因式分解复习08.6
因式分解专题复习(精品)

因式分解专题复习例题讲解考点1 提取公因式法例1 ⑴y x y x y x3234268-+-; ⑵23()2()x x y y x --- 解:注:提取公因式的关键是从整体观察,准确找出公因式,并注意如果多项式的第一项系数是负的一般要提出“-”号,使括号内的第一项系数为正.提出公因式后得到的另一个因式必须按降幂排列.练习1、⑴3222245954a b c a bc a b c +-; ⑵433()()()a b a a b b b a -+-+-考点2 运用公式法例2 把下列式子分解因式:⑴22364a b -; ⑵22122x y -. 解:注:能用平方差分解的多项式是二项式,并且具有平方差的形式.注意多项式有公因式时,首先考虑提取公因式,有时还需提出一个数字系数.例3把下列式子分解因式:⑴2244x y xy --+; ⑵543351881a b a b a b ++. 解:注:能运用完全平方公式分解因式的多项式的特征是:有三项,并且这三项是一个完全平方式,有时需对所给的多项式作一些变形,使其符合完全平方公式.练习2、⑴6216a a -; ⑵22(2)(2)a b a b +-+;⑶421681x x -+; ⑷2222(1)4(1)4x x x x +-++.注:整体代换思想:a b 、比较复杂的单项式或多项式时,先将其作为整体替代公式中字母.还要注意分解到不能分解为止.考点3、十字相乘法例5 ⑴254a a -+; ⑵422454x x y y -+.练习3、⑴22616x xy y -- ⑵2()2()80x y y x ----考点4、分组分解法例6分解因式:(1)22244z y xy x -+-; (2)b a b a a 2322-+-(3)322222--++-y x y xy x练习4分解因式:224426x xy y x y -+-+-.分析:对于四项或四项以上的多项式的因式分解,一般采用分组分解法,。
因式分解单元复习ppt

THANKS
谢谢您的观看
2
练习求解一些基本的因式分解问题,例如解一 元二次方程等。
3
通过解决实际问题来巩固因式分解技能,例如 求解几何中的面积、体积等问题。
03
因式分解的方法
提公因式法
总结词
基础、常用
详细描述
提公因式法是因式分解中最基础和常用的方法之一,通过将一个多项式分解 成两个或多个因式乘积的形式,其中一个因式为所有项的公共因式。
重点、难点和考点
重点
因式分解的基本概念、性质和 常用的方法
难点
因式分解在解方程、求最大公约 数、最小公倍数等领域的应用
考点
因式分解的概念和性质,以及运用 因式分解解决实际问题
02
因式分解的定义与性质
因式分解的定义
数学上,因式分解是将一个多项式化为几个整式的积的形式 的过程。
分解因式是重要的数学技能,在解方程、证明定理、解决几 何问题等方面都有广泛的应用。
运用因式分解简化一些代数式,如提取公因式、运用公式等。 掌握因式分解的技巧和方法,如分组、拆项、换元等。
练习与巩固
通过大量的练习来巩固所学的因式分解知识。 通过练习进一步熟悉因式分解的解题思路和技巧。
05
复习总结
因式分解的常用方法总结
提公因式法
公式法
十字相乘法
配方法
待定系数法
适用于各项系数含有公 共因式或相同因式的多 项式,将公因式提出来 ,进行因式分解。
注意分解要彻底
因式分解要将多项式分解到不能再 分解为止,否则会出现遗漏或重复 。
注意分解后的项数
因式分解后的项数应该与原多项式 的次数相同。
注意符号和顺序
因式分解要注意符号和各项的顺序 ,尤其是当多项式含有括号时。
人教版八年级下册数学专题复习及练习(含解析):因式分解

专题14.3因式分解1.因式分解把一个多项式化成几个整式的积的形式,这种变形叫做把这个式子因式分解.2.因式分解方法(1)提公因式法:找岀最大公因式.(2)公式法:①平方差公式:a2-b2=(a+b)(a-b) ②完全平方公式:a2±2ab+b2=(a±b)23.分解因式的一般步骤若有公因式,先提公因式;然后再考虑用公式法(平方差公式:孑一歹=(a+b)(a-2>),完全平方公式: /±2曰b+F=(a±bF)或英它方法分解;直到每个因式都不能再分解为止.【例题1】因式分解:ab-a= __________ •【例题2]把多项式4子-1分解因式,结果正确的是( )A. (4M1) (4a-1) B・(2M1) (2”1)C. (2a- 1) 2D・(2亦1) 2【例题3]分解因式3/ - 27/= __________ .【例题4】分解因式:xf - 2xy^x= _________ .【例题5】因式分解:/-9= _________ .【例题6】分解因式:_________________ ・一.选择题1.a'b - 6a'bTa:b分解因式得正确结果为( )A. a"b (a* - 6a+9) B・ a-b (a - 3) (a+3) C・ b (a" - 3) D・ a"b (a - 3)2.把多项式x2 - 6x+9分解因式,结果正确的是()A・(x - 3 ) 2 B・(x - 9)=C・(x+3) ( x - 3 ) D・(x+9) ( x - 9)3.多项式77x: - 13x - 3 0可因式分解成(7 x+a ) ( bx+c儿其中a > b、c均为整数,求a+b + c之值为何?( )A. 0 B・ 10 C・ 12 D・ 224.已知甲、乙、丙均为x的一次多项式,且其一次项的系数皆为正整数.若甲与乙相乘为X3- 4,乙与丙相乘为x=+15x - 34,则甲与丙相加的结果与下列哪一个式子相同?( )A. 2x+19 B・ 2x - 19 C・ 2x+15 D・ 2x - 155.把8a'-8a:+2a进行因式分解,结果正确的是( )A. 2a ( 4a: - 4a+l) B・ 8a: ( a - 1)C. 2a ( 2a - 1) 2 D・ 2a (2a+l) 26.多项式77x" - 13x - 30可因式分解成(7x-ra ) ( bx+c ),其中a. b c均为整数,求a+b + c之值为何?( )A. 0 B・ 10 C・ 12 D・ 227.已知甲、乙、丙均为x的一次多项式,且英一次项的系数皆为正整数.若甲与乙相乘为x c- 4,乙与丙相乘为x=+15x - 34,则甲与丙相加的结果与下列哪一个式子相同?( )A. 2x+19B. 2x - 19 C ・ 2x+15 D. 2x・ 158.把多项式亍+ax+b分懈因式,得(x+1) (x-3)则a, b的值分别是( )A. a=2t b=3 B・ a= - 2, b二・3 C・ a= - 2, b=3 D・ a=2, b= - 39.分解因式:16-丘二( )A. (4 - x) (4+x) B・(x - 4) (x+4) C. (8+x) (8 - x) D. (4 - x):10.将下列多项式因式分解,结果中不含有因式a+1的是( )A. a" - 1 B・ a"+a C・ a"+a - 2 D・(a+2) " - 2 (a+2) +1二、填空题11.分解因式:1-¥= _________ .12.分解因式:3a'b十6卅二__ ・13.分解因式X3—9x= _____1 0 114•已知实数x满足x+_=3,则x2 + —的值为___________ -X X15•因式分解:£・6a+9二____ ・16.分解因式:2^2 - 8/= ______________ .17.因式分解:a2 -2a = _________ .18.分解因式:x2 +x-2 = __________ ・19.分解因式.4丘一9二 _____ ・20.分解因式:a^b —ab= _______ ・21.分解因式:ax= - ay== ______________ .22.分解因式:a-16a= ________________ ・23.把多项式9a5 - ab:分解因式的结果是__________ .24._______________________________________ •把多项式ax:+2a*a'分解因式的结果是.25.分解因式3m l - 48= ____________ ・26・分解因式:ab 1 - 4ab:+4ab:= ______________ ・27.分解因式:(m+1) (m- 9) +8m二__________ ・28•将/ (x-2) +加(2-.Y)分解因式的结果是________________三、解答题29•已知a+b二3, ab=2,求代数式a5b+2aV+ab3的值.专题14.3因式分解1.因式分解把一个多项式化成几个整式的积的形式,这种变形叫做把这个式子因式分解.2.因式分解方法(1)提公因式法:找岀最大公因式.(2)公式法:①平方差公式:a2-b2=(a+b)(a-b) ②完全平方公式:a2±2ab+b2=(a±b)23.分解因式的一般步骤若有公因式,先提公因式;然后再考虑用公式法(平方差公式:孑一歹=(a+b)(a-2>),完全平方公式: /±2曰b+F=(a±bF)或英它方法分解;直到每个因式都不能再分解为止.【例题1】因式分解:ab-a= ___________•【答案】a (6-1).【解析】提公因式a即可.ab- a=a (.b ■ 1 )・【点拨】本题考査了提取公因式法因式分解.关键是求岀多项式里各项的公因式,提公因式.【例题2】把多项式4/ - 1分解因式,结果正确的是( )A. (4亦1) (4a- 1)B. (2M1) (2”1)C. (2a- 1) 2D・(2M1) 2【答案】B【解析】如果把乘法公式反过来,就可以把某些多项式分解因式,这种方法叫公式法.平方差公式:=(a+6) (a- b)i完全平方公式:a:±2aM6:= (a±b) 5:4a:- 1= (2a+l) (2a- 1),【点拨】本题考査了分解因式,熟练运用平方差公式是解题的关键。
因式分解 复习课件-因式分解复习课课件

知识点3 因式分解综合运用
例2 分解因式. (1)x3-2x2+x;(2)x2(x-y)+y2(y-x)
解:(1)x3-2x2+x =x(x2-2x+1) =x(x-1)2 (2)x2(x-y)+y2(y-x) =x2(x-y)-y2(x-y) =(x-y)(x2-y2) =(x-y)(x+y)(x-y) =(x+y)(x-y)2
2021/2/19
知识点2 因式分解方法二 公式法
(1)平方差公式:a2-b2=(a+b)(a-b). (2)完全平方公式:a2±2ab+b2=(a±b)2 其中,a2±2ab+b2叫做完全平方式.
2021/2/19
填一填 a2-b2=(a+b)(a-b).
多项式
(1) (2) (3)a2 - 4 - 4 x22021/2/19
2021/2/19
解因式分解题时, 首先考虑是否有公因式,如果有,先提公因式,再考虑公式法; 如果没有公因式;是两项式,则考虑能否用平方差公式分解因式. 是三项式考虑用完全平方式,最后, 直到每一个因式都不能再分解为止.
2021/2/19
创新提高
若4x2+kxy+y2是完全平方式,则k= —
±2·2x·y=4xy=kxy ∴k=±4
(5)x2-2x+3=(x-1)2+2;
2021/2/19
知识点2 因式分解方法一 提公因式
例题1:把下列多项式分解因式:
方
(1)3x2y-6xy+x;
法
(2)-4x4+2x3y;
一 提
(3)2x(a-2)+3y(2-a).
(完整版)因式分解复习教案(教师版)

因式分解复习教案(教师教学案)教学目标: 1。
复习巩固用提公因式、平方差公式、完全平方公式分解因式的方法。
2.会综合运用提公因式、平方差公式、完全平方公式分解因式.教学重点:综合运用提公因式、平方差公式、完全平方公式分解因式。
教学难点 :根据题目的结构特点,合理选择方法。
教师活动一、引入本章我们学习了分解因式,学习分解因式同学们要掌握以下知识:(1)什么叫分解因式?(2)怎样分解因式?或者分解因式有哪些方法?下面我们一起带着这些问题进行复习二、教授新课知识点1:分解因式的定义(教师和学生一起复习定义及特征,强调因式分解与整式的乘法的关系) 思考:什么是分解因式?因式分解与整式的乘法有何关系分解因式的特征,左边是 , 右边是 。
针对练习:下列选项,哪一个是分解因式( )(学生自主完成此题,并指出错在哪里)A .x x x x x 6)3)(3(692+-+=+-B 。
103)2)(5(2-+=-+x x x xC 。
22)4(168-=+-x x xD 。
y x x y x ⋅⋅=552知识点2:分解因式的第一种方法—-——--提公因式法思考:如何提公因式?(教师强调公因式公有的意思-——你有我有大家有才是公有)注意:(学生一起读一遍)公因式的确定:(1)符号: 若第一项是负号则先把负号提出来(提出负号后括号里每一项都要变号)(2)系数:取系数的最大公约数; (3)字母:取字母(或多项式)的指数最低的;(4)所有这些因式的乘积即为公因式 (5)某一项被作为公因式完全提出时,应补为例如:1.的公因式是多项式 963ab - aby abx -+_________2.多项式3223281624a b c a b ab c -+-分解因式时,应提取的公因式是( )A .24ab c -B .38ab -C .32abD .3324a b c3。
342)()()(n m m n y n m x +++-+的公因式是__________提公因式法分解因式分类:1.直接提公因式的类型:(1)3442231269b a b a b a +-=________________;(2)11n n n a a a +--+=____________(3)423)()()(b a b a y b a x -+---=_____________(4)不解方程组23532x y x y +=-=-⎧⎨⎩,求代数式()()()22332x y x y x x y +-++的值 2.首项符号为为负号的类型:(1)33222864y x y x y x -+- =_________(2)若被分解的因式只有两项且第一项为负,则直接交换他们的位置再分解(特别是用到平方差公式时) 如: 22188y x +-练习:1.多项式:aby abx ab 24186++-的一个因式是ab 6-,那么另一个因式是( )y x A 431..+-- y x B 431..-+ C y x 431--- D 。
因式分解总复习课件 PPT

即: ma + mb + mc = m(a+b+c)
例2:把下列各式分解因式
① 6x3y2-9x2y3+3x2y2 解:原式=3x2y2(2x-3y+1)
③ (x-y)2-y(y-x)2 解:原式=(x-y) 2(1-y)
②p(y-x)-q(x-y) 解:原式=p(y-x)+q(y-x)
=(y-x)(p+q)
(1) x2-4y2=(x+2y)(x-2y) (2) 2x(x-3y)=2x2-6xy (3) x2+4x+4=(x+2)2 (4) (a-3)(a+3)=a2-9
2
提公因式法
2 提公因式法
如果多项式的各项有公因式,可以把这个公因式提到括号外面, 将多项式写成乘积的形式。这种分解因式的方法叫做提公因式法。
小结
解因式分解题时,首先考虑是否有公 因式,如果有,先提公因式;如果没有 公因式;是两项式,则考虑能否用平方 差公式分解因式. 是三项式考虑用完全 平方式,最后,直到每一个因式都不能 再分解为止.
业精于勤荒于嬉; 行成于思毁于随。
THANKS
3
公式法
3 公式法
如果把乘法公式反过来应用,就可以把多项式写成积 的形式,达到分解因式目的。这种方法叫做运用公式法。
公式法
平方差公式 a2-b2 =(a+b)(a-b) 特征:两项、异号、平方形式
完全平方公式 a2±2ab+b2=(a±b)2
特征:三项、两数平方的和加 上(或减去)两数乘积的2倍
3.已知a b=2,求a2 b2 4b的值
3 公式法 a2 +2ab+ b2 =(a+b)2
第四章因式分解复习课PPT课件
编辑版pppt
8
知因 式ห้องสมุดไป่ตู้
识分 解
梳 理
概念
与整式乘法的关系
方法
提公因式法 运用公式法
提:提公因式
步骤
公:运用公式
平方差公式 完全平方公式
查:查结果是否彻底
编辑版pppt
9
作业
编辑版pppt
10
练习
1.把下列各式分解因式
(1)3a2-27 (3)m4-n4
(2)-3x+6x2-3x3 (4)x4-8x2+16
编辑版pppt
13
感谢亲观看此幻灯片,此课件部分内容来源于网络, 如有侵权请及时联系我们删除,谢谢配合!
14
是 ±10x,-x2,-25,0.01x4 编辑版pppt
.4
例4:分解因式
6abc-3ab
二 例
-2a3+4a2-2a
题 4(x+2y)2-9(x-2y)2
分 (m-n)2-10(n-m)+25
析 4x2y2-(x2+y2)2
编辑版pppt
5
例5:因式分解的应用
1.简便计算
例 (1) (31)2 (63)2
都是整数),则m可取的值
为 11,4,1
.
编辑版pppt
3
例3:有关完全平方式的运用
若9x2+mx+16是完全平方式,则
m= ±24
.
例 若x2-6xy+m,是完全平方式,则
题 m= 9y2
.
分 若x2-x+m2,是完全平方式,则
析 m= ±0.5
.
若x2+25与一个单项式的和是一个
北师大版八年级数学下册第四章《因式分解》复习 教案
第四章因式分解一、学生起点分析学生的知识技能基础:学生已经学习了因式分解的两种方法:提公因式法与公式法,逐步认识到了整式乘法与因式分解之间是一种互逆关系,但对因式分解在实际中的应用认识还不够深,应用不够灵活,对稍复杂的多项式找不出分解因式的策略.因此,教学难点是确定对多项式如何进行分解因式的策略以及利用分解因式进行计算及讨论.学生活动经验基础:在本章内容的学习过程中,学生已经经历了观察、对比、类比、讨论、归纳等活动方法,获得了一些对多项式进行分解因式以及利用分解因式解决实际问题所必须的数学活动经验基础,同时在以前的数学学习中学生已经经历了很多合作学习的经验,具备了一定的合作与交流的能力.二、教学任务分析在前几节的学习中,学生已经掌握了提取公因式与公式法的用法,本课时安排让学生对本章内容进行回顾与思考,旨在把学生头脑中零散的知识点用一条线有机地组合起来,从而形成一个知识网络,使学生对这些知识点不再是孤立地看待,而是在应用这些知识时,能顺藤摸瓜地找到对应的及相关的知识点,同时能把这些知识加以灵活运用,因此,本节课的教学目标是:1.知识与技能:(1)使学生进一步了解分解因式的意义及几种因式分解的常用方法;(2)提高学生因式分解的基本运算技能;(3)能熟练地综合运用几种因式分解方法.2.过程与方法:(1)发展学生对因式分解的应用能力,培养寻求解决问题的策略意识,提高解决问题的能力;(2)注重学生对因式分解的理解,发展学生分析问题的能力和推理能力.3.情感与态度:通过因式分解综合练习和开放题练习,提高学生观察、分析问题的能力,培养学生的开放意识;通过认识因式分解在实际生活中的应用,培养学生运用数学知识解决实际问题的意识.三、教学过程分析本节课设计了七个教学环节:知识回顾——总结归纳——小试牛刀——总结归纳——能力提升――活学活用——永攀高峰.第一环节知识回顾活动内容:1、举例说明什么是分解因式。
2、分解因式与整式乘法有什么关系?3、分解因式常用的方法有哪些?4、试着画出本章的知识结构图。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章《因式分解》复习
08.6
考点一:分解因式的概念
1下列各式从左到右的变形,是因式分解的是
①(a+3)(a-3)=a2-9
②x2+x-5=(x-2)(x
+3)+1
③a2b+ab2=ab(a+b
)
④211xxxx
⑤ababa43122
⑥yxaayax212121
2已知关于x的二次三项式nmxx23分解
因式的结果为123xx,则m= ,n=
考点二:提公因式法
3 若12aa,则2007222aa的值为
4 多项式aax42与多项式442xx的公
因式是
5 △ABC的三边长分别为a,b,c,且
a+2ab=c+2bc,则△ABC是( )
(A)等边三角形 (B)直角三角形
(C)等腰三角形 (D)等腰直角三角形
6用提公因式法分解因式:
xybyxa93
的公因式应当是
7分解因式:
xyzxyyzx72114322
=
8 10010122
9分解因式 ①21232yxyxxmmm ②)87)(1211()87)(43(babababa ③ 23)(10)(5yxxy ④ 2babbaa ⑤用简便方法计算20022001200119992001220012323 考点三:运用公式法 10下列多项式,不能运用平方差公式分解的是( ) A、42m B、22yx C、122yx D、22amam 11下列各式可以用完全平方公式分解因式的是( ) A、2242baba B、4142mm C、269yy D、222yxyx 12若n 为正整数,(n+11)2-n2 的值总可以被k 整除,则k等于( ) A、11 B、22 C、11或22 D、11的倍数 13在边长为a的正方形中挖掉一个边长为b的小正方形(a>b)。把余下的部分剪拼成一个矩形(如图)。通过计算图形(阴影部分)的面积,验证了一个等式,则这个等式是_________________
14 若非零实数a、b满足2244abab,则
b
a
=
222
222
111
111234111111910n
15已知多项式221254xmxyy是一个完全
平方式,m=
16将多项式42x加上一个整式,使它成为
完全平方式,试写出满足上述条件的三个整
式: , , .
17如图,有三种卡片,边长为a的正方形卡片1张,边长分别为a,b的矩形卡片6张,边长为b的正方形卡片9张.用这16张卡片拼成一个正方形,则这个正方形的边长为 . 18当x取 时,多项式241xx取得最小值是 19 若02910422yxyx,则x+y= 20 ,,abc是△ABC的三边 且bcacabcba222,那么△ABC的形状是( ) A、直角三角形 B、等腰三角形 C、等腰直角三角形 D、等边三角形 21已知x-y=1,xy=2,求32232xyxyxy的值. 22已知a(a-1)-(a2-b)=1,求abba)(2122 的值. . 23利用因式分解说明:127636能被140整除 24 因式分解: (1)3x2-31 (2))()(2xyyxx (3)22216)4(aa (4) 4416nm
(5)4224168bbaa (6) -m2-4n2+4mn
(7)1124xx (8)221612aa
(9)
25(2005年盐城中考题)已知:如图,现
有的正方形和的矩形纸片若干块,试选用
这些纸片(每种至少用一次)在下面的虚
线方框中拼成一个矩形(每两个纸片之间
既不重叠,也无空隙,拼出的图中必须保
留拼图的痕迹),使拼出的矩形面积为
22
54aabb
,并标出此矩形的长和宽,
并根据你拼成的图形分解多项式
22
54aabb
.
a
abba
b
图5
图2 图3
图4