高等数学课后习题答案第五章

合集下载

高等代数-第5章习题及解答

高等代数-第5章习题及解答

习题 5.1解答A ⊆B A B =A A B =B 1. 设,证明:,.ααααααα∀∈A ⊆B ∈B ∴∈A B⊆A BAB ⊆AB =A∀∈A B ∈∈B A ⊆B ∈BA B ⊆B B ⊆A BAB =B证 A ,由,得 即得证A 又A 故 ,则A 或 但,因此无论那一种情形都有 此即,但 所以(B C C 2. :1)A =A B A 证明 )()();(((((((x x x x x x x x x x x x x x ∀∈∈∈∈∈∈∈⊆∈∈∈∈∈∈∈证 A (B C ),则A 且(B C )在后一情形,B 或C, 于是AB 或AC 所以AB)AC )由此得A (B C )A B)AC )反之,若A B)A C ),则AB 或AC在前一情形,A,B,因此B C 故A B C )在后一情(((((((x x x x ∈∈∈∈⊆形,A,C, 因此BC也得A BC ) 故A B)AC )AB C ) 于是AB C )=AB)AC )C C 2A B =A B A .)()()()x x x x x x x x x x x ∈∈∈∈∈∈∈∈∈∈∈∴⊆⊆ 证 若A (B C ),则A 或者BC在前一情形AB 且A C因而(A B )(AC )在后一情形B ,C ,因而AB 且AC即(A B )(A C ) A (B C )(A B )(A C )同理可证(A B )(AC )A (BC )故A (BC )=(AB )(AC )3:|,:|a b a b b f a bc d c d a ⨯⎛⎫⎛⎫→→+ ⎪ ⎪⎝⎭⎝⎭22 、问:法则g 是否为Q 到Q 的映射?单射还是双射?22(((a f f Q g g g ⨯⎛⎫⎛⎫∀∈∈⇒ ⎪ ⎪⎝⎭⎝⎭⎛⎫⎛⎫⎛⎫⎛⎫≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭∴解 当取0时在中没有象,所以不是映射;a 0a 0 a Q,有)=a,但000012121212)=3=),而00420042g 是满射不是单射.2()(),:()|()[]f x f x f x f x Q x φϕ'→→4. 问:满足:|是否为的变换?单射还是双射?φφφ'∈∴∀∈Φ解 (f(x))=f (x)Q[x] 是变换;又f(x)Q[x],有((x))=f(x),而22(())()(())(())()()f x f x f x f x f x f x φφφϕϕϕϕϕΦ∈'≠∴∀∈=∈∴∀∈=-=-≠∴⎰x(x)=f(x)dx Q[x],又 (f(x))=(f(x)+1)=f (x),而f(x)f(x)+1是满射不是单射.又f(x)Q[x],Q[x]是变换,又f(x)Q[x],但f(x)并且-f(x)没有原象,既不是单射又不是满射.{}|01y y y A B ≤<5. 设是一切非负实数构成的集合,又=是实数且:|1x f x x→A B + 证明: 是到的一个双射.()(),1,,1,111a ba b f a f b a ba b f yy y yyy fy y y f f ∀∈=+∴=∴∀∈≤≤∴≥-⎛⎫∴∈= ⎪--⎝⎭∴ 证 A,==1+ 是A 到B 的一个单射. B 00,A,且使得 是A 到B 的满射.综上所述得,是A 到B 的一个双射.{},:11,21,32,42;1223,4,1f g A →→→→→→→→6. 设=1,2,3,4规定 :,34.,f g fg gf fg gf A 1) 说明都是的变换;2) 求和,问和是否相等?(),():11,22,32,41:12,22,33,43.f x Ag x Af g fg gf g gf ∀∈∈∈∴→→→→→→→→≠证明 (1)x A,与都是由A 到A 的映射, 从而都是A 的变换. (2)所以f,,:::A B C f A B g B C gf A C g →→→7.证明是三个非空集合,是满射,,但是单射,证明是单射.1212121212,(),()()()()()f a a f a f a f a f a f a a f a f a ∈∴∃∈==⇒=⇒==∴12121212证明:设b ,b B,且g(b )=g(b )因是满射,A,使得b b 即有g()=g()g 是单射 即b b g 是单射习题 5.2解答1. 检验以下集合对所规定的代数运算是否作成数域上F 的线性空间.{}{}{}{}()|,()|,()|0,()|0n n n ij n ij i j a i j a 1) S=A M F A =A T=A M F A =-A U=A M F 时 L=A M F 时'∈'∈∈>=∈<=∴解S ,T ,U ,L 分别对称矩阵、反对称矩阵、上三角矩阵和下三角矩阵,所以S 、T 、U 、L 都非空,又根据其相应性质知,S 、T 、U 、L 中的元素关于矩阵的加法与F 中的数与矩阵的乘法都封闭,S 、T 、U 、L 都作成数域F 上的线性空间。

高等数学第05章 定积分及其应用习题详解

高等数学第05章 定积分及其应用习题详解
x

0

x 1 sin tdt 0dt 1 , 2

b a
f ( x)dx 在 几 何 上 表 示 由 曲 线 y f ( x) , 直 线
x a, x b 及 x 轴所围成平面图形的面积. 若 x a, b时,f ( x) 0, 则 b f ( x)dx 在几何 a
上表示由曲线 y f ( x) ,直线 x a, x b 及 x 轴所围平面图形面积的负值. (1)由下图(1)所示, 1 xdx ( A1 ) A1 0 .
n
2
i
i 1
n
2
1 1 1 1 1 n(n 1)(2n 1) = (1 )(2 ) 3 n 6 6 n n 1 1 2 当 0时 (即 n 时 ) ,由定积分的定义得: x d x = . 0 3
= 5. 利用定积分的估值公式,估计定积分
4 3

1 1
(4 x 4 2 x 3 5) dx 的值.
上任取一点 i 作乘积 f ( i ) xi 的和式:
n
f ( i ) xi c ( xi xi1 ) c(b a) ,
i 1 i 1
n
n
记 max{xi } , 则
1i n

b a
cdx lim f ( i ) xi lim c(b a) c(b a) .

x
0
(t 1)dt ,求 y 的极小值
解: 当 y x 1 0 ,得驻点 x 1 , y '' 1 0. x 1 为极小值点, 极小值 y (1)
( x 1)dx - 2

中国地质大学(武汉)《高等数学A1》第五章习题课及答案解析

中国地质大学(武汉)《高等数学A1》第五章习题课及答案解析
a≤ x≤b
6 若 f (x) 在[0,1] 上有三阶导数,且 f= (0) f= (1) 0 ,,设 F (x) = x3 f (x) ,
求证:至少存在一点ξ ∈ (0,1) ,使得 F′′′(ξ ) = 0 。
证法一:由题设知, F (x) , F′(x) , F′′(x) , F′′′(x) 在[0,1] 上存在,
= f+′(a)
lim f (x) − f (a) < 0 , x→a+ x − a
由极限的保号定理,可知 ∃δ1 > 0, 当 x ∈ (a, a + δ1) 时,有
f (x) − f (a) < 0 ⇒ f (x) < f (a) x−a
同理, ∃δ2 > 0, 当 x ∈ (b − δ2,b) 时,有
ξ ∈ (0,1) ,使得 (2ξ +1) f (ξ ) + ξ f ′(ξ ) = 0 。
分析: 由ξ ∈ (0,1) ,则 (2ξ +1) f (ξ ) + ξ f ′(ξ ) = 0
⇔ (2 + 1 ) f (ξ ) + f ′(ξ ) = 0 ξ
⇔ p(ξ )(2 + 1 ) f (ξ ) + p(ξ ) f ′(ξ ) = 0 ξ

f [ g (ξ
′(ξ )+
) g′(ξ )]
g= (b) g= (a) 1

f (b) − f (a) eb − ea
=
f ′(ξ ) eξ [g(ξ ) + g′(ξ )]
(1)
又令ψ (x) = ex ,则由题设可知 f (x),ψ (x) 在[a,b] 上满足柯西中值定理的条件,

高等数学第五章教材答案

高等数学第五章教材答案

高等数学第五章教材答案第一节:导数与微分1. a) 导数的定义是:对于函数y=f(x),若极限lim(h→0)[f(x+h)-f(x)]/h存在,则称此极限为函数f在点x处的导数,记作f'(x)。

b) 导数的几何意义是函数图像在某一点处的切线斜率。

2. a) 由导数的定义可得,对于函数y=ax^n,其中a为常数,n为正整数,则它的导数为f'(x)=nax^(n-1)。

b) 对于常数函数y=c,其中c为常数,则它的导数为f'(x)=0。

c) 对于自然指数函数y=e^x,则它的导数为f'(x)=e^x。

d) 对于对数函数y=log_a(x),其中a为常数且不等于1,则它的导数为f'(x)=1/(xlna)。

e) 对于三角函数y=sin(x),则它的导数为f'(x)=cos(x)。

3. a) 利用导数定义证明:对于函数y=kx,其中k为常数,则它的导数为f'(x)=k。

b) 利用导数的四则运算法则证明:对于两个可导函数f(x)和g(x),则有(f±g)'(x)=f'(x)±g'(x)。

c) 利用导数的链式法则证明:对于复合函数y=f(g(x)),其中函数g(x)可导且函数f(u)可导,则它的导数为f'(g(x))·g'(x)。

4. a) 用导数求函数在一点处的切线方程:对于函数y=f(x),若知道函数在点x=a处的导数f'(a),则可求得切线方程为y=f'(a)(x-a)+f(a)。

b) 用导数求函数的极值点:对于函数y=f(x),若函数在点x=a处的导数f'(a)存在且为零,且函数在该点的导数由正变负或由负变正,则该点为函数的极值点。

第二节:不定积分1. a) 不定积分的定义是:对于函数y=f(x),若存在函数F(x),使得F'(x)=f(x),则称F(x)为函数f(x)的一个原函数,并记作∫f(x)dx=F(x)+C,其中C为常数。

南开大学出版社高数练习册第五章答案.doc

南开大学出版社高数练习册第五章答案.doc

第五章定积分第一节定积分的概念及性质一、选择题1、A2、D二、填空题1、负2、[*/3、b-a三、1、1 2、0 -4四、1、z 2> < 3> < 4、>五、解:定积分处理问题的四个步骤为:1、分割:将时间区间[儿乙]任意分成n个小区间M,商= l,2,...,n),每个小区间所表示的时间为;各区间物体运动的路程记为△SiQ = 1,2,・•。

2、近似:在每个小区间上以匀速直线运动的路程近似代替变速直线运动的路程。

在每个小区间"E ]上任取一时刻夺,以速度V⑥近似代替时间段 ",讪上各个时刻的速度,则有△仰=1,2,・••/)・3、求和:将所有这些近似值求和,得到总路程S的近似值,即S = £△$"£・/=! /=14、取极限:对时间间隔四乙]分割越细,误差越小。

为此记A = max{An),\<i<nn当人TO时和式的极限便是所求路程S,即S = lim£v ㈤山二* 1=1 /=!那么在一秒内经过的路程为S=、20=l ・六、解:设f(x) = /二则/⑴=/站(2尤-1) 当JCG(O,-)时,f (x)<0.2 Ji当xe (— ,2)时,f (x) > 0.i _i・•・、心的极小值为/'(5)=厂;2・.・ f(0) = l,f(2) = e~:.| < J / dx < | /dx即2e^< f e x X dx<2e2••-2° < [ / dx <-2e4七、证明:"⑴二土在[1,4]±为减函数.・.sA⑴第二节微积分基本公式一、填空题1、C2、&「23、2xsin V44、05、「Vsin A入r i2 r »小+x 小+x 二、求定积分1、^Vx(l + Vx)Jx = (&2 +:Q L = 45:。

[专题]北大版高等数学第五章向量代数与空间解析几何答案习题53.docx

[专题]北大版高等数学第五章向量代数与空间解析几何答案习题53.docx

习题5・31•指出下列平面位置的特点:(1)5x - 3z +1 = 0(2)x + 2y - 7z = 0(3)y + 5 = 0(4)2),- 9z = 0(5)x-y-5 = 0(6)x = 0. 解⑴平行于屛由.⑵过原点.⑶平行于平面.⑷ 过兀轴.(5)平行于z轴•⑹0〃平面.2.求下列各平面的方程:⑴平行于y轴且通过点(1,-5,1)和(3,2,-2);(2)平行于O私平面且通过点(5,2,-8);(3)垂直于平面兀-4y + 5z = 1且通过点(-2,7,3)及(0,0,0);⑷垂直于Oyz平面且通过点(5,-4,3)及(-2,1,8).1j k解⑴—(0 ,l,0),* = (2,7,-3),n= 0 1 0 =(-3,0,-2).27-3_3O_1)_2(Z_1)=0,3JC +2Z_5=0.⑵y = 2.i j k(3)a = (1,-4,5), 6 = (-2,7,3),n = 1 -4 5 = (-47,-13,-1).-2 7 347x+13y+ 1 = 0.i j k(4)“ = (1,0,0),〃 = (-7,5,5),〃= 1 0 0 =(0,-5,5) = 5(0, -1,1).-7 5 5_(y + 4) + (z_3) = 0,y_z + 7 = 0.3.求通过点A(2,4,8), B(-3,1,5)及C(6,—2,7)的平面方程.解 a = (一5, —3,—3),〃 = (4,-6,-1).i j kn= -5 -3 -3 =(-15,-17,42),4 -6 -1一15(兀一2) —17(y — 4) + 42(z — 8) = 0,15x + 17y —42z + 238 = 0.4.设一平而在各坐标轴上的截距都不等于零并相等,且过点(5, -7, 4),求此平而的方程.解—+ —+ — = 1, —H—+ — = l,a = 2, x + y + z — 2 = 0.a, a a a a a5已知两点4(2,-1,-2)及〃(8,7,5),求过B且与线段AB垂直的平面.解〃 =(6, & 7).6(x-8) + 8(y-7) + 7(z-5) = 0,6x + 8y + 7z-139 = 0.6.求过点(2,0, -3)且与2兀-2y + 4z + 7 = 0,3x+y-2z + 5二0垂直的平面方程.i j k解 n= 2 -24 =(0,16,8) = 8(0,2,l).2y + (z + 3) = 0,y + z + 3 = 0. 3 1 -27.求通过兀轴且与平面9兀-4y-2z + 3 = 0垂直的平面方程. 解 By + Cz=0,—4B —2C = 0,取B = 1,C = —2,y —2z = 0.8•求通过直纟划:{;;工:二5地:仁鳥平行的平面方程. i j ki j k 解a = 1 0 2 = (-6,1,3), 6 = 1 -1 0= (1,1,1), 0 3-10 1 -1 i j kn - -6 13 =(-2,9,-7).用z ()= 0代入厶的方程,得x° =4,>\} =-8/3.1 1 1 -2(x-4) + 9(^ + 8/3)-7(z) = 0,-2x + 9y-7z + 32 = 0.x = 3r + 89.求直线厶:* +彳=•' +1 = __与直线/ :< y = f + l 的交点坐标,3 24 _ 小, z = + 6并求通过此两直线的平面方程.解求两条直线交点坐标:3r + 8 + 3 / + 1 + 1 2/ + 6 —2 \\ t t A 163 24 3 2 23 i j kn= 3 2 4 = (0,6, -3) = 3(0,2, -l).2(y +1) - (z - 2) = 0,2y - z + 4 = 0.3 1 2 10•求通过两直线厶=^ = 凹和厶:土 = □=三的平面方程. 1 2 -1 1 -4 2 -2i j k解 两直线平行•平面过点(1,-1,-1)和(-2,2,0).川=2 — 1 1 = (—4,—5,3).-33 1一4(兀一 l)-5(y + l) + 3(z + l) = 0,-4x — 5y + 3z + 2 = 0.11证明两直线厶:口和是异面直线*-121 - 0 1 -2证首先,两直线的方向向量(-1,2,1)和(0,1,-2)不平行.x 二 _2l 2< y 二1+t —―二匕〜 力+ 3J = 5』= 0,矛盾.故两直线无公共点.-1 2 1 X Q = 一& 儿=一一牛交点(一8占弓)两-直线不平行,又无交点,故是异面直线. 12.将下列直线方程化为标准方程及参数方程:[2x+y-z + l = 0 [x-3z + 5 = 0(1* ⑵彳[3x - y + 2z - 8 = 0; [y - 2z + 8 = 0.i j k解(1)〃= 2 1 -1 =(1,-7,-5).3-12V — 7 + 1 = 0⑴中令兀0=0,{ 解Z得儿=6,Zo=7・-y+ 2z-8 = 0;标准方程—q・1 -7 -5x = t参数方程:< y = 6-lt,-oo <t < +oo.z = l-5ti j k(2)(1加=1 0 -3 =(3,2,1).0 1 -2⑵中令z° = 0,直接得x° = -5, y Q = -8.标准方程出二凹二工3 2 1x ——5 + 3t参数方程:* >' = -8 + 2r,-co<t < +oo.z = t13•求通过点(32-5)及乂轴的平面与平面3x-y-7z + 9 = 0的交线方程・ ■I j k解地第一个平面的法向量〃二1 0 0 =(0,5,2), 3 2 -5平面方程5y + 2z = 0.直线方程严+ 2*°[3 兀-y-7z + 9 = 0.i j k直线的方向向量a =0 5 2 =(一336-15) = 3(-112-5)・3 -1 -7直线方程:r 匕14 •当D 为何值时,直线产? £弓与0z 轴相交?[x + 4y-z + D = 0解直线F :y + 2z-6弓与Oz 轴相交O 存在(0,0,勺)在此直线上,[x + 4y-z + £> = 0f2z o -6 = O <=> < u> £> =知=3. Ho+o=o15.试求通过直线人:£一2":弓并与直线Z. = 2平行的平面方程.[3y — z + 8 = 0 *•匕 _y + 6 = 0i J k解厶的方向向&a = 1 0 -2 =(6丄3).0 3-1i J 平面的法向量/i =6 1 1 1 Q 在的方程中令z ()二0得X 。

高等数学课后习题答案第五章


解:

(6) (7) 抛物线 y = − x 2 +4 x − 3 及其在(0,−3)和(3,0)处的切线; 解:y′ = − 2 x +4 . ∴y ′(0)=4 , y ′(3)= − 2 . ∵ 抛物线在点(0 , − 3) 处切线方程是 y =4 x − 3 在 (3 , 0) 处的切线是 y = − 2 x +6 两切线交点是( , 3) . 故 所 求 面 积 为 (7)
(8) 摆线 x = a ( t − sin t ) , y = a (1 − cos t ) 的一拱 (0≤t ≤2π)与 x 轴; 解:当 t =0 时, x =0, 当 t =2π时, x =2πa . 所以
S=∫
2πa
0
ydx = ∫ a (1 − cos t ) da (t − sin t )
(图 22)
kmρ ds kmρ kmρ = 2 ( Rdθ ) = dθ 2 R R R kmρ dFx = dF cos θ = cos θ dθ , R
dF =

Fx = ∫
ϕ 2 ϕ − 2
ϕ km ρ km ρ 2kmρ ϕ cosθ dθ = 2 ∫ 2 cos θ dθ = sin 0 R R R 2
(19) 设水的比重为 1, ,则将这薄水层吸出池面所作的微功为 dw=x·60 g d x =60 gx d x . 于是将水全部抽出所作功为
. 13. 有一等腰梯形闸门,它的两条底边各长 10m 和 6m,高为 20m,较长的底边与水面相 齐,计算闸门的一侧所受的水压力. 解:如图 20,建立坐标系,直线 AB 的方程为 . 压力元素为 所求压力为 =1467(吨) =14388(KN) 14. 半径为 R 的球沉入水中,球的顶部与水面相切,球的密度 (20)

高等代数第5章习题参考答案

第五章 二次型1.用非退化线性替换化下列二次型为标准形,并利用矩阵验算所得结果。

1)4x 1 x 2 2x 1x 3 2x 2 x 3;4)8x 1x 4 2x 3x 4 2x 2x 3 8x 2x 4 ;5)x 1x 2 x 1x 3 x 1x 4 x 2x 3 x 2x 4 x 3x 4;解1 )已知f x 1,x 2,x 3 4x 1x 2 2x 1x 3 2x 2x 3,先作非退化线性替换x 1 y 1 y 2 x 2 y 1 y 2 ( 1)x 3 y 3则f x 1,x 2,x 3 4y 124y 224y 1y 322 2 24y 1 4y 1 y 3 y 3 y 34y 22y 1 y 3 3y 324y 22,再作非退化线性替换11 y 1z 1212y 2 z 2y 3 z 3则原二次型的标准形为最后将( 2)代入( 1),可得非退化线性替换为2) x 12 2x 1 x 2 2x 224x 2x 3 4x 32;3) x 123x 222x 1x 2 2x 1x 3 6x 2x 3;6) x 12 2x 22 x 424x 1x 2 4x 1x 32x 1x 42x 2x 3 2x 2 x 4 2x 3x 4;7) x 12 x 22 x 322x 42x 1x 2 2x 2x 32x3 x4 。

x 1,x 2,x 32 z124z 223)x 1x 212z 1 1 2z 1z 2z 21 2z 3 1 2z 3x 31 0111 022 T1100 1 000 100 1且有100 T AT0 4 00 1 2 )已知f x 1,x 2,x 3x1 2x 1x2 2x 22由配方法可得f x 1,x 2,x 3 2 x 12x 1x 22 x 22x 1 x 2x 2于是可令 y 1 x 1 x 2y 2 x 22x 3 ,y 3x 3则原二次型的标准形为f2 2x 1,x 2 ,x 3y 1y 2,且非退化线性替换为 x 1 y 1 y 2 2y 3 x 2 y 2 2y 3x 3 y 3于是相应的替换矩阵为 4x 2 x 3相应的替换矩阵为 2x 22x 3 2,2 1 2 02,21, 2,14x 32,4x 2x 3 4x 320。

高等数学第五章习题答案

第五章 不定积分与定积分 第一节 定积分的概念及性质1.=S 61 2.(1)1;(2)4π. 3.(1)⎰102dx x >⎰12dx x ;(2)⎰12dx e x <⎰1dx e x . 4.利用积分中值定理证明.5.利用定积分估值定理证明.第二节 微积分基本公式1.(1)0; (2)0; (3)2cos x ; (4)2e x-; (5)24sin sin 2x x x -.2.2232y xe x y --='3.(1)1; (2)42π; (3)0; (4)1sin ; (5)11+p .4.(1)6π; (2)1; (3)4; (4)35.5.利用双曲函数表达式及原函数的定义证明.第三节 不定积分的概念与性质1.(1)x x cos 2ln 2+; (2)23x ; (3)C x +-sin .2.(1)C x +36; (2)C x+3ln 3; (3)C x ++1e ; (4)C x x +-cos sin ; (5)C x +arctan 3; (6)C x +arcsin 2;(7)C t t+-34433e ; (8)C x x +--tan cot ; (9)C x +158815; (10)C t +20ln 20; (11)C e x x x ++e -33ln 313; (12)C x x +--arctan 1; (13)C x x +-sin ; (14)C x x ++arctan ; (15)C x x ++arctan 212; (16)C x x x +--cot 9tan 4. 3.x x y +=3.第四节 换元积分法1.(1)C x +-32ln 21; (2)C e x+--22; (3)C x a a+)22arctan(21;(4)C x +--22121; (5)C x ++)4ln(212; (6)C x +4)(arcsin 41;(7)C x +)arctan(sin 212; (8)C x x ++cos ln sin ln ; (9)C x ++14; (10)C x x x ++-53sin 51sin 32sin ; (11)C x x ++sin cos ln ; (12)C x x +-ln 1.2.(1)0; (2)31; (3)2; (4)1; (5)2)2(ln 21; (6)2332a .3.(1)C x a x a x a +--2222arcsin 2; (2)C x +1arccos ; (3)C xx++21;(4)C x x ++-)21ln(2; (5)C e e x x+++-+1111ln; (6)C xa x a +--3223223)(. 4.(1)2π; (2)3322-; (3)61; (4)32ln 22+; (5)e e+12ln .5.2ln .6.(1)0; (2)3ln .第五节 分部积分法1.(1)C x x x +-2ln ; (2)C x x x ++-)41ln(412arctan 2; (3)C x x x ++-)21(e 2122; (4)C x x x ++)3cos 23sin 3(e 1312; (5)C x x x ++-2sin 412cos 21; (6)C x x x x ++-2arctan 8142arctan 22; (7)C x x x ++-]2ln 2)[(ln 2; (8)C x x ex++-)22(33323;(9))1()1(112+++n ne n ; (10))11(2e -; (11)5e ; (12)463ππ-. 第六节 有理函数的积分及应用1.(1)C x x +++-111ln 212; (2)C x x x x +-++--+312arctan 3)1ln(211ln 2; (3)C x x x ++--1ln 2)2(ln ;(4)C x x x x x x ++---+++1ln 41ln 3ln 8213123; (5)⎪⎪⎪⎪⎭⎫ ⎝⎛+512tan 3arctan 51x ; (6)C x x ++)2tan 3(2tan ln 312; (7)C x ++-tan 11; (8)C x x +-+-32)11(43.第七节 广义积分1.答:不正确.因为该积分是以0=x 为瑕点的广义积分,且该积分是发散的. 2.答:不正确.奇函数在对称区间上的定积分为零是以积分存在为前提的,而dxxx ⎰∞+∞-+21是发散的. 3.1>k 时dx x)x(k⎰∞+2ln 1收敛,1≤k 时dx x)x(k ⎰∞+2ln 1发散.4.(1)4π; (2)82π-; (3)π55; (4)38; (5)91-; (6)23.总复习题五1.(1)A ; (2)A ; (3)C ; (4)C ; (5)D ; (6)D . 2.(1)C x x +-cos ; (2)61; (3)0; (4)1-; (5)2)1(2--x ; (6)c x x x +-sin cos . 3.(1)C x+20ln 20; (2)C x x x x ++-arctan arctan ; (3)2; (4))1(411--e ; (5)π; (6)1. 4.C x x dx x +-+=⎰1ln 2)(ϕ. 5.1=α,1=β.6.提示:利用闭区间上连续函数的最值定理、定积分的估值定理、闭区间上连续函数的介值定理证明.。

高等数学第五章课后习题答案

班级姓名学号1 第五章定积分1.证明定积分性质:òò=b abadxx f kdx x kf )()((k 是常数). 证:òåòå=D =D ==®=®banii ban ii x kf x kf x f k x f k)()(lim )(lim )(1010x x l l 2.估计下列积分值:(1)dxx )sin 1(4542ò+p p解:令x x f 2sin 1)(+=,则02sin cos sin 2)(===x x x x f ‘得驻点:,,221p p==x x 由23)4(,23)4(,1)(,2)2(====p p p pf f f f ,得2)(max ,1)(min ==x f x f 由性质,得pp p p2)(454££òdx x f (2)ò333arctan xdxx 解:令x x x f arctan )(=,01arctan )(2>++=xxx x f ‘,所以)(x f 在]333[,上单调增加,p p33)(max ,36)(min ==\x f x f ,)()(33333arctan 33336333-££-\òp pxdx x ,即pp32a r c t a n 9333££òx d x x班级班级 姓名姓名 学号学号3.比较下列积分值的大小:.比较下列积分值的大小: (1)dx x ò12与dxx ò13解:当10££x 时,有23x x £,且23x x -不恒等于0,0312>-\òdx x x )(,即,即 dxx dxx òò>1212。

(2)ò6pxdx 与ò6sin pxdx解:当60p££x 时,有x x £sin ,且x x sin -不恒等于0,0sin 10>-\òdx x x )(,即,即 dx x dx x òò>1010sin 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

习题五1.求下列各曲线所围图形的面积:(1)与x2+y2=8(两部分都要计算);解:如图D1=D2解方程组得交点A(2,2)(1)∴,.(2)与直线y=x及x=2;解:.(2)(3)y=e x,y=e-x与直线x=1;解:.(3)(4)y=ln x,y轴与直线y=ln a,y=ln b.(b>a>0);解:.(4)(5)抛物线y=x2和y=-x2+2;解:解方程组得交点(1,1),(-1,1).(5)(6)y=sin x,y=cos x及直线;解: .(6)(7) 抛物线y =-x 2+4x -3及其在(0,-3)和(3,0)处的切线; 解:y′=-2x +4. ∴y ′(0)=4,y ′(3)=-2. ∵抛物线在点(0,-3)处切线方程是y =4x -3 在(3,0)处的切线是y =-2x +6 两切线交点是(,3).故所求面积为(7)()()()()()33222302332223024343d 2643d d 69d 9.4D x x x x x x x x x x x x x⎡⎤⎡⎤=---+-+-+--+-⎣⎦⎣⎦=+-+=⎰⎰⎰⎰(8) 摆线x =a (t -sin t ),y =a (1-cos t )的一拱 (0≤t ≤2π)与x 轴;解:当t =0时,x =0, 当t =2π时,x =2πa . 所以()()()2π2π2π2202d 1cos d sin 1cos d 3π.aS y x a t a t t a t ta ==--=-=⎰⎰⎰(8)(9) 极坐标曲线 ρ=a sin3φ;解: .(9)(10) ρ=2a cos φ; 解:.(10)2. 求下列各曲线所围成图形的公共部分的面积: (1) r =a (1+cos θ)及r =2a cos θ; 解:由图11知,两曲线围成图形的公共部分为半径为a 的圆,故D =πa 2.(11)(2)及.解:如图12,解方程组得cosθ=0或,即或.(12).3.已知曲线f(x)=x-x2与g(x)=ax围成的图形面积等于,求常数a.解:如图13,解方程组得交点坐标为(0,0),(1-a,a(1-a))∴依题意得得a=-2.(13)4.求下列旋转体的体积:(1)由y=x2与y2=x3围成的平面图形绕x轴旋转;解:求两曲线交点得(0,0),(1,1).(14)(2)由y=x3,x=2,y=0所围图形分别绕x轴及y轴旋转;解:见图14,.(2)星形线绕x轴旋转;解:见图15,该曲线的参数方程是:,由曲线关于x轴及y轴的对称性,所求体积可表示为(15)5.设有一截锥体,其高为h,上、下底均为椭圆,椭圆的轴长分别为2a,2b和2A,2B,求这截锥体的体积。

解:如图16建立直角坐标系,则图中点E,D的坐标分别为:E(a,h),D(A,0),于是得到ED所在的直线方程为:(16)对于任意的y∈[0,h],过点(0,y)且垂直于y轴的平面截该立体为一椭圆,且该椭圆的半轴为:,同理可得该椭圆的另一半轴为:.故该椭圆面积为从而立体的体积为.6.计算底面是半径为R的圆,而垂直于底面一固定直径的所有截面都是等边三角形的立体体积.见图17.(17)解:以底面上的固定直径所在直线为x轴,过该直径的中点且垂直于x轴的直线为y 轴,建立平面直角坐标系,则底面圆周的方程为:x2+y2=R2.过区间[ R,R]上任意一点x,且垂直于x轴的平面截立体的截面为一等边三角形,若设与x对应的圆周上的点为(x,y),则该等边三角形的边长为2y,故其面积等于从而该立体的体积为.7.求下列曲线段的弧长:(1),0≤x≤2;解:见图18,2yy′=2.∴.从而(18)(2)y=ln x,;解:.(3);解:=4.8.设星形线的参数方程为x=a cos3t,y=a sin3t,a>0求(1)星形线所围面积;(2)绕x轴旋转所得旋转体的体积;(3)星形线的全长.解:(1).(2)(3)x t′=-3a cos2t sin ty t′=3a sin2t cos tx t′2+y t′2=9a2sin2t cos2t,利用曲线的对称性,.9.求对数螺线r=e aθ相应θ=0到θ=φ的一段弧长.解:.10.求半径为R,高为h的球冠的表面积.解:=2πRh.11.求曲线段y=x3(0≤x≤1)绕x轴旋转一周所得旋转曲面的面积.解:.12.把长为10m,宽为6m,高为5m的储水池内盛满的水全部抽出,需做多少功?解:如图19,区间[x,x+d x]上的一个薄层水,有微体积d V=10·6·d x(19)设水的比重为1,,则将这薄水层吸出池面所作的微功为d w=x·60g d x=60gx d x.于是将水全部抽出所作功为.13.有一等腰梯形闸门,它的两条底边各长10m和6m,高为20m,较长的底边与水面相齐,计算闸门的一侧所受的水压力.解:如图20,建立坐标系,直线AB的方程为.压力元素为所求压力为(20)=1467(吨) =14388(KN)14. 半径为R 的球沉入水中,球的顶部与水面相切,球的密度与水相同,现将球从水中取离水面,问做功多少?解:如图21,以切点为原点建立坐标系,则圆的方程为(x -R )2+y 2=R 2将球从水中取出需作的功相应于将[0,2R ]区间上的许多薄片都上提2R 的高度时需作功的和的极限。

取深度x 为积分变量,典型小薄片厚度为d x ,将它由A 上升到B 时,在水中的行程为x ;在水上的行程为2R -x 。

因为球的比重与水相同,所以此薄片所受的浮力与其自身的重力之和x 为零,因而该片在水中由A 上升到水面时,提升力为零,并不作功,由水面再上提到B 时,需作的功即功元素为222d (2)[π()d ]π(2d π(2)(2)d w R x g y x x g R x x g R x Rx x x=-=-=--所求的功为220222302223404π(2)(2)d π(44)d 41π2344π(KJ).3RRRw g R x Rx x xg R x Rx x xg R x Rx x R g =--=-+⎛⎫=-+ ⎪⎝⎭=⎰⎰15. 设有一半径为R ,中心角为φ的圆弧形细棒,其线密度为常数ρ,在圆心处有一质量为m 的质点,试求细棒对该质点的引力。

解:如图22,建立坐标系,圆弧形细棒上一小段d s 对质点N 的引力的近似值即为引力元素(图22)22d d (d )d d d cos cos d ,x km s km km F R R R Rkm F F R ρρρθθρθθθ===== 则22022cos d 2cos d sin2d d sin sin d x y km km km F R R R km F F Rϕϕϕρρρϕθθθθρθθθ-=====⎰⎰则22sin d 0.y km F R ϕϕρθθ-==⎰故所求引力的大小为2sin2km Rρϕ,方向自N 点指向圆弧的中点。

16. 求下列函数在[-a ,a ]上的平均值:(21)(1)()f x =解:200111π1.arcsin 2422aa a a x y x x a a a a -⎡====+⎢⎣⎰⎰(2) f (x )=x 2解:2223001111d d .233aa a a a y x x x x x a a a -⎡⎤====⎢⎥⎣⎦⎰⎰ 17. 求正弦交流电i =I 0sin ωt 经过半波整流后得到电流0πsin ,0π2π0,I t t i t ωωωω⎧≤≤⎪⎪=⎨⎪≤≤⎪⎩的平均值和有效值。

解:ππ2π00π0021sin d 0d cos ππππI I i I t t t t ωωωωωωωωωω⎡⎤=+==-⎢⎥⎣⎦⎰⎰ 有效值I =2ππ2π2222π000π2220001()d ()d ()d ()d 2π2πsin d 2π4T i t t i t t i t t i t t T I I t t ωωωωωωωωω⎡⎤==+⎢⎥⎣⎦==⎰⎰⎰⎰⎰故有效值为2I I =. 18. 已知电压u (t )=3sin2t ,求(1) u (t )在π0,2⎡⎤⎢⎥⎣⎦上的平均值; 解:π2026()3sin 2d .ππu t t t ==⎰ (2) 电压的均方根值.解:均方根公式为()f x =故()ut ===19. 设某企业固定成本为 C ′(x )=x 2-14x +111,R ′(x )=100-2x . 试求最大利润.解: 设利润函数L (x ). 则L (x )=R (x )-C (x )-50由于L ′(x )=R ′(x )-C (x )=(100-2x )-(x 2-14x +111)=-x 2+12x -11 令L ′(x )=0得x =1,x =11.又当x =1时,L ″(x )=-2x+12>0.当x =11时L ″(x )<0,故当x =11时利润取得最大值.且最大利润为L (11)=1120(1211)d 50x x x -+--⎰311013341[611]50111.333x x x =-+--==20. 设某工厂生产某种产品的固定成本为零,生产x (百台)的边际成本为C ′(x )(万元/百台),边际收入为R ′(x )=7-2x (万元/百台). (1) 求生产量为多少时总利润最大?(2) 在总利润最大的基础上再生产100台,总利润减少多少? 解:(1) 当C ′(x )=R ′(x )时总利润最大. 即2=7-2x ,x=5/2(百台)(2) L ′(x )=R ′(x )-C ′(x )=5-2x .在总利润最大的基础上再多生产100台时,利润的增量为ΔL (x )=772255222(52)d 51x x x x-=-=-⎰.即此时总利润减少1万元.21. 某企业投资800万元,年利率5%,按连续复利计算,求投资后20年中企业均匀收入率为200万元/年的收入总现值及该投资的投资回收期. 解:投资20年中总收入的现值为205%5%2001200800e d (1e )5%400(1e )2528.4 ()t y t --⋅-==-=-=⎰万元纯收入现值为R =y -800=2528.4-800=1728.4(万元)收回投资,即为总收入的现值等于投资, 故有5%200(1e )8005%12005ln =20ln =4.46 ().5%2008005%4T T -⋅-==-⨯年22. 某父母打算连续存钱为孩子攒学费,设建行连续复利为5%(每年),若打算10年后攒够5万元,问每年应以均匀流方式存入多少钱? 解:设每年以均匀流方式存入x 万元,则 5= 10(10)0.050e d t x t-⎰即 5=20x (e 0.5-1)0.514(e 1)x =-≈0.385386万元=3853.86元.。

相关文档
最新文档