中考数学总复习导学案
安徽中考数学总复习教学案:第一章数与式

第一章数与式第一章数与式第1讲实数及其运算~安徽中考命题分析安徽中考命题预测预测安徽省中考仍将主要考查:有理数、数轴、相反数、绝对值、平方根、算数平方根、立方根、无理数、实数、近似数等的相关概念;有理数的加、减、乘方运算;有理数的大小比较,用科学记数法表示数等.题型多以选择题、填空题为主,偶尔也有解答题出现,但难度都属于基础题的要求.科学记数法、实数的运算,都是安徽中考的重点考查对象,要求考生熟练掌握.年份考察内容题型题号分值有理数的乘法选择题14科学记数法填空题115倒数选择题14科学记数法选择题24有理数的加法选择题14科学记数法填空题11 51.实数的有关概念(1)数轴:规定了__原点__,__正方向__和__单位长度__的直线叫做数轴,数轴上所有的点与全体__实数__一一对应.(2)相反数:只有__符号__不同,而__绝对值__相同的两个数称为互为相反数.a ,b 互为相反数⇔a +b =__0__.(3)倒数:1除以一个不等于零的实数所得的__商__,叫做这个数的倒数.a ,b 互为倒数⇔ab =__1__.(4)绝对值:在数轴上,一个数对应的点离开原点的__距离__,叫做这个数的绝对值.|a |=⎩⎨⎧ a ,(a >0) 0 ,(a =0) -a ,(a <0)|a |是一个非负数,即|a |__≥0__. (5)科学记数法,近似数:科学记数法就是把一个数表示成__±a ×10n __(1≤a <10,n 是整数)的形式;一个近似数,__四舍五入__到哪一位,就说这个数精确到哪一位.(6)平方根,算术平方根,立方根:如果x 2=a ,那么x 叫做a 的平方根,记作__x =±a __;正数a 的正的平方根,叫做这个数的算术平方根;如果x 3=a ,那么x 叫做a 的立方根,记作__x =3a __.(7)识记:112=________,122=________,132=________,142=________,152=________,162=________,172=________,182=________,192=________,202=________,212=________,222=__________,232=________,242=________,252=__________.13=________,23=________,33=__________,43=________,53=________,63=__________,73=________,83=________,93=__________,103=________.2.实数的分类按实数的定义分类:实数⎩⎪⎪⎨⎪⎪⎧ 有理数⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫整数⎩⎨⎧ ⎭⎪⎬⎪⎫ 正整数 零 自然数负整数分数⎩⎪⎨⎪⎧ 正分数负分数有限小数或无限循环小数无理数⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫ 正无理数负无理数 无限不循环小数根据需要,我们也可以按符号进行分类,如:实数⎩⎪⎨⎪⎧正实数零负实数3.零指数幂,负整数指数幂任何非零数的零次幂都等于1,即__a 0=1(a ≠0)__;任何不等于零的数的-p 次幂,等于这个数p 次幂的倒数,即__a -p =1ap (a ≠0,p 为正整数)__.4.实数的运算实数的运算顺序是先算__乘方和开方__,再算__乘除__,最后算__加减__,如果有括号,先算__小括号__,再算__中括号__,最后算__大括号__,同级运算应__从左到右依次进行__.五种大小比较方法实数的大小比较常用以下五种方法:(1)数轴比较法:将两数表示在数轴上,右边的点表示的数总比左边的点表示的数大. (2)代数比较法:正数大于零;负数小于零;正数大于一切负数;两个负数,绝对值大的数反而小.(3)差值比较法:设a ,b 是两个任意实数,则:a -b >0⇒a >b ;a -b =0⇒a =b ;a -b <0⇒a <b .(4)倒数比较法:若1a >1b,a >0,b >0,则a <b .(5)平方比较法:∵由a >b >0,可得a >b ,∴可以把a 与b 的大小问题转化成比较a 和b 的大小问题.1.(·安徽)(-2)×3的结果是( C )A .-5B .1C .-6D .6 2.(·安徽)-2的倒数是( A ) A .-12 B .12C .2D .-23.(·安徽)下面的数中,与-3的和为0的是( A ) A .3 B .-3 C .13 D .-134.(·安徽)据报载,我国将发展固定宽带接入新用户25000000户,其中25000000用科学记数法表示为__2.5×107__.5.(·安徽)安徽省棉花产量约37800吨,将37800用科学记数法表示应是__3.78×104__.实数的分类【例1】 (·合肥模拟)实数π,15,0,-1中,无理数是( A )A .πB .15C .0D .-1【点评】 判断一个数是不是无理数,关键就看它能否写成无限不循环小数,初中常见的无理数共分三种类型:(1)化简后含π(圆周率)的式子;(2)含根号且开不尽方的数;(3)有规律但不循环的无限小数.掌握常见无理数类型有助于识别无理数.1.(1)(·安顺)下列各数中,3.14159,-38,0.131131113…,-π,25,-17无理数的个数有( B )A .1个B .2个C .3个D .4个 (2)(·安庆模拟)下列各数中,为负数的是( B )A .0B .-2C .1D .12实数的运算【例2】 (·重庆)计算:4+(-3)2-0×|-4|+(16)-1.解:原式=2+9-1×4+6=11-4+6=13【点评】 实数运算要严格按照法则进行,特别是混合运算,注意符号和顺序是非常重要的.2.(·东营)计算:(-1)+(sin 30°)-1+(35-2)0-|3-18|+83×(-0.125)3.解:原式=1+2+1-32+3-1=6-3 2科学记数法与近似值、有效数字【例3】 (1)(·芜湖模拟)餐桌上的一蔬一饭,舌尖上的一饮一酌,实属来之不易,舌尖上的浪费让人触目惊心.据统计,中国每年浪费的食物总量折合粮食约500亿千克,这个数据用科学记数法表示为( A )A .5×1010千克B .50×109千克C .5×109千克D .0.5×1011千克(2)下列近似数中精确到千位的是( C ) A .90200 B .3.450×102 C .3.4×104 D .3.4×102【点评】 (1)科学记数法一般表示的数较大或很小,所以解题时一定要仔细,确定n 的值时,把大数的总位数减1即为n 的值,较小的数表示时就数第1个有效数字前所有“0”的个数(含小数点前的那个“0”)即为n 的值;(2)科学记数法写出这个数后可还原成原数进行检验;(3)用有效数字表示的数,在确定其精确度时,要还原成原数后再进行处理判断.3.(1)近似数2.5万精确到__千__位. (2)(·内江)一种微粒的半径是0.00004米,这个数据用科学记数法表示为( C )A .4×106B .4×10-6C .4×10-5 D .4×105与实数相关的概念【例4】 (1)(·河北)-2是2的( B )A .倒数B .相反数C .绝对值D .平方根(2)已知|a |=1,|b |=2,|c |=3,且a >b >c ,那么a +b -c =__2或0__.【点评】 (1)互为相反数的两个数和为0;(2)正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0;(3)两个非负数的和为0,则这两个数分别等于0.4.(1)计算:-(-12)=__12__;|-12|=__12__;(-12)0=__1__;(-12)-1=__-2__. (2)若ab >0,则|a |a +|b |b -|ab |ab的值等于__1或-3__.数轴【例5】 (·呼和浩特)实数a ,b ,c 在数轴上对应的点如下图所示,则下列式子中正确的是( D )A .ac >bcB .|a -b|=a -bC .-a <-b <cD .-a -c >-b -c【点评】 数形结合借助数轴找到数的位置,或由数找到在数轴上的点的位置及其相反数的位置,再根据数轴上右边的数大于左边的数,确定各数的大小或根据大减小为正,小减大为负,以及有理数的加法、乘法法则来确定数的运算后的符号.5.(1)(·蚌埠模拟)在如图所示的数轴上,点B 与点C 关于点A 对称,A ,B 两点对应的实数分别是3和-1,则点C 所对应的实数是( D )A .1+ 3B .2+ 3C .23-1D .23+1 (2)(·宁夏)实数a ,b 在数轴上的位置如图所示,以下说法正确的是( D )A .a +b =0B .b <aC .ab >0D .|b|<|a|实数的大小比较【例6】 (1)(·绍兴)比较-3,1,-2的大小,下列判断正确的是( A ) A .-3<-2<1 B .-2<-3<1 C .1<-2<-3 D .1<-3<-2(2)(·河北)a ,b 是两个连续整数,若a <7<b ,则a ,b 分别是( A ) A .2,3 B .3,2 C .3,4 D .6,8【点评】 实数的大小比较要依据数值特点来灵活运用比较大小的几种方法来进行.6.(1)(·阜阳模拟)比较大小:-2__>__-3. (2)比较2.5,-3,7的大小,正确的是( A ) A .-3<2.5<7 B .2.5<-3<7 C .-3<7<2.5 D .7<2.5<-3第2讲整式及其运算~安徽中考命题分析安徽中考命题预测预测安徽省中考仍将主要考查:用字母表示数,代数式的实际背景或几何意义,求代数式的值,代数式的分类,整式加、减、乘、除运算,运用乘法公式进行计算,整数指数幂的简单计算,这里要重点指出的是用字母表示数中渗透合情推理思想,它是安徽中考的一个重点,同时也是难点,要求复习时重点突破.年份考察内容题型题号分值乘方运算选择题 2 4整式加减解答题15 8整式运算选择题 4 4乘方运算选择题 3 4代数式的表示选择题 5 4整式加减解答题15 81.单项式:由__数与字母__或__字母与字母__相乘组成的代数式叫做单项式,所有字母指数的和叫做__单项式的次数__,数字因数叫做__单项式的系数__.单独的数、字母也是单项式.2.多项式:由几个__单项式相加__组成的代数式叫做多项式,多项式里次数最高的项的次数叫做这个__多项式的次数__,其中不含字母的项叫做__常数项__.3.整式:__单项式和多项式__统称为整式.4.同类项:多项式中所含__字母__相同并且__相同字母的指数__也相同的项,叫做同类项.5.幂的运算法则:(1)同底数幂相乘:__a m·a n=a m+n(m,n都是整数,a≠0)__;(2)幂的乘方:__(a m)n=a mn(m,n都是整数,a≠0)__;(3)积的乘方:__(ab)n=a n·b n(n是整数,a≠0,b≠0)__;(4)同底数幂相除:__a m÷a n=a m-n(m,n都是整数,a≠0)__.6.整式乘法:单项式与单项式相乘,把系数、同底数幂分别相乘作为积的因式,只在一个单项式里含有的字母,连同它的指数作为积的一个因式.单项式乘多项式:m(a+b)=__ma+mb__;多项式乘多项式:(a+b)(c+d)=__ac+ad+bc+bd__.7.乘法公式:(1)平方差公式:__(a+b)(a-b)=a2-b2__;(2)完全平方公式:__(a±b)2=a2±2ab+b2__.8.整式除法:单项式与单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,连同它的指数作为商的一个因式.多项式除以单项式,将这个多项式的每一项分别除以这个单项式,然后把所得的商相加.一座“桥梁”用字母表示数是从算术过渡到代数的桥梁,是后续学习的基础,用字母表示数能够简明地表示出事物的规律及本质特征.只有借助字母,才能把一些数量规律及数量更简洁、准确地表示出来.用字母表示数:(1)注意字母的确定性;(2)注意字母的任意性;(3)注意字母的限制性.二种思维方法法则公式既可正向运用,也可逆向运用.逆向运用和灵活变式运用既可简化计算,又能进行较复杂的代数式的大小比较.当直接计算有较大困难时,考虑逆向运用,可起到化难为易的功效.1.(·安徽)x2·x4=( B )A.x5B.x6C.x8D.x92.(·安徽)下列运算正确的是( B )A .2x +3y =5xyB .5m 2·m 3=5m 5C .(a -b)2=a 2-b 2D .m 2·m 3=m 6 3.(·安徽)计算(-2x 2)3的结果是( B ) A .-2x 5 B .-8x 6 C .-2x 6 D .-8x 5 4.(·安徽)某企业今年3月份产值为a 万元,4月份比3月份减少了10%,5月份比4月份增加了15%,则5月份的产值是( B )A .(a -10%)(a +15%)万元B .a(1-10%)(1+15%)万元C .(a -10%-15%)万元D .a(1-10%-15%)万元5.(·枣庄)如图,在边长为2a 的正方形剪去一边长为(a +2)的小正方形(a >2),将剩余部分剪开密铺成一个平行四边形,则该平行四边形的面积为( C )A .a 2+4B .2a 2+4aC .3a 2-4a -4D .4a 2-a -2整式的加减运算【例1】 (1)(·邵阳)下列计算正确的是( A ) A .2x -x =x B .a 3·a 2=a 6 C .(a -b)2=a 2-b 2 D .(a +b)(a -b)=a 2+b 2 (2)(·威海)已知x 2-2=y ,则x(x -3y)+y(3x -1)-2的值是( B ) A .-2 B .0 C .2 D .4【点评】 整式的加减,实质上就是合并同类项,有括号的,先去括号,只要算式中没有同类项,就是最后的结果.1.(1)(·威海)下列运算正确的是( C ) A .2x 2÷x 2=2x B .(-12a 2b)3=-16a 6b 3C .3x 2+2x 2=5x 2D .(x -3)3=x 3-9(2)(·厦门)先化简下式,再求值:(-x 2+3-7x)+(5x -7+2x 2),其中x =2+1.解:原式=x 2-2x -4=(x -1)2-5,把x =2+1代入原式,原式=(2+1-1)2-5=-3同类项的概念及合并同类项【例2】 若-4x a y +x 2y b =-3x 2y ,则a +b =__3__.【点评】 (1)判断同类项时,看字母和相应字母的指数,与系数无关,也与字母的相关位置无关,两个只含数字的单项式也是同类项;(2)只有同类项才可以合并.2.(·淮南模拟)已知12x n -2m y 4与-x 3y 2n 是同类项,则(mn)的值为( C )A .B .-C .1D .-1幂的运算【例3】 (1)(·济南)下列运算中,结果是a 5的是( A ) A .a 3·a 2 B .a 10÷a 2 C .(a 2)3 D .(-a)5(2)(·芜湖模拟)计算(a 2)3÷(a 2)2的结果是( B ) A .a B .a 2 C .a 3 D .a 4【点评】 (1)幂的运算法则是进行整式乘除法的基础,要熟练掌握,解题时要明确运算的类型,正确运用法则;(2)在运算的过程中,一定要注意指数、系数和符号的处理.3.(1)(·)下列各式计算正确的是( D ) A .a 2+2a 3=3a 5 B .(a 2)3=a 5 C .a 6÷a 2=a 3 D .a ·a 2=a 3(2)(·随州)计算(-12xy 2)3,结果正确的是( B )A .14x 2y 4B .-18x 3y 6C .18x 3y 6D .-18x 3y 5 整式的混合运算及求值【例4】 (·绍兴)先化简,再求值:a(a -3b)+(a +b)2-a(a -b),其中a =1,b =-12.解:原式=a 2-3ab +a 2+2ab +b 2-a 2+ab =a 2+b 2=1+14=54【点评】 注意多项式乘多项式的运算中要做到不重不漏,应用乘法公式进行简便计算,另外去括号时,要注意符号的变化,最后把所得式子化简,即合并同类项,再代值计算.4.(·合肥模拟)化简2[(m -1)m +m(m +1)][(m -1)m -m(m +1)],若m 是任意整数,请观察化简后的结果,你发现原式表示一个什么数?解:2[(m -1)m +m(m +1)][(m -1)m -m(m +1)]=2(m 2-m +m 2+m)(m 2-m -m 2-m)=-8m 3.原式=(-2m)3,表示3个-2m 相乘,或者说是一个立方数,8的倍数等乘法公式【例5】 (·芜湖模拟)如图①,从边长为a 的正方形纸片中剪去一个边长为b 的小正方形,再沿着线段AB 剪开,把剪成的两张纸片拼成如图②的等腰梯形.(1)设图①中阴影部分面积为S 1,图②中阴影部分面积为S 2,请直接用含a ,b 的代数式表示S 1和S 2;(2)请写出上述过程所揭示的乘法公式.(1)S 1=a 2-b 2;S 2=12(2b +2a)(a -b)=(a +b)(a -b)(2)(a +b)(a -b)=a 2-b 2【点评】 (1)在利用完全平方公式求值时,通常用到以下几种变形: ①a 2+b 2=(a +b)2-2ab ; ②a 2+b 2=(a -b)2+2ab ;③(a+b)2=(a-b)2+4ab;④(a-b)2=(a+b)2-4ab.注意公式的变式及整体代入的思想.(2)算式中的局部直接使用乘法公式、简化运算,任何时候都要遵循先化简,再求值的原则.5.(1)整式A与m2-2mn+n2的和是(m+n)2,则A=__4mn__.(2)(·广州)已知多项式A=(x+2)2+(1-x)(2+x)-3.①化简多项式A;②若(x+1)2=6,求A的值.解:①A=(x+2)2+(1-x)(2+x)-3=x2+4x+4+2-2x+x-x2-3=3x+3②(x+1)2=6,则x+1=±6,∴A=3x+3=3(x+1)=±3 6第3讲因式分解~安徽中考命题分析安徽中考命题预测预测安徽省中考仍将主要考查:用提取公因式法、公式法(直接用公式不超过两次)分解因式等.题型多以选择题、填空题为主,偶尔也有解答题出现,但难度都属于基础题的要求.年份考察内容题型题号分值因式分解选择题 4 4因式分解填空题12 5因式分解选择题 4 41.因式分解把一个多项式化成几个__整式__积的形式,叫做因式分解,因式分解与__整式乘法__是互逆运算.2.基本方法(1)提取公因式法:ma+mb-mc=__m(a+b-c)__.(2)公式法:运用平方差公式:a2-b2=__(a+b)(a-b)__;运用完全平方公式:a2±2ab+b2=__(a±b)2__.3.因式分解的一般步骤(1)如果多项式的各项有公因式,那么必须先提取公因式;(2)如果各项没有公因式,那么尽可能尝试用公式法来分解;(3)分解因式必须分解到不能再分解为止,每个因式的内部不再有括号,且同类项合并完毕,若有相同因式写成幂的形式,这样才算分解彻底;(4)注意因式分解中的范围,如x4-4=(x2+2)(x2-2),在实数范围内分解因式,x4-4=(x2+2)(x+2)(x-2),题目不作说明的,表明是在有理数范围内因式分解.思考步骤多项式的因式分解有许多方法,但对于一个具体的多项式,有些方法是根本不适用的.因此,拿到一道题目,先试试这个方法,再试试那个办法.解题时思考过程建议如下:(1)提取公因式;(2)看有几项;(3)分解彻底.在分解出的每个因式化简整理后,把它作为一个新的多项式,再重复以上过程进行思考,试探分解的可能性,直至不可能分解为止.变形技巧当n为奇数时,(a-b)n=-(b-a)n;当n为偶数时,(a-b)n=(b-a)n.1.(·安徽)下列四个多项式中,能因式分解的是( B)A.a2+1B.a2-6a+9C.x2+5y D.x2-5y2.(·毕节)下列因式分解正确的是( A)A.2x2-2=2(x+1)(x-1)B.x2+2x-1=(x-1)2C.x2+1=(x+1)2D.x2-x+2=x(x-1)+23.(·安徽)因式分解:x2y-y=__y(x+1)(x-1)__.4.(·安徽)下面的多项式中,能因式分解的是( D)A.m2-n B.m2-m-1C.m2+n D.m2-2m+15.(·哈尔滨)把多项式3m2-6mn+3n2分解因式的结果是__3(m-n)2__.因式分解的意义【例1】(·泉州)分解因式x2y-y3结果正确的是( D )A.y(x+y)2B.y(x-y)2C.y(x2-y2) D.y(x+y)(x-y)【点评】因式分解是将一个多项式化成几个整式积的形式的恒等变形,若结果不是积的形式,则不是因式分解,还要注意分解要彻底.1.(·玉林)下面的多项式在实数范围内能因式分解的是( D )A.x2+y2B.x2-yC.x2+x+1 D.x2-2x+1提取公因式法分解因式【例2】阅读下列文字与例题:将一个多项式分组后,可提取公因式或运用公式继续分解的方法是分组分解法.例如:(1)am+an+bm+bn=(am+bm)+(an+bn)=m(a+b)+n(a+b)=(a+b)(m+n);(2)x2-y2-2y-1=x2-(y2+2y+1)=x2-(y+1)2=(x+y+1)(x-y-1).试用上述方法分解因式:a2+2ab+ac+bc+b2=__(a+b)(a+b+c)__.【点评】(1)首项系数为负数时,一般公因式的系数取负数,使括号内首项系数为正;(2)当某项正好是公因式时,提取公因式后,该项应为1,不可漏掉;(3)公因式也可以是多项式.2.(1)多项式ax2-4a与多项式x2-4x+4的公因式是__x-2__.(2)把多项式(m+1)(m-1)+(m-1)提取公因式(m-1)后,余下的部分是( D )A.m+1 B.2mC.2 D.m+2运用公式法分解因式【例3】(1)(·东营)3x2y-27y=__3y(x+3)(x-3)__;(2)(·邵阳)将多项式m2n-2mn+n因式分解的结果是__n(m-1)2__.【点评】(1)用平方差公式分解因式,其关键是将多项式转化为a2-b2的形式,需注意对所给多项式要善于观察,并作适当变形,使之符合平方差公式的特点,公式中的“a”“b”也可以是多项式,可将这个多项式看作一个整体,分解后注意合并同类项;(2)用完全平方公式分解因式时,其关键是掌握公式的特征.3.分解因式:(1)9x2-1;(2)25(x+y)2-9(x-y)2;(3)(·淮北模拟)a-6ab+9ab2;(4)(·湖州)mx2-my2.解:(1)9x2-1=(3x+1)(3x-1)(2)25(x+y)2-9(x-y)2=[5(x+y)+3(x-y)][5(x+y)-3(x-y)]=(8x+2y)(2x+8y)=4(4x+y)(x+4y)(3)a-6ab+9ab2=a(1-6b+9b2)=a(1-3b)2(4)mx2-my2=m(x2-y2)=m(x+y)(x-y)综合运用多种方法分解因式【例4】给出三个多项式:12x2+x-1,12x2+3x+1,12x2-x,请你选择其中两个进行加法运算,并把结果分解因式.解:(12x 2+x -1)+(12x 2+3x +1)=x 2+4x =x(x +4);(12x 2+x -1)+(12x 2-x)=x 2-1=(x+1)(x -1);(12x 2+3x +1)+(12x 2-x)=x 2+2x +1=(x +1)2【点评】 灵活运用多种方法分解因式,其一般顺序是:首先提取公因式,然后再考虑用公式,最后结果一定要分解到不能再分解为止.4.(1)(·武汉)分解因式:a 3-a =__a(a +1)(a -1)__; (2)(·黔东南州)分解因式:x 3-5x 2+6x =__x(x -3)(x -2)__;因式分解的应用 【例5】 (1)(·河北)计算:852-152=( D )A .70B .700C .4900D .7000 (2)已知a 2+b 2+6a -10b +34=0,求a +b 的值.解:∵a 2+b 2+6a -10b +34=0,∴a 2+6a +9+b 2-10b +25=0,即(a +3)2+(b -5)2=0,∴a +3=0且b -5=0,∴a =-3,b =5,∴a +b =-3+5=2【点评】 (1)利用因式分解,将多项式分解之后整体代入求值;(2)一个问题有两个未知数,只有一个条件,根据已知式右边等于0,若将左边转化成两个完全平方式的和,而它们都是非负数,要使和为0,则每个完全平方式都等于0,从而使问题得以求解.5.(1)(·马鞍山模拟)若ab =2,a -b =-1,则代数式a 2b -ab 2的值等于__-2__.(2)已知a ,b ,c 是△ABC 的三边长,且满足a 3+ab 2+bc 2=b 3+a 2b +ac 2,则△ABC 的形状是( C )A .等腰三角形B .直角三角形C .等腰三角形或直角三角形D .等腰直角三角形(3)(·北京)已知x -y =3,求代数式(x +1)2-2x +y(y -2x)的值.解:原式=x 2-2xy +y 2+1=(x -y)2+1,把x -y =3代入,原式=3+1=4第4讲 分式及其运算~安徽中考命题分析安徽中考命题预测预测安徽省中考仍将主要考查:分式的概念、分式的基本性质、约分与通分,分式的加、减、乘、除运算等,题型有选择题、填空题,也有解答题,但难度都属于基础题和中档题的要求.这里要重点指出的是分式的加减乘除运算,它一直是安徽中考的一个重点,这是因为分式的加减乘除运算几乎可以涵盖所有代数式的基本运算,因此考生一定要注意.年份 考察内容 题型 题号 分值 分式方程的计算 填空题 13 5 分式方程的应用解答题 20(2) 8 分式计算选择题 6 41.分式的基本概念(1)形如__AB(A ,B 是整式,且B 中含有字母,B ≠0)__的式子叫分式;(2)当__B ≠0__时,分式A B 有意义;当__B =0__时,分式AB 无意义;当__A =0且B ≠0__时,分式AB的值为零.2.分式的基本性质分式的分子与分母都乘(或除以)__同一个不等于零的整式__,分式的值不变,用式子表示为__A B =A ×M B ×M ,A B =A÷MB÷M(M 是不等于零的整式)__.3.分式的运算法则(1)符号法则:分子、分母与分式本身的符号,改变其中任何两个,分式的值不变. 用式子表示:a b =-a -b =-a -b =--a b ;-a b =a-b =-a b .(2)分式的加减法:同分母加减法:__a c ±b c =a±bc __;异分母加减法:__b a ±d c =bc±adac __.(3)分式的乘除法: a b ·c d =__acbd __; a b ÷c d =__adbc __. (4)分式的乘方:(a b )n =__a nbn (n 为正整数)__. 4.最简分式如果一个分式的分子与分母没有公因式,那么这个分式叫做最简分式. 5.分式的约分、通分把分式中分子与分母的公因式约去,这种变形叫做约分,约分的根据是分式的基本性质.把几个异分母分式化为与原分式的值相等的同分母分式,这种变形叫做分式的通分,通分的根据是分式的基本性质.通分的关键是确定几个分式的最简公分母.6.分式的混合运算在分式的混合运算中,应先算乘方,再将除法化为乘法,进行约分化简,最后进行加减运算.若有括号,先算括号里面的.灵活运用运算律,运算结果必须是最简分式或整式.7.解分式方程,其思路是去分母转化为整式方程,要特别注意验根.使分母为0的未知数的值是增根,需舍去.两个技巧(1)分式运算中的常用技巧分式运算题型多,方法活,要根据特点灵活求解.如:①分组通分;②分步通分;③先“分”后“通”;④重新排序;⑤整体通分;⑥化积为差,裂项相消.(2)分式求值中的常用技巧分式求值可根据所给条件和求值式的特征进行适当的变形、转化.主要有以下技巧:①整体代入法;②参数法;③平方法;④代入法;⑤倒数法.1.(·温州)要使分式x +1x -2有意义,则x 的取值应满足( A )A .x ≠2B .x ≠-1C .x =2D .x =-1 2.(·广州)计算:x 2-4x -2,结果是( B )A .x -2B .x +2C .x -42D .x +2x3.(·安徽)化简x 2x -1+x1-x 的结果是( D )A .x +1B .x -1C .-xD .x 4.(·济南)化简m -1m ÷m -1m 2的结果是( A )A .mB .1mC .m -1D .1m -15.(·安徽)方程4x -12x -2=3的解是x =__6__.分式的概念,求字母的取值范围【例1】 (1)(·贺州)分式2x -1有意义,则x 的取值范围是( A )A .x ≠1B .x =1C .x ≠-1D .x =-1 (2)(·毕节)若分式x 2-1x -1的值为零,则x 的值为( C )A .0B .1C .-1D .±1【点评】 (1)分式有意义就是使分母不为0,解不等式即可求出,有时还要考虑二次根式有意义;(2)首先求出使分子为0的字母的值,再检验这个字母的值是否使分母的值为0,当它使分母的值不为0时,这就是所要求的字母的值.1.(1)(·铜陵模拟)若代数式xx -1有意义,则实数x 的取值范围是( D )A .x ≠1B .x ≥0C .x >0D .x ≥0且x ≠1(2)当x =__-3__时,分式|x|-3x -3的值为0.分式的性质【例2】 (1)(·贺州)先化简,再求值:(a 2b +ab)÷a 2+2a +1a +1,其中a =3+1,b =3-1.解:原式=ab(a +1)·a +1(a +1)2=ab ,当a =3+1,b =3-1时,原式=3-1=2(2)(·济宁)已知x +y =xy ,求代数式1x +1y-(1-x)(1-y)的值.解:∵x +y =xy ,∴1x +1y -(1-x)(1-y)=y +x xy -(1-x -y +xy)=x +y xy -1+x +y -xy=1-1+0=0【点评】 (1)分式的基本性质是分式变形的理论依据,所有分式变形都不得与此相违背,否则分式的值改变;(2)将分式化简,即约分,要先找出分子、分母的公因式,如果分子、分母是多项式,要先将它们分别分解因式,然后再约分,约分应彻底;(3)巧用分式的性质,可以解决某些较复杂的计算题,可应用逆向思维,把要求的算式和已知条件由两头向中间凑的方式来求代数式的值.2.(1)(·安庆模拟)下列计算错误的是( A ) A .0.2a +b 0.7a -b =2a +b 7a -b B .x 3y 2x 2y 3=x yC .a -b b -a=-1 D .1c +2c =3c(2)(·广安)化简(1-1x -1)÷x -2x 2-2x +1的结果是__x -1__.分式的四则混合运算【例3】 (·深圳)先化简,再求值:(3x x -2-x x +2)÷xx 2-4,在-2,0,1,2四个数中选一个合适的代入求值.解:原式=3x (x +2)-x (x -2)(x +2)(x -2)·(x +2)(x -2)x =2x +8,当x =1时,原式=2+8=10【点评】 准确、灵活、简便地运用法则进行化简,注意在取x 的值时,要考虑分式有意义,不能取使分式无意义的0与±2.3.(1)(·十堰)已知a 2-3a +1=0,则a +1a-2的值为( B )A .5+1B .1C .-1D .-5(2)(·黄山模拟)先化简x 2-4x 2-9÷(1-1x -3),再从不等式2x -3<7的正整数解中选一个使原式有意义的数代入求值.解:原式=(x +2)(x -2)(x +3)(x -3)÷x -3-1x -3=(x +2)(x -2)(x +3)(x -3)·x -3x -4=(x +2)(x -2)(x +3)(x -4),不等式2x -3<7,解得x <5,其正整数解为1,2,3,4,当x =1时,原式=14分式方程的解法【例4】 (·舟山)解方程:x x +1-4x 2-1=1.解:去分母,得x(x -1)-4=x 2-1,去括号,得x 2-x -4=x 2-1,解得x =-3,经检验x =-3是分式方程的解【点评】 (1)按照基本步骤解分式方程,其关键是确定各分式的最简公分母.若分母为多项式时,应首先进行分解因式.将分式方程转化为整式方程,乘最简公分母时,应乘原分式方程的每一项,不要漏乘常数项;(2)检验是否产生增根:分式方程的增根是分式方程去分母后整式方程的某个根,但因为它使分式方程的某些分母为零,故应是原方程的增根,需舍去.4.(1)(·阜阳模拟)若分式方程x x -1-m1-x =2有增根,则这个增根是__x =1__;(2)(·)解分式方程:3x 2-9+xx -3=1.解:方程两边都乘(x +3)(x -3),得3+x(x +3)=x 2-9,3+x 2+3x =x 2-9,解得x =-4,检验:把x =-4代入(x +3)(x -3)≠0,∴x =-4是原分式方程的解第5讲 二次根式及其运算~安徽中考命题分析 安徽中考命题预测预测安徽省中考仍将主要考查:二次根式的加、减、乘、除运算(不要求分母有理化),用有理数估计无理数的大致范围仍将是安徽中考的主要考察点.尤其是用有理数估计无理数的大致范围是安徽中考的一个重点.题型以选择题、填空题居多.无论什么形式,计算的难度都不会太大,难度均属于基础题.年份 考察内容 题型题号 分值 用有理数估计无理数的大致范围选择题6 4 二次根式有意义 填空题 11 5 - ---1.二次根式的概念式子__a(a ≥0)__叫做二次根式. 2.二次根式的性质 (1)(a)2=__a(a ≥0)__.(2)a 2=|a|=⎩⎪⎨⎪⎧ a (a >0) ; 0(a =0) ; -a (a <0) W.3.二次根式的运算(1)二次根式加减法的实质是合并同类根式;(2)二次根式的乘法:a·b =__ab(a ≥0,b ≥0)__; (3)二次根式乘法的反用:ab =a·b(a ≥0,b ≥0); (4)二次根式的除法:ab=__ab(a ≥0,b >0)__;(5)二次根式除法的反用:a b =__ab(a ≥0,b >0)__. 4.最简二次根式运算结果中的二次根式,一般都要化成最简二次根式.最简二次根式,需满足两个条件:(1)被开方数不含分母;(2)被开方数中不含开得尽方的因数或因式.“双重非负性”算术平方根a 具有双重非负性,一是被开方数a 必须是非负数,即a ≥0;二是算术平方根a 的值是非负数,即a ≥0.算术平方根的非负性主要用于两方面:(1)某些二次根式的题目中隐含着“a ≥0”这个条件,做题时要善于挖掘隐含条件,巧妙求解;(2)若几个非负数的和为零,则每一个非负数都等于零. 求值问题“五招”(1)巧用平方;(2)巧用乘法公式;(3)巧用配方;(4)巧用换元;(5)巧用倒数.1.(·安徽)设n 为正整数,且n <65<n +1,则n 的值为( D ) A .5 B .6 C .7 D .82.(·安徽)若1-3x 在实数范围内有意义,则x 的取值范围是__x ≤13__.3.(·徐州)下列运算中错误的是( A ) A .2+3= 5 B .2×3= 6 C .8÷2=2 D .(-3)2=34.(·福州)若(m -1)2+n +2=0,则m +n 的值是( A ) A .-1 B .0 C .1 D .25.(·内江)按如图所示的程序计算,若开始输入的n 值为2,则最后输出的结果是( C )A .14B .16C .8+5 2D .14+ 2二次根式概念与性质【例1】 (1)等式2k -1k -3=2k -1k -3成立,则实数k 的范围是( D ) A .k >3或k <12 B .0<k <3C .k ≥12D .k >3(2)已知a ,b ,c 是△ABC 的三边长,试化简:(a +b +c )2+(a -b -c )2+(b -c -a )2+(c -a -b )2.解:原式=|a +b +c|+|a -b -c|+|b -c -a|+|c -a -b|=(a +b +c)+(b +c -a)+(c +a -b)+(a +b -c)=2a +2b +2c【点评】 (1)对于二次根式,它有意义的条件是被开方数大于或等于0;(2)注意二次根式性质(a)2=a(a ≥0),a 2=|a|的区别,判断出各式的正负性,再化简.1.(1)(·达州)二次根式-2x +4有意义,则实数x 的取值范围是( D ) A .x ≥-2 B .x >-2 C .x <2 D .x ≤2(2)如果(2a -1)2=1-2a ,则( B ) A .a <12 B .a ≤12C .a >12D .a ≥12二次根式的运算【例2】 (1)(·济宁)如果ab >0,a +b <0,那么下面各式:①a b =ab;②a b ·ba=1;③ab÷ab=-b.其中正确的是( B ) A .①② B .②③C .①③D .①②③ (2)计算:24-32+23-216. 解:原式=26-126+136-136=326【点评】(1)二次根式化简,依据ab=a·b(a≥0,b≥0),ab=ab(a≥0,b>0),前者将被开方数分解,后者分子、分母同时乘一个适当的数使分母变成一个完全平方数,即可将其移到根号外;(2)二次根式加减,即化简之后合并同类二次根式.2.(1)(·黄山模拟)若20n是整数,则正整数n的最小值为__5__.(2)(·抚州)计算:27-3=__23__.二次根式混合运算【例3】计算:(10-3)·(10+3).解:原式=(10-3)×(10+3)×(10+3)=[(10-3)(10+3)]×(10+3)=1×(10+3)=10+3【点评】(1)二次根式混合运算,把若干个知识点综合在一起,计算时要认真仔细;(2)可以运用运算律或适当改变运算顺序,使运算简便.3.(1)(·荆门)计算:24×13-4×18×(1-2)0;解:原式=26×33-4×24×1=22-2= 2(2)已知10的整数部分为a,小数部分为b,求a2-b2的值.解:∵3<10<4,∴10的整数部分a=3,小数部分b=10-3.∴a2-b2=32-(10-3)2=9-(10-610+9)=-10+610。
2019-2020九年级数学下册总复习教案导学案课时16平行四边形及多边形教学设计含中考演练

课时16.平行四边形及多边形【知识梳理】1.多边形的基本概念与性质(1)任意n边形的内角和为________ ____,外角和等于___ ___.(2)正n边形的每个内角度数:_____ ______,正n边形的每个外角度数:_ ____.(3)多边形的对角线:过n边形的一个顶点有____ __条不重复的对角线;一个n边形共有_______ __条对角线.2.平面图形的镶嵌(密铺)(1)密铺:用多边形进行密铺时,相拼接的边相等,每一个拼接点处各个角的和等于_____.(2)在平面内,只用一种正多边形进行镶嵌,则正多边形只能是_____ ____,正四边形,_______ __.3.平行四边形【基础过关】1.只用下列图形不能镶嵌的是( )A.三角形B.四边形C.正五边形D.正六边形2. 如图,在□ABCD中,O是对角线AC,BD的交点,下列结论错误的是( )A.AB∥CDB.AB=CDC.AC=BDD.OA=OC3.在□ABCD中,∠B=60°,下列各式中,不能成立的是( )A.∠D=60°B.∠A=120°C.∠C+∠D=180°D.∠C+∠A=180°第5题4.如图,□ABCD的对角线交于点O,且AB=5,△OCD的周长为23,则□ABCD的两条对角线长的和是( )A.18B.28C.36D.465.内角和为1440°的多边形的边数是___ _.6.一个多边形的每个外角都等于60°,则这个多边形的边数为_ ___.7.在平行四边形ABCD中,若∠A+∠C=130°,则∠D的度数是__ ___.【能力提升】例1 已知多边形的内角和是其外角和的5倍,求这个多边形的边数.例2 如图,纸片△ABC中,∠A=65°,∠B=75°,将纸片的一角折叠,使点C落在△ABC内,若∠1=20°,求∠2的度数.例3 如图,在平行四边形ABCD中,∠B=∠AFE,AE是∠BAF的角平分线.求证:(1)△ABE≌△AFE;(2)DF=EC.例4 如图,在□ABCD中,点E,F在对角线BD上,且BE=DF.求证:(1)AE=CF;(2)四边形AECF是平行四边形.【自我检测】1.若一个十二边形的每个外角都相等,则它的每个外角的度数为___ _,每个内角的度数为___ __.2.如图,在正五边形ABCDE中,连接AC,AD,则∠CAD的度数是__ __.3.如果一个n边形恰有n条对角线,这个多边形是___ _边形.4.顺次连接任意四边形四边的中点,所得四边形是___________.5.平行四边形的周长为28,两邻边的比为4:3,则较短的一条边的长为__ __.6.如图,在□ABCD中,AB=4cm,AD=7cm,∠ABC的平分线交AD于点E,交CD的延长线于点F,则DF=__ __cm.7.如图,在□ABCD中,AC与BD相交于点O,点E是BC边的中点,OE=1,则AB的长是_ ___.8.点O是□ABCD的对角线BD的中点,直线EF经过点O,分别交BA、DC延长线于E、F两点,若EA:AB=2:5,那么FC:FD=__ ____.第2题9.一个多边形的内角和为720°,则这个多边形的边数是( )A.5B.6C.7D.810.某商店出售下列四种形状的地砖:①正三角形;②正方形;③正五边形;④正六边形. 若只选购其中一种地砖镶嵌地面,可供选择的地砖共有( )A.1种B.2种C.3种D.4种11.一个多边形的内角和与它的一个外角的和为570°,那么这个多边形的边数为( ) A.4 B.5 C.6 D.712.若n边形的每一个外角都不大于40°,则它是边数( )A. n=8B. n=9C. n>9D. n≥913.如图,在□ABCD中,∠B=80°,AE平分∠BAD交BC于点E,CF∥AE交AD于点F,则∠1为( )A.40°B.50°C.60°D.80°14.将一个平行四边形的纸片折一次,使得折痕平分这个平行四边形的面积,则这样的折纸方法共有( )A.1种B.2种C.3种D.无数种15.一个多边形少一个内角的度数和为2300°.(1)求它的边数;(2)求少的那个内角的度数.16.如图,四边形ABCD是平行四边形,点E在BA的延长线上,且BE=AD,点F在AD上,AF=AB,求证:△AEF≌△DFC.17.如图,将平行四边形ABCD沿对角线BD进行折叠,折叠后点C落在点F处,DF交AB于点E.(1)求证:∠EDB=∠EBD;(2)判断AF与DB是否平行,并说明理由.。
四川省渠县崇德实验学校2020届中考九年级数学专题复习:菱形导学案设计

四川省渠县崇德实验学校2020届中考九年级数学专题复习:菱形导学案一、 菱形的概念及性质1.概念:有一组邻边①相等的平行四边形是菱形.2.性质:如图,在菱形ABCD 中,对角线AC ,BD 相交于点O.练习1.如图1,在菱形ABCD 中,对角线AC ,BD 相交于点O.(1)若AB 的长为1,则菱形ABCD 的周长为4;(2)若菱形的边长为2,∠ABC=60°,则△ABC 是等边三角形,AC =2,BD =23; (3)若AC =6,BD =8,则BC =5,S 菱形ABCD =24;(4)在(3)的条件下,过点A 作AE⊥BC 于点E ,如图2所示,则AE =245.【方法指导】 菱形中出现30°,60°,120°的角时,就会出现等边三角形和含有30°角的直角三角形,这时只要知道一条线段长就可以得到所有线段长,所有三角形的周长以及面积.因此这部分知识既联系着等腰三角形、直角三角形,又联系着解直角三角形. 二、 菱形的判定练习(1)如图1,四边形ABCD 是平行四边形,AC 与BD 相交于点O ,添加一个条件:答案不唯一,如:AB =BC 或AC⊥BD 等,可使它成为菱形;(2)如图2,四边形ABCD 的对角线互相垂直,且OB =OD ,请你添加一个适当的条件:答案不唯一,如:OA =OC ,使四边形ABCD 成为菱形.(只需添加一个即可)三、菱形的性质与判定例题 、如图,在四边形ABCD 中,BC∥AD,BC =12AD ,点E 为AD 的中点,点F 为AE 的中点,AC⊥CD,连接BE ,CE ,CF.(1)判断四边形ABCE 的形状,并说明理由;(2)如果AB =4,∠D=30°,点P 为BE 上的动点,求△PAF 的周长的最小值.【思路点拨】(1)根据条件“BC=12AD ,点E 为AD 的中点”证得BC=AE ,结合BC ∥AD 可得四边形ABCE 是平行四边形,由“E 为AD 的中点,AC ⊥CD ”可得AE=AC ,从而可判定四边形ABCE 为菱形;(2)由四边形ABCE 为菱形得AC 和BE 互相垂直平分,进而得点A 关于BE 的对称点为点C ,根据对称性可知,△PAF 周长的最小值为AF+CF 的值,再根据第(2)问中给出的条件,即可求解. 【自主解答】解:(1)四边形ABCE 为菱形. 理由如下:∵BC∥AD,BC =12AD ,点E 为AD 的中点,∴AE=12AD =BC.∴四边形ABCE 为平行四边形. 又∵AC⊥CD,∴CE=12AD =AE =BC.∴四边形ABCE 为菱形. (2)由(1)得四边形ABCE 为菱形, ∴BE 垂直平分AC. 连接PC ,∴PA=PC.∵△PAF 的周长l =PA +PF +AF , ∴l=PA +PF +AF =PC +PF +AF≥CF+AF. ∵∠D=30°,AC⊥CD,∴∠DAC=60°. ∴△ACE 为等边三角形. ∵点F 为AE 的中点, ∴CF⊥AE.∵AB=4,∴AC=AB =AE =4,AF =12AE =2.∴在Rt △ACF 中, CF =AC·sin60°=4×32=2 3. ∴l=PA +PF +AF =PC +PF +AF≥CF+AF =23+2, 即△PAF 的周长的最小值为23+2. 方法指导1.判定菱形的基本思路:(1)若已知一组邻边相等,则需要证该四边形是平行四边形或四条边都相等; (2)若对角线互相垂直,则需要证明该四边形是平行四边形;(3)若已知四边形是平行四边形,则可以证一组邻边相等或对角线互相垂直. 2.与菱形有关的计算常涉及下面几种:(1)求角度时,注意将菱形的性质与等腰三角形和平行线的相关性质结合,转化要求的角,找到与已知角存在的关系求解;(2)求长度(线段长或周长)时,若菱形中有一个顶角为60°,连接相邻两边的顶点,菱形被对角线分割为两个等边三角形,故在计算时,可借助等边三角形的性质,同时也应注意使用勾股定理、直角三角形斜边上的中线等于斜边的一半及三角函数等进行计算.3.关于利用轴对称性质求最值的模型方法见“万能解题模型(八)——几何中线段的最值问题”模型2. 四、课后作业巩固1.一个菱形的边长为6,面积为28,则该菱形的两条对角线的长度之和为(C) A.8 B.12 C.16 D.322.如图,在四边形ABCD 中,AB =CD ,AC ,BD 是对角线,E ,F ,G ,H 分别是AD ,BD ,BC ,AC 的中点,连接EF ,FG ,GH ,HE ,则四边形EFGH 的形状是(C)A.平行四边形B.矩形C.菱形D.正方形3.如图,在平面直角坐标系中,四边形OABC 为菱形,O(0,0),A(4,0),∠AOC=60°,则对角线交点E 的坐标为(D)A.(2,3)B.(3,2)C.(3,3)D.(3,3)4.如图,菱形ABCD 的边长为4,∠B=120°.点P 是对角线AC 上一点(不与端点A 重合),则线段12AP +PD 的最小值为2 3.5.如图,在▱ABCD 中,E ,F 分别是AD ,BC 上的点,且DE =BF ,AC⊥EF.求证:四边形AECF 是菱形.证明:∵四边形ABCD 是平行四边形, ∴AD=BC ,AD∥BC. ∵DE=BF ,∴AE=CF. ∵AE∥CF,∴四边形AECF 是平行四边形. ∵AC⊥EF,∴四边形AECF 是菱形.6.如图,在矩形ABCD 中,对角线AC 的垂直平分线EF 分别交AD ,AC ,BC 于点E ,O ,F ,连接CE 和AF. (1)求证:四边形AECF 为菱形;(2)若AB =4,BC =8,求菱形AECF 的周长.解:(1)证明:∵EF 垂直平分AC , ∴OA=OC ,EF⊥AC,AE =CE ,AF =CF.∵四边形ABCD 为矩形,∴AD∥BC.∴∠EAO=∠FCO. 又∵∠AOE=∠COF,∴△AOE≌△COF(ASA).∴AE=CF.∴AE=CE=CF=AF.∴四边形AECF为菱形.(2)设菱形AECF的边长为x,则AF=x,BF=BC-CF=8-x.在Rt△ABF中,AB2+BF2=AF2,即42+(8-x)2=x2,解得x=5. ∴菱形AECF的周长为4×5=20.。
2020年青岛市中考数学一轮复习 中考动态问题 复习导学案设计(无答案)

解答下列问题:
(1)当 t 为何值时,四边形 APFD 是平行四边形?
2)设四边形 APFE 的面积为 y(cm2),求 y 与 t 之间
的函数关系式;
3)是否存在某一时刻 t,使 S 四边形 APFE:S 菱形
ABCD=17:40?若存在,求出 t 的值,若不存在,请
说明理由.
收 获 感 组织学生积极发言交流、谈收获。 悟:
并思考:找
BC=6cm,点 P 由 B 出发沿 BA 方向向点 A 匀速运动, 出 哪 些 长 速度为 1cm/s;点 Q 由 A 出发沿 AC 方向向点 C 匀速 是 不 变
运动,速度为 2cm/s;连接 PQ.若设运动的时间为 t (s)(0<t≤4),
B
的?哪些 线段长是 可以用 t 表 示的?
课题 授课时间
教 学 目 标
教学重点 教学难点 教学方法 教学手段
中考第 24 题专题复习 教案
中考第 24 题专题复习 课型
复习课
授课人
知识与技能: 经历对动点中的特殊位置问题、动点中的面积问题、动点中的存在性
问题的探究,让学生掌握中考第 24 题的解题方法。 过程与方法:
通过解决动点问题,培养学生建立函数关系式和方程的能力;探究特 殊值的存在性问题以及综合运用数学思想方法解决问题的能力。 情感、态度、价值观:
反比例函数中考复习导学案

反比例函数肥城市龙山中学 九 年级 数学 学科 主备人 李洪银 审核人 武兰丰 日期 3.24学习目标1.理解反比例函数的概念,会利用待定系数法确定反比例函数的表达式. 2.会画反比例函数的图象,掌握反比例函数的基本性质及k 的几何意义。
一、典例分析二、自主质疑、互动解惑1.如图,反比例函数1ky x=的图象与一次函数2y mx b =+的图象交于A (1,3),B (n ,-1)两点.(1)求反比例函数与一次函数的解析式 (2)根据图象回答 ①当x <-3时,写出y 1的取值范围; ②当y 1≥y 2时,写出x 的取值范围.2.已知直线12y x =与双曲线(0)ky k x=>交于A B ,两点,且点A 的横坐标为4. (1)求k 的值;(2)若双曲线(0)ky k x=>上一点C 的纵坐标为8,求AOC △的面积.(3)过原点O 的另一条直线l 交双曲线(0)ky k x=>于P 、Q 两点(P 点在第一象限),若由点A 、B 、P 、Q 为顶点组成的四边形面积为24,求点P 的坐标.<0)三、分层训练、巩固提高 1. 已知反比例函数xy 1=,下列结论中不正确的是 A .图象经过点(-1,-1) B .图象在第一、三象限C .当1>x 时,10<<yD .当0<x 时,y 随着x 的增大而增大 2.若反比例函数xky =的图象经过点(3,-4),则此函数在每一个象限内y 随x 的增大 而 . 3. 已知反比例函数xy k=的图象在一、三象限,则直线k k +=x y 的图象经过 象限 4.在反比例函数3k y x-=图象的每一支曲线上,y 都随x 的增大而减小,则k 的取值范围 是5. 直线2=y x 与双曲线xky =的图象的一个交点坐标为(2,4).则它们的另一个交点坐标是6. 设函数2y x =与1y x =-的图象的交点坐标为(a ,b ),则11a b-的值为__________.7.反比例函数x y 3=图象上有三个点)(11y x ,,)(22y x ,,)(33y x ,,其中3210x x x <<<,则1y ,2y ,3y 的大小关系是 8、(2013•内江)如图,反比例函数(x >0)的图象经过矩形OABC 对角线的交点M ,分别于AB 、BC 交于点D 、E ,若四边形ODBE 的面积为9,则k 的值为( )反比例函数y=(x >0)的图象经过顶点B ,则k 的值为( )四、归纳反馈、拓展延伸1、如图,矩形AOCB 的两边位于X 轴、Y 轴上,点B 的坐标为(- 20/3 ,5),D 是AB 边上的一点,将△ADO 沿直线OD 翻折,使A 点恰好落在对角线 OB 上的点E 处,若点E 在一反比例函数上,则该函数的解析式_____.2、(2013•孝感)如图,函数y=﹣x 与函数的图象相交于A ,B 两点,过A ,B 两点分别作y 轴的垂线,垂足分别为点C ,D .则四边形ACBD 的面积为( )3、(2013年河北)反比例函数y =mx 的图象如图3所示,以下结论:① 常数m <-1;② 在每个象限内,y 随x 的增大而增大; ③ 若A (-1,h ),B (2,k )在图象上,则h <k ;④ 若P (x ,y )在图象上,则P ′(-x ,-y )也在图象上. 其中正确的是 A .①② B .②③C .③④D .①④. .6.若一次函数y =2x -1和反比例函数y =2kx的图象都经过点(a ,1). (1)求反比例函数的解析式;(2)已知点A 在第三象限,且同时在两个函数的图象上,求点A 的坐标; (3)利用(2)的结果,若点B 的坐标为(2,0),且以点A 、O 、B 、P 为顶点的四边形 是平行四边形,请你直接写出点P 的坐标.4、 (眉山市)已知双曲线 y= (k <0)经过直角 △OAB斜边OA 的中点D ,且与直角边AB 相交于点C为(-6,4),则△AOC 的面积为( ) A .12 B .9 C .6 D .4x k。
2019-2020九年级数学下总复习导学案课时32(中考选择题)教学设计含中考演练

课时32.中考选择压轴题1.平面直角坐标系中,已知A (2,2)、B (4,0).若在坐标轴上取点C ,使△ABC 为等腰三角形,则满足条件的点C 的个数是( ) A 、5 B 、6 C 、7 D 、82.如图,在正方形ABCD 中,点P 从点A 出发,沿着正方形的边顺时针方向运动一周,则 △APC 的面积y 与点P 运动的路程x 之间形成的函数关系图象大致是( )3.如图,在Rt △AOB 中,两直角边OA 、OB 分别在x 轴的负半轴和y 轴的正半轴上,将△AOB 绕点B 逆时针旋转90°后得到△A′O′B .若反比例函数xky 的图象恰好经过斜边A′B 的中点C ,S △ABO =4,tan ∠BAO =2,则k 的值为( ) A 、3 B 、4 C 、6 D 、84.如图,矩形ABCD 的顶点D 在反比例函数y =xk(x <0)的图象上,顶点B ,C 在x 轴上,对角线AC 的延长线交y 轴于点E ,连接BE ,若△BCE 的面积是6,则k 的值为( ) A 、−6 B 、−8 C 、−9 D 、−125.某数学兴趣小组同学进行测量大树CD 高度的综合实践活动,如图,在点A 处测得直立于地面的大树顶端C 的仰角为36°,然后沿在同一剖面的斜坡AB 行走13米至坡顶B 处,然后再沿水平方向行走6米至大树脚底点D 处,斜面AB 的坡度(或坡比)i =1:2.4,那么大树CD 的高度约为(参考数据:sin36°≈0.59,cos36°≈0.81,tan36°≈0.73)( )A 、8.1米B 、17.2米C 、19.7米D 、25.5米第3题 第4题6.如图是一个由5张纸片拼成的平行四边形,相邻纸片之间互不重叠也无缝隙,其中两张等腰直角三角形纸片的面积都为S 1,另两张直角三角形纸片的面积都为S 2,中间一张正方形纸片的面积为S 3,则这个平行四边形的面积一定可以表示为( ) A 、4S 1 B 、4S 2 C 、4S 2+S 3 D 、3S 1+4S 3第6题 第7题7.如图,△OAC 和△BAD 都是等腰直角三角形,∠ACO =∠ADB =90°,反比例函数xy 6=在第一象限的图象经过点B ,则△OAC 与△BAD 的面积之差S △OAC −S △BAD 为( ) A 、36 B 、12 C 、6 D 、38.如图,O 为坐标原点,四边形OACB 是菱形,OB 在x 轴的正半轴上,sin ∠AOB =54,反比例函数y =x48在第一象限内的图象经过点A ,与BC 交于点F ,则△AOF 的面积等于( )A 、60B 、80C 、30D 、40第8题 第9题 第10题 9.如图,菱形ABCD 的边AB =8,∠B =60°,P 是AB 上一点,BP =3,Q 是CD 边上一动点,将梯形APQD 沿直线PQ 折叠,A 的对应点A′.当CA′的长度最小时,CQ 的长为( ) A 、5 B 、7 C 、8 D 、21310.如图,已知点A (−8,0),B (2,0),点C 在直线y =−43x +4上,则使△ABC 是直角三角形的点C 的个数为( ) A 、1 B 、2 C 、3 D 、411.二次函数5)1(2+--=x y ,当m ≤x ≤n 且mn <0时,y 的最小值为2m ,最大值为2n ,则m +n 的值为( )A 、25 B 、2 C 、23 D 、21 12.如图,在△ABC 中,AB =10,AC =8,BC =6,以边AB 的中点O 为圆心,作半圆与AC 相切,点P ,Q 分别是边BC 和半圆上的动点,连接PQ ,则PQ 长的最大值与最小值的和是( ) A 、6B 、1132C 、9D 、232 13.如图,Rt △ABC 中,AB ⊥BC ,AB =6,BC =4,P 是△ABC 内部的一个动点,且满足∠PAB =∠PBC ,则线段CP 长的最小值为( ) A 、23B 、2C 、 13138D 、131312第12题 第13题 第14题14.如图,在矩形ABCD 中,AD =6,AE ⊥BD ,垂足为E ,ED =3BE ,点P 、Q 分别在BD ,AD 上,则AP +PQ 的最小值为( )A 、22B 、2C 、32D 、3315.如图1,在等腰三角形ABC 中,AB =AC =4,BC =7.如图2,在底边BC 上取一点D ,连结AD ,使得∠DAC =∠ACD .如图3,将△ACD 沿着AD 所在直线折叠,使得点C 落在点E 处,连结BE ,得到四边形ABED .则BE 的长是( )A 、4B 、417C 、23D 、52。
2021年中考数学复习:胡不归问题 导学案(无答案)
中考压轴系列之“PA+k·PB”型的最值问题
【问题背景】 “PA+k·PB”型的最值问题是近几年中考考查的热点更是难点。当 k 值为 1 时,即可转化为“PA+PB”之和最短问题,就可用我们常见的“饮马问题”模型来处理,即可以转化为轴对称问题来处理。
而当 k 取任意不为 1 的正数时,若再以常规的轴对称思想来解决问题,则无法进行,因此必须转换思路。
此类问题的处理通常以动点P 所在图像的不同来分类,一般分为两类研究。 其中点 P 在直线上运动的类型称之为“胡不归”问题; 今天我们将“胡不归”问题与大家共同探究线段最值问题的解决方案。
【数学故事】从前,有一个小伙子在外地学徒,当他获悉在家的老父亲病危的消息后,便立即启程赶路。由于思乡心切,他只考虑了两点之间线段最短的原理,所以选择了全是沙砾地带的直线路径 A→B(如图所示),而忽视了走折线虽然路程多但速度快的实际情况,当他气喘吁吁地赶到家时,老人刚刚咽了气,小伙子失声痛哭。邻居劝慰小伙子时告诉说,老人弥留之际不断念叨着“胡不归? 胡不归?…何以归”。这个古老的传说,引起了人们的思索,小伙子能否提前到家?倘若可以,他应该选择一条怎样的路线呢?这就是风靡千百年的“胡不归问题”。
【模型初探】 (一)点 P 在直线上运动 “胡不归”问题 例题1
步骤总结:
注意:当k值大于1时,则提取k,构造某角正弦值等于系数
解题策略:“胡不归”模型中涉及到两个定点,一个动点,且动点在直线上运动。 第一步:在系数不为1的线段处一侧,定线段的的异侧,以系数不为1的线段的定端点为角的端点作一个角,使其的正弦值等K。
第二步:过动点作上一步的角的边的垂线,构造直角三角形. 第三步:根据两点之间线段最短,找到最小值的位置. 第四步:计算. 例题2: 如图四边形ABCD是菱形,AB=6,且∠ABC=60°,M为对角线BD(不含B 点)上任意一点,则 AM+BM 的最小值为 .
四川省渠县崇德实验学校2020年中考九年级数学专题复习:相似三角形导学案设计
四川省渠县崇德实验学校2020年中考九年级数学专题复习:相似三角形导学案一、 比例线段 1.比例线段:(1)定义:对于四条线段a ,b ,c ,d ,如果其中两条线段的比(即它们长度的比)与另两条线段的比①相等,如a b =cd (即ad =②bc),我们就说这四条线段成比例.如果线段a ,b ,c 之间有a∶b=b∶c,即b 2=ac ,那么线段b 叫做线段a ,c 的比例中项. (2)基本性质:性质1:若a b =c d ,则ad =③bc(b ,d≠0);若ad =bc ,则a b =④cd (b ,d≠0).性质2:若a b =c d ,则a±b b =⑤c±dd(b ,d≠0).性质3:若a b =c d =…=m n (b +d +…+n≠0),则a +c +…+m b +d +…+n =⑥ab.2.黄金分割:如图,点C 把线段AB 分成两条线段AC 和BC(AC >BC),如果AC 是线段AB 和BC 的⑦比例中项,且ACAB =BC AC =⑧5-12≈⑨0.618,那么点C 叫做线段AB 的黄金分割点.练习1.如果a b =c d ,那么下列等式:①a +b b =c +d d ;②a +c b +d =a b ;③a 2b 2=c 2d 2;④ad=bc ,其中一定成立的是①③④.(填序号)2.已知线段AB =10,点P 是AB 的黄金分割点,且AP >BP ,则AP =55-5.(用根式表示)二、平行线分线段成比例1.基本事实:两条直线被一组平行线所截,所得的对应线段⑩成比例.如图1,若l 1∥l 2∥l 3,则AB BC =⑪DE EF 或AB AC =⑫DEDF.2.推论:平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段⑬成比例.如图2,若DE∥BC,则AD DB =⑭AE EC ;如图3,若DE∥BC,则AD AB =⑮AEAC. 练习3.如图,在△ABC 中,DE∥FG∥BC,AD∶DF∶FB=2∶3∶4.若EG =4,则AE =83,GC =163.三、相似三角形的概念、性质及判定1.概念:对应角⑯相等,对应边⑰成比例的两个三角形叫做相似三角形,相似三角形对应边的比叫做⑱相似比.2.相似三角形的性质:(1)相似三角形的对应角⑲相等,对应边⑳成比例;(2)相似三角形对应高的比、对应中线的比、对应角平分线的比都等于○21相似比;(3)相似三角形周长的比等于○22相似比,面积的比等于相似比的○23平方.3.相似三角形的判定:4.判定两个三角形相似的思路:已知条件判定思路用平行线的性质找等角.有平行截线找另一对角相等或角的两邻边对应成比例.有一对等角有两组边对找夹角相等或第三组边也对应成比例或有一对直角.应成比例找一对锐角相等或两组边对应成比例.直角三角形等腰三角形找顶角相等或一对底角相等或底边与腰对应成比例.练习4.已知△ABC∽△DEF,且△ABC 与△DEF 的相似比为4∶1,则: (1)△ABC 与△DEF 对应边上的高的比为4∶1; (2)△ABC 与△DEF 对应边上的中线的比为4∶1; (3)△ABC 与△DEF 对应角的平分线的比为4∶1; (4)△ABC 与△DEF 的周长的比为4∶1; (5)△ABC 与△DEF 的面积的比为16∶1.5.如图,P 是△AB C 的边AC 上一点,连接BP.(1)请你添加一个条件∠ABP=∠C 或∠APB=∠ABC 或AP AB =ABAC (写出所有的情况),使得△ABP∽△ACB,并选择其中一个条件证明△ABP∽△ACB;(2)在(1)的条件下,若AC =8,AP =2,则AB =4. 证明:答案不唯一,选∠ABP=∠C. ∵∠ABP=∠C,∠BAP=∠CAB, ∴△ABP∽△ACB. 四、 相似多边形1.概念:两个边数相等的多边形,如果它们的角对应○30相等,边对应○31成比例,那么这两个多边形叫做相似多边形,对应边的比叫做○32相似比.2.相似多边形的性质:(1)相似多边形的对应角○33相等,对应边○34成比例;(2)相似多边形周长的比等于○35相似比,面积的比等于相似比的○36平方. 练习6.如图,六边形ABCDEF∽六边形GHIJKL ,相似比为2∶1,则:(1)∠E 与∠K 的数量关系是∠E=∠K; (2)BC 与HI 的数量关系是BC =2HI ;(3)C 六边形ABCDEF 与C 六边形GHIJKL 的数量关系是C 六边形ABCDEF =2C 六边形GHIJKL ; (4)S 六边形ABCDEF 与S 六边形GHIJKL 的数量关系是S 六边形ABCDEF =4S 六边形GHIJKL .课后作业巩固1.若a∶b=3∶4,且a +b =14,则2a -b 的值是(A) A.4 B.2 C.20 D.142.(2018·成都T13·4分)已知a 6=b 5=c4,且a +b -2c =6,则a 的值为12.3.如图,在△ABC 中,DE∥BC,AD =9,DB =3,CE =2,则AC 的长为(C)A.6B.7C.8D.9 4.如图,DE∥FG∥BC,若DB =4FB ,则EG 与GC 的关系是(B)A.EG =4GCB.EG =3GCC.EG =52GC D.EG =2GC5.如图,在△ABC 中,D 在AC 边上,AD∶DC=1∶2,O 是BD 的中点,连接AO 并延长交BC 于点E ,则BE∶EC=(B)A.1∶2B.1∶3C.1∶4D.2∶36.如图,在▱ABCD 中,AC 是一条对角线,EF∥BC,且EF 与AB 相交于点E ,与AC 相交于点F ,3AE =2EB ,连接DF.若S △AEF =1,则S △ADF 的值为52.【思路点拨】 要求S △ADF ,由已知条件EF∥BC,3AE =2BE ,可得到AF 与AC 的数量关系,进而转换到S △ADF 与S △ADC 的数量关系,而由平行四边形的性质知,S △ADC = S △ABC ,由EF∥BC,3AE =2BE ,S △AEF =1,结合相似三角形的性质,得S △ABC ,则S △ADF 即可求出.7.如图,∠ABD=∠BCD=90°,DB 平分∠ADC,过点B 作BM∥CD 交AD 于点M ,连接CM 交DB 于点N. (1)求证:BD 2=AD·CD; (2)若CD =6,AD =8,求MN 的长.【思路点拨】 (1)根据要证的乘积式分析出要判定相似的两个三角形,利用相似三角形的判定方法结合已知条件选择合适的方法证明;(2)利用相似三角形的性质,建立已知线段和要求线段之间的等量关系,求出线段长. 【自主解答】 解:(1)证明:∵BD 平分∠ADC, ∴∠ADB=∠BDC.又∵∠ABD=∠BCD=90°, ∴△DAB∽△DBC. ∴BD CD =AD BD,即BD 2=AD·CD. (2)由(1)可知:BD 2=AD·CD. ∵CD=6,AD =8,∴BD 2=6×8=48. ∴BC 2=BD 2-CD 2=48-36=12.∵BM∥CD,∴∠MBD=∠BDC=∠ADB,∠MBC=180°-∠BCD=90°. ∴DM=BM.∵∠ADB+∠A=∠MBD+∠MBA=90°, ∴∠A=∠MBA.∴AM=BM =DM =12AD =4.∴CM=BM 2+BC 2=16+12=27. ∵BM∥CD,∴△BMN∽△DCN. ∴MN CN =BMCD.设MN =x ,则CN =27-x. 则x27-x =46.解得x =475.经检验,x =475是原分式方程的解.∴MN=475.8.如图,在△ABC 中,点D ,E 分别是AB ,AC 的中点.若△ADE 的面积为4,则△ABC 的面积为(D)A.8B.12C.14D.169.把边长分别为1和2的两个正方形按如图方式放置,则图中阴影部分的面积为(A)A.16B.13C.15D.1410.如图,每个小正方形的边长均为1,则下列图形中的三角形(阴影部分)与△A 1B 1C 1相似的是(B)11.如图,在▱ABCD 中,F 为BC 中点,延长AD 至E ,使DE∶AD=1∶3,连接EF 交DC 于点G ,则S △DEG ∶S △CFG =(D)A.2∶3B.3∶2C.9∶4D.4∶912.如图,在△ABC 中,点D ,E 分别是边AC ,AB 的中点,BD 与CE 交于点O ,连接DE.下列结论:①OE OB =OD OC ;②DEBC =12;③S △DOE S △BOC =12;④S △DOE S △DBE =13.其中正确的有(B)A.1个B.2个C.3个D.4个13.如图,▱ABCD 的对角线AC ,BD 相交于点O ,点E 是AB 的中点,△BEO 的周长是8,则△BCD 的周长为16.14.如图,在△ABC 中,DE∥BC,BF 平分∠ABC,交DE 的延长线于点F.若AD =1,BD =2,BC =4,则EF =23.15.如图,在等腰Rt△ABC 中,∠C=90°,AC =15,点E 在边CB 上,CE =2EB ,点D 在边AB 上,CD⊥AE,垂足为F ,则AD 的长为9 2.16.“今有井径五尺,不知其深,立五尺木于井上,从木末望水岸,入径四寸,问井深几何?”这是我国古代数学《九章算术》中的“井深几何”问题,它的题意可以由图获得,则井深为(B)A.1.25尺B.57.5尺C.6.25尺D.56.5尺。
中考数学第一轮复习学案之第二单元:代数式与运算
初中数学中考第一轮复习导学案第二单元:代数式与运算考点一: 单项式与多项式1、下列式子:x 2+1,+4,,,﹣5x ,0中,整式的个数是( )A 、6B 、5C 、4D 、3 2、下列各式中,次数为5的单项式是( ) A 、5ab B 、a 5b C 、a 5+b 5 D 、6a 2b 3 3、多项式xy 2+xy +1是( ) A 、二次二项式 B 、二次三项式 C 、三次二项式 D 、三次三项式 4、只含有x ,y ,z 的三次多项式中,不可能含有的项是( ) A 、2x 3 B 、5xyz C 、﹣7y 3D 、2xy 31、单项式:数与字母或字母与字母相乘组成的代数式叫做单项式。
(1)①单独一个数或一个字母也是单项式;②分母中含有字母的一定不是单项式;③ π是数字,不是字母。
(2)单项式的系数:单项式中的数字因数叫做这个单项式的系数.(3)单项式的次数:一个单项式中的所有字母的指数的和叫做这个单项式的次数。
2、多项式的次数:多项式中次数最高的单项式的次数是多项式的次数。
3、单项式和多项式统称整式1、下列整式中,( )是多项式 A 、100tB 、v +2.5C 、πr 2D 、11-x2、下列结论正确的是( )A 、0不是单项式B 、52abc 是五次单项式C 、﹣x 是单项式D 、是单项式3、单项式-3πxy 2z 3的系数和次数分别是( ) A 、﹣π,5 B 、﹣1,6 C 、﹣3π,6 D 、﹣3,7 A 、五次三项式 B 、三次五项式 C 、三次二项式 D 、二次三项式4、下列说法正确的是( )A 、2π是一次单项式B 、多项式1+x ﹣x 2按x 作降幂排列是x 2+x ﹣1C 、是多项式 D 、5a ﹣3是由5a 和﹣3组成的一次二项式5、单项式-的系数是 ,次数是 6、多项式414x -的最高次项的系数是7、多项式8xy ﹣5x 2+4x 3y +1是 次 项式;按字母x 的降幂排列是 8、多项式2x n y +x 是三次二项式,那么n 的值是9、要使关于x ,y 的多项式my 3+3nx 2y +2y 3﹣x 2y +y 不含三次项,求2m +3n 的值是 、考点二:同类项与合并同类项1、下列选项中,两个单项式属于同类项的是()A、a3与b3B、3x2y与﹣4x2yzC、x2y与﹣xy2D、﹣2a2b与ba22、下列各组整式中,是同类项的一组是()A、2t与t2B、2t与t+2C、t2与t+2D、2t与t3、下列运算结果正确的是()A、5x﹣x=5B、2x2+2x3=4x5C、﹣n2﹣n2=﹣2n2D、a2b﹣ab2=04、若﹣x m y4与x3y n是同类项,则(m﹣n)9=、1、同类项与合并同类项(1)同类项的判断标准:①所有的字母相同②相同的字母的指数分别相同。
中考数学总复习教学计划7篇
中考数学总复习教学计划7篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如演讲稿、总结报告、合同协议、方案大全、工作计划、学习计划、条据书信、致辞讲话、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic sample essays, such as speech drafts, summary reports, contract agreements, project plans, work plans, study plans, letter letters, speeches, teaching materials, essays, other sample essays, etc. Want to know the format and writing of different sample essays, so stay tuned!中考数学总复习教学计划7篇中考数学总复习教学计划精选7篇数学是研究数量、结构、变化、空间以及方程等概念的一门学科。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 中考数学第一轮复习资料 目 录
第一章 实数 课时1.实数的有关概念…………………………………………( 3 ) 课时2.实数的运算与大小比较……………………………( 5 )
第二章 代数式 课时3.整式及运算 ……………………………………………( 7 ) 课时4.因式分解………………………………………………… ( 9 ) 课时5.分式 …………………………………………………… ( 11 ) 课时6.二次根式………………………………………………… ( 13 )
第三章 方程(组)与不等式 课时7.一元一次方程及其应用 ……………………………( 15 ) 课时8.二元一次方程及其应用 ……………………………( 17 ) 课时9.一元二次方程及其应用………………………………( 19 ) 课时10.分式方程及其应用……………………………………( 21 ) 课时11.一元一次不等式(组)及其应用…………………( 23 )
第四章 函数 课时12.平面直角坐标系与函数的概念…………………… ( 25 ) 课时13.一次函数…………………………………………………( 27 ) 课时14.反比例函数 …………………………………………… ( 29 ) 课时15.二次函数及其图像 ………………………………… ( 31 ) 课时16.二次函数的应用 …………………………………… ( 33 )
第五章 统计与概率 课时17.统计………………………………………………………( 35 ) 课时18.概率………………………………………………………( 37 )
第六章 三角形 课时19.几何初步及平行线、相交线 ………………………( 39 ) 课时20.三角形的有关概念 …………………………………( 41 ) 课时21.等腰三角形与直角三角形 …………………………( 43 ) 课时22.全等三角形 ……………………………………………( 45 ) 课时23.相似三角形 ……………………………………………( 47 ) 课时24.锐角三角函数 …………………………………………( 49 ) 课时25.解直角三角形及其应用 …………………………… ( 51) 2
第七章 四边形 课时26.多边形 ………………………………………………… ( 53 ) 课时27.平行四边形 ……………………………………………( 55 ) 课时28.矩形、菱形、正方形…………………………………( 57 )
第八章 圆 课时29.圆的有关概念与性质 ……………………………… ( 59 ) 课时30.与圆有关的位置关系…………………………………( 61 ) 课时31.与圆有关的计算……………………………………… ( 63 )
第九章 图形与变换 课时32.视图与投影 ……………………………………………( 65 ) 课时33.轴对称与中心对称……………………………………( 67 ) 课时34.平移与旋转 ……………………………………………( 69 ) 3
第一章 实数 课时1.实数的有关概念 【课前热身】 1.2的倒数是 .2的相反数是 . 2.若向南走2m记作2m,则向北走3m记作 m. 3.3的绝对值是( )
A.3 B.3 C.13 D.13 4.随着电子制造技术的不断进步,电子元件的尺寸大幅度缩小,在芯片上某种电子元件大约只占0.000 000 7(毫米2),这个数用科学记数法表示为( ) A.7×10-6 B. 0.7×10-6 C. 7×10-7 D. 70×10-8
【考点链接】 1.有理数的意义 ⑴数轴上的点与 构成一一对应. ⑵ 实数a的相反数为________. 若a,b互为相反数,则ba= . ⑶ 非零实数a的倒数为______. 若a,b互为倒数,则ab= .
⑷ 绝对值)0( )0( )0( aaaa. (5)近似数、有效数字 : 如0.030是2个有效数字(3,0),精确到千分位;3.14×105是3个有效数字,精确到千位; 3.14万是3个有效数字(3,1,4),精确到百位.
2.数的开方 ⑴ 任何正数a都有______个平方根,它们互为________.其中正的平方根a叫 _______________. 没有平方根,0的算术平方根为______. ⑵ 任何一个实数a都有立方根,记为 .
⑶ 2a)0( )0( aaa.
3. 实数的分类 和 统称实数. 【典例精析】 例1 在“05,3.14 ,33,23,cos 600 sin 450 ”这6个数中,无理数的个数是( ) A.2个 B.3个 C.4个 D.5个 4
例2 ⑴2的倒数是( ) A.2 B.12 C.12 D.-2 ⑵若23(2)0mn,则2mn的值为( ) A.4 B.1 C.0 D.4 ⑶如图,数轴上点P表示的数可能是( )
A.7 B. 7 C.3.2 D. 10
【中考演练】 1.-3的相反数是______, -12的绝对值是_____, 2-1=______, 2008(1) . 2. 某种零件,标明要求是φ20±0.02 mm(φ表示直径,单位:毫米),经检查,一个零件的直径是19.9 mm,该零件 .(填“合格” 或“不合格”)
3. 下列各数中:-3,14,0,32,364,0.31,227,2,2.161 161 161…, (-2 005)0是无理数的是___________________________. 4.全世界人民踊跃为四川汶川灾区人民捐款,到6月3日止各地共捐款约42300000000元,用科学记数法表示捐款数约为___________________元.
5. 16的算术平方根是__________ ,-164的立方根为______.
6.若0)1(32nm,则mn的值为 . 7. 2.40万精确到__________位,有效数字有__________个. 8.51的倒数是 ( )
A.51 B.51 C.5 D.5 9.点A在数轴上表示+2,从A点沿数轴向左平移3个单位到点B,则点B所表示的实数是( ) A.3 B.-1 C.5 D.-1或3
10.81的平方根是( ), √81的平方根是( ) A.9 B. ±9 C.3 D.±3
11.若x的相反数是3,│y│=5,则x+y的值为( ) A.-8 B.2 C.8或-2 D.-8或2
3 2 1 O 1 2 3 P 5
课时2. 实数的运算与大小比较 【课前热身】 1.某天的最高气温为6°C,最低气温为-2°C,同这天的最高气温比最低气温高__________°C.
2.计算:13_______. 3.比较大小:2 3.(填“,或”符号) 4. 计算23的结果是( ) A. -9 B. 9 C.-6 D.6 5.下列各式正确的是( ) A.33 B.326 C.(3)3 D.0(π2)0 6.若“!”是一种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6, 4!=4×3×2×1,…,则100!98!的值为( )
A. 5049 B. 99! C. 9900 D. 2! 【考点链接】 1. 数的乘方 na ,其中a叫做 ,n叫做 .
2. 0a (其中a 0 ) pa (其中a 0) 3. 实数运算 先算 ,再算 ,最后算 ;如果有括号,先算 里面的,同一级运算按照从 到 的顺序依次进行. 4. 实数大小的比较 ⑴ 数轴上两个点表示的数, 的点表示的数总比 的点表示的数大. ⑵ 正数 0,负数 0,正数 负数;两个负数比较大小,绝对值大的 绝对值小的. 5.易错知识辨析 在较复杂的运算中,不注意运算顺序或者不合理使用运算律,从而使运算出现错误. 如5÷51×5.
【典例精析】 例1 计算:
⑴20080+|-1|-3cos30°+ (21)3 ⑵ 232(2)2sin60 6
输入x 输出y 平方 乘以2 减去4 若结果大于
否则
例2 计算: 1301()20.1252009|1|2. 例3 已知a、b互为相反数,c、d互为倒数,m的立方根是 -2, 求2||4321abmcdm的值.
【中考演练】 1. 根据如图所示的程序计算,
若输入x的值为1,则输出y的值为 . 2. 比较大小:73_____1010. 3.计算(-2)2-(-2) 3的结果是( ) A. -4 B. 2 C. 4 D. 12 4. 下列各式运算正确的是( )
A.2-1=-21 B.23=6 C.22·23=26 D.(23)2=26 5. -2,3,-4,-5,6这五个数中,任取两个数相乘,得的积最大的是( ) A. 10 B.20 C.-30 D.18
6. 计算: ⑴ 4245tan21)1(10; ⑵ 01)2008(260cos
⑶ 201()(32)2sin3032;