液态金属冷却技术
三种液态成形方法

三种液态成形方法液态成形是工程领域中的一种重要成形技术,用于制造各种金属或非金属零件。
它通过将材料加热至液态,并注入到模具中,随后冷却并固化成所需形状。
液态成形方法具有制造复杂零件、提高生产效率和减少原材料浪费等优点。
下面将介绍三种常用的液态成形方法:压铸、注射成型和热挤压。
1.压铸压铸是一种通过将液态金属或合金注入高温模具中,并以高压使其充分充实和冷却而形成所需零件的成形方法。
压铸适用于制造具有复杂形状和精密尺寸要求的铝、镁、锌等金属零件。
工艺流程:(1)准备模具:根据所需零件的形状和尺寸,制造金属模具。
(2)准备材料:根据所需零件的要求,选择适合的金属或合金,并将其加热至液态。
(3)充填模具:将液态金属或合金注入已加热的模具中。
(4)施加压力:通过驱动液压系统,施加高压使液态金属或合金充实模具腔体,并排除有害气体。
(5)冷却固化:等待足够时间,让液态金属或合金冷却并固化成所需形状。
(6)分离模具:打开模具并取出成品零件。
(7)修整和后处理:将零件上的余料切割掉,并进行必要的表面处理。
2.注射成型注射成型是一种通过将液态或半液态塑料材料注入模具中,并在成型温度下固化成所需形状的成形方法。
注射成型适用于制造塑料零件,广泛应用于电子、汽车、日用品等领域。
工艺流程:(1)准备模具:根据所需零件的形状和尺寸,制造塑料模具。
(2)准备材料:选择适合注射成型的塑料树脂,并将其加热至液态或半液态。
(3)充填模具:将液态或半液态塑料注入已加热的模具中。
(4)冷却固化:等待足够时间,让塑料在模具中冷却并固化成所需形状。
(5)分离模具:打开模具并取出成品零件。
(6)修整和后处理:将零件上的余料切割掉,并进行必要的表面处理。
3.热挤压热挤压是一种通过将液态金属在高温和高压下通过模孔挤压成型的成形方法。
热挤压适用于制造具有长直形截面或复杂截面的杆、管和型材等零件。
工艺流程:(1)准备模具:根据所需零件的形状和尺寸,制造高温合金模具。
vc液冷板原理

vc液冷板原理VC液冷板是一种利用液体冷却技术来降低电子设备温度的散热器。
其原理是通过液体的物理特性来吸收电子设备产生的热量,并将其带走,以保持设备的正常运行温度。
VC液冷板的主要组成部分包括散热片、冷却液和管道系统。
散热片位于电子设备的散热部件上方,通过管道与冷却液连接。
当电子设备工作时,产生的热量会传导到散热片上,然后通过冷却液的循环流动,将热量带走。
冷却液是VC液冷板的核心部分。
它通常是一种具有较高热导率和较低粘度的液体,如水或液态金属等。
冷却液在散热片上吸收热量后,会形成热对流,使热量更均匀地分布在整个液冷板上。
然后,冷却液经过管道系统的输送,将热量带到其他位置进行散热,同时再次循环回到散热片上。
VC液冷板的工作原理可以分为两个步骤:传热和传质。
首先是传热过程,即热量从电子设备传导到散热片上。
热量的传导过程主要依靠热传导和对流传热。
散热片上的冷却液通过热传导吸收热量,然后通过对流传热将热量带走。
其次是传质过程,即冷却液通过管道系统将热量带到其他位置进行散热。
这个过程中,冷却液会发生相变,从液态变为气态,然后通过管道输送到散热器上进行散热。
在散热器上,冷却液再次发生相变,从气态变为液态,释放出大量的热量,然后再次循环回到散热片上。
通过VC液冷板的液体冷却技术,可以有效地降低电子设备的温度,提高设备的运行效率和稳定性。
相比传统的散热器,VC液冷板具有更高的散热效率和更好的散热均匀性。
同时,它还可以减少设备的噪音和体积,提高设备的密度和可靠性。
然而,VC液冷板也存在一些局限性。
首先,由于液体冷却技术的复杂性,VC液冷板的制造成本较高。
其次,冷却液的循环和维护需要一定的技术和成本支持。
此外,液体冷却系统的泄漏问题也需要注意。
VC液冷板是一种高效的散热器,利用液体冷却技术来降低电子设备温度。
通过散热片、冷却液和管道系统的相互配合,VC液冷板可以有效地吸收和带走设备产生的热量,提高设备的运行效率和稳定性。
基于液态金属的高热流密度电力设备冷却实验研究

基于液态金属的高热流密度电力设备冷却实验研究李振明;刘伟;赵勇青;刘赟甲;丘明【摘要】大功率电力设备的冷却方式成为制约电力设备集约化紧凑性的重要因素.常规水冷技术难以应对具有高热流密度的工况条件,而新兴的液态金属冷却技术具有解决该难题的潜力.为此,本文建立了基于液态金属的高热流密度电力设备冷却实验平台.在该平台基础上,开展了液态金属和水的对流换热系数和热导率对比实验.实验表明,在相同工况条件下,以液态金属替代水作为冷却介质,系统热阻可由0.033 K/W降低至0.019 K/W;若进一步以液态金属替代传统导热膏作为界面材料,则散热系统热阻可降低至0.014 K/W.%Cooling the electric equipment with high power is one of the important issues to limit the compactness and intensity of electric equipment. Traditional water cooling can not deal with the operating conditions of high heat flux, however, novel liquid metal cooling has the potential to solve the problem. Therefore, this paper presents a study based on liquid metal cooling system for high heat flux electric equipment. The contrast experiments of con-vective heat transfer coefficient and thermal conductivity between the liquid metal and water are carried out. Experi-mental results show that the system thermal resistance can be reduced from 0. 033 K/W to 0. 019 K/W when using liquid metal instead of water as the coolant. Moreover, if further using liquid metal as the thermal interface materi-al, the system thermal resistance can be finally reduced to 0. 014K/W.【期刊名称】《电工电能新技术》【年(卷),期】2017(036)004【总页数】5页(P66-70)【关键词】电力设备;高热流密度;液态金属冷却;水冷【作者】李振明;刘伟;赵勇青;刘赟甲;丘明【作者单位】中国电力科学研究院储能与电工新技术研究所,北京100192;中国电力科学研究院储能与电工新技术研究所,北京100192;中国电力科学研究院储能与电工新技术研究所,北京100192;中国电力科学研究院储能与电工新技术研究所,北京100192;中国电力科学研究院储能与电工新技术研究所,北京100192【正文语种】中文【中图分类】TM40随着电力工业的发展,大功率电力设备的热管理已成为影响电力设备集约紧凑性的关键难题之一。
液态金属材料

液态金属材料
液态金属材料,又称金属玻璃或非晶金属,是一种具有非晶结构的金属材料。
相比于普通金属材料,液态金属材料具有更高的硬度、强度和弹性,同时具有良好的韧性和耐腐蚀性能。
由于其独特的性质,液态金属材料在航空航天、汽车制造、电子产品等领域具有广泛的应用前景。
液态金属材料的制备过程主要包括快速凝固和液态金属合金化两个关键步骤。
在快速凝固过程中,液态金属材料通过快速冷却形成非晶态结构,从而获得较高的硬度和强度。
而在液态金属合金化过程中,通过在金属基体中添加其他元素,可以调控其性能,使其具有更多的应用潜力。
液态金属材料具有优异的物理和化学性能。
首先,液态金属材料具有较高的玻
璃化转变温度,使其在室温下保持非晶态结构,从而具有较高的硬度和强度。
其次,液态金属材料具有良好的弹性和韧性,可以在较大应变下保持其完整性。
此外,液态金属材料还具有优异的耐腐蚀性能,可以在恶劣环境下长期稳定工作。
液态金属材料在航空航天领域具有重要的应用价值。
由于其高强度和轻质化的
特性,液态金属材料可以用于制造航空发动机叶片、飞机机身结构等关键部件,从而提高航空器的性能和安全性。
同时,在汽车制造领域,液态金属材料也可以用于制造汽车发动机缸体、车身结构等部件,从而提高汽车的动力性能和燃油经济性。
总的来说,液态金属材料作为一种新型金属材料,具有广阔的应用前景和发展
空间。
随着科学技术的不断进步,液态金属材料的制备工艺和性能调控将得到进一步提升,为其在航空航天、汽车制造、电子产品等领域的应用提供更多可能性。
相信在不久的将来,液态金属材料将成为金属材料领域的一颗耀眼的新星。
液态金属的用途

液态金属的用途液态金属是一种特殊的金属状态,具有许多独特的性质和用途。
以下是液态金属在不同领域中的应用和用途:1. 传导剂:液态金属具有良好的导电性和导热性,因此在电子领域和热传导领域有广泛的应用。
例如,在核能产业中,液态金属(如液钠)被用作核反应堆中的传热介质和冷却剂。
此外,液态金属还可用于制备高性能的热导电器件,如热管和液态金属散热器。
2. 金属合金制备:液态金属可以用于制备各种金属合金。
通过合金化,可以改变金属的性质和机械强度。
一些常见的合金化材料包括液态铝、液态铜和液态镍等。
这些合金广泛应用于航空航天、汽车制造、电子设备等领域。
3. 金属成形:液态金属可以通过注射成形、挤压和铸造等工艺来生产复杂形状的金属零件。
例如,液态铝合金常用于汽车制造中,可以通过挤压工艺生产汽车车身零件。
液态金属注射成形也在3D打印领域得到了广泛应用,可以制造出复杂的金属零件。
4. 磁流变流体:液态金属也可以用于制备磁流变流体,这是一种能够根据外加磁场改变其黏度的特殊流体。
磁流变流体广泛应用于减震器、液压传动系统和振动控制装置等领域。
除了以上列举的应用外,液态金属还在其他领域有一些特定的用途:- 化学反应中的催化剂:液态金属可以用作某些化学反应的催化剂,加速反应速率和提高反应选择性。
- 电子设备的散热材料:液态金属具有良好的散热性能,可以用于电子设备的散热材料,提高设备的工作稳定性和寿命。
- 高温热交换材料:液态金属可以在高温环境下稳定工作,因此可以用作高温热交换材料,用于提高能源转化效率。
综上所述,液态金属在传导剂、金属合金制备、金属成形、磁流变流体等领域有广泛应用。
此外,液态金属还在化学催化、电子设备散热和高温热交换等方面发挥重要作用。
随着科学技术的进步,液态金属的用途和应用领域还将不断扩展。
快速凝固技术

快速凝固技术快速凝固技术是目前材料科学与工程领域最活跃的课题之一。
它是通过对合金熔体进行快速冷却(冷却速率大于104~106K/s)或遏制冷却过程中的非均匀形核,使合金在大的过冷度下发生高生长速率(耳~100cm/s)的凝固。
冷却速率是决定合金凝固组织的关键因素,它不仅决定着凝固组织形态,而且对组织中各相的析出次序、种类及数量都有重要的影响。
所以较好地理解冷却速率对合金凝固组织和性能的影响,在解释同一成分合金铸造出不同形状铸件时微观组织的差异是相当有益的。
传统的铸造工艺,由于凝固速度较低,合金在冷却过程中的过冷度和凝固速度较小,因此常规铸造合金有着晶粒粗大、偏析严重等严重缺陷。
快速过冷技术无论对合金的成分设计还是还是对合金围观组织以及宏观特性都有很大的影响。
一、快速凝固技术快速凝固即由液相到固相的相变过程进行的非常快,从而得到普通铸件和铸锭无法获得的成分、相结构和显微组织结构的过程。
目前快速凝固技术已经在许多方面显示出其优越性,与常规铸锭材料相比,快速凝固材料的偏析程度大幅度降低,而且快速凝固材料的化学成分多比较均匀。
应用快速凝固技术可以制备具有超高强度、高耐蚀性和磁性的材料,非晶、准晶、微晶和纳米晶合金等。
目前,快速凝固技术已成为一种挖掘金属材料潜在性能与发展前景的开发新材料的重要手段。
快速凝固技术已开始应用于研究合金在凝固时的各种组织形态的变化以及如何控制才能得到符合实际生活、生产要求的合金。
二、快速凝固的基本原理和分类从技术原理上讲,快速冷却主要有两种原理:急冷凝固技术和大过冷凝固技术。
1、急冷凝固技术急冷凝固技术又称熔体淬火技术,即提高熔体凝固时的传热速度从而提高凝固时的冷却速度,使熔体的形核时间短、效率高,来不及在平衡熔点附近凝固,只能在远离平衡熔点的较低温度下凝固。
急冷凝固技术的核心是要提高凝固过程中熔体的冷却速度。
一个相对于环境放热的系统的冷却速度取决于该系统在单位时间内产生的热量和传出系统的热量。
液态模锻
成形方法:(1)铸造(Casting):强度小,成本低;容易出现气孔、 缩松;(2)锻造(Forging):强度高,导热性好,成本高,用于强 化发动机;(3)液态模锻:兼有前两者特点,切削少,利用率高, 消除铸造缺陷,提高毛坯质量
液态模锻加压方式
1、平冲头加压 (1)、直接加压压头(成型凸模)直接作
连续铸钢
薄板坯连铸连轧
1-中间包; 2-结晶器; 3-液芯压下; 4-除鳞机; 5-预轧机; 6-剪切机; 7-感应加热炉; 8-热卷箱; 9-事故剪; 10-除鳞机; 11-精轧机; 12-层流冷却; 13-卷取机
薄板坯连铸连轧
1-结晶器; 2-挤压辊; 3-轧制辊; 4-感应炉; 5-除鳞区; 6-轧机; 7-冷却区; 8-卷取机
9、若有芯模时,垂直缸应有足够的提升力量;水平缸也应 有足够的压力,以便施压时能使模具保持紧闭状态,防止金 属液挤出。
几种液态模锻设备:
磁性材料液压机
该压机具有调整、半自动两种工作方式: (1) 调整动作主要 用于安装、调整模具。 (2) 半自动工艺动作: 下活塞顶出 →滑块快下→滑块减速下行→合模延时→自动注料→滑块 慢速 压制 (充磁)→滑块低速压制(充磁) → 保 压 → 泄压延 时(退磁) →脱模→ Ⅰ:滑块回程→下活塞退回 →取坯 Ⅱ: 下活塞退回→滑块回程
铜,延时需更长些。 4、保压时间
升压阶段一旦结束,便进入稳定加压,即保压阶段,直至加压结束 (卸压)的时间间隔,为保压时间。
保压时间长短与合金特性和制件大小有关,可按下述情况进行选用: 1)铝合金制件,壁厚在50mm以下,可取0.5s/mm,壁厚在100mm以 上,可取1.0~1.5s/mm; 2)铜合金制件,壁厚在100mm以下,可取1.5s/mm; 3)黑色金属制件,壁厚在100mm以下,可取1.5s/mm。 5、加压速度 加压速度指加压开始时液压机行程速度。加压速度过快,金属液易卷 入气体和金属液飞溅;过慢自由结壳太厚,降低加压效果。 加压速度的大小主要与制件尺寸有关。对于小件,取0.2~0.4m/s; 对于大件取0.1m/s。
第八章-凝固新技术—定向凝固
在提高GL的条件下,增加R,才能获得所要求的晶体形态,细化组 织,改善质量,并且,提高定向凝固铸件生产率。
定向凝固技术和装置不断改进,其关键技术之一是提高 固-液界面前沿液相中的温度梯度GL。目前, GL已经达到 100-300℃/cm,工业生产中已达到30-80℃/cm。
西北工业大学李建国等人通过改变加热方式,在液态 金属冷却法(LMC法)的基础上发展的一种新型定向凝固 技术—区域熔化液态金属冷却法,即ZMLMC法。
33
这种方法将区域熔炼与液态金属冷却相结合,利用 感应加热机中队了凝固洁面前沿液相进行加热,从而有 效地提高了固液前沿的温度梯度。西北工业大些研制的 ZMLMC定向凝固装置,其最高温度梯度可达1300K/cm,最
怎么看都是个美女,可是她与众不同 ,十分 特殊。
7、鬓珠作衬,乃具双目如
星复作月,脂窗粉塌能鉴人。略有妖 意,未 见媚态 ,妩然 一段风 姿,谈 笑间, 唯
少
• 定向凝固涡轮叶片,寿命是普通铸造的2.5倍 • 单晶叶片,寿命是普通铸造的5倍
等轴晶、定向柱状晶、单晶叶片
自1965年美国普拉特·惠特尼航空公司采用高 温合金定向凝固技术以来,这项技术已经在许多 国家得到应用。
此外,由于凝固速率慢,铸件偏析严 重,热处理困难。因此HRS法生产重型燃机 用大尺寸叶片时,成品率低,效率低,成 本高。
• 4.液态金属冷却法(L.M.C法)
• 1974年出现的一种新的单向凝固方法; • 工艺过程与H.R.S 法基本相同,主要区别:在于冷却介质为低
熔点的液态金属。当合金液浇入型壳后,按选择的速度将壳 型拉出炉体,模壳直接浸入金属浴中冷却。金属浴的水平面 保持在凝固的固一液界面近处,并使其保持在一定温度范围 内。散热大大增强。
连铸机工作原理
连铸机工作原理1. 简介连铸机作为铸造行业中的一种关键设备,主要用于将液态金属快速凝固成连续铸坯。
它的工作原理涉及到多个步骤和关键技术,下面将逐步介绍。
2. 连铸机的主要构成部分连铸机主要由以下几个部分组成:2.1 结晶器结晶器是连铸机的核心部件,用于将液态金属快速凝固成固态铸坯。
结晶器内部有多个铜管,通过内部循环的冷却水将液态金属快速冷却并凝固。
2.2 铸模铸模是连接铸坯与连铸机的关键部分,用于引导金属液流入结晶器。
铸模的形状和尺寸决定了铸坯的外形和尺寸。
2.3 切割机构连铸机的切割机构用于定期切割凝固的铸坯,以达到所需的长度。
切割后的铸坯会进一步进行后续加工和处理。
2.4 传动系统传动系统通过驱动液压装置和电机来实现连铸机各组件的运动。
传动系统需要具备精准的控制能力,以确保连铸过程的稳定性和可靠性。
3. 连铸机的工作原理连铸机的工作原理可以分为以下几个步骤:3.1 准备阶段在连铸机开始工作之前,需要对连铸机进行各项检查和准备工作。
包括检查冷却水系统、液压系统、电气系统等是否正常运行,确保铸坯模具的清洁和正确安装。
3.2 浇注铸坯首先,将液态金属通过浇注设备注入铸模中。
连铸机通过液压系统控制浇注速度,以保证液态金属在铸模中的填充均匀性和稳定性。
3.3 凝固过程液态金属在结晶器中快速冷却并凝固。
内部的冷却水通过铜管与液态金属接触,将金属温度快速降低,使其凝固成固态铸坯。
凝固过程中,结晶器的移动速度要与液态金属的凝固速度相匹配,以保证凝固界面的稳定和铸坯的质量。
3.4 切割铸坯当铸坯达到所需长度后,连铸机的切割机构会进行切割,将铸坯从连铸机上分离。
同时,切割后的铸坯会被传送到后续的加工设备进行进一步加工和处理。
3.5 循环再铸连铸机可以实现连续工作,即一块铸坯完成后,下一块铸坯可以立即开始制备。
通过循环再铸,可以提高生产效率和连铸机的利用率。
4. 连铸机的优势和应用领域连铸机具有以下几个优势:4.1 提高生产效率连铸机的连续工作方式,使得生产效率大大提高。
定向、单晶凝固基础理论和工艺讲义解析
各种结晶形态
等轴晶
柱状晶
柱状晶
单晶
基本原理
铸件定向凝固需要两个条件:首先,热流向单一方向 流动并垂直于生长中的固-液界面;其次,晶体生长前 方的熔液中没有稳定的结晶核心。为此,在工艺上必 须采取措施避免侧向散热,同时在靠近固-液界面的熔 液中应造成较大的温度梯度。这是保证定向柱晶和单 晶生长挺直,取向正确的基本要素。以提高合金中的 温度梯度为出发点,定向凝固技术已由功率降低法、 快速凝固法发展到液态金属冷却法。
液态金属冷却法(LMC法)常用的金属
常用的液态金属有Ga—In合金和Ga—In—Sn合金,以 及Sn液,前二者熔点低,但价格昂贵,因此只适于在 实验室条件下使用。 Sn液熔点稍高(232℃),但由于价 格相对比较便宜,冷却效果也比较好,因而适于工业 应用。
单晶、定向凝固工艺
由于单晶、定向铸件与等轴晶铸件凝固方式的不同,故铸 件整个技术要求、工艺方案、生产过程、过程控制和检验 内容也与等轴晶要求不同。 以下就不同之处和关键点按工序过程进行讲解。
2 功率降低法(PD法)
将保温炉的加热器分成几组,保温炉是分段加热的。 当熔融的金属液置于保温炉内后,在从底部对铸件冷 却的同时,自下而上顺序关闭加热器,金属则自下而 上逐渐凝固,从而在铸件中实现定向凝固。通过选择 合适的加热器件,可以获得较大的冷却速度,但是在 凝固过程中温度梯度是逐渐减小的,致使所能允许获 得的柱状晶区较短,且组织也不够理想。加之设备相 对复杂,且能耗大,限制了该方法的应用。
4 液态金属冷却法(LMC法)
HRS法是由水换热来冷却的,所能获得的温度梯度和 冷却速度都很有限。为了获得更高的温度梯度和生长 速度。在HRS法的基础上,将抽拉出的铸件部分浸入 具有高导热系数的高沸点、低熔点、热容量大的液态 金属中,形成了一种新的定向凝固技术,即LMC法。 这种方法提高了铸件的冷却速度和固液界面的温度梯 度,而且在较大的生长速度范围内可使界面前沿的温 度梯度保持稳定,结晶在相对稳态下进行,能得到比 较长的单向柱晶。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
液态金属冷却技术
液态金属冷却技术是一种创新的散热解决方案,适用于高温应用领域。
该技术基于一
种特殊的液态金属合金,具有出色的导热性和流动性。
该技术的核心在于设计和制造具有微细通道结构的散热器。
这些通道由专利保护的液
态金属合金填充,其成分经过某些处理方法获得,以达到最佳的导热性能。
在这种结构中,液态金属合金能够高效地吸热并迅速散热。
在使用过程中,液态金属合金通过通道从热源处流向散热器,吸收热量并迅速冷却,
然后再次回到热源处。
通过这种循环过程,热量可以快速传导和散发,实现高效的冷却效果。
该技术具有许多优点。
液态金属合金具有优异的导热性能,能够快速而有效地吸热。
微细通道结构提供了充分的表面积,可以增加热量传导的速率。
液态金属冷却技术具有良
好的可靠性和耐久性,能够长时间稳定地工作。
液态金属冷却技术可以被应用于各种高温设备和系统中,例如电子器件、工业设备、
航空航天器件等。
通过采用该技术,可以有效地降低设备温度,延长设备寿命,并提高系
统的可靠性和性能。
液态金属冷却技术是一项创新的高温散热解决方案,其独特的结构和导热性能使其具
有广泛的应用前景。
它为各个行业提供了一种高效、可靠和持久的冷却方法。