聊城市数学七年级下学期期末复习专题4 因式分解
2022年最新浙教版初中数学七年级下册第四章因式分解专题练习试题(无超纲)

初中数学七年级下册第四章因式分解专题练习(2021-2022学年 考试时间:90分钟,总分100分)班级:__________ 姓名:__________ 总分:__________一、单选题(15小题,每小题3分,共计45分)1、对于①3(13)x xy x y -=-,②2(3)(1)23x x x x -+=--,从左到右的变形,表述正确的是( )A.都是因式分解B.都是乘法运算C.①是因式分解,②是乘法运算D.①是乘法运算,②是因式分解2、下列各式由左边到右边的变形,是因式分解的是( )A.22()()x y x y x y -+=-B.241254(3)5x x x x +-=+-C.22()()x y x x y x y x -+=+-+D.2224484()x y xy x y +-=- 3、下列因式分解正确的是( )A.2p +2q +1=2(p +q )+1B.m 2﹣4m +4=(m ﹣2)2C.3p 2﹣3q 2=(3p +3q )(p ﹣q )D.m 4﹣1=(m ²+1)(m ²﹣1) 4、对于①()()2212+-=+-x x x x ,②()233x xy x x y -=-,从左到右的变形,表述正确的是( )A.都是因式分解B.都是乘法运算C.①是因式分解,②是乘法运算D.①是乘法运算,②是因式分解5、下列式子的变形是因式分解的是( )A.() m x y mx my +=+B.()22 21441x x x -=-+C.()()2 1343x x x x ++=++D.()3 11x x x x x -=+-()6、下列各式从左到右的变形,属于因式分解的是( )A.2323824a b a b =⋅B.()()311x x x x x -=+-C.2211x x x x ⎛⎫+=+ ⎪⎝⎭ D.()a x y ax ay -=-7、下列各式从左到右的变形是因式分解的是( )A.ax +bx +c =(a +b )x +cB.(a +b )(a ﹣b )=a 2﹣b 2C.(a +b )2=a 2+2ab +b 2D.a 2﹣5a ﹣6=(a ﹣6)(a +1) 8、若()()223x x x a x b --=-+,则-a b 的值为( )A.3B.3-C.2D.2-9、多项式3254812x y x y -的公因式是( )A.x 2y 3B.x 4y 5C.4x 4y 5D.4x 2y 310、如果一个正整数可以表示为两个连续奇数的立方差,则称这个正整数为“和谐数”.如:2=13﹣(﹣1)3,26=33﹣13,2和26均为和谐数.那么,不超过2019的正整数中,所有的“和谐数”之和为( )A.6858B.6860C.9260D.9262 11、把多项式x 3﹣9x 分解因式,正确的结果是( )A.x (x 2﹣9)B.x (x ﹣3)(x +3)C.x (x ﹣3)2D.x (3﹣x )(3+x ) 12、对于任何整数a ,多项式()2255a +-都能( )A.被3整除B.被4整除C.被5整除D.被a 整除13、下列分解因式的变形中,正确的是( )A.xy (x ﹣y )﹣x (y ﹣x )=﹣x (y ﹣x )(y +1)B.6(a +b )2﹣2(a +b )=(2a +b )(3a +b ﹣1)C.3(n ﹣m )2+2(m ﹣n )=(n ﹣m )(3n ﹣3m +2)D.3a (a +b )2﹣(a +b )=(a +b )2(2a +b )14、下列各组式子中,没有公因式的是( )A.﹣a 2+ab 与ab 2﹣a 2bB.mx +y 与x +yC.(a +b )2与﹣a ﹣bD.5m (x ﹣y )与y ﹣x15、下列各式从左边到右边的变形,是因式分解且分解正确的是 ( )A.(a +1)(a -1)=a 2-1B.ab +ac +1=a (b +c )+1C. a 2-2a -3=(a -1)(a -3)D.a 2-8a +16=(a -4)2二、填空题(10小题,每小题4分,共计40分)1、如果9x y +=,3x y -=,那么222x 2y -的值为______.2、分解因式:22654x y xy -=________;3、因式分解:()()11x m y m -+-=____________.4、若多项式x 2+ax +b 可分解为(x +1)(x +4),则a =________,b =________.5、由多项式乘法:(x +a )(x +b )=x 2+(a +b )x +ab ,将该式子从右到左使用,即可得到“十字相乘法”进行因式分解的公式:x 2+(a +b )x +ab =(x +a )(x +b ),请用上述方法将多项式x 2﹣5x +6因式分解的结果是 _____________.6、因式分解:22416a b _______.7、分解因式:()()m n a b b a -+-=_________.8、已知x 2﹣y 2=21,x ﹣y =3,则x +y =___.9、因式分解:2242xy xy x ++=______.10、因式分解:4811x -=__.三、解答题(3小题,每小题5分,共计15分)1、因式分解:22496m n mn ---.2、教科书中这样写道:“我们把多项式a 2+2ab +b 2及a 2-2ab +b 2叫做完全平方式”,如果一个多项式不是完全平方式,我们常做如下变形:先添加一个适当的项,使式子中出现完全平方,再减去这个项,使整个式子的值不变,这种方法叫做配方法.配方法是一种重要的解决问题的数学方法,不仅可以将一个看似不能分解的多项式分解因式,还能解决一些与非负数有关的问题或求最值问题.例如:分解因式x 2+2x -3=(x 2+2x +1)-4=(x +1)2-4=(x +1+2)(x +1-2)=(x +3)(x -1);例如求代数式2x 2+4x -6=2(x +1)2-8,当x = -1时,2x 2+4x -6有最小值,最小值是-8,根据阅读材料用配方法解决下列问题:(1)分解因式:m 2-4m -5=(2)当a ,b 为何值时,多项式2a 2+3b 2-4a +12b +18有最小值,求出这个最小值.(3)当a ,b 为何值时,多项式a 2 - 4ab +5b 2 - 4a +4b +27有最小值,并求出这个最小值.3、计算:(1)(2a )3﹣3a 5÷a 2;(2)(12x 2y ﹣2xy +y 2)•(﹣4xy ).因式分解:(3)x 3﹣6x 2+9x ;(4)a 2(x ﹣y )﹣9(x ﹣y ).---------参考答案-----------一、单选题1、C【分析】根据因式分解和整式乘法的有关概念,对式子进行判断即可.【详解】解:①3(13)x xy x y -=-,从左向右的变形,将和的形式转化为乘积的形式,为因式分解;②2(3)(1)23x x x x -+=--,从左向右的变形,由乘积的形式转化为和的形式,为乘法运算; 故答案为C.【点睛】此题考查了因式分解和整式乘法的概念,熟练掌握有关概念是解题的关键.2、D【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】解:A 、是整式的乘法,故不符合;B 、没把一个多项式转化成几个整式积的形式,故不符合;C 、没把一个多项式转化成几个整式积的形式,故不符合;D 、把一个多项式转化成几个整式积的形式,故符合;故选:D.【点睛】本题考查因式分解的定义;掌握因式分解的定义和因式分解的等式的基本形式是解题的关键.3、B【分析】利用提取公因式法、平方差公式和完全平方公式法分别因式分解分析得出答案.【详解】解:A 、2p +2q +1不能进行因式分解,不符合题意;B 、m 2-4m +4=(m -2)2,符合题意;C 、3p 2-3q 2=3(p 2-q 2)=3(p +q )(p -q ),不符合题意;D 、m 4-1=(m 2+1)(m 2-1)=m 4-1=(m 2+1)(m +1)(m -1),不符合题意;故选择:B【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.4、D【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.根据因式分解的定义判断即可.【详解】解:①()()2212+-=+-x x x x ,属于整式乘法,不属于因式分解; ②()233x xy x x y -=-,等式从左到右的变形属于因式分解;故选:D.【点睛】本题考查了整式的乘法和因式分解的定义,注意:把一个多项式化成几个整式的积的形式,叫因式分解.5、D【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式,由此结合选项即可作出判断.【详解】解:A、右边不是整式积的形式,不是因式分解,故本选项错误;B、右边不是整式积的形式,不是因式分解,故本选项错误;C、右边不是整式积的形式,不是因式分解,故本选项错误;D、是因式分解,故本选项正确;故正确的选项为:D【点睛】本题的关键是理解因式分解的定义:把一个多项式化为几个最简整式的积的形式,这种变形叫做把这个多项式因式分解,属于基础题.6、B【分析】根据因式分解是把一个多项式转化成几个整式乘积的形式,可得答案.【详解】解:A、是把一个单项式转化成两个单项式乘积的形式,故A错误;B、把一个多项式转化成三个整式乘积的形式,故B正确;C、是把一个多项式转化成一个整式和一个分式乘积的形式,故C错误;D、是整式的乘法,故D错误;故选:B.【点睛】本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式乘积的形式,注意因式分解与整式的乘法的区别.7、D【分析】根据因式分解的定义对各选项进行逐一分析即可.【详解】解:A 、ax +bx +c =(a +b )x +c ,等式的右边不是几个整式的积,不是因式分解,故此选项不符合题意;B 、(a +b )(a ﹣b )=a 2﹣b 2,等式的右边不是几个整式的积,不是因式分解,故此选项不符合题意;C 、(a +b )2=a 2+2ab +b 2,等式的右边不是几个整式的积,不是因式分解,故此选项不符合题意;D 、a 2﹣5a ﹣6=(a ﹣6)(a +1),等式的右边是几个整式的积的形式,故是因式分解,故此选项符合题意;故选:D.【点睛】本题考查了分解因式的定义.解题的关键是掌握分解因式的定义,即把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.8、C【分析】根据十字相乘法可直接进行求解a 、b 的值,然后问题可求解.【详解】解:()()22331x x x x --=-+,∴3,1a b ==,∴2a b -=;故选C.【点睛】本题主要考查因式分解,熟练掌握因式分解的方法是解题的关键.9、D【分析】根据公因式的意义,将原式写成含有公因式乘积的形式即可.【详解】解:因为32542322328124243x y x y x y y x y x -=⋅-⋅,所以3254812x y x y -的公因式为234x y ,故选:D.【点睛】本题考查了公因式,解题的关键是理解公因式的意义是得出正确答案的前提,将各个项写成含有公因式积的形式.10、B【分析】根据“和谐数”的概念找出公式:(2k +1)3﹣(2k ﹣1)3=2(12k 2+1)(其中k 为非负整数),然后再分析计算即可.【详解】解:(2k +1)3﹣(2k ﹣1)3=[(2k +1)﹣(2k ﹣1)][(2k +1)2+(2k +1)(2k ﹣1)+(2k ﹣1)2]=2(12 k 2+1)(其中 k 为非负整数),由2(12k 2+1)≤2019得,k ≤9,∴k =0,1,2,…,8,9,即得所有不超过2019的“和谐数”,它们的和为[13﹣(﹣1)3]+(33﹣13)+(53﹣33)+…+(173﹣153)+(193﹣173)=193+1=6860.故选:B.【点睛】本题考查了新定义,以及立方差公式,有一定难度,重点是理解题意,找出其中规律是解题的关键所在.11、B【分析】原式提取公因式,再利用平方差公式分解即可.【详解】解:x 3﹣9x=x (x 2﹣9)=x (x +3)(x ﹣3).故选:B.【点睛】本题考查了提公因式和公式法分解因式,熟练掌握平方差公式是解题的关键.12、B【分析】多项式利用完全平方公式分解,即可做出判断.【详解】解:原式()22420255455a a a a =++-=++ 则对于任何整数a ,多项式()2255a +-都能被4整除.故选:B.【点睛】此题考查了因式分解-运用公式法,熟练掌握完全平方公式是解本题的关键.13、A【分析】按照提取公因式的方式分解因式,同时注意分解因式后的结果,一般而言每个因式中第一项的系数为正.【详解】解:A 、xy (x -y )-x (y -x )=-x (y -x )(y +1),故本选项正确;B 、6(a +b )2-2(a +b )=2(a +b )(3a +3b -1),故本选项错误;C 、3(n -m )2+2(m -n )=(n -m )(3n -3m -2),故本选项错误;D 、3a (a +b )2-(a +b )=(a +b )(3a 2+3ab -1),故本选项错误.故选:A.【点睛】本题考查提公因式法分解因式.准确确定公因式是求解的关键.14、B【分析】公因式的定义:多项式ma mb mc ++中,各项都含有一个公共的因式m ,因式m 叫做这个多项式各项的公因式.【详解】解:A 、因为2()a ab a b a -+=-,22()ab a b ab b a -=-,所以2a ab -+与22ab a b -是公因式是()a b a -,故本选项不符合题意;B 、mx y +与x y +没有公因式.故本选项符合题意;C 、因为()a b a b --=-+,所以2()a b +与a b --的公因式是()a b +,故本选项不符合题意;D 、因为5()5()m x y m y x -=--,所以5()m x y -与y x -的公因式是()y x -,故本选项不符合题意; 故选:B.【点睛】本题主要考查公因式的确定,解题的关键是先利用提公因式法和公式法分解因式,然后再确定公共因式.15、D【分析】分解因式就是把一个多项式化为几个整式的积的形式.因此,要确定从左到右的变形中是否为分解因式,只需根据定义来确定.【详解】解:A 、是多项式乘法,不是因式分解,原变形错误,故此选项不符合题意;B 、右边不是整式的积的形式,不是因式分解,原变形错误,故此选项不符合题意;C 、a 2-2a -3=(a +1)(a -3)分解时出现符号错误,原变形错误,故此选项不符合题意;D 、符合因式分解的定义,是因式分解,原变形正确,故此选项符合题意.故选:D.【点睛】本题考查了因式分解.解题的关键是理解因式分解的定义:把一个多项式化为几个最简整式的积的形式,这种变形叫做把这个多项式因式分解,然后进行正确的因式分解.二、填空题1、54【分析】先利用平方差公式分解因式,再代入求值,即可.【详解】解:222x 2y -=()222x y - =()()2x y x y +-=2×9×3=54,故答案是:54.【点睛】本题主要考查代数式求值,掌握平方差公式,进行分解因式,是解题的关键.2、()69xy x y -【分析】直接提取公因式6xy 即可得解.【详解】解:22654x y xy -=6?6?9xy x xy y - =6(9)xy x y -.故答案为:6(9)xy x y -.【点睛】此题主要考查了因式分解,熟练运用提公因式,找出公因式是解答此题的关键.3、()()1x y m --【分析】将y (1-m )变形为-y (m -1),再提取公因式即可.【详解】∵x (m -1)+ y (1-m )= x (m -1)-y (m -1),=(x -y )(m -1),故答案为:(x -y )(m -1).【点睛】本题考查了因式分解,熟练进行代数式的变形构造公因式是解题的关键.4、5 4【分析】把(x +1)(x +4)展开,合并同类项,可确定a 、b 的值.【详解】解:∵(x +1)(x +4),=244x x x +++,=254x x ++,∴54a b ==,;故答案为:5,4.【点睛】本题考查了因式分解和多项式乘多项式,解题关键是熟练运用多项式的乘法法则进行计算,取得字母的值.5、(2)(3)x x --【分析】根据“十字相乘法”的方法进行因式分解即可.【详解】2256(23)(2)(3)(2)(3)x x x x x x +=+--+-⨯-=---故答案为:(2)(3)x x --.【点睛】本题考查了十字相乘法因式分解,理解题目中的方法是解题的关键.6、422a b a b【分析】先提公因式4,再利用平方差公式分解.【详解】解:22416a b -=2244a b=422a b a b故答案为:422a b a b .【点睛】本题考查提公因式法和公式法进行因式分解,掌握提平方差公式是解题关键.7、()()a b m n --【分析】根据提公因式因式分解求解即可.【详解】解:()()()()()()m n m n a b b a a b a b m n b a -----+==--,故答案为:()()a b m n --.【点睛】本题考查了提公因式法因式分解,正确找出公因式是解本题的关键.8、7根据平方差公式分解因式解答即可.【详解】解:∵x 2﹣y 2=(x ﹣y )(x +y )=21,x ﹣y =3,∴3(x +y )=21,∴x +y =7.故答案为:7.【点睛】此题考查平方差公式分解因式,关键是根据平方差公式展开解答.9、22(1)x y -【分析】先提取公因式2x ,然后运用完全平方公式因式分解即可.【详解】解:2242xy xy x ++ 22(21)x y y =-+22(1)x y =-,故答案为:22(1)x y -.【点睛】本题主要考查提公因式因式分解以及公式法因式分解,熟知完全平方公式的结构特点是解题关键. 10、2(91)(31)(31)x x x ++-先把原式化为22291,x 再利用平方差公式分解因式,再把其中一个因式按照平方差公式继续分解,从而可得答案.【详解】解:原式22(91)(91)x x =+-2(91)(31)(31)x x x =++-, 故答案为:2(91)(31)(31)x x x ++-.【点睛】本题考查的是利用平方差公式分解因式,注意分解因式一定要分解到每个因式都不能再分解为止.三、解答题1、(23)(23)m n m n ++--【分析】首先对后面三项利用完全平方公式进行因式分解,然后利用平方差公式因式分解即可.【详解】解:原式224(96)m n mn =-++222(3)m n =-+(23)(23)m n m n =++--.【点睛】此题考查了因式分解的方法,解题的关键是熟练掌握因式分解的方法.因式分解的方法有:提公因式法,平方差公式法,完全平方公式法,十字相乘法等.2、(1)(1)(5)m m +-;(2)当1a =,2b =-时,最小值为4;(3)当6a =,2b =时,最小值为19.【分析】(1)根据阅读材料,先将245m m --变形为2449m m +--,再根据完全平方公式写成2(2)9m --,然后利用平方差公式分解即可;(2)利用配方法将多项式转化为完全平方式,然后利用非负数的性质进行解答;(3)利用配方法将多项式转化为完全平方式,然后利用非负数的性质进行解答.【详解】解:(1)22245449(2)9(23)(23)(1)(5)m m m m m m m m m --=-+-=--=-+--=+-.故答案为(1)(5)m m +-;(2)222223412182(2)3(4)18a b a b a a b b +-++=-+++222(21)3(44)4a a b b =-+++++222(1)3(2)4a b =-+++,∴当1a =,2b =-时,222341218a b a b +-++有最小值,最小值为4;(3)22454427a ab b a b -+-++2224(1)4(1)(2)19a a b b b =-++++-+22(22)(2)19a b b =--+-+,∴当6a =,2b =时,多项式22222427a ab b a b -+--+有最小值19.【点睛】本题考查了因式分解的应用,完全平方公式、以及非负数的性质,解题的关键是熟练掌握因式分解的方法.3、(1)5a 3;(2)﹣2x 3y 2+8x 2y 2﹣4xy 3;(3)x (x ﹣3)2;(4)(x ﹣y )(a +3)(a ﹣3)【分析】(1)利用积的乘方和同底数幂的除法法则进行运算;(2)利用单项式乘多项式法则进行运算;(3)先提取公因式,再用完全平方公式进行分解;(4)先提取公因式,再利用平方差公式因式分解.【详解】解:(1)原式=8a3﹣3a3=5a3;(2)原式=﹣2x3y2+8x2y2﹣4xy3;(3)x3﹣6x2+9x=x(x2﹣6x+9)=x(x﹣3)2;(4)a2(x﹣y)﹣9(x﹣y)=(x﹣y)(a2﹣9)=(x﹣y)(a+3)(a﹣3).【点睛】本题主要考查了因式分解、积的乘方、同底数幂的除法、单项式乘多项式,解题的关键在于能够熟练掌握相关知识进行求解.。
专题4-11 《因式分解》全章复习与巩固(知识讲解)-七年级数学下册(浙教版)

专题4.11 《因式分解》全章复习与巩固(知识讲解)【学习目标】1. 理解因式分解概念,并感受分解因式与整式乘法是相反方向的运算;2. 掌握提取公因式法、公式法、十字相乘法、分组分解法等四种基本方法,并能进行因式分解;3. 了解因式分解的一般步骤;能够熟练地运用这些方法进行多项式的因式分解.【要点梳理】把一个多项式化成几个整式的积的形式,像这样的式子变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式.因式分解的方法主要有: 提公因式法, 公式法, 分组分解法, 十字相乘法, 添、拆项法等.特别说明:落实好方法的综合运用: 首先提取公因式,然后考虑用公式;两项平方或立方,三项完全或十字;四项以上想分组,分组分得要合适;几种方法反复试,最后须是连乘式;因式分解要彻底,直到每一项不能再分解为止。
【典型例题】 类型一、提取公因式1.(2020·上海市梅陇中学七年级期中)28()2()()m n m n m n +-+- 【答案】2()(35)m n m n ++ 【分析】先提公因式2(m+n ),再化简计算即可解答. 解:原式=2(m+n )[4(m+n)﹣(m ﹣n )]=2(m+n)(4m+4n ﹣m+n) =2(m+n)(3m+5n).【点拨】本题考查因式分解、合并同类项,熟练掌握用提公因式法分解因式的方法,找到公因式是解答的关键. 举一反三:【变式】(2020·耒阳市冠湘中学八年级月考)分解因式:2318()12()a b b a ---【答案】26()(322)a b a b -+-【分析】原式先变形为()()231812a b a b +--,再利用提公因式法分解. 解:原式=()()231812a b a b +--=()26()32b a b a +--⎡⎤⎣⎦=()()23622a b b a +--.【点拨】本题考查了多项式的因式分解,属于基础题目,熟练掌握分解因式的方法是解题的关键.类型二、公式法2.(2019·山西九年级专题练习)分解因式:()()229x y x y -+-. 【答案】()()422x y x y ++ 【分析】直接利用平方差公式分解因式得出答案.解:()()()()()()2222229333x y x y x y x y x y x y -=-=⎡⎤⎣⎦+-+-+--∵()()()()()()22=3333334224x y x y x y x y y y x x x x y y ++-+-+=+++-- ∵()()()()()()224224=2942x y x y y x x y x y x y +++-=++-.【点拨】本题考查了平方差公式、整式运算的知识;求解的关键是熟练掌握平方差公式进行分解因式,即可得到答案. 举一反三:【变式】(2020·北京西城区·北师大实验中学八年级期中)因式分解;22(2)(2)a b a b +-+.【答案】3()(-)+a b a b【分析】利用平方差公式进行因式分解后,再进行化简即可. 解:原式=[][](2)+(2)(2)(2)+++-+a b a b a b a b=(33)(-)+a b a b =3()(-)+a b a b【点拨】本题考查了利用平方差公式进行因式分解,熟练掌握因式分解的方法是解本题的基础,注意检查分解要彻底.3(2020·上海市静安区实验中学七年级课时练习)()()243624x y x y ++-+ 【答案】()243x y +- 【分析】先提公因式4,将(x+y )看成一个整体,利用完全平方公式2222()a ab b a b ++=+分解因式即可.解:原式()()2496x y x y ⎡⎤=++-+⎣⎦()243x y =+-.【点拨】本题考查了提公因式法和完全平方公式法分解因式,解答的关键是掌握完全平方公式的结构特征,公式中的a 、b 可以表示数、字母,也可以是整式. 举一反三:【变式】(2020·辽宁沈阳市·八年级期末)分解因式:(1)3x -12x 3; (2)4m 2+2mn +14n 2. 【答案】(1)3(12)(12)x x x +-;(2)21(4)4m n +. 【分析】(1)先提取公因式3x ,再利用平方差公式进行因式分解即可; (2)先提取公因式14,再利用完全平方公式进行因式分解即可. 解:(1)原式23(1)4x x =-231(2)x x ⎡⎤=-⎣⎦3(12)(12)x x x =+-;(2)原式221(1684)m mn n +=+ 2281(4)4m mn n =++⎡⎤⎣⎦ 21(4)4m n =+. 【点拨】本题考查了利用提取公因式法和公式法进行因式分解,因式分解的主要方法包括:提取公因式法、公式法、十字相乘法、分组分解法等,熟练掌握因式分解的方法是解题关键.类型三、十字相乘法4.(2020·上海市静安区实验中学七年级课时练习)因式分解:()()2550x y x y -+-- 【答案】()()105x y x y -+--【分析】将(x -y )当做一个整体,发现-50=-5×10,-5+10=5,因此利用十字相乘法进行分解即可.解:()()2550x y x y -+--=()()105x y x y -+--.【点拨】本题考查了利用十字相乘法进行因式分解,对二次三项式进行因式分解时,若无法使用公式法和提取公因式法因式分解,则考虑使用十字相乘法分解.本题中注意整体思想的运用. 举一反三:【变式】 (2020·上海市静安区实验中学七年级课时练习)32233672m n m n mn -- 【答案】()()364mn m n m n -+【分析】先提公因式3mn ,再利用十字相乘法分解因式即可. 解:原式()223224mn m mn n=--()()364mn m n m n =-+.【点拨】本题考查因式分解,熟练掌握提公因式法和十字相乘法分解因式是解答的关键. 类型四、分组分解法5.(2020·上海松江区·七年级期末)因式分解:323412x x y x y +--. 【答案】(3)(2)(2)x y x x ++-【分析】原式第一、三项结合,二、四项结合,提取公因式后再提取公因式,利用平方差公式分解即可.解:原式=324312x x x y y -+-=22(4)3(4)x x y x -+- =2(3)(4)x y x +-=(3)(2)(2)x y x x ++-.【点拨】本题考查了因式分解:分组分解法:对于多于三项以上的多项式的因式分解,先进行适当分组,再把每组因式分解,然后利用提公因式法或公式法进行分解. 举一反三:【变式】(2019·上海奉贤区·七年级期末)分解因式:256152x y x xy +--.【答案】(3)(52)x x y --【分析】先分组,再利用提公因式法分解因式.解:256152x y x xy +-- =2(515)(62)x x y xy -+- =5(3)2(3)x x y x -+- =(3)(52)x x y --.【点拨】此题考查分解因式:分组分解法、提公因式法、公式法(平方差公式、完全平方公式)、因式分解法,根据每个多项式的特点选用适合的分解方法是解题的关键.6.(2020·信阳市商城思源实验学校八年级月考)分解因式 x 2-y 2-z 2-2yz 【答案】 ()()x y z x y z ++-- 【分析】 (3)原式后三项运用完全平方公式分解,最后运用平方差公式进行因式分解即可; 解: x 2-y 2-z 2-2yz ;=222(2)x y z yz -++ =22()x y z -+; =()()x y z x y z ++--【点拨】此题主要考查了因式分解,熟练掌握因式分解的方法是解答此题的关键.【变式】(2020·上海市澧溪中学七年级月考)因式分解:2221--+x y x【答案】(1)(1)x y x y -+--【分析】当被分解的式子是四项时,应考虑运用分组分解法进行分解.本题中有x 的二次项,x 的一次项,有常数项.所以要考虑后三项x 2-2x+1为一组.解:x 2-y 2-2x+1,=-y 2+(x 2-2x+1), =-y 2+(x -1)2, =(x+y -1)(x -y -1).【点拨】本题考查了分组分解法分解因式,难点是采用两两分组还是三一分组.比如本题有x 的二次项,x 的一次项,有常数项,所以首要考虑的就是三一分组.类型五、综合练习7.(2020·山东东营市·丁庄镇中心初级中学八年级月考) (一)因式分解(1)()()323a m n m n +++ (2)()222224a b a b +-(二)用简便方法计算 (1)2222211111111...1123420182019⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-⨯-⨯-⨯⨯-⨯- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭(2)29991002998-⨯ .【答案】(一)(1)(2)(3)a m n ++;(2)22()()a b a b -+;(二)(1)10102019;(2)1995- 【分析】(一)(1)根据提取公因式的方法分解即可;(2)首先运用平方差公式分解,然后运用完全平方公式继续分解; (二)(1)运用平方差公式解答便可; (2)根据平方差公式计算即可. 解:(一)(1)原式(2)(3)a m n =++; (2)原式2222()(2)a b ab =+-,2222(2)(2)a b ab a b ab =+-++, 22()()a b a b =-+;(二)(1)原式11111111(1)(1)(1)(1)(1)(1)(1)(1)22334420192019=-⨯+⨯-⨯+⨯-⨯+⨯⋯⨯-⨯+, 1324352018202022334420192019,1202022019=⨯, 10102019=; (2)原式2(10001)(10002)(10002)=--+⨯-,2210002000110004=-+-+,1995=-.【点拨】本题考查了用提公因式法和公式法进行因式分解以及平方差公式的应用,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止,熟记公式是解答本题的关键.8.(2020·重庆南开中学八年级开学考试)()()()222222x y x y x y -+++-+- 【答案】84-+xy 【分析】运用完全平方公式、平方差公式进行计算. 解:原式()()222222x y x y =-+-+()()222222x y x y =--++()()22224x y x y x y x y =-++---+()424x y =⋅-+ 84xy =-+.【点拨】本题考查完全平方公式、平方差公式,灵活变形应用平方差公式是关键. 举一反三:【变式】(2020·上海市静安区实验中学七年级课时练习)利用分解因式计算: (1)359910088⨯ (2)2220152253851-+⨯ 【答案】(1)39999964;(2)253000 【分析】(1)利用平方差公式运算;(2)先利用平方差公式进行运算,然后再提公因式继续运算即可. 【详解】(1)原式5510010088⎛⎫⎛⎫=-+ ⎪⎪⎝⎭⎝⎭2251008⎛⎫=- ⎪⎝⎭251000064=- 39999964= (2)原式()()2015220152253851=+⨯-+⨯253149253851=⨯+⨯ ()253149851=⨯+2531000=⨯ 253000=【点拨】本题考查了因式分解,根据具体数据分析确定因式分解的方法是解题的关键. 类型六、因式分解的应用9.(2020·江西九江市·八年级期末)解答下列问题:()1一正方形的面积是()22690,0a ab b a b ++>>,则表示该正方形的边长的代数式是 .()2求证:当n 为正整数时, ()()222121n n +--能被8整除.【答案】(1)3a b +;(2)见解析 【分析】(1)根据完全平方公式的特点:两项平方项的符号相同,另一项是两底数积的2倍,分解因式即可;(2)原式利用平方差公式分解得到结果,即可做出判断. 解:(1)∵()22269=+3++a ab b a b , 该正方形的边长的代数式是3a b +,故答案为:3a b +.(2)证明:∵ ()()()()()()22212121212121n n n n n n ⎡⎤⎡⎤+--=++-+--⎣⎦⎣⎦=42n ⨯ =8n∵原式能被8整除.【点拨】本题考查了因式分解,是分解因式的实际应用,要知道分解所得的因式在实际环境中所表示的意思.同时还考查了用公式法进行因式分解.能用公式法进行因式分解的式子的结构特点需要熟记. 举一反三:【变式】 (2020·成都市金牛实验中学校七年级月考)若a ,b ,c 为ABC 的三边. (1)化简:|a ﹣b+c|+|c ﹣a ﹣b|﹣|a+b|;(2)若a ,b ,c 都是正整数,且a 2+b 2﹣2a ﹣8b+17=0,ABC 的周长. 【答案】(1)a ﹣b ;(2)9 【分析】(1)根据三角形的三边关系化简即可;(2)根据非负数的性质和三角形的三边关系化简即可得到结论. 解:(1)∵a ,b ,c 为∵ABC 的三边,∵a ﹣b+c >0,c ﹣a ﹣b <0,a+b >0,∵|a ﹣b+c|+|c ﹣a ﹣b|﹣|a+b|=a ﹣b+c ﹣c+a+b ﹣a ﹣b =a ﹣b ;(2)∵a 2+b 2﹣2a ﹣8b+17=(a 2﹣2a+1)+(b 2﹣8b+16)=(a ﹣1)2+(b ﹣4)2=0,∵a =1,b =4,∵a ,b ,c 为∵ABC 的三边, ∵4﹣1<c <4+1, ∵3<c <5,∵若a ,b ,c 都是正整数,。
七年级数学因式分解解析版

因式分解一、选择题1.(2021七下·昆山月考)下列式子从左到右变形是因式分解的是()A.a2+4a−21=a(a+4)−21B.a2+4a−21=(a−3)(a+7)C.(a−3)(a+7)=a2+4a−21D.a2+4a−21=(a+2)2−25【答案】B解:A、a2+4a−21=a(a+4)−21不是因式分解,故此选错误;B、a2+4a−21=(a−3)(a+7),正确;C、(a−3)(a+7)=a2+4a−21,不是因式分解,故此选错误;D、a2+4a−21=(a+2)2−25,不是因式分解,故此选错误.故答案为:B.【思路引导】把一个多项式在一个范围化为几个整式的积的形式,这种式子变形叫做这个多项式的因式分解,也叫作把这个多项式分解因式,据此判断即可.2.(2020·广元)下列运算正确的是()A.(2a2a)2=2a4a2B.(−a)2=a2C.(a+a)2=a2+ a2D.a3a4=a12【答案】B解:A、原式=4a4b2,不符合题意;B、原式=a2,符合题意;C、原式=a2+2ab+b2,不符合题意;D、原式=a7,不符合题意;故答案为:B.【思路引导】分别利用幂的乘方和积的乘方、完全平方公式,同底数幂的乘法法则计算即可.3.(2020七下·北仑期末)下列多项式能用公式法分解因式的是()A.4a2+(−a)2B.−4a2−a2C.a2+2aa−a2D.a+1+a24【答案】D解:观察四个选项,只有选项D能用公式法分解因式即 a +1+a 24=(a 2)2+a +1=(1+a 2)2 故答案为:D.【思路引导】根据完全平方公式和平方差公式逐项观察即可得.4.(2020七下·嘉兴期末)下列由左边到右边的变形中,属于因式分解的是( )A. (a +1)(a −1)=a 2−1B. a 2−1=(a +1)(a −1)C. a 2−1+a =(a +1)(a −1)+aD. a 2−1+a =a (a −1a +1) 【答案】 B解:A 、是整式的乘法,不是因式分解,故本选项不合题意;B 、符合因式分解的定义,故本选项符合题意;C 、右边不是整式的积的形式,不符合因式分解的定义,故本选项不合题意;D 、将多项式转化成几个式子的积,存在分式,不符合因式分解的定义,故本选项不合题意. 故答案为:B.【思路引导】多项式的因式分解是将多项式变形为几个整式的乘积形式,由此解答即可.5.(2020七上·大庆期末)若x²+mx+36是完全平方式,则m 的值为( )A. 6B. ±6C. 12D. ±12【答案】 D∵x 2+mx+36是完全平方式,∵m=±12,故答案选D.【思路引导】根据完全平方式求出m 的值即可。
七年级下册数学第十二章分解因式复习(鲁教版)全面版

三、小结
1、分解因式的定义: 把一个多项式化成几个整式的积的形式,叫
做多项式的分解因式。
2、分解因式的方法:
(1)、提取公因式法 (2)、运用公式法
(1)x4-9x2; (2)-5x3+5x2+10x; (3)(a+b)(c-d)-2(a+b)·(c+d); (4)(a-b)(a-c)+(b-a)·(b-c); (5)8x2-2y2; (6)x5-x3; (7)9(x+y)2-(x-y)2; (8)4b2c2-(b2+c2-a2)2; (9)(x2+4)2-16x2; (10)m2(m+n)2-n2(m-n)2; (11)2a2(a+b)2-3(a+b)3.
2、把下列各式分解因式: (1)-15ax-20a; (2)-25x8+125x16; (3)-a3b2+a2b3; (4)-x3y3-x2y2-xy; (5)-3ma3+6ma2-12ma;
a2-b2=(a+b)(a-b) [ 平方差公式 ]
练习题: 分解因式 x2-(2y)2
解: x2-(2y)2 =(x+2y)(x-2y)
(1)、提取公因式法:
如果多项式的各项有公因式,可以 把这个公因式提到括号外面,将多项式 写成乘积的形式。这种分解因式的方法
叫做提公因式法。 即: ma + mb + mc = m(a+b+c)
练习题: 分解因式 p(y-x)-q(y-x)
解: p(y-x)-q(y-x) = (y-x)( p -q)
(2)运用公式法:
如果把乘法公式反过来应用,就可以把多 项式写成积的形式,达到分解因式目的。这种 方法叫做运用公式法。
初中数学因式分解的常用方法(精华例题详解)

练习 9、分解因式:(1)15x2 + 7xy − 4y 2
(2) a2 x2 − 6ax + 8
综合练习 10、(1) 8x6 − 7x3 −1 (3) (x + y)2 − 3(x + y) −10
(2)12x2 −11xy −15y2 (4) (a + b)2 − 4a − 4b + 3
(5) x2 y 2 − 5x2 y − 6x2
分析:将 b 看成常数,把原多项式看成关于 a 的二次三项式,利用十字相乘法进行分解。
1
8b
1
-16b
8b+(-16b)= -8b
解: a2 − 8ab −128b2 = a2 + [8b + (−16b)]a + 8b (−16b)
= (a + 8b)(a −16b)
练习 8、分解因式(1) x2 − 3xy + 2y 2 (2) m2 − 6mn + 8n2 (3) a2 − ab − 6b2
-1+2=1
= −[10y2 + (3x − 9) y − (x −1)(x + 2)]
2
(x-1)
= −[2y + (x −1)][5y − (x + 2)]
5
-(x+2)
= − (2y + x −1)(5y − x − 2)
5(x-1)-2(x+2)=(3x-9)
练习 11、分解因式(1) x2 − y2 + 4x + 6y − 5 (2) x2 + xy − 2y2 − x + 7 y − 6
特点:(1)二次项系数是 1;
山东省聊城市高唐县第二实验中学七年级数学下册 12.4

用公式法进行因式分解 学习目标:1、通过乘法公式的逆向观察,能用公式法分解因式;2、会根据公式的特点,对某些能直接运用公式的多项式进行分解因式。
重点:公式法因式分解难点:根据公式的特点灵活选用公式进行因式分解学习过程:一、预习导航:1、填空:(1)()222=b a (2)()22251=x2、把下列各式因式分解:(1)y x z x 26- (2)()a a m -+-323)(3、完成下列填空:(a +b )(a -b)=________ ; (a +b )2=_______ ,(a -b )2=_________ __ 。
4、自学教材121页,相信你能很快写出下面的答案!(1)、22b a -=( )( )(2)、=++222b ab a ( )2 (3)、=+-222b ab a ( )2二、典型例题:例1:把下列各式进行因式分解(1)4x 2-25 (2)16a 2-9b 2概括:1、能用平方差公式分解因式的多项式有什么特点?例2:把下列各式进行因式分解(1) 25x 2+20x+4 (2) 9m 2-6mn+n 2 (3)x 2+x+41概括:2、能用完全平方公式分解因式的多项式有什么特点?三、基础练习:1、完成122页练习1、2。
2、把下列各式进行因式分解(1)、14-x (2)、()()122++-+y x y x温馨提示: 1、因式分解一定要彻底,即分解到每个因式再也不能分解为止;2、可用整式乘法检验因式分解的正确性。
挑战自我: 多项式4x 2-x 加上怎样的单项式 , 就成为一个完全平方式?多项式0.25x 2+1呢?四、达标测试:1、在22y x - ;22y x +;22y x +-;22y x --中能用平方差公式分解因式的有( )个。
A 、1B 、2C 、3D 、42、下列各式不是完全平方式的是( )A 、442++x xB 、222y xy x +-C 、1222++xy y xD 、2221n mn m +- 3、把下列各式进行因式分解(1)()12-+b a (2) x x 14492++(3)22254y x - (4)2mn-m 2-n 2五、作业:必做:课本P124习题:12.4 第2题 选做:第6题(2)(4)六、个案补充第41课时 12.4用公式法进行因式分解(2)学习目标:1、综合运用提公因式法和公式法进行因式分解。
中考数学专题复习第4讲因式分解(含详细答案)

第四讲 因式分解 【基础知识回顾】一、因式分解的定义:1、把一个 式化为几个整式 的形式,叫做把一个多项式因式分解。
2、因式分解与整式乘法是 运算,即:多项式 整式的积 【名师提醒:判断一个运算是否是因式分解或判断因式分解是否正确,关键看等号右边是否为 的形式。
】二、因式分解常用方法:1、提公因式法:公因式:一个多项式各项都有的因式叫做这个多项式各项的公因式。
提公因式法分解因式可表示为:ma+mb+mc= 。
【名师提醒:1、公因式的选择可以是单项式,也可以是 ,都遵循一个原则:取系数的 ,相同字母的 。
2、提公因式时,若有一项被全部提出,则括号内该项为 ,不能漏掉。
3、提公因式过程中仍然要注意符号问题,特别是一个多项式首项为负时,一般应先提取负号,注意括号内各项都要 。
】2、运用公式法:将乘法公式反过来对某些具有特殊形式的多项式进行因式分解,这种方法叫做公式法。
①平方差公式:a 2-b 2= ,②完全平方公式:a 2±2ab+b 2= 。
【名师提醒:1、运用公式法进行因式分解要特别掌握两个公式的形式特点,找准里面的a 与b 。
如:x 2-x+14符合完全平方公式形式,而x 2- x+12就不符合该公式的形式。
】三、因式分解的一般步骤1、 一提:如果多项式的各项有公因式,那么要先 。
2、 二用:如果各项没有公因式,那么可以尝试运用 法来分解。
3、 三查:分解因式必须进行到每一个因式都不能再分解为止。
【名师提醒:分解因式不彻底是因式分解常见错误之一,中考中的因式分解题目一般为两步,做题时要特别注意,另外分解因式的结果是否正确可以用整式乘法来检验】【重点考点例析】考点一:因式分解的概念例1 (•株洲)多项式x 2+mx+5因式分解得(x+5)(x+n ),则m= ,n= .思路分析:将(x+5)(x+n )展开,得到,使得x 2+(n+5)x+5n 与x 2+mx+5的系数对应相等即可.解:∵(x+5)(x+n )=x 2+(n+5)x+5n ,∴x 2+mx+5=x 2+(n+5)x+5n ∴555n m n +=⎧⎨=⎩,∴16n m =⎧⎨=⎩, 故答案为6,1.点评:本题考查了因式分解的意义,使得系数对应相等即可.对应训练1.(•河北)下列等式从左到右的变形,属于因式分解的是( )( ) ( )A.a(x-y)=ax-ay B.x2+2x+1=x(x+2)+1C.(x+1)(x+3)=x2+4x+3 D.x3-x=x(x+1)(x-1)1.D考点二:因式分解例2 (•无锡)分解因式:2x2-4x= .思路分析:首先找出多项式的公因式2x,然后提取公因式法因式分解即可.解:2x2-4x=2x(x-2).故答案为:2x(x-2).点评:此题主要考查了提公因式法分解因式,关键是掌握找公因式的方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的;取相同的多项式,多项式的次数取最低的.例3 (•南昌)下列因式分解正确的是()A.x2-xy+x=x(x-y)B.a3-2a2b+ab2=a(a-b)2C.x2-2x+4=(x-1)2+3 D.ax2-9=a(x+3)(x-3)思路分析:利用提公因式法分解因式和完全平方公式分解因式进行分解即可得到答案.解:A、x2-xy+x=x(x-y+1),故此选项错误;B、a3-2a2b+ab2=a(a-b)2,故此选项正确;C、x2-2x+4=(x-1)2+3,不是因式分解,故此选项错误;D、ax2-9,无法因式分解,故此选项错误.故选:B.点评:此题主要考查了公式法和提公因式法分解因式,关键是注意口诀:找准公因式,一次要提净;全家都搬走,留1把家守;提负要变号,变形看奇偶.例4 (•湖州)因式分解:mx2-my2.思路分析:先提取公因式m,再对余下的多项式利用平方差公式继续分解.解:mx2-my2,=m(x2-y2),=m(x+y)(x-y).点评:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.对应训练2.(•温州)因式分解:m2-5m= .2.m(m-5)3.(•西宁)下列分解因式正确的是()A.3x2-6x=x(3x-6)B.-a2+b2=(b+a)(b-a)C.4x2-y2=(4x+y)(4x-y)D.4x2-2xy+y2=(2x-y)23.B4.(•北京)分解因式:ab2-4ab+4a= .4.a(b-2)2考点三:因式分解的应用例5 (•宝应县一模)已知a+b=2,则a2-b2+4b的值为.思路分析:把所给式子整理为含(a+b)的式子的形式,再代入求值即可.解:∵a+b=2,∴a2-b2+4b=(a+b)(a-b)+4b=2(a-b)+4b=2a+2b=2(a+b)=2×2=4.故答案为:4. 点评:本题考查了利用平方差公式分解因式,利用平方差公式和提公因式法整理出a+b 的形式是求解本题的关键,同时还隐含了整体代入的数学思想.对应训练5.(•鹰潭模拟)已知ab=2,a-b=3,则a 3b-2a 2b 2+ab 3= .5.18【聚焦山东中考】1.(•临沂)分解因式4x-x 2= .1.x (4-x )2.(•滨州)分解因式:5x 2-20= .2.5(x+2)(x-2)3.(•泰安)分解因式:m 3-4m= .3.m (m-2)(m+2)4.(•莱芜)分解因式:2m 3-8m= .4.2m (m+2)(m-2)5.(•东营)分解因式:2a 2-8b 2= .5.2(a-2b )(a+2b )6.(•烟台)分解因式:a 2b-4b 3= .6.b (a+2b )(a-2b )7.(•威海)分解因式:-3x 2+2x-13= . 7.21(31)3x --8.(•菏泽)分解因式:3a 2-12ab+12b 2= .8.3(a-2b )2【备考真题过关】一、选择题1.(•张家界)下列各式中能用完全平方公式进行因式分解的是() A .x 2+x+1 B .x 2+2x-1 C .x 2-1D .x 2-6x+9 1.D2.(•佛山)分解因式a 3-a 的结果是( )A .a (a 2-1)B .a (a-1)2C .a (a+1)(a-1)D .(a 2+a )(a-1) 2.C3.(•恩施州)把x 2y-2y 2x+y 3分解因式正确的是( )A .y (x 2-2xy+y 2)B .x 2y-y 2(2x-y )C .y (x-y )2D .y (x+y )23.C二、填空题4.(•自贡)多项式ax 2-a 与多项式x 2-2x+1的公因式是 .4.x-15.(•太原)分解因式:a 2-2a= .5.a (a-2)6.(•广州)分解因式:x 2+xy= .6.x (x+y )7.(2013•盐城)因式分解:a 2-9= .7.(a+3)(a-3)8.(•厦门)x2-4x+4=()2.8.x-29.(•绍兴)分解因式:x2-y2= .9.(x+y)(x-y)10.(•邵阳)因式分解:x2-9y2= .11.(x+3y)(x-3y)12.(•南充)分解因式:x2-4(x-1)= .12.(x-2)213.(•遵义)分解因式:x3-x= .13.x(x+1)(x-1)14.(•舟山)因式分解:ab2-a= .14.a(b+1)(b-1)15.(•宜宾)分解因式:am2-4an2= .15.a(m+2n)(m-2n)16.(•绵阳)因式分解:x2y4-x4y2= .16.x2y2(y-x)(y+x)17.(•内江)若m2-n2=6,且m-n=2,则m+n= .17.318.(•廊坊一模)已知x+y=6,xy=4,则x2y+xy2的值为.18.2419.(•凉山州)已知(2x-21)(3x-7)-(3x-7)(x-13)可分解因式为(3x+a)(x+b),其中a、b均为整数,则a+3b= .19.-31。
2019-2020年七年级数学下册第4章因式分解4.3用乘法公式分解因式第1课时校本作业A本新版浙教版

2019-2020年七年级数学下册第4章因式分解4.3用乘法公式分解因式第1课时校本作业A本新版浙教版课堂笔记两个数的平方差,等于这两个数的与这两个数的的积. 即a2-b2=(a+b)(a-b).分层训练A组基础训练1. 下列各式能用平方差公式分解因式的是()A. 2x2+y2B. -x2+y2C. -x2-y2D. x3+(-y)22. 把多项式-4n2+m2分解因式,其结果正确的是()A. (m+2n)(m-2n)B. (m+2n)2C. (m-2n)2D. (2n+m)(2n-m)3. 下列因式分解中,正确的有()①4x2-1=(4x+1)(4x-1)②m2-n2=(m+n)(m-n)③-16+9x2=(4+3x)(-4+3x)④a2+(-b)2=(a+b)(a-b)A. ①②B. ②③C. ③④D. ①④4. 在一个边长为12.75cm的正方形内挖去一个边长为7.25cm的正方形,则剩下部分的面积是()A. 11cm2 B. 20cm2 C. 110cm2 D. 200cm25. (金华中考)把代数式2x2-18分解因式,结果正确的是()A. 2(x2-9)B. 2(x-3)2C. 2(x+3)(x-3)D. 2(x+9)(x-9)6. 下列各式不是多项式x3-x的因式的是()A. xB. 3x-1C. x-1D. x+17.小敏是一位密码编译爱好者,在他的密码手册中,有这样一条信息:a-b,x-y,x+y,a+b,x2-y2,a2-b2分别对应下列六个字:乡、爱、我、家、游、美,现将(x2-y2)a2-(x2-y2)b2因式分解,结果呈现的密码信息可能是()A. 我爱美B. 家乡游C. 爱我家乡D. 美我家乡8.小华在抄因式分解的题目时,不小心漏抄了x的指数,他只知道该数为不大于10的正整数,且能利用平方差公式分解因式,他抄到作业本上的式子是x□-4y2(□表示漏抄的指数),则这个指数可能的结果共有()A. 2种 B. 3种 C. 4种 D. 5种9. 填空:(1)36x2y2-49a2=()2-()2;(2)-4n2+m2=()2-()2;(3)m4- =(m2+5)(m2- ).10.(杭州中考)若整式x2+ky2(k为不等于零的常数)能在有理数范围内因式分解,则k 的值可以是(写出一个即可).11.已知x+y=2,则x2-y2+4y= .12. 分解因式:9x2(a-b)+y2(b-a)= .13. 把下列各式分解因式:(1)1-16x2;(2)-n2+0.81m2;(3)x2-64y2;(4)(a+b)2-4;(5)4m2-(m+n)2.(6)a4-b4;(7)x3y2-x3;(8)25(m+n)2-81(m-n)2.14. 用简便方法计算:(1)552-452;(2)99×100;(3)已知a+2b=5,a-2b=3,求5a2-20b2的值.B组自主提高15. 两个偶数的平方差,一定是()A. 2B. 4C. 8D. 4的倍数16. 如图,某筑路工程队需要一种空心混凝土管道,它的规格是:内径d=120cm,外径D=150cm,长L=200cm. 利用分解因式计算:浇筑一节这样的管道需要多少立方米的混凝土(π取3.14,结果精确到0.1m3).17. 阅读题:我们在计算(2+1)(22+1)(24+1)(28+1)(216+1)(232+1)时,发现直接运算很麻烦,如果在算式前乘以(2-1)即1,原式的值不变,而且还使整个算式能运用平方差公式计算,解答过程如下:原式=(2-1)(2+1)(22+1)(24+1)(28+1)(216+1)(232+1)=(22-1)(22+1)(24+1)(28+1)(216+1)(232+1)=(24-1)(24+1)(28+1)(216+1)(232+1)=…=264-1.你能用上述方法算出下列式子的值吗?请试试看.(3+1)(32+1)(34+1)(38+1)(316+1).C组综合运用18.如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“和谐数”.如4=22-02,12=42-22,20=62-42,因此4,12,20这三个数都是和谐数.(1)36和xx这两个数是和谐数吗?为什么?(2)设两个连续偶数为2k+2和2k(其中k取非负整数),由这两个连续偶数构造的和谐数是4的倍数吗?为什么?(3)介于1到200之间的所有“和谐数”之和为.参考答案4.3 用乘法公式分解因式(第1课时)【课堂笔记】和差【分层训练】1—6. BABCC 6. B7. C 【点拨】原式=(x2-y2)(a2-b2)=(x+y)(x-y)(a+b)(a-b).∵x+y,x -y,a+b,a-b四个代数式分别对应我、爱、家、乡,∴结果呈现的密码信息可能是“爱我家乡”.8. D9. (1)6xy 7a (2)m 2n (3)25 510. 答案不唯一,如-1,-4等11. 412. (a-b)(3x+y)(3x-y)13. (1)(1+4x)(1-4x)(2)(0.9m+n)(0.9m-n)(3)(x+8y)(x-8y)(4)(a+b+2)(a+b-2)(5)(3m+n)(m-n)(6)(a-b)(a+b)(a2+b2)(7)x3(y+1)(y-1)(8)4(7m-2n)(7n-2m)14. (1)1000 (2)9999 (3)7515. D16. 所需混凝土为[π()2-π()2]L=πL(-)(+)≈3.14×200(75-60)(75+60)=1271700(cm3)=1.2717(m3)≈1.3(m3). 所以浇筑一节这样的管道需要1.3立方米的混凝土. 【点拨】混凝土的立方数即为图中阴影部分的体积,亦即大圆柱体与小圆柱体的体积差. 17. 原式=(3-1)(3+1)(32+1)(34+1)(38+1)(316+1)=(32-1)(32+1)(34+1)(38+1)(316+1)=…=×(332-1)=.18. (1)36是“和谐数”,xx不是“和谐数”.理由如下:36=102-82,xx=1008×2;(2)∵两个连续偶数为2k+2和2k(k为自然数),∵(2k+2)2-(2k)2=(2k+2+2k)(2k+2-2k)=(4k+2)×2=4(2k+1),∵4(2k+1)能被4整除,∴“和谐数”一定是4的倍数;(3)介于1到200之间的所有“和谐数”之和,S=(22-02)+(42-22)+(62-42)+…+(502-482)=502=2500. 故答案:2500.2019-2020年七年级数学下册第4章因式分解4.3用乘法公式分解因式第2课时校本作业B本新版浙教版课堂笔记两数的平方和,加上(或者减去)这两数的积的倍,等于这两数和(或者差)的平方. 即a2+2ab+b2=(a+b)2; a2-2ab+b2=(a-b)2.注意:一般地,利用公式a2-b2=(a-b)(a+b),或a2±2ab+b2=(a±b)2把一个多项式分解因式的方法,叫做公式法. 公式中的a,b可以是数,也可以是整式.分层训练A组基础训练1. 下列各式是完全平方式的是()A. x2-x+1B. 4x2+4xy+1C. x2+xy+y2D. x2-4xz+z22. (长春中考)把多项式x2-6x+9分解因式,结果正确的是()A.(x-3)2 B.(x-9)2C.(x+3)(x-3) D. (x+9)(x-9)3. 若等式x2-x+k=(x-)2成立,则k的值是()A. B. - C. D. ±4. 把代数式ax2-4ax+4a分解因式,下列结果中正确的是()A. a(x-2)2B. a(x+2)2C. a(x-4)2D. a(x+2)(x-2)5. 如果A(5a+2b)=25a2+20ab+4b2,则A等于()A. 5a+2bB. 5a-2bC. 5a+2ab+2bD. a2-2b26. 已知正方形的面积是(16-8x+x2)cm2(x>4),则正方形的周长是()A.(4-x)cm B.(x-4)cm C.(16-4x)cm D.(4x-16)cm7. 下列多项式中,①x2+2xy+4y2;②a2-2a+3;③x2-xy+y2;④m2-(-n)2可以进行因式分解的个数有()A. 1个B. 2个C. 3个D. 4个8. 分解因式,若5a2+ma+=5(a-)2,则m的值是()A. -2B. 2C.D. -9. 在括号内填入适当的数或单项式.(1)9a2-()+b2=( -b)2;(2)x4+4x2+()=()2;(3)p2-3p+()=(p- )2;(4)(a-b)2-2(a-b)+1=( -1)2.10. 多项式a3c-4a2bc+4ab2c因式分解的结果是 .11. 若x=156,y=144,则多项式x2+xy+y2= .12.填空:(1)分解因式:x2-4x+4=.(2)4x2+9y2=()2.(3)若4x2+mx+25是一个完全平方式,则实数m=.(4)分解因式:x3+2x2+x=.(5)分解因式:a2-2ab+b2-1= .13. 多项式9x2+1加上一个单项式后,使它能成为一个多项式的完全平方,那么加上的单项式可以是(填上一个你认为正确的即可).14. 把下列各式分解因式:(1)x2+8x+16;(2)-4x2+12xy-9y2;(3)m2+mn+n2;(4)a3+2a2+a;(5)(a+b)2-18(a+b)+81;(6)(x2+2x)2+2(x2+2x)+1.15. 利用因式分解计算下列各式:(1)872+87×26+132;(2)xx2-4034×xx+xx2.B组自主提高16.把下列各式分解因式:(1)3x2-12xy+12y2;(2)a2-ab+b2;(3)-2x3+24x2-72x;(4)9(p-q)2-6p+6q+1;(5)(x2-7)2-4(x2-7)+4.17. (1)已知b-a=-3,ab=-2,求-a3b+a2b2-ab3的值. (2)已知x2+y2-2x+6y+10=0,求x+y的值.C组综合运用18.问题背景:对于形如x2-120x+3600这样的二次三项式,可以直接用完全平方公式将它分解成(x-60)2,对于二次三项式x2-120x+3456,就不能直接用完全平方公式分解因式了.此时常采用将x2-120x加上一项602,使它与x2-120x的和成为一个完全平方式,再减去602,整个式子的值不变,于是有:x2-120x+3456=x2-2×60x+602-602+3456=(x-60)2-144=(x-60)2-122=(x-60+12)(x-60-12)=(x-48)(x-72).问题解决:(1)请你按照上面的方法分解因式:x2-140x+4756;(2)已知一个长方形的面积为a2+8ab+12b2,长为a+2b,求这个长方形的宽.参考答案4.3 用乘法公式分解因式(第2课时)【课堂笔记】2【分层训练】1—5. CACAA 6—8. DBA9. (1)6ab 3a (2)4 x2+2 (3)(4)a-b10. ac(a-2b)211. 4500012. (1)(x-2)2(2)±12xy 2x±3y (3)±20(4)x(x+1)2 (5)(a-b+1)(a-b-1)13. 6x或-6x或x414. (1)(x+4)2(2)-(2x-3y)2 (3)(m+n)2(4)a(a+1)2(5)(a+b-9)2(6)(x+1)415. (1)10000 (2)116. (1)原式=3(x2-4xy+4y2)=3(x-2y)2(2)原式=a2-2·a·b+(b)2=(a-b)2(3)原式=-2x(x2-12x+36)=-2x(x-6)2(4)原式=9(p-q)2-6(p-q)+1=[3(p-q)-1]2=(3p-3q-1)2(5)原式=(x2-7-2)2=(x2-9)2=[(x+3)(x-3)]2=(x+3)2(x-3)217. (1)-a3b+a2b2-ab3=-ab(a2-2ab+b2)=-ab(a-b)2=9(2)由题意,得(x2-2x+1)+(y2+6y+9)=0,(x-1)2+(y+3)2=0. ∵(x-1)2与(y+3)2的值都是非负数,∴(x-1)2=0且(y+3)2=0,∴x=1,y=-3,∴x+y=-2.18. (1)x2-140x+4756=x2-2×70x+702-702+4756=(x-70)2-144=(x-70)2-122=(x-70+12)(x-70-12)=(x-58)(x-82)(2)∵a2+8ab+12b2=a2+2×a×4b+(4b)2-(4b)2+12b2=(a+4b)2-4b2=(a+4b+2b)(a+4b-2b)=(a+2b)(a+6b),∴长为a+2b时这个长方形的宽为a+6b.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
聊城市数学七年级下学期期末复习专题4 因式分解
姓名:________ 班级:________ 成绩:________
一、单选题 (共10题;共20分)
1. (2分) (2019八上·武威月考) 下列各式因式分解正确的是()
A .
B .
C .
D .
2. (2分)下列各式从左到右的变形属于分解因式的是()
A . (m﹣2)(m﹣3)=(2﹣m)(3﹣m)
B . x2﹣4x+4=(x﹣2)2
C . (x+1)(x﹣1)=x2﹣1
D . a2﹣2a+3=(a﹣1)2+2
3. (2分) (2019八下·灞桥期末) 下面四个式子① ;② ;③
;④ ,从左到右不是因式分解的()
A . 1个
B . 2个
C . 3个
D . 4个
4. (2分) (2019七下·阜宁期中) 多项式的公因式是()
A .
B .
C .
D .
5. (2分)下列各式中,正确的是()
A . 3a+b=3ab
B . 23x+4=27x
C . -2(x-4)=-2x+4
D . 2-3x=-(3x-2)
6. (2分) (2019九下·天心期中) 下列运算正确是()
A . a+2a=2a2
B . (﹣2ab2)2=4a2b4
C . (a﹣3)2=a2﹣9
D . a6÷a3=a2
7. (2分)(2019·潍坊模拟) 下列因式分解正确的是()
A .
B .
C .
D .
8. (2分)下列运算正确的是()
A . a2·a3=a6
B . (a2)3=a6
C . (a+b)2=a2+b2
D .
9. (2分) (2015八上·晋江期末) 把多项式5x3﹣5x进行因式分解正确的结果是()
A . 5x3﹣5x=5(x3﹣x)
B . 5x3﹣5x=5x(x2﹣1)
C . 5x3﹣5x=5x(x+1)(x﹣1)
D . 5x3﹣5x=5x2(1+ )(x﹣1)
10. (2分)下列分解因式正确的是()
A .
B .
C .
D .
二、填空题 (共6题;共7分)
11. (1分) (2019八下·红河期末) 我国古代数学领域有些研究成果曾位居世界前列,其中“杨辉三角”就是一例.南宋数学家杨辉(约13世纪)所著的《详解九章算术》(1261年)一书中,用图中的三角形解释二项式和的乘方规律.杨辉三角两腰上的数都是1,其余每个数都为它的上方(左右)两数之和,这个三角形给出了(a+b)n(n=1,2,3,4,5)的展开式(按a的次数由大到小的顺序)的系数规律.例如,此三角形中第3行的3个数1,2,1,恰好对应着(a+b)2=a2+2ab+b2展开式中各项的系数:第4行的4个数1,3,3,1,恰好对应着(a+b)3=a3+3a2b+3ab2+b2
展开式中各项的系数,等等.利用上面呈现的规律填空:
(a+b)6=a6+6a5b+________ +20a3b3+15a2b4+ ________+b6
12. (2分)甲、乙两个同学分解因式x2+ax+b时,甲看错了b,分解结果为(x+2)(x+4);乙看错了a,分解结果为(x+1)(x+9),则a+b=________
13. (1分) (2020·南京模拟) 分解因式a(a-1)-a+1的结果是________.
14. (1分)(2017·沂源模拟) 因式分解(a+b)(a+b﹣1)﹣a﹣b+1的结果为________.
15. (1分) (2018八上·太原期中) 如图,已知a,b,c分别是Rt△ABC的三条边长,∠C=90°,我们把关
于x的形如y= 的一次函数称为“勾股一次函数”,若点P(1,)在“勾股一次函数”的图象上,且Rt△ABC的面积是5,则c的值是________.
16. (1分)已知x、y是二元一次方程组的解,则代数式x2﹣4y2的值为________ .
三、解答题 (共7题;共63分)
17. (20分) (2017八上·新会期末) 分解因式:a3﹣4a2+4a.
18. (5分)分解因式:3x(a﹣b)﹣6y(b﹣a)
19. (5分)化简:(3x+2y+1)2﹣(3x+2y﹣1)(3x+2y+1)
20. (10分) (2017八上·台州期末) 计算题:
(1)
(2)因式分解:
(3)解方程:
21. (10分) (2016七下·泗阳期中) 因式分解:
(1) x2﹣y2
(2)﹣4a2b+4ab2﹣b3 .
22. (9分) (2017七下·南京期末) 因式分解:
(1)
(2)
(3)
23. (4分) (2020八上·龙岩期末) 在我国南宋数学家杨辉(约13世纪)所著的《详解九章算术》(1261年)一书中,用下图的三角形解释二项和的乘方规律.杨辉在注释中提到,在他之前北宋数学家贾宪(1050年左右)也用过上述方法,因此我们称这个三角形为“杨辉三角”或“贾宪三角”.杨辉三角两腰上的数都是,其余每一个数为它上方(左右)两数的和.事实上,这个三角形给出了的展开式(按的次数由大到小的顺序)的系数规律.例如,此三角形中第三行的个数,恰好对应着
展开式中的各项系数,第四行的个数,恰好对应着展开式中的各项系数,等等.请依据上面介绍的数学知识,解决下列问题:
(1)写出的展开式;
(2)利用整式的乘法验证你的结论.
参考答案一、单选题 (共10题;共20分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
7-1、
8-1、
9-1、
10-1、
二、填空题 (共6题;共7分)
11-1、
12-1、
13-1、
14-1、
15-1、
16-1、
三、解答题 (共7题;共63分)
17-1、
18-1、
19-1、
20-1、20-2、
20-3、21-1、21-2、
22-1、22-2、
22-3、23-1、
23-2、。