(完整)初三中考数学总复习《知识点》,推荐文档

合集下载

完整版)初三数学总复习知识点

完整版)初三数学总复习知识点

完整版)初三数学总复习知识点Chapter 1: Quadratic Radical1.A quadratic radical is an n of the form a (a≥0).Property: a (a≥0) is a non-negative number;a^2=a (a≥0);a^2=a (a≥0).2.n and n of quadratic radicals: a•b=ab (a≥0.b≥0);a/a (a≥0.b>0)=√a/b.3.n and n of quadratic radicals: when adding or subtracting quadratic radicals。

XXX form first。

then combine the quadratic radicals with the same radicand.4.Heron's formula: S=p(p-a)(p-b)(p-c)。

where S is the area ofa triangle。

and p=(a+b+c)/2.Chapter 2: XXX1.XXX that has only one unknown variable。

and the highest degree of the variable is2.2.XXX:Completing the square method: transform one side of the ninto a perfect square。

then take the square root of both sides;Quadratic formula: x=(-b±√(b^2-4ac))/2a;Factoring method: factor the left side of the n into two factors。

and set each factor equal to zero.3.ns of XXX life problems.4.Vieta's formulas: let x1 and x2 be the roots of the nax^2+bx+c=0.then we have b=-a(x1+x2) and c=a(x1x2).Chapter 3: XXX1.n of a figure: XXX it around a fixed point by a XXX.Properties: the distance from each point of the figure to the center of n remains the same;the angle een the line segment connecting each point and the center of n is equal to the angle of n;the original figure and the XXX.2.XXX to a point if the figure coincides with itself after a180-degree XXX point.A figure is XXX its image under a 180-degree n around apoint is identical to the original figure.3.Coordinates of points XXX to the origin.Chapter 4: Circle1.ns of circle。

中考数学知识点总结(最新最全)

中考数学知识点总结(最新最全)

中考数学总复习资料代数部分第一章:实数基础知识点:一、实数的分类:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧无限不循环小数负无理数正无理数无理数数有限小数或无限循环小负分数正分数分数负整数零正整数整数有理数实数 1、有理数:任何一个有理数总可以写成q p 的形式,其中p 、q 是互质的整数,这是有理数的重要特征。

2、无理数:初中遇到的无理数有三种:开不尽的方根,如2、34;特定结构的不限环无限小数,如 1.101001000100001……;特定意义的数,如π、45sin °等。

3、判断一个实数的数性不能仅凭表面上的感觉,往往要经过整理化简后才下结论。

二、实数中的几个概念1、相反数:只有符号不同的两个数叫做互为相反数。

(1)实数a 的相反数是 -a ; (2)a 和b 互为相反数⇔a+b=02、倒数:(1)实数a (a ≠0)的倒数是a1;(2)a 和b 互为倒数⇔1=ab ;(3)注意0没有倒数3、绝对值:(1)一个数a 的绝对值有以下三种情况:⎪⎩⎪⎨⎧-==0,0,00, a a a a a a(2)实数的绝对值是一个非负数,从数轴上看,一个实数的绝对值,就是数轴上表示这个数的点到原点的距离。

(3)去掉绝对值符号(化简)必须要对绝对值符号里面的实数进行数性(正、负)确认,再去掉绝对值符号。

4、n 次方根(1)平方根,算术平方根:设a ≥0,称a ±叫a 的平方根,a 叫a 的算术平方根。

(2)正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根。

(3)立方根:3a 叫实数a 的立方根。

(4)一个正数有一个正的立方根;0的立方根是0;一个负数有一个负的立方根。

三、实数与数轴1、数轴:规定了原点、正方向、单位长度的直线称为数轴。

原点、正方向、单位长度是数轴的三要素。

2、数轴上的点和实数的对应关系:数轴上的每一个点都表示一个实数,而每一个实数都可以用数轴上的唯一的点来表示。

初三数学知识点(6篇)

初三数学知识点(6篇)

初三数学知识点整理(6篇)初三数学学问点整理11.数轴(1)数轴的概念:规定了原点、正方向、单位长度的直线叫做数轴.数轴的三要素:原点,单位长度,正方向。

(2)数轴上的点:全部的有理数都可以用数轴上的点表示,但数轴上的点不都表示有理数.(一般取右方向为正方向,数轴上的点对应任意实数,包括无理数.)(3)用数轴比拟大小:一般来说,当数轴方向朝右时,右边的数总比左边的数大。

重点学问:初中数学第一课,熟悉正数与负数!新初一的来~2.相反数(1)相反数的概念:只有符号不同的两个数叫做互为相反数.(2)相反数的意义:把握相反数是成对消失的,不能单独存在,从数轴上看,除0外,互为相反数的两个数,它们分别在原点两旁且到原点距离相等。

(3)多重符号的化简:与“+”个数无关,有奇数个“﹣”号结果为负,有偶数个“﹣”号,结果为正。

(4)规律方法总结:求一个数的相反数的方法就是在这个数的前边添加“﹣”,如a的相反数是﹣a,m+n的相反数是﹣(m+n),这时m+n是一个整体,在整体前面添负号时,要用小括号。

3.肯定值1.概念:数轴上某个数与原点的距离叫做这个数的肯定值。

①互为相反数的两个数肯定值相等;②肯定值等于一个正数的数有两个,肯定值等于0的数有一个,没有肯定值等于负数的数.③有理数的肯定值都是非负数.2.假如用字母a表示有理数,则数a 肯定值要由字母a本身的取值来确定:①当a是正有理数时,a的肯定值是它本身a;②当a是负有理数时,a的肯定值是它的相反数﹣a;③当a是零时,a的肯定值是零.即|a|={a(a>0)0(a=0)﹣a(a0k0时,函数图像的两个分支分别在第一、三象限。

在每个象限内,y随x 的增大而减小。

①x的取值范围是x0,y的取值范围是y0;②当k0抛物线与x轴有两个不同交点.②△=0抛物线与x轴有的公共点(相切).③△0时,抛物线有最低点,函数有最小值.②当a<0时,抛物线有点,函数有值.(7)的符号的判定:表达式,请代值,对应y值定正负;对称轴,用处多,三种式子相约;轴两侧判,左同右异中为0;1的两侧判,左同右异中为0;-1两侧判,左异右同中为0.(8)函数图象的平移:左右平移变x,左+右-;上下平移变常数项,上+下-;平移结果先知道,反向平移是诀窍;平移方式不知道,通过顶点来寻找。

初三中考数学复习知识点归纳整理(7篇)

初三中考数学复习知识点归纳整理(7篇)

初三中考数学复习知识点归纳整理(7篇)初三中考数学复习知识点归纳整理篇11、矩形的概念有一个角是直角的平行四边形叫做矩形。

2、矩形的性质(1)具有平行四边形的一切性质(2)矩形的四个角都是直角(3)矩形的对角线相等(4)矩形是轴对称图形3、矩形的`判定(1)定义:有一个角是直角的平行四边形是矩形(2)定理1:有三个角是直角的四边形是矩形(3)定理2:对角线相等的平行四边形是矩形4、矩形的面积:S矩形=长×宽=ab初三中考数学复习知识点归纳整理篇21、图形的相似相似多边形的对应边的比值相等,对应角相等;两个多边形的对应角相等,对应边的比值也相等,那么这两个多边形相似;相似比:相似多边形对应边的比率。

2、相似三角形判定:平行于三角形一边的直线和其它两边相交,所构成的三角形和原三角形相似;如果两个三角形的三组对应边的比相等,那么这两个三角形相似;如果两个三角形的两组对应边的比相等,并且相应的.夹角相等,那么两个三角形相似;如果一个三角形的两个角与另一个三角形的两个角对应相等,那么两个三角形相似。

3相似三角形的周长和面积相似三角形(多边形)的周长的比等于相似比;相似三角形(多边形)的面积比等于相似比的平方。

4位似位似图形:两个多边形相似,而且对应顶点的连线相交于一点,对应边互相平行,这样的两个图形叫位似图形,相交的点叫位似中心。

初三中考数学复习知识点归纳整理篇3变量:因变量,自变量。

在用图象表示变量之间的关系时,通常用水平方向的数轴上的点自变量,用竖直方向的数轴上的点表示因变量。

一次函数:①若两个变量X,Y间的关系式可以表示成Y=KX+B(B为常数,K不等于0)的形式,则称Y是X的一次函数②当B=0时,称Y是X的正比例函数。

一次函数的图象:①把Y=KX+B个函数的自变量X与对应的因变量Y的`值分别作为点的横坐标与纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象。

②正比例函数Y=KX的图象是经过原点的一条直线。

初三数学知识点总结归纳(4篇)

初三数学知识点总结归纳(4篇)

初三数学知识点总结归纳初三数学复习五大方法初三新学期数学知识点一、圆的定义1、以定点为圆心,定长为半径的点组成的图形。

2、在同一平面内,到一个定点的距离都相等的点组成的图形。

二、圆的各元素1、半径:圆上一点与圆心的连线段。

2、直径:连接圆上两点有经过圆心的线段。

3、弦:连接圆上两点线段(直径也是弦)。

4、弧:圆上两点之间的曲线部分。

半圆周也是弧。

(1)劣弧:小于半圆周的弧。

(2)优弧:大于半圆周的弧。

5、圆心角:以圆心为顶点,半径为角的边。

6、圆周角:顶点在圆周上,圆周角的两边是弦。

7、弦心距:圆心到弦的垂线段的长。

三、圆的基本性质1、圆的对称性(1)圆是图形,它的对称轴是直径所在的直线。

(2)圆是中心对称图形,它的对称中心是圆心。

(3)圆是对称图形。

2、垂径定理。

(1)垂直于弦的直径平分这条弦,且平分这条弦所对的两条弧。

(2)推论:平分弦(非直径)的直径,垂直于弦且平分弦所对的两条弧。

平分弧的直径,垂直平分弧所对的弦。

3、圆心角的度数等于它所对弧的度数。

圆周角的度数等于它所对弧度数的一半。

(1)同弧所对的圆周角相等。

(2)直径所对的圆周角是直角;圆周角为直角,它所对的弦是直径。

4、在同圆或等圆中,两条弦、两条弧、两个圆周角、两个圆心角、两条弦心距五对量中只要有一对量相等,其余四对量也分别相等。

5、夹在平行线间的两条弧相等。

6、设⊙O的半径为r,OP=d。

初三数学知识点总结归纳(二)1.数的分类及概念数系表:说明:分类的原则:1)相称(不重、不漏)2)有标准2.非负数:正实数与零的统称。

(表为:x0)性质:若干个非负数的和为0,则每个非负数均为0。

3.倒数:①定义及表示法②性质:A.a1/a(a1);B.1/a中,aC.04.相反数:①定义及表示法②性质:A.a0时,aB.a与-a在数轴上的位置;C.和为0,商为-1。

5.数轴:①定义(三要素)②作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。

中考数学知识点复习 总复习资料大全(精华版)

中考数学知识点复习 总复习资料大全(精华版)

中考数学总复习资料大全第一章 实数★重点★ 实数的有关概念及性质,实数的运算 ☆内容提要☆ 一、 重要概念 1.数的分类及概念 数系表:说明:“分类”的原则:1)相称(不重、不漏) 2)有标准2.非负数:正实数与零的统称。

(表为:x ≥0) 常见的非负数有:性质:若干个非负数的和为0,则每个非负担数均为0。

3.倒数: ①定义及表示法②性质:A.a ≠1/a (a ≠±1);B.1/a 中,a ≠0;C.0<a <1时1/a >1;a >1时,1/a <1;D.积为1。

4.相反数: ①定义及表示法②性质:A.a ≠0时,a ≠-a;B.a 与-a 在数轴上的位置;C.和为0,商为-1。

5.数轴:①定义(“三要素”)②作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。

6.奇数、偶数、质数、合数(正整数—自然数) 定义及表示: 奇数:2n-1偶数:2n (n 为自然数) 7.绝对值:①定义(两种): 代数定义:几何定义:数a 的绝对值顶的几何意义是实数a 在数轴上所对应的点到原点的距离。

②│a │≥0,符号“││”是“非负数”的标志;③数a 的绝对值只有一个;④处理任何类型的题目,实数 无理数(无限不循环小数)有理数 正分数 负分数 正整数0 负整数 (有限或无限循环性数) 整数 分数 正无理数负无理数0 实数 负数整数分数 无理数有理数 正数 整数 分数无理数有理数│a │ 2a a (a ≥0) (a 为一切实数)a(a≥0)-a(a<0)│a │=只要其中有“││”出现,其关键一步是去掉“││”符号。

二、 实数的运算 1. 运算法则(加、减、乘、除、乘方、开方) 2. 运算定律(五个—加法[乘法]交换律、结合律;[乘法对加法的]分配律) 3.运算顺序:A.高级运算到低级运算;B.(同级运算)从“左”到“右”(如5÷51×5);C.(有括号时)由“小”到“中”到“大”。

中考数学知识点总结(完整版)

中考数学知识点总结(完整版)

中考数学知识点总结(完整版)一、实数的分类:1、有理数:任何一个有理数总可以写成的形式,其中p、q 是互质的整数,这是有理数的重要特征。

2、无理数:初中遇到的无理数有三种:开不尽的方根,如、;特定结构的不限环无限小数,如1、0001……;特定意义的数,如π、等。

3、判断一个实数的数性不能仅凭表面上的感觉,往往要经过整理化简后才下结论。

二、实数中的几个概念1、相反数:只有符号不同的两个数叫做互为相反数。

(1)实数a的相反数是20%)x元,方程容易得出。

例6、某商场销售一批名牌衬衫,平均每天售出20件,每件盈利40元,为了扩大销售,增加盈利,减少库存,商场决定采取适当的降低成本措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件。

若商场平均每天要盈利1200元,每件衬衫应降价多少元?分析:设每件衬衫应该降价x元,则每件衬衫的利润为(40-x)元,平均每天的销售量为(20+2x)件,由关系式:总利润=每件的利润售出商品的叫量,可列出方程解:略代数部分第五章:不等式及不等式组知识点:一、不等式与不等式的性质1、不等式:表示不等关系的式子。

(表示不等关系的常用符号:≠,<,>)。

2、不等式的性质:(l)不等式的两边都加上(或减去)同一个数,不等号方向不改变,如a> b, c为实数a+c>b+c(2)不等式两边都乘以(或除以)同一个正数,不等号方向不变,如a>b, c>0ac>bc。

(3)不等式两边都乘以(或除以)同一个负数,不等号方向改变,如a>b,c<0ac<bc、注:在不等式的两边都乘以(或除以)一个实数时,一定要养成好的习惯、就是先确定该数的数性(正数,零,负数)再确定不等号方向是否改变,不能像应用等式的性质那样随便,以防出错。

3、任意两个实数a,b的大小关系(三种):(1)a – b >0 a>b (2)a – b=0a=b (3)a–b<0a<b4、(1)a>b>0 (2)a>b>0二、不等式(组)的解、解集、解不等式1、能使一个不等式(组)成立的未知数的一个值叫做这个不等式(组)的一个解。

中考数学知识点总结(完整版)

中考数学知识点总结(完整版)

中考数学总复习资料代数部分第一章:实数基础知识点:一、实数的分类:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧无限不循环小数负无理数正无理数无理数数有限小数或无限循环小负分数正分数分数负整数零正整数整数有理数实数 1、有理数:任何一个有理数总可以写成q p 的形式,其中p 、q 是互质的整数,这是有理数的重要特征。

2、无理数:初中遇到的无理数有三种:开不尽的方根,如2、34;特定结构的不限环无限小数,如1.101001000100001……;特定意义的数,如π、45sin °等。

3、判断一个实数的数性不能仅凭表面上的感觉,往往要经过整理化简后才下结论。

二、实数中的几个概念1、相反数:只有符号不同的两个数叫做互为相反数。

(1)实数a 的相反数是 -a ; (2)a 和b 互为相反数⇔a+b=02、倒数:(1)实数a (a ≠0)的倒数是a1;(2)a 和b 互为倒数⇔1=ab ;(3)注意0没有倒数3、绝对值:(1)一个数a 的绝对值有以下三种情况:⎪⎩⎪⎨⎧-==0,0,00, a a a a a a(2)实数的绝对值是一个非负数,从数轴上看,一个实数的绝对值,就是数轴上表示这个数的点到原点的距离。

(3)去掉绝对值符号(化简)必须要对绝对值符号里面的实数进行数性(正、负)确认,再去掉绝对值符号。

4、n 次方根(1)平方根,算术平方根:设a ≥0,称a ±叫a 的平方根,a 叫a 的算术平方根。

(2)正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根。

(3)立方根:3a 叫实数a 的立方根。

(4)一个正数有一个正的立方根;0的立方根是0;一个负数有一个负的立方根。

三、实数与数轴1、数轴:规定了原点、正方向、单位长度的直线称为数轴。

原点、正方向、单位长度是数轴的三要素。

2、数轴上的点和实数的对应关系:数轴上的每一个点都表示一个实数,而每一个实数都可以用数轴上的唯一的点来表示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

去括号法则:括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项都不
变;括号前面是“–”号,把括号和它前面的“–”号去掉,括号里的各项都变号。 添括号法则:括号前面是“+”号,括到括号里的各项都不变;括号前面是“–”号,
括到括号里的各项都变号。
整式的加减实际上就是合并同类项,在运算时,如果遇到括号,先去括号,再合并同
中考数学总复习资料 代数部分
第一章:实数
基础知识点:
一、实数的分类:
正整数
有理数整数零负整数有限小数或无限循环小数
实数
正分数
分数
负分数
正无理数
无理数
无限不循环小数
负无理数
Байду номын сангаас
1、有理数:任何一个有理数总可以写成 p的形式,其中 p、q 是互质的整数,这是有理数
q
的重要特征。
2、无理数:初中遇到的无理数有三种:开不尽的方根,如 2 、 3 4 ;特定结构的不限环
基础知识点: 一、代数式
1、代数式:用运算符号把数或表示数的字母连结而成的式子,叫代数式。单独一个 数或者一个字母也是代数式。
2、代数式的值:用数值代替代数里的字母,计算后得到的结果叫做代数式的值。 3、代数式的分类:
2
单项式
代数式有理式分整式式多项式
无理式
二、整式的有关概念及运算
1、概念
1 单项式:像 x、7、 2x 2 y ,这种数与字母的积叫做单项式。单独一个数或字母 也是
六、有效数字和科学记数法
1、科学记数法:设 N>0,则 N= a×10n (其中 1≤a<10,n 为整数)。
2、有效数字:一个近似数,从左边第一个不是 0 的数,到精确到的数位为止,所有的数 字,叫做这个数的有效数字。精确度的形式有两种:(1)精确到那一位;(2)保留几个 有效数字。
代数部分
第二章:代数式
2、倒数:
(1)实数 a(a≠0)的倒数是1;(2)a 和 b 互为倒数 ab 1;(3)注意 0 没有倒 a
数 3、绝对值: (1) 一个数 a 的绝对值有以下三种情况:
a, a 0,
a,
a 0
a 0 a 0
2实数的绝对值是一个非负数,从数轴上看,一个实数的绝对值,就是数轴上表示这 个 数的点到原点的距离。 3去掉绝对值符号(化简)必须要对绝对值符号里面的实数进行数性(正、负)确认, 再 去掉绝对值符号。 4、n 次方根
2、减法: 减去一个数等于加上这个数的相反数。 3、乘法: (1)两数相乘,同号取正,异号取负,并把绝对值相乘。 (2)n 个实数相乘,有一个因数为 0,积就为 0;若 n 个非 0 的实数相乘,积的符号由负 因数的个数决定,当负因数有偶数个时,积为正;当负因数为奇数个时,积为负。
(3)乘法可使用乘法交换律、乘法结合律、乘法分配律。 4、除法: 1 两数相除,同号得正,异号得负,并把绝对值相除。 2 除以一个数等于乘以这个数的倒数。 (3)0 除以任何数都等于 0,0 不能做被除数。 5、乘方与开方:乘方与开方互为逆运算。 6、实数的运算顺序:乘方、开方为三级运算,乘、除为二级运算,加、减是一级运算, 如果没有括号,在同一级运算中要从左到右依次运算,不同级的运算,先算高级的运算再 算低级的运算,有括号的先算括号里的运算。无论何种运算,都要注意先定符号后运算。
无限小数,如 1.101001000100001……;特定意义的数,如 π、 sin 45 °等。
3、判断一个实数的数性不能仅凭表面上的感觉,往往要经过整理化简后才下结论。
二、实数中的几个概念 1、相反数:只有符号不同的两个数叫做互为相反数。
(1)实数 a 的相反数是 -a; (2)a 和 b 互为相反数 a+b=0
的项叫常数项。
升(降)幂排列:把一个多项式按某一个字母的指数从小(大)到大(小)的顺序排
列起来,叫做把多项式按这个字母升(降)幂排列。
3 同类项:所含字母相同,并且相同字母的指数也分别相同的项叫做同类项。 2、运算 1 整式的加减: 合并同类项:把同类项的系数相加,所得结果作为系数,字母及字母的指数不变。
单项式。
单项式的次数:一个单项式中,所有字母的指数叫做这个单项式的次数。 单项式的系数:单项式中的数字因数叫单项式的系数。
2 多项式:几个单项式的和叫做多项式。 多项式的项:多项式中每一个单项式都叫多项式的项。一个多项式含有几项,就叫几
项式。
多项式的次数:多项式里,次数最高的项的次数,就是这个多项式的次数。不含字母
类项。
2 整式的乘除: 幂的运算法则:其中 m、n 都是正整数
同底数幂相乘: am an amn ;同底数幂相除: am an amn ;幂的乘方:
(am )n amn 积的乘方: (ab)n anbn 。
单项式乘以单项式:用它们系数的积作为积的系数,对于相同的字母,用它们的指数
的和作为这个字母的指数;对于只在一个单项式里含有的字母,则连同它的指数作为积的
一个因式。
单项式乘以多项式:就是用单项式去乘多项式的每一项,再把所得的积相加。 多项式乘以多项式:先用一个多项式的每一项乘以另一个多项式的每一项,再把所得
的积相加。
单项除单项式:把系数,同底数幂分别相除,作为商的因式,对于只在被除式里含有
1 平方根,算术平方根:设 a≥0,称 a 叫 a 的平方根, a 叫 a 的算术平方根。
2 正数的平方根有两个,它们互为相反数;0 的平方根是 0;负数没有平方根。
1
3 立方根: 3 a 叫实数 a 的立方根。
4 一个正数有一个正的立方根;0 的立方根是 0;一个负数有一个负的立方根。 三、实数与数轴 1、数轴:规定了原点、正方向、单位长度的直线称为数轴。原点、正方向、单位长度是 数轴的三要素。 2、数轴上的点和实数的对应关系:数轴上的每一个点都表示一个实数,而每一个实数都 可以用数轴上的唯一的点来表示。实数和数轴上的点是一一对应的关系。
四、实数大小的比较 1、在数轴上表示两个数,右边的数总比左边的数大。 2、正数大于 0;负数小于 0;正数大于一切负数;两个负数绝对值大的反而小。 五、实数的运算 1、加法: 1 同号两数相加,取原来的符号,并把它们的绝对值相加; 2异号两数相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。 可 使用加法交换律、结合律。
相关文档
最新文档