C B ⨯∈矩阵,n m C t X ⨯∈)(,求下列矩阵微分方程初值问题的解:⎪⎩⎪⎨⎧=+=0)0()()()(X X B t X t AX dt t dX (4.3)引理:设m m C A ⨯∈矩阵A ,矩阵n m C B ⨯∈,则n A I A I e e n ⊗=⊗,B m B I e I e m ⊗=⊗. 证明:因为性质1.2.5可得:∑∑∞=∞=⊗⊗=⊗=11)(!1)(!1k k k k kI A I A k I A k enn A k kI e I A k ⊗=⊗=∑∞=1)!1(. 同理可证:B m B I e I e m ⊗=⊗.将矩阵微分方程(4.3)两边拉直,由推论3.2.4可以得到:⎪⎩⎪⎨⎧=⊗+⊗=→0)0()()()(X X t X B I I A dt t X d T m n (4.4)由引理可得:T t B At tB AtB I I A t TT m n e X e X ee X et X )()()(000)(=⊗==→→⊗+⊗,又因为∑∑∞=∞====11!1))(!1()(k Bt k k T k k k T Tt B e t B k t B k eT ,故Bt At e X e t X 0)(= (4.5) 这就是微分方程(4.3)的解.例4.4 求解下列矩阵微分方程的初值问题:⎪⎩⎪⎨⎧=+=0)0()()()(X X B t X t AX dt t dX (4.6)已知:⎥⎦⎤⎢⎣⎡=0011A ,⎥⎦⎤⎢⎣⎡-=0011B ,⎥⎦⎤⎢⎣⎡=10010X . 解:可计算得到:⎥⎦⎤⎢⎣⎡-=101t tAte e e,⎥⎦⎤⎢⎣⎡-=101t t Bte e e .由(4.5)式可以得到: ⎥⎦⎤⎢⎣⎡--==10)1()(220t tBtAt e e eX e t X . 即(4.6)的解为⎥⎦⎤⎢⎣⎡--=10)1()(22t te e t X . 通过本章的学习,我们知道矩阵的Kronecker 积在解矩阵方程领域有很大的作用,利用Kronecker 积的性质,我们可以解决Lyapunov 矩阵方程,一般矩阵方程,矩阵微分方程的初值问题等问题.参考文献[1]矩阵论简明教程(第三版).徐仲等编.北京:科学出版社.2014.1.[2]矩阵论教程(第2版).张绍飞,赵迪编.北京:机械工业出版社.2012.5.[3]矩阵论引论(第2版).陈祖明,周家胜编.北京:北京航空航天大学出版社.2012.10.[4]矩阵论十讲.李乔,张晓东编.合肥:中国科学技术大学出版社.2015.3.[5]矩阵理论及方法.谢冬秀,雷纪刚,陈桂芝编.北京:科学出版社.2012.[6]H-矩阵类的理论及应用.徐仲等编.北京:科学出版社.2013.[7]高等代数教程(上).王萼芳编.北京:清华大学出版社.1997(2008重印).[8]常微分方程(第二版).东北师范大学微分方程教研室.北京:高等教育出版社.2005.4(2012.12重印).[9]矩阵分析与应用(第2版).张贤达编.北京:清华大学出版社.2013(2014.6重印).[10]线性代数及其应用.毛立新,咸美新编.北京:高等教育出版社.2015.8.[11]线性代数(第2版).钟玉泉,周建编.北京:科学出版社.2015.1.[12]矩阵理论与方法(第2版).吴昌悫,魏洪增编.北京:电子工业出版社.2013.8.[13]线性代数学习指导.赵春燕,单净,王麟编.哈尔滨:哈尔滨工程大学出版社.2012.2.[14]矩阵论.张凯院等编.北京:科学出版社.2013.[15]矩阵论导教·导学·导考.张凯院,徐仲编.西安:西北工业大学出版社.2014.8.[16]矩阵函数与矩阵方程.柏兆俊,高卫国,苏仰锋编.北京:高等教育出版社.2015.5.[17]矩阵分析.姜志侠,孟品超,李延忠编.北京:清华大学出版社.2015.[18]矩阵论札论.梁昌洪编.北京:科学出版社.2014.[19]线性代数及其应用.马新顺,王涛,郭燕编.北京:高等教育出版社.2014.7.[20]矩阵论引论.田振际,王永铎,吴德军编.北京:科学出版社.2013.[21]线性代数及其应用(第2版).河北农业大学理学院编.北京:高等教育出版社.2006.11.(2015.2重印).[22]线性代数及其应用.王坤龙编.北京:电子工业出版社.2014.10.[23]线性代数(第2版).许峰,范爱华编.合肥:中国科学技术大学出版社.2013.4.[24]线性代数及其应用.俞方元编.上海:同济大学出版社.2014.8.[25]线性代数学习指导.谢政,陈挚编.北京:清华大学出版社.2012.10.[26]高等线性代数学.黎景辉,白正简,周国晖编.北京:高等教育出版社.2014.9.[27]线性代数讲义.江惠坤,邵荣,范红军编.北京:科学出版社.2013.[28]线性代数.贾屹峰编.上海:上海交通大学出版社.2012.[29]线性代数.侯亚君,艾玲,沙萍,林洪娟编.北京:机械工业出版社.2012.1(2012.7重印).[30]线性代数.郝秀敏,姜庆华编.北京:经济科学出版社.2013.7.[31]线性代数.韩旸,王静宇,周莉编.北京:化学工业出版社.2013.8.[32]线性代数重点难点考点辅导与精析.高淑萍,张剑湖编.西安:西北工业大学出版社.2014.5.[33]线性代数.傅媛编.武汉:武汉大学出版社.2013.2(2013.11重印).[34]跟我学线性代数:导学与习题精解.董晓波编.北京:机械工业出版社.2014.1.[35]线性代数同步学习辅导.陈绍林,唐道远编.北京:科学出版社,2014.7.[36]线性代数及应用.刘三明编.南京:南京大学出版社.2012.8.[37]线性代数.谭福锦,黎进香编.北京.人民邮电出版社.2012.8.[38]工程数学.线性代数(第6版).同济大学数学系编.北京:高等教育出版社.2014.6.[39]矩阵分析与计算.李继根,张新发编.武汉:武汉大学出版社.2013.10.[40]矩阵计算的理论与方法.徐树方编.北京:北京大学出版社.1995.8.[41]矩阵分析及其应用.曾祥金,吴华安编.武汉:武汉大学出版社.2007.8.[42]矩阵理论与应用.张跃辉编.北京:科学出版社.2011.8.致谢通过一个月来不断的努力,终于完成了这篇毕业论文。

kronecker积 秩 证明

kronecker积 秩 证明

kronecker积秩证明Kronecker积是线性代数中的一种重要操作,它被广泛用于解决矩阵运算中的各种问题。

在本文中,我们将就Kronecker积的秩进行证明。

首先,让我们回顾一下Kronecker积的定义。

给定两个矩阵A和B,它们的Kronecker积(记作A⊗B)是一个新的矩阵,其维度为m1m2×n1n2,其中A的维度为m1×n1,B的维度为m2×n2。

Kronecker积的每个元素都是A和B对应元素的乘积。

具体而言,A⊗B的第(i,j)个元素为A的第(i/m2, j/n2)个元素与B的第(i%m2, j%n2)个元素的乘积。

现在我们来证明Kronecker积的秩。

为了方便讨论,我们假设A和B的维度分别为m×n和p×q。

我们需要证明A⊗B的秩是mn×pq。

首先,我们可以将A⊗B的每个元素展开成矩阵乘积的形式。

具体而言,A⊗B的第(i,j)个元素为A的第(i/m,j/n)个元素与B的第(i%m,j%n)个元素的乘积。

因此,我们可以将A⊗B表示为以下形式的矩阵乘积:A⊗B = [A(1,1)B, A(1,2)B, ..., A(1,n)B;A(2,1)B, A(2,2)B, ..., A(2,n)B;...A(m,1)B, A(m,2)B, ..., A(m,n)B],其中A(i,j)B表示A的第(i,j)个元素与B的乘积。

根据该表示,我们可以发现A⊗B的每一列都可以由A的每一列与B的乘积线性组合而成。

换句话说,A⊗B的列空间是由A的列空间和B的列空间的张成所构成的。

接下来,我们需要证明A⊗B的列空间的维度为mn×pq。

首先,我们来看A⊗B的列空间的维度不超过mn×pq。

由于A的列空间的维度为n,B的列空间的维度为q,所以由A⊗B的列空间是由A的列空间和B的列空间的张成所构成,它的维度不会超过n×q,即mn×pq。

_矩阵的Kronecker乘积的性质与应用

_矩阵的Kronecker乘积的性质与应用

矩阵Kronecker乘积的性质与应用摘要按照矩阵乘法的定义,我们知道要计算矩阵的乘积AB,就要求矩阵A的列数和矩阵B的行数相等,否则乘积AB是没有意义的。

那是不是两个矩阵不满足这个条件就不能计算它们的乘积呢?本文将介绍矩阵的一种特殊乘积BA ,它对矩阵的行数和列数的并没有具体的要求,它叫做矩阵的Kronecker积(也叫直积或张量积)。

本文将从矩阵的Kronecker积的定义出发,对矩阵的Kronecker 积进行介绍和必要的说明。

之后,对Kronecker积的运算规律,可逆性,秩,特征值,特征向量等性质进行了具体的探究,得出结论并加以证明。

此外,还对矩阵的拉直以及矩阵的拉直的性质进行了说明和必要的证明。

矩阵的Kronecker积是一种非常重要的矩阵乘积,它应用很广,理论方面在诸如矩阵方程的求解,矩阵微分方程的求解等矩阵理论的研究中有着广泛的应用,实际应用方面在诸如图像处理,信息处理等方面也起到重要的作用。

本文讨论矩阵的Kronecker积的性质之后还会具体介绍它在矩阵方程中的一些应用。

关键词:矩阵;Kronecker积;矩阵的拉直;矩阵方程;矩阵微分方程Properties and Applications of matrix KroneckerproductAbstractAccording to the definition of matrix multiplication, we know that to calculate the matrix product AB, requires the number of columns of the matrix A and matrix B is equal to the number of rows, otherwise the product AB makes no sense.That is not two matrices not satisfy this condition will not be able to calculate their product do?This article will describe a special matrix product BA , the number of rows and columns of a matrix and its no specific requirements, it is called the matrix Kronecker product (also called direct product or tensor product).This paper will define the matrix Kronecker product of view, the Kronecker product matrix are introduced and the necessary instructions. Thereafter, the operation rules Kronecker product, the nature of reversibility, rank, eigenvalues, eigenvectors, etc. specific inquiry, draw conclusions and to prove it. In addition, the properties of the stretch of matrix and its nature have been described and the necessary proof.Kronecker product matrix is a very important matrix product, its use is very broad, theoretical research, and other matrix solving differential equations, such as solving the matrix equation matrix theory has been widely applied in practical applications such as image processing aspects of information processing, also play an important role. After the article discusses the nature of the matrix Kronecker product it will introduce a number of specific applications in the matrix equation. Keywords:Matrix; Kronecker product; Stretch of matrix; Matrix equation; Matrix Differential Equations目录摘要 .................................................................................................................................................. I Abstract ........................................................................................................................................... II 第一章 矩阵的Kronecker 积 (1)1.1 矩阵的Kronecker 积的定义 ........................................................................................... 1 1.2 矩阵的Kronecker 积的性质 ........................................................................................... 1 第二章 Kronecker 积的有关定理及推论 ...................................................................................... 6 第三章 矩阵的拉直 . (9)3.1矩阵的拉直的定义 ............................................................................................................ 9 3.2矩阵的拉直的性质 ............................................................................................................ 9 第四章 矩阵的Kronecker 积与矩阵方程 .. (11)4.1矩阵的Kronecker 积与Lyapunov 矩阵方程 ................................................................ 11 4.2矩阵的Kronecker 积与一般线性矩阵方程 .................................................................. 13 4.3矩阵的Kronecker 积与矩阵微分方程 .......................................................................... 14 参考文献......................................................................................................................................... 16 致谢 (18)符号说明W a W a 属于集合元素nm ij a A ⨯=)( 矩阵的记法列元素的行为以n m j i a ij⨯ij A )( 列的元素行的矩阵j i AT A 的转置矩阵A H A 的共轭转置矩阵A 1-A 的逆矩阵矩阵A→A 按行拉直得到的列向量矩阵AA det 的行列式方阵AtrA 的主对角元素之和的迹,方阵A A)(A rank 的秩矩阵A)(A λ 的特征值方阵An I 阶单位矩阵nR 实数域 C 复数域n C 维复向量的全体n n m C ⨯ 复矩阵全体n m ⨯O 零矩阵B A ⊗ 的和矩阵B A Kronecker 积第一章 矩阵的Kronecker 积1.1 矩阵的Kronecker 积的定义定义1.1设矩阵n m C A ⨯∈,矩阵q p C B ⨯∈,定义A 和B 的Kronecker 积(或直积,张量积)B A ⊗为:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⊗B a B a B a B a B a B a B a B a B a B A mn m m n n 212222111211 可以看出,其结果是一个)()(nq mp ⨯矩阵,同时也是一个以B a ij 为子块的分块矩阵.例1.1 设⎥⎦⎤⎢⎣⎡-=1201A ,[]31-=B ,则 ⎥⎦⎤⎢⎣⎡---=⎥⎦⎤⎢⎣⎡-=⊗316200312B B O BB A []⎥⎦⎤⎢⎣⎡---=-=⊗361203013A A A B 由此可见,B A ⊗与A B ⊗具有相同的阶数,但是它们并不相等,也就是说,Kronecker 积不满足交换律.1.2 矩阵的Kronecker 积的性质虽然Kronecker 积不满足交换律,但是具有以下一些性质: 性质1.2.1 设矩阵n m C A ⨯∈,矩阵q p C O ⨯∈,则O O A A O =⊗=⊗(这个O 为)()(nq mp ⨯矩阵).证明:略.性质1.2.2 设k 为任一常数,矩阵n m C A ⨯∈,矩阵q p C B ⨯∈,则)()()(B A k kB A B kA ⊗=⊗=⊗.证明:不失一般性,设⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=mn m m n n a a a a a aa a a A 212222111211,则:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=mn m m n n ka ka ka ka ka ka ka ka ka kA 212222111211,根据Kronecker 积的定义可以得到:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⊗B ka B ka B ka B ka B ka B ka B ka B ka B ka B ka B ka B ka B ka B ka B ka B ka B ka B ka B kA mn m m n n mn m m n n 212222111211212222111211)()()()()()()()()()(, ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⊗B ka B ka B ka B ka B ka B ka B ka B ka B ka kB a kB a kB a kB a kB a kB a kB a kB a kB a kB A mn m m n n mn m m n n 212222111211212222111211)()()()()()()()()()(, 即)(B A k B kA ⊗=⊗,)()(B A k kB A ⊗=⊗. 所以)()()(B A k kB A B kA ⊗=⊗=⊗.性质1.2.3 设A ,B 为同阶矩阵(同阶是为了可以做加法),则C B C A C B A ⊗+⊗=⊗+)(,B C A C B A C ⊗+⊗=+⊗)(.证明:不失一般性,设⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=mn m m n n a a a a a aa a a A 212222111211,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=mn m m n n b b b b b b b b b B 212222111211,则:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+++++++++=+mn mn m m m m n n n n b a b a b a b a b a b a b a b a b a B A221122222221211112121111,根据Kronecker 积的定义可以得到:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+++++++++=⊗+C b a C b a C b a C b a C b aC b a C b a Cb a C b a C B A mn mn m m m m n n n n )()()()()()()()()()(221122222221211112121111(1.1)*,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⊗C a C a C a C a C a C a C a C a C a C A mn m m n n 212222111211 (1.2)*, ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⊗C b C b C b C b C b C b C b C b C b C B mn m m n n 212222111211 (1.3)*,由(1.2)*,(1.3)*得:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+++++++++=⊗C b C a C b C a C b C a C b C a C b C a C b C a C b C a C b C a C b C a C A mn mn m m m m n n n n 221122222221211112121111 (1.4)*, 由(1.1)*,(1.4)*可得:C B C A C B A ⊗+⊗=⊗+)(.同理设⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=mn m m n n c c c c c cc c c C 212222111211可证:B C A C B A C ⊗+⊗=+⊗)(.性质1.2.4 设矩阵n m C A ⨯∈,矩阵q p C B ⨯∈,矩阵s r C F ⨯∈,则)()(F B A F B A ⊗⊗=⊗⊗证明:不失一般性,设⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=mn m m n n a a a a a aa a a A 212222111211,则:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⊗⊗⊗⊗⊗⊗⊗⊗⊗=⊗⊗)()()()()()()()()()(212222111211F B a F B a F B a F B a F B a F B a F B a F B a F B a F B A mn m m n n)(212222111211F B A F B a B a B a B a B a B a B a B a B a mn m m n n ⊗⊗=⊗⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡= 得证.性质1.2.5设矩阵n m C A ⨯∈,矩阵q p C B ⨯∈,矩阵s n C F ⨯∈,矩阵t q C D ⨯∈,则)()())((BD AF D F B A ⊗=⊗⊗证明:不失一般性,设⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=mn m m n n a a a a a aa a a A 212222111211,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=ns n n s s f f f f f f f f f F212222111211, 则:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⊗⊗D f D f D f D f D f Df D f D f D f B a B a B a B a B a B a B a B a B a D F B A ns n n s s mn m m n n212222111211212222111211))(()()()()()()()()()()()(112111112211211121111BD AF BD f a BD f a BD f a BD c a BD f a BD f a BD f a BD f a BD f a nk ks mk n k k mk n k k mk nk ks k n k k k n k k k n k ks k n k k k n k k k ⊗=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=∑∑∑∑∑∑∑∑∑=========得证.性质1.2.6 设矩阵m m C A ⨯∈可逆, 且矩阵n n C B ⨯∈可逆,则B A ⊗可逆,且111)(---⊗=⊗B A B A .证明:mn n m I I I BB AA B A B A =⊗=⊗=⊗⊗----)()())((1111(这里I n 与数的乘法中的1起到相同的作用), 故111)(---⊗=⊗B A B A .性质1.2.7 设矩阵n m C A ⨯∈,矩阵q p C B ⨯∈,则T T T B A B A ⊗=⊗)(H H H B A B A ⊗=⊗)(证明: ij T T T ji ij T B A B a B A ][])[(⊗==⊗ 得证.同理可证:H H H B A B A ⊗=⊗)(.性质1.2.8 两个正交(酉)矩阵的Kronecker 积还是正交(酉)矩阵. 证明:设矩阵m m C A ⨯∈,矩阵n n C B ⨯∈.因为A ,B 都是正交(酉)矩阵,所以有m T T I A A AA ==,n T T I B B BB ==. 由性质1.2.7和性质1.2.5可得:mn n m T T T T T I I I BB AA B A B A B A B A =⊗=⊗=⊗⊗=⊗⊗))(())((. mn m n T T T T T I I I B B A A B A B A B A B A =⊗=⊗=⊗⊗=⊗⊗))(()()(.故mn T T I B A B A B A B A =⊗⊗=⊗⊗)()())((. 得证.第二章 Kronecker 积的有关定理及推论定理2.2.2 设矩阵n m C A ⨯∈,矩阵q p C B ⨯∈,则)()()(B rank A rank B A rank =⊗.证明:设rank A =r ,rank B=s ,A ,B 的标准形分别为:1111--⎥⎦⎤⎢⎣⎡=Q O O O I P A r ,1212--⎥⎦⎤⎢⎣⎡=Q O O O I P B s其中i P ,i Q =i (1,2)均为非奇异矩阵,则由性质1.2.5和1.2.6可以得:`1211211211121112121111)()()()(----------⊗⎥⎦⎤⎢⎣⎡⊗=⊗⎪⎪⎭⎫ ⎝⎛⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡⊗=⎪⎪⎭⎫⎝⎛⎥⎦⎤⎢⎣⎡⊗⎪⎪⎭⎫ ⎝⎛⎥⎦⎤⎢⎣⎡=⊗Q Q O OO I P P Q Q O O O I O OO I P P Q O O O I P Q O OO I P B A rssrsr所以)()()(B rank A rank s r B A rank =•=⊗ 得证.定理2.2.3 设矩阵m m C A ⨯∈,矩阵n n C B ⨯∈,对于向量m C x ∈和n C y ∈,若x 是A 关于特征值λ的一个特征向量,y 是A 关于特征值μ的一个特征向量,则y x ⊗是B A ⊗对应特征值λμ的一个特征向量.证明:因为x ,y 都是非零向量,所以x ⊗y 也是非零向量,由性质1.2.2和性质1.2.5可得:)()()()()())((y x y x By Ax y x B A ⊗=⊗=⊗=⊗⊗λμμλ.所以,y x ⊗是B A ⊗对应特征值λμ的一个特征向量.推论2.2.4 设矩阵m m C A ⨯∈,矩阵n n C B ⨯∈,对于向量m C x ∈和n C y ∈,若A 的特征值是1λ,2λ,…,m λ;B 的特征值是1μ,2μ,…,n μ,则B A ⊗的特征值为t s μλ,m s ≤≤1,n t ≤≤1(k 重根算k 个).定理2.2.5 设矩阵m m C A ⨯∈,矩阵n n C B ⨯∈,对于向量m C x ∈和n C y ∈,若x 是A 关于特征值λ的一个特征向量,y 是A 关于特征值μ的一个特征向量,则y x ⊗是B I I A m n ⊗+⊗对应特征值μλ+的一个特征向量.证明:由性质1.2.3,性质1.2.5可以得到:)()()()())((y x y x y I Ax y x I A n n ⊗=⊗=⊗=⊗⊗λλ, )()()()())((y x y x By x I y x B I m m ⊗=⊗=⊗=⊗⊗μμ,故))(())(())(())((y x y x B I y x I A y x B I I A m n m n ⊗+=⊗⊗+⊗⊗=⊗⊗+⊗μλ.所以,y x ⊗是B I I A m n ⊗+⊗对应特征值μλ+的一个特征向量.推论2.2.6 设矩阵m m C A ⨯∈,矩阵n n C B ⨯∈,对于向量m s C x ∈和n t C y ∈,若1x ,2x ,…,m x 是A 关于特征值1λ,2λ,…,m λ的特征向量,1y ,2y ,…,n y 是B 关于特征值1μ,2μ,…,n μ的特征向量,则B I I A m n ⊗+⊗的n m •个特征值为{t s μλ+}.(s=1,2,…,m ;t=1,2,…,n ).例2.2 设矩阵m m C A ⨯∈,矩阵n n C B ⨯∈,对于向量m i C x ∈和n j C y ∈,若1x ,2x ,…,m x 是A 关于特征值1λ,2λ,…,m λ的特征向量,1y , 2y ,…,n y 是B 关于特征值1μ,2μ,…,n μ的特征向量,证明:矩阵)()(B A I I n m ⊗-⊗的特征值是j i μλ-1,对应的特征向量为j i y x ⊗.(i=1,2,…,m ;j=1,2,…,n ).证明:由性质1.2.3和性质1.2.5可得:))(()()()()())((j i j i j j i i j i j i y x y x By Ax y x B A ⊗=⊗=⊗=⊗⊗μλμλ,故有:))(1())(()())(()())(())(())](()[(j i j i j i j i j i j i j i j i mn j i j i n m j i n m y x y x y x y x y x I y x B A y x I I y x B A I I ⊗-=⊗-⊗=⊗-⊗=⊗⊗-⊗⊗=⊗⊗-⊗μλμλμλ所以,矩阵)()(B A I I n m ⊗-⊗的特征值是j i μλ-1,对应的特征向量j i y x ⊗. 定理2.2.7 设矩阵m m C A ⨯∈,矩阵n n C B ⨯∈,则trB trA B A tr •=⊗)(证明:由Kronecker 积和迹的定义可得:trBtrA trB a trB a trB a B a tr B a tr B a tr B A tr nn nn •=+++=+++=⊗ 22112211)()()()(得证.定理2.2.8 设矩阵m m C A ⨯∈,矩阵n n C B ⨯∈,则m n B A B A )(det )(det )det(=⊗证明:设A 的特征值为1λ,2λ,…,m λ,B 的特征值为1μ,2μ,…,n μ, 由推论2.2.4可得:mn m n n m n m m n n nj j m nj j mnji nj j j i B A B A )(det )(det )()()())(())(()()()()()det(21211212111112,11=====⊗∏∏∏∏===μμμλλλμλμλμλμλμλμλμλμλμλμλ得证.第三章 矩阵的拉直3.1矩阵的拉直的定义定义3.1 设n m ij a A ⨯=)(,定义矩阵A 的按行拉直为:T mn m n n a a a a a a A A vec )()(1221111,,,,,,,,, ==→即矩阵A 的拉直是一个mn 元的列向量,它是由矩阵A 所有元素按行顺序依次排成一列得到的.例如:⎥⎦⎤⎢⎣⎡=d c b a A ,则矩阵A 的拉直为T d c b a A )(,,,=→.3.2矩阵的拉直的性质矩阵的拉直具有以下性质:性质 3.2.1 设矩阵n m C A ⨯∈,矩阵n m C B ⨯∈,k 和l 是常数,则)(lB kA +=→→+B l A k .证明:略.性质3.2.2 设n m ij t a t A ⨯=))(()(,则dtt dA )(=dt d)(t A . 证明:左边==))((dtt dA vet ij a vet ((′)))(n m t ⨯ = [(a 11′(t ),…,a n 1′(t ),a 21′(t ),…,a n 2′(t ),…,a 1m ′(t ),…,a mn ′(t ) ]T =[(a 11(t ),…,a n 1(t ),a 21(t ),…,a n 2(t ),…,a 1m (t ),…,a mn (t ) )T ]′ = ))](([t A vet ′=))](([t A vec dtd=右边,得证. 性质 3.2.3设矩阵n m C A ⨯∈,矩阵p n C X ⨯∈,矩阵q p C B ⨯∈,则AXB →⊗=X B A T)(.证明:设⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=mn m m n n a a a a a aa a a A 212222111211,T n x x X )(1,, =→,其中,T i x 是X 的第i 行=i (1,2,…,)n ,则⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++++=B x a x a B x a x a AXB T n mn T m Tn n T )()(111111 ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=→n x x X 1 所以AXB T Tn mn T m T n n T B x a x a B x a x a ])()[(111111++++= ,, →⊗=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++++=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++++=X B A x x B a B a B a B a x a x a B x a x a B n T mn T m T n T n mn m T n n T )()()()()(11111111111 得证. 推论3.2.4 设矩阵m m C A ⨯∈,矩阵n m C X ⨯∈,矩阵n n C B ⨯∈,则有1.AX →⊗=X I A n )( 2.XB →⊗=X B I Tm )(.3(AX +XB )→⊗+⊗=X B I I A Tm n )(.第四章 矩阵的Kronecker 积与矩阵方程4.1矩阵的Kronecker 积与Lyapunov 矩阵方程设矩阵m m C A ⨯∈,矩阵n n C B ⨯∈,矩阵n m C F ⨯∈,解Lyapunov 矩阵方程: AX+XB=F .第一步:将方程两边拉直,由推论3.2.4可得:→→=⊗+⊗C X B I I A Tm n )(. (4.1) 第二步:判断是否有解,根据线性方程组是否有解的判别条件可得:矩阵方程(4.1)有解的充要条件是:Tm n B I I A rank ⊗+⊗(┊)()T m n B I I A rank C ⊗+⊗=→,:有唯一解的充要条件是det(A ⊗I n + I m ⊗B T )≠0,即A 和(-B )没有公共的特征值或者说A 和B 无互为相反数的特征值.例4.1 分别在下2列条件下解矩阵方程AX+XB=C.(1) ⎥⎦⎤⎢⎣⎡-=0112A ,⎥⎦⎤⎢⎣⎡=42-1-3B ,⎥⎦⎤⎢⎣⎡--=1081710C (2) ⎥⎦⎤⎢⎣⎡=3201A ,⎥⎦⎤⎢⎣⎡--=1052B ,⎥⎦⎤⎢⎣⎡--=11353C 解:(1) 首先计算A 和B 的特征值,解0=-A I λ得:121==λλ,解0=-B I μ得:5221==μμ,.观察有无互为相反数的特征值发现,A 和B 没有互为相反数的特征值,所以矩阵方程有唯一解. 将矩阵方程两边拉直,得到:→→=⊗+⊗C X B I I A Tm n )(. (4.1)设⎥⎦⎤⎢⎣⎡=4321x x x x X ,计算⎥⎦⎤⎢⎣⎡--=4123TB ,将A ,T B ,X ,C 代入(4.1)得: ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎥⎦⎤⎢⎣⎡--⊗⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡⊗⎥⎦⎤⎢⎣⎡-108171041231001100101124321x x x x ,计算得到:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------108171041102301106101254321x x x x , 根据矩阵的乘法的定义可以求得:21314321-===-=x x x x ,,,. 故矩阵方程AX+XB=C 的唯一解为:⎥⎦⎤⎢⎣⎡--=2131X . (2) 同样先计算A 和B 的特征值,解0=-A I λ得:3121==λλ,, 解0=-B I μ得:1221-==μμ,.通过观察可知:021=+μλ. 一所以矩阵方程的解不唯,即存在通解. 将矩阵方程两边拉直,得到:→→=⊗+⊗C X B I I A Tm n )(. (4.1)设⎥⎦⎤⎢⎣⎡=4321x x x xX ,计算⎥⎦⎤⎢⎣⎡--=1502TB ,将A ,T B ,X ,C 代入(4.1)得: ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎥⎦⎤⎢⎣⎡--⊗⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡⊗⎥⎦⎤⎢⎣⎡1135315021001100132014321x x x x , - 计算得到:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--113532520050200050034321x x x x ,根据矩阵的乘法的定义可以求得:c x x c x x -=-===3114321,,,. 故矩阵方程AX+XB=C 的通解为:⎥⎦⎤⎢⎣⎡--=c c X 311(c 为任意常数).4.2矩阵的Kronecker 积与一般线性矩阵方程设矩阵n m k C A ⨯∈,矩阵q p C B ⨯∈,矩阵q m C F ⨯=,解一般线性矩阵方程:F XB Ark k k=∑=1(r = 1,2,…).第一步,将矩阵方程两边拉直,由性质3.2.3可以得到:∑=→→=⊗rk T kkF X B A1)][(. (4.2)第二步:判断是否有解,根据线性方程组是否有解的判别条件可得:矩阵方程(4.2)有解的充要条件是:∑⊗)((Tkk B A rank ┊))(()1∑=→⊗=rk Tkk B A rank F . 即∑=⊗rk Tkk B A 1)(的所有特征值均不为0. 例4.2 设A 和C 都是n ⨯n 矩阵,A 的特征值λi (i=0,1,2,…,n )R ∈(实数),求证:矩阵方程C XA A AXA X =++22有唯一解.证明:将两边方程拉直得到:→→=⊗+⊗+⊗C X A A A A I I T T n n ])([(22,化简得到:→→=⊗+⊗+C X A A A A I TTn ])()([22.由定义3.1可知:T A A ⊗的2n 个特征值是=j i j i ,(λλ0,1,2,…,n ). 故:2)()(2T T n A A A A I ⊗+⊗+的2n 个特征值是:22)21(43)()(1j i j i j i λλλλλλ++=++>00(=j i ,,1,2,…,n ). 即2)()(2T T n A A A A I ⊗+⊗+是可逆的,由唯一解的判断方法可知:矩阵方程C XA A AXA X =++22有唯一解.例4.3 在下列条件下解矩阵方程C XB A XB A =+2211.已知:⎥⎦⎤⎢⎣⎡-=20311A ,⎥⎦⎤⎢⎣⎡-=13101B ,⎥⎦⎤⎢⎣⎡-=11022A ,⎥⎦⎤⎢⎣⎡-=01232B ,⎥⎦⎤⎢⎣⎡--=48213C . 解:将矩阵方程两边拉直得到:→→=⊗+⊗C X B A B A T T)(2211. (4.3)*设⎥⎦⎤⎢⎣⎡=4321x x x xX ,计算⎥⎦⎤⎢⎣⎡-=11301T B 和 ⎥⎦⎤⎢⎣⎡-=02132TB 代入(4.3)*得到:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎥⎦⎤⎢⎣⎡-⊗⎥⎦⎤⎢⎣⎡-+⎥⎦⎤⎢⎣⎡-⊗⎥⎦⎤⎢⎣⎡-4821302131102113020314321x x x x .计算化简得:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------4821320027313331390564321x x x x . 根据矩阵的乘法的定义可以求得:10214321===-=x x x x ,,,.计算T T B A B A rank 2211(⊗+⊗┊4)()2211=⊗+⊗=TT B A B A rank C , 所以方程有唯一解:⎥⎦⎤⎢⎣⎡-=1021X . 4.3矩阵的Kronecker 积与矩阵微分方程设m m C A ⨯∈矩阵,n n C B ⨯∈矩阵,n m C t X ⨯∈)(,求下列矩阵微分方程初值问题的解:⎪⎩⎪⎨⎧=+=0)0()()()(X X B t X t AX dt t dX (4.3)引理:设m m C A ⨯∈矩阵A ,矩阵n m C B ⨯∈,则n A I A I e e n ⊗=⊗,B m B I e I e m ⊗=⊗. 证明:因为性质1.2.5可得:∑∑∞=∞=⊗⊗=⊗=11)(!1)(!1k k k k kI A I A k I A k enn A k kI e I A k ⊗=⊗=∑∞=1)!1(. 同理可证:B m B I e I e m ⊗=⊗.将矩阵微分方程(4.3)两边拉直,由推论3.2.4可以得到:⎪⎩⎪⎨⎧=⊗+⊗=→0)0()()()(X X t X B I I A dt t X d T m n (4.4)由引理可得:T t B At tB AtB I I A t TT m n e X e X ee X et X )()()(000)(=⊗==→→⊗+⊗,又因为∑∑∞=∞====11!1))(!1()(k Bt k k T k k k T Tt B e t B k t B k eT ,故Bt At e X e t X 0)(= (4.5) 这就是微分方程(4.3)的解.例4.4 求解下列矩阵微分方程的初值问题:⎪⎩⎪⎨⎧=+=0)0()()()(X X B t X t AX dt t dX (4.6)已知:⎥⎦⎤⎢⎣⎡=0011A ,⎥⎦⎤⎢⎣⎡-=0011B ,⎥⎦⎤⎢⎣⎡=10010X . 解:可计算得到:⎥⎦⎤⎢⎣⎡-=101t tAte e e,⎥⎦⎤⎢⎣⎡-=101t t Bte e e .由(4.5)式可以得到: ⎥⎦⎤⎢⎣⎡--==10)1()(220t tBtAt e e eX e t X . 即(4.6)的解为⎥⎦⎤⎢⎣⎡--=10)1()(22t te e t X . 通过本章的学习,我们知道矩阵的Kronecker 积在解矩阵方程领域有很大的作用,利用Kronecker 积的性质,我们可以解决Lyapunov 矩阵方程,一般矩阵方程,矩阵微分方程的初值问题等问题.参考文献[1]矩阵论简明教程(第三版).徐仲等编.北京:科学出版社.2014.1.[2]矩阵论教程(第2版).张绍飞,赵迪编.北京:机械工业出版社.2012.5.[3]矩阵论引论(第2版).陈祖明,周家胜编.北京:北京航空航天大学出版社.2012.10.[4]矩阵论十讲.李乔,张晓东编.合肥:中国科学技术大学出版社.2015.3.[5]矩阵理论及方法.谢冬秀,雷纪刚,陈桂芝编.北京:科学出版社.2012.[6]H-矩阵类的理论及应用.徐仲等编.北京:科学出版社.2013.[7]高等代数教程(上).王萼芳编.北京:清华大学出版社.1997(2008重印).[8]常微分方程(第二版).东北师范大学微分方程教研室.北京:高等教育出版社.2005.4(2012.12重印).[9]矩阵分析与应用(第2版).张贤达编.北京:清华大学出版社.2013(2014.6重印).[10]线性代数及其应用.毛立新,咸美新编.北京:高等教育出版社.2015.8.[11]线性代数(第2版).钟玉泉,周建编.北京:科学出版社.2015.1.[12]矩阵理论与方法(第2版).吴昌悫,魏洪增编.北京:电子工业出版社.2013.8.[13]线性代数学习指导.赵春燕,单净,王麟编.哈尔滨:哈尔滨工程大学出版社.2012.2.[14]矩阵论.张凯院等编.北京:科学出版社.2013.[15]矩阵论导教·导学·导考.张凯院,徐仲编.西安:西北工业大学出版社.2014.8.[16]矩阵函数与矩阵方程.柏兆俊,高卫国,苏仰锋编.北京:高等教育出版社.2015.5.[17]矩阵分析.姜志侠,孟品超,李延忠编.北京:清华大学出版社.2015.[18]矩阵论札论.梁昌洪编.北京:科学出版社.2014.[19]线性代数及其应用.马新顺,王涛,郭燕编.北京:高等教育出版社.2014.7.[20]矩阵论引论.田振际,王永铎,吴德军编.北京:科学出版社.2013.[21]线性代数及其应用(第2版).河北农业大学理学院编.北京:高等教育出版社.2006.11.(2015.2重印).[22]线性代数及其应用.王坤龙编.北京:电子工业出版社.2014.10.[23]线性代数(第2版).许峰,范爱华编.合肥:中国科学技术大学出版社.2013.4.[24]线性代数及其应用.俞方元编.上海:同济大学出版社.2014.8.[25]线性代数学习指导.谢政,陈挚编.北京:清华大学出版社.2012.10.[26]高等线性代数学.黎景辉,白正简,周国晖编.北京:高等教育出版社.2014.9.[27]线性代数讲义.江惠坤,邵荣,范红军编.北京:科学出版社.2013.[28]线性代数.贾屹峰编.上海:上海交通大学出版社.2012.[29]线性代数.侯亚君,艾玲,沙萍,林洪娟编.北京:机械工业出版社.2012.1(2012.7重印).[30]线性代数.郝秀敏,姜庆华编.北京:经济科学出版社.2013.7.[31]线性代数.韩旸,王静宇,周莉编.北京:化学工业出版社.2013.8.[32]线性代数重点难点考点辅导与精析.高淑萍,张剑湖编.西安:西北工业大学出版社.2014.5.[33]线性代数.傅媛编.武汉:武汉大学出版社.2013.2(2013.11重印).[34]跟我学线性代数:导学与习题精解.董晓波编.北京:机械工业出版社.2014.1.[35]线性代数同步学习辅导.陈绍林,唐道远编.北京:科学出版社,2014.7.[36]线性代数及应用.刘三明编.南京:南京大学出版社.2012.8.[37]线性代数.谭福锦,黎进香编.北京.人民邮电出版社.2012.8.[38]工程数学.线性代数(第6版).同济大学数学系编.北京:高等教育出版社.2014.6.[39]矩阵分析与计算.李继根,张新发编.武汉:武汉大学出版社.2013.10.[40]矩阵计算的理论与方法.徐树方编.北京:北京大学出版社.1995.8.[41]矩阵分析及其应用.曾祥金,吴华安编.武汉:武汉大学出版社.2007.8.[42]矩阵理论与应用.张跃辉编.北京:科学出版社.2011.8.致谢通过一个月来不断的努力,终于完成了这篇毕业论文。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Kronecker productFrom Wikipedia, the free encyclopediaIn mathematics, the Kronecker product, denoted by ⊗, is an operation on two matrices of arbitrary size resulting in a block matrix. It is a generalization of the outer product (which is denoted by the same symbol) from vectors to matrices, and gives the matrix of the tensor product with respect to a standard choice of basis. The Kronecker product should not be confused with the usual matrix multiplication, which is an entirely different operation.The Kronecker product is named after Leopold Kronecker, even though there is little evidence that he was the first to define and use it. Indeed, in the past the Kronecker product was sometimes called the Zehfuss matrix, after Johann Georg Zehfuss.Contents1 Definition1.1 Examples2 Properties2.1 Relations to other matrix operations2.2 Abstract properties3 Matrix equations4 Related matrix operations4.1 Tracy-Singh product4.2 Khatri-Rao product5 See also6 Notes7 References8 External linksDefinitionIf A is an m × n matrix and B is a p × q matrix, then the Kronecker product A⊗B is the mp × nq block matrix:more explicitly:If A and B represent linear transformations V1 → W1 and V2 → W2, respectively, then A⊗B represents the tensor product of the two maps, V1⊗V2 → W1⊗W2.ExamplesPropertiesRelations to other matrix operations1. Bilinearity and associativity: The Kronecker product is a special case of the tensorproduct, so it is bilinear and associative:where A, B and C are matrices and k is a scalar.2. Non-commutative: In general A⊗B and B⊗A are different matrices. However, A⊗Band B⊗A are permutation equivalent, meaning that there exist permutation matrices P and Q such thatIf A and B are square matrices, then A⊗B and B⊗A are even permutation similar,meaning that we can take P = Q T.3. The mixed-product property and the inverse of a Kronecker product: If A, B, C andD are matrices of such size that one can form the matrix products AC and BD, thenThis is called the mixed-product property, because it mixes the ordinary matrix product and the Kronecker product. It follows that A⊗B is invertible if and only if A and B are invertible, in which case the inverse is given by4. Transpose: The operation of transposition is distributive over the Kronecker product:5. Determinant: Let A be an n × n matrix and let B be a p × p matrix. ThenThe exponent in |A| is the order of B and the exponent in |B| is the order of A.6. Kronecker sum and exponentiation If A is n × n, B is m × m and I k denotes the k ×k identity matrix then we can define what is sometimes called the Kronecker sum, ⊕, byNote that this is different from the direct sum of two matrices. This operation isrelated to the tensor product on Lie algebras. We have the following formula for thematrix exponential which is useful in the numerical evaluation of certain continuous-time Markov processes[citation needed],Kronecker sums appear naturally in physics when considering ensembles of non-interacting systems. Let H i be the Hamiltonian of the i-th such system. Then the total Hamiltonian of the ensemble is.Abstract properties1. Spectrum: Suppose that A and B are square matrices of size n and m respectively. Letλ1, ..., λn be the eigenvalues of A and μ1, ..., μm be those of B (listed according to multiplicity). Then the eigenvalues of A⊗B areIt follows that the trace and determinant of a Kronecker product are given by2. Singular values: If A and B are rectangular matrices, then one can consider theirsingular values. Suppose that A has r A nonzero singular values, namelySimilarly, denote the nonzero singular values of B byThen the Kronecker product A⊗B has r A r B nonzero singular values, namelySince the rank of a matrix equals the number of nonzero singular values, we find that3. Relation to the abstract tensor product: The Kronecker product of matricescorresponds to the abstract tensor product of linear maps. Specifically, if the vector spaces V, W, X, and Y have bases {v1, ..., v m}, {w1, ..., w n}, {x1, ..., x d}, and {y1,..., y e}, respectively, and if the matrices A and B represent the linear transformations S : V → X and T : W → Y, respectively in the appropriate bases, then the matrix A⊗B represents the tensor product of the two maps, S⊗T : V⊗W → X⊗Y with respect to the basis {v1⊗ w1, v1⊗ w2, ..., v2⊗ w1, ..., v m⊗ w n} of V⊗W and the similarlydefined basis of X⊗Y with the property that A⊗B(v i⊗ w j) = (A v i)⊗(B w j), where i and j are integers in the proper range.[1] When V and W are Lie algebras, and S : V → V and T : W → W are Lie algebra homomorphisms, the Kronecker sum of A and B represents theinduced Lie algebra homomorphisms V⊗W → V⊗W.4. Relation to products of graphs: The Kronecker product of the adjacency matrices oftwo graphs is the adjacency matrix of the tensor product graph. The Kronecker sum of the adjacency matrices of two graphs is the adjacency matrix of the Cartesian product graph.See,[2] answer to Exercise 96.Matrix equationsThe Kronecker product can be used to get a convenient representation for some matrix equations. Consider for instance the equation AXB = C, where A, B and C are given matrices and the matrix X is the unknown. We can rewrite this equation asHere, vec(X) denotes the vectorization of the matrix X formed by stacking the columns of Xinto a single column vector. It now follows from the properties of the Kronecker product that the equation AXB = C has a unique solution if and only if A and B are nonsingular (Horn & Johnson 1991, Lemma 4.3.1).If X is row-ordered into the column vector x then AXB can be also be written as (Jain 1989, 2.8 Block Matrices and Kronecker Products) (A⊗B T)x.Related matrix operationsTwo related matrix operations are the Tracy-Singh and Khatri-Rao products which operate on partitioned matrices. Let the m × n matrix A be partitioned into the m i × n j blocks A ij and p × q matrix B into the p k × qℓ blocks B kl with of course Σi m i = m, Σj n j = n, Σk p k = p and Σℓ qℓ = q.Tracy-Singh productThe Tracy-Singh product[3][4] is defined aswhich means that the (ij)-th subblock of the mp × nq product A ○ B is the m i p × n j q matrix A ij ○ B, of which the (kℓ)-th subblock equals the m i p k × n j qℓ matrix A ij⊗B kℓ. Essentially the Tracy-Singh product is the pairwise Kronecker product for each pair of partitions in the two matrices.For example, if A and B both are 2 × 2 partitioned matrices e.g.:we get:Khatri-Rao productThe Khatri-Rao product[5][6] is defined asin which the ij-th block is the m i p i × n j q j sized Kronecker product of the corresponding blocks of A and B, assuming the number of row and column partitions of both matrices is equal. The size of the product is then (Σi m i p i) × (Σj n j q j). Proceeding with the same matrices as the previous example we obtain:This is a submatrix of the Tracy-Singh product of the two matrices (each partition in this example is a partition in a corner of the Tracy-Singh product).A column-wise Kronecker product of two matrices may also be called the Khatri-Rao product.This product assumes the partitions of the matrices are their columns. In this case m1 = m, p1 = p, n = q and for each j: n j = p j = 1. The resulting product is a mp × n matrix of which each column is the Kronecker product of the corresponding columns of A and B. Using the matrices from the previous examples with the columns partitioned:so that:See alsoGeneralized linear array modelMatrix productNotes1. ^ Pages 401–402 of Dummit, David S.; Foote, Richard M. (1999), Abstract Algebra (2 ed.), New York:John Wiley and Sons, Inc., ISBN 0-471-36857-12. ^ D. E. Knuth: "Pre-Fascicle 0a: Introduction to Combinatorial Algorithms" (http://www-cs-/~knuth/fasc0a.ps.gz), zeroth printing (revision 2), to appear as part of D.E.Knuth: The Art of Computer Programming Vol. 4A3. ^ Tracy, DS, Singh RP. 1972. A new matrix product and its applications in matrix differentiation.Statistica Neerlandica 26: 143–157.4. ^ Liu S. 1999. Matrix results on the Khatri-Rao and Tracy-Singh products. Linear Algebra and itsApplications 289: 267–277. (pdf (/science?_ob=MImg&_imagekey=B6V0R-3YVMNR9-R-1&_cdi=5653&_user=877992&_orig=na&_coverDate=03%2F01%2F1999&_sk=997109998&view=c&wchp=dGLbVlb-zSkWb&md5=21c8c66f17da8d1bab45304a29cc96ac&ie=/sdarticle.pdf))5. ^ Khatri C. G., C. R. Rao (1968), "Solutions to some functional equations and their applications tocharacterization of probability distributions" (http://sankhya.isical.ac.in/search/30a2/30a2019.html), Sankhya30: 167–180.6. ^ Zhang X, Yang Z, Cao C. (2002), "Inequalities involving Khatri-Rao products of positive semi-definite matrices", Applied Mathematics E-notes2: 117–124.ReferencesHorn, Roger A.; Johnson, Charles R. (1991), Topics in Matrix Analysis, CambridgeUniversity Press, ISBN 0-521-46713-6.Jain, Anil K. (1989), Fundamentals of Digital Image Processing, Prentice Hall, ISBN 0-13-336165-9.Steeb, Willi-Hans (1997), Matrix Calculus and Kronecker Product with Applications and C++ Programs, World Scientific Publishing, ISBN 981-02-3241-1Steeb, Willi-Hans (2006), Problems and Solutions in Introductory and Advanced MatrixCalculus, World Scientific Publishing, ISBN 981-256-916-2External linksHazewinkel, Michiel, ed. (2001), "Tensor product"(/index.php?title=p/t092410), Encyclopedia ofMathematics, Springer, ISBN 978-1-55608-010-4Kronecker product (/?op=getobj&from=objects&id=4163),.MathWorld Kronecker Product (/KroneckerProduct.html)New Kronecker product problems (http://issc.uj.ac.za/downloads/problems/newkronecker.pdf) Earliest Uses: The entry on The Kronecker, Zehfuss or Direct Product of matrices hashistorical information. (/k.html)Generic C++ and Fortran 90 codes for calculating Kronecker products of two matrices.(https:///projects/kronecker/)Retrieved from "/w/index.php?title=Kronecker_product&oldid=556239113" Categories: Matrix theoryThis page was last modified on 22 May 2013 at 09:24.Text is available under the Creative Commons Attribution-ShareAlike License; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy.Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.。

相关文档
最新文档