开关电源辅助绕组供电电路原理
RCC电路

RCC(即RINGING CHOKE CONVERTER)的英文缩写。
是一种非定频电源,在国内很多场合都有应用,我来说一下其工作原理,(原理图如下图示)说得不对之处还请大家指正。
1、开关电源的自激振荡状态开机后,交流电通过整流滤波后一路通过变压器初级加到开关管Q2漏极(D极),另一路通过启动电阻R2、R3加到Q2栅极(G极),从而使开关管Q2导通。
导通后,变压器T1原边产生上正下负(1正2负)的感应电动势。
由于互感,T1辅助绕组也产生相应的下正上负(3正4负)的感应电动势。
于是T1的3脚上的正脉冲电压通过C5、R5加到Q2的G极与S极之间,从而使Q2的漏极电流进一步增大,于是开关管Q2在正反馈雪崩过程的作用下迅速进入饱和状态。
开关管在饱和期间,开关变压器T1次级绕组所接的整流滤波电路因感应电动势反向而截止,电能便以磁能的形式储存在T1初级绕组内部。
由于正反馈雪崩过程时间极短,定时电容C5来不及充电(也就相当于短路)。
在Q2进入饱和状态之后,辅助绕组上的感应电压对C5充电,随着C5充电的不断进行,其两端电位差升高,于是Q2栅极电位就会降低,从而使Q2退出饱和状态,当Q2退出饱和状态之后,其内阻增大,导致漏极电流进一步下降。
由于电感中的电流不能突变于是开关变压器T1各个绕组的感应电动势反相,辅助绕组3端负的脉冲电压与定时电容C5所充的电压叠加后,使Q2迅速截止。
开关管Q2在截止期间,定时电容放电,以便为下下正反馈电压(驱动电压)提供电路,保证开关管Q2能够再次进入饱和状态,同时,开关变压器T1初级绕组存储的能量耦合到次级绕组并通过整流管整流后,向滤波电容提供能量。
当初级绕组能量下降到一定值时,根据电感中的电流不能突变的原理,初级绕组便会产生一个反铅电动势,以抵抗电流的下降,该电流在T1初级绕组产生1正2负的感应电动势。
T1的3脚感生和正脉冲电压通过正反馈回路,使开关管Q2重新导通。
因此,开关电源便工作在自激振荡状态。
SD4841P构成的数字机开关电源电路原理分析

SD4841P构成的数字机开关电源电路原理分析作者:郑秀峰来源:《卫星电视与宽带多媒体》2010年第24期SD4841P由杭州士兰微电子股份有限公司开发,用于开关电源的电流模式PWM控制器系列产品。
由SD4841P构成的开关电源具有很多优点,如:启动电流低;在待机模式下,电路进入打嗝模式,有效降低电路的待机功耗;电路的开关频率为67KHz,抖动的振荡频率,可以获得较低的EMI;内置15ms软启动电路,可以减小在上电过程中变压器的应力,防止变压器饱和等,因而SD4841P被广泛应用于便携式媒体播放器、网络终端产品、DVB及ABS数字机的内置开关电源系统。
图1为SD4841P内部电路框图,其引脚功能为:①脚(SGND)控制电路接地端,②脚(PGND)内置功率开关管(MOSFET)接地端,③脚(Vcc)供电端,④脚(FB)反馈端,⑤脚(NC)空脚,⑥、⑦、⑧脚(Drain)接内部功率开关管(MOSFET)的漏极。
下面以大旗DQ980中九专用接收机开关电源为例,对其原理进行分析。
图2为大旗DQ980中九专用接收机开关电源电路原理图。
输入与整流电路220V交流市电经电源开关和保险管进入抗干扰抑制电路,由于SD4841P内置振荡器有频率抖动功能,产生的电磁干扰较低,抗干扰抑制电路也较简单,只有一个电感LF1构成。
经处理的220V交流电压经D1-D4桥式整流、C1滤波,在C1两端得到约300V的直流电压,作为SD4841P供电及启动电压。
启动与稳压电路300V直流电压一路经开关变压器初级①-②绕组加至IC1(SD4841P)⑥、⑦、⑧脚内部功率开关管(MOSFET)的漏极(D),另一路经启动电阻R2加到SD4841P③脚(Vcc),对③脚外接电容C3充电,当Vcc端充到12V时,电路开始工作。
电路启动工作后,改由开关变压器辅助绕组③-④产生的感应脉冲电压经D6整流、R3限流及C3滤波后产生的直流电压为SD4841P③脚(Vcc)供电。
自激式开关电源的原理

第3xx 自激式开关电源的原理与应用自激式开关电源利用调整管、变压器辅助绕组构成正反馈通路,实现自激振荡,再借助反馈信号稳定电压输出。
由于调整管兼作振荡管,所以无须专设振荡器,故所用的元器件较少,电路简单、成本低,在一定程度上简化了电路。
由于自激式开关电源经济实用,目前仍有较多的电子设备采用自激式开关电源,比如手机充电器、打印机、自动化仪器仪表、电视机和显示器等。
本章拟在讲述自激式开关电源基本电路的基础上,以几种变压器耦合型自激式开关电源的电路实例为载体,配合关键点的测试波形,剖析它们的工作原理,希望引领读者进入开关电源的万千世界。
3-1 自激式开关电源的工作原理自激式开关电源的特点1.自激式开关电源现在所有由市电供电的AC-DC设备,几乎全部采用变压器耦合型开关电源,也称为隔离型开关电源。
功率管周期性通断,控制开关变压器初级绕组存储输入电源的能量,通过次级绕组进行能量释放。
显然,开关电源的输入与输出是通过变压器的磁耦合传递能量的。
由于变压器绕组之间是绝缘的,因此初次级绕组完全隔离,即“热地”和“冷地”是绝缘的,且绝缘电阻和抗电强度均可达到很高,这一特点对用电安全尤为重要。
若开关管的激励脉冲是由变压器辅助绕组与开关管构成的正反馈环路自激振荡产生的,称为自激式开关电源。
由于自激式开关电源的调整管兼作振荡管,因此无须专设振荡器。
除非特别说明,本书讲述的自激式开关电源均是指自激式变压器耦合型开关电源,下面就介绍这方面的知识。
2.自激式开关电源的特点(1)自激式开关电源结构简单,生产制造成本低廉。
(2)自激式开关电源的脉冲信号是自激振荡产生的,是一种非固定频率的变换电路,随输入电压和负载变化而变化,轻载时开关频率较高或间歇振荡,满载时频率会自动降低。
(3)自激式开关电源在占空比D发生改变时,开关管的与相对值发生变化,因此D变化范围较小,一般小于50%。
(4)自激式开关电源具备一定的自保护功能,一旦负载过重,必然破坏反馈条件,振荡将因损耗过大而减少或和间歇振荡,因此保护电路比较简单,这是自激式开关电源的一大优点。
开关电源电路详解

FS1:由变压器计算得到Iin值,以此Iin值(0.42A)可知使用公司共享料2A/250V,设计时亦须考虑Pin(max)时的Iin是否会超过保险丝的额定值.TR1(热敏电阻):电源启动的瞬间,由于C1(一次侧滤波电容)短路,导致Iin电流很大,虽然时间很短暂,但亦可能对Power产生伤害,所以必须在滤波电容之前加装一个热敏电阻,以限制开机瞬间Iin在Spec之内(115V/30A,230V/60A),但因热敏电阻亦会消耗功率,所以不可放太大的阻值(否则会影响效率),一般使用SCK053(3A/5Ω),若C1电容使用较大的值,则必须考虑将热敏电阻的阻值变大(一般使用在大瓦数的Power上)。
VDR1(突波吸收器):当雷极发生时,可能会损坏零件,进而影响Power的正常动作,所以必须在靠AC 输入端(Fuse之后),加上突波吸收器来保护Power(一般常用07D471K),但若有价格上的考虑,可先忽略不装。
CY1,CY2(Y-Cap):Y-Cap一般可分为Y1及Y2电容,若AC Input有FG(3 Pin)一般使用Y2- Cap ,AC Input若为2Pin(只有L,N)一般使用Y1-Cap,Y1与Y2的差异,除了价格外(Y1较昂贵),绝缘等级及耐压亦不同(Y1称为双重绝缘,绝缘耐压约为Y2的两倍,且在电容的本体上会有“回”符号或注明Y1),此电路蛭蠪G所以使用Y2-Cap,Y—Cap会影响EMI特性,一般而言越大越好,但须考虑漏电及价格问题,漏电(Leakage Current )必须符合安规须求(3Pin公司标准为750uA max)。
CX1(X-Cap)、RX1:X-Cap为防制EMI零件,EMI可分为Conduction及Radiation两部分,Conduction 规范一般可分为: FCC Part 15J Class B 、 CISPR 22(EN55022) Class B 两种 , FCC测试频率在450K~30MHz,CISPR 22测试频率在150K~30MHz,Conduction可在厂内以频谱分析仪验证,Radiation 则必须到实验室验证,X—Cap 一般对低频段(150K ~ 数M之间)的EMI防制有效,一般而言X-Cap愈大,EMI防制效果愈好(但价格愈高),若X-Cap在0。
开关电源原理图各元件功能详解

电源原理图--每个元器件的功能详解!FS1:由变压器计算得到Iin值,以此Iin值(0.42A)可知使用公司共享料2A/250V,设计时亦须考虑Pin(max)时的Iin是否会超过保险丝的额定值。
TR1(热敏电阻):电源启动的瞬间,由于C1(一次侧滤波电容)短路,导致Iin电流很大,虽然时间很短暂,但亦可能对Power产生伤害,所以必须在滤波电容之前加装一个热敏电阻,以限制开机瞬间Iin在Spec之内(115V/30A,230V/60A),但因热敏电阻亦会消耗功率,所以不可放太大的阻值(否则会影响效率),一般使用5Ω-10Ω热敏,若C1电容使用较大的值,则必须考虑将热敏电阻的阻值变大(一般使用在大瓦数的Power上)。
VDR1(突波吸收器):当雷极发生时,可能会损坏零件,进而影响Power的正常动作,所以必须在靠AC输入端(Fuse之后),加上突波吸收器来保护Power(一般常用07D471K),但若有价格上的考虑,可先忽略不装。
CY1,CY2(Y-Cap):Y-Cap一般可分为Y1及Y2电容,若AC Input有FG(3 Pin)一般使用Y2- Cap ,AC Input若为2Pin(只有L,N)一般使用Y1-Cap,Y1与Y2的差异,除了价格外(Y1较昂贵),绝缘等级及耐压亦不同(Y1称为双重绝缘,绝缘耐压约为Y2的两倍,且在电容的本体上会有“回”符号或注明Y1),此电路蛭蠪G 所以使用Y2-Cap,Y-Cap会影响EMI特性,一般而言越大越好,但须考虑漏电及价格问题,漏电(Leakage Current )必须符合安规须求(3Pin公司标准为750uA max)。
CX1(X-Cap)、RX1:X-Cap为防制EMI零件,EMI可分为Conduction及Radiation两部分,Conduction规范一般可分为: FCC Part 15J Class B 、CISPR 22(EN55022) Class B 两种,FCC测试频率在450K~30MHz,CISPR 22测试频率在150K~30MHz,Conduction可在厂内以频谱分析仪验证,Radiation 则必须到实验室验证,X-Cap 一般对低频段(150K ~ 数M之间)的EMI防制有效,一般而言X-Cap愈大,EMI防制效果愈好(但价格愈高),若X-Cap在0.22uf以上(包含0.22uf),安规规定必须要有泄放电阻(RX1,一般为1.2MΩ1/4W)。
开关电源半桥电路原理及注意事项

开关电源半桥电路原理及注意事项开关电源半桥电路原理及注意事项我们先来了解一下半桥电路的基本拓扑:上图半桥电路的基本拓扑电路图。
电容器C1和C2与开关管Q1、Q2组成桥,桥的对角线接变压器T1的原边绕组,故称半桥变换器。
如果此时C1=C2,那么当某一开关管导通时,绕组上的电压只有电源电压的一半。
半桥电路工作原理:Q1开通,Q2关断,此时变压器两端所加的电压为母线电压的一半,同时能量由原边向副边传递。
Q1关断,Q2关断,此时变压器副边两个绕组由于整流二极管两个管子同时续流而处于短路状态,原边绕组也相当于短路状态。
Q1关断,Q2开通。
此时变压器两端所加的电压也基本上是母线电压的一半,同时能量由原边向副边传递。
副边两个二极管完成换流。
半桥电路中应该注意的几点问题:1、偏磁问题原因:由于两个电容连接点A的电位是随Q1、Q2导通情况而浮动的,所以能够自动的平衡每个晶体管开关的伏秒值,当浮动不满足要求时,假设Q1、Q2具有不同的开关特性,即在相同的基极脉冲宽度t=t1下,Q1关断较慢,Q2关断较快,则对B点的电压就会有影响,就会有有灰色面积中A1、A2的不平衡伏秒值,原因就是Q1关断延迟。
如果要这种不平衡的波形驱动变压器,将会发生偏磁现象,致使铁心饱和并产生过大的晶体管集电极电流,从而降低了变换器的效率,使晶体管失控,甚至烧毁。
在变压器原边串联一个电容的工作波形图解决办法:在变压器原边线圈中加一个串联电容C3,则与不平衡的伏秒值成正比的直流偏压将被次电容滤掉,这样在晶体管导通期间,就会平衡电压的伏秒值,达到消除偏磁的目的。
用作桥臂的两个电容选用问题:从半桥电路结构上看,选用桥臂上的两个电容C1、C2时需要考虑电容的均压问题,尽量选用C1=C2的电容,那么当某一开关管导通时,绕组上的电压只有电源电压的一半,达到均压效果,一般情况下,还要在两个电容两端各并联一个电阻(原理图中的R1和R2)并且R1=R2进一步满足要求,此时在选择阻值和功率时需要注意降额。
原边控制开关电源原理
原边控制(Primary Side Control, PSC)开关电源是一种利用变压器原边侧的信息进行反馈控制,以实现恒压(CV)或恒流(CC)输出的开关电源技术。
它的主要特点是不需要在变压器次级进行反馈采样,而是通过对原边电压或电流的检测和控制,间接调整输出电压的稳定。
原边控制开关电源的工作原理:1. 开关动作与电压转换:开关电源的核心部分是开关管,它以高频脉冲形式开关,将输入的交流或直流电压转换为高频脉冲电压。
此脉冲电压通过变压器进行升压或降压变换,然后通过整流和滤波得到所需的直流输出电压。
2. 原边反馈机制:在原边控制开关电源中,通过在变压器原边增设一个反馈网络,该网络通常由电阻、电容以及可能的感应器(如辅助绕组)组成。
原边电压或电流经此反馈网络采样,并将信号传递给控制器(如脉宽调制器PWM)。
3. 控制逻辑与调节:控制器根据反馈信号调节开关管的开关占空比(即开闭时间的比例),从而改变变压器原边的能量传递效率,进而影响次级侧的输出电压或电流。
原边控制技术通常采用算法估算次级侧的输出状态,例如通过监测原边电流峰值或辅助绕组电压,利用匝比换算关系间接得到次级侧的信息。
4. 优点与挑战:原边控制开关电源的优势在于结构简单,减少了次级侧反馈电路的成本和复杂性,尤其适用于小型化和低成本应用。
然而,由于是间接反馈,其控制精度受到变压器参数和负载变化的影响,特别是在负载变动较大时,控制难度增大,因此常需要采用较为复杂的数字控制算法来提高稳压精度和负载调整率。
结构示例:- 在某些原边反馈设计中,会使用辅助绕组来获取原边反馈信号,这个绕组的电压与次级绕组电压有一定比例关系,通过检测和控制这个辅助电压,就可以间接控制次级的输出电压。
- 另外,有些原边反馈开关电源芯片集成了初级峰值电流检测功能,可以根据原边电流的变化情况,调整开关频率和占空比,实现恒流输出或在电压模式下调整占空比实现恒压输出。
总的来说,原边控制开关电源通过巧妙的电路设计和先进的控制策略,实现了对开关电源输出电压的有效控制,广泛应用于各类电子设备和电源系统中。
开关电源基本原理与设计介绍
基本变换电路
Buck ZCS-PWM变换器
i Lr
基本變換電路
Buck ZCS-PWM變換器工作原理
設初始時刻主開關管Q1和輔助開關管Q2均處于關斷狀態,輸出負載電流Io 從續流二极管D上流過,電容Cr兩端的電壓為零.一個開關從主開關管Q1的導通 開始.當Q1在Snubber電感Lr作用下零電流導通後,電感電流 i Lr將在電源電壓 上升倒等於IO時,續流二極體D關斷.之後,D2導通,LR Vin 作用下線性上升,當 i Lr 與CR諧振.經過半個諧振週期, 以諧振方式再次達到IO, vcr以諧振方式上升 到 2Vin,此時由於輔助開關管Q2處於關斷狀態,故Vcr 與i Lr 將保持在該值上,無法 繼續諧振.這個狀態的持續時間由電路輸出的PWM控制要求確定.如果這一段 時間等於零,則ZCS-PWM電路就完全等同於ZCS-QRC電路了.當電路的輸出 PWM控制要求關斷主開關管Q1時,首先應導通開關管Q2(在SNUBBER電感LR 的作用下零電流導通),之後 C r與 Lr 再次諧振.當電感電流諧振到零時,二極體 D1導通,之後, i Lr繼續向反方向諧振並再次諧振到零.在電感電流反方向運行期 間,主開關管Q1可在零電流零電壓下完成關斷過程.在此之後,電容電壓 v cr 將 在輸出電流的作用下線性衰減到零,使續流二極體D自然導通,直到下一個開關 週期到來..輔助開關管Q2可以在D到同之後及下一個開關週期到來之前的任何
Boost DC-DC变换器主要架构
2. Boost (step up) Ideal transfer function
peak drain current
.peak drain voltage
Average diode currents
Diode voltages (vrm
电动车开关电源充电器电路详解
一、电路组成及功能1.高压部分C1、L1、C2组成市电双向抗干扰滤波器,D1~D4、C5构成桥式整流电容滤波电路。
RT是负温度系数的热敏电阻,室温时约8Ω,可以减小充电器刚接通市电时的冲击电流,保护D1~D4等,随温度升高电阻值减小,功耗也随之减小。
R32、C6、C7是IC1的启动电路,N3、D5组成IC1的辅助工作电源。
C14为IC1自身+5V参考电源滤波电容。
C10、R28为IC1内部运算放大器补偿电路。
高频变压器T1的初级N1和功率开关管Q1组成能量转换电路。
Q1导通时,N1将能量传递给次级绕组;在Q1截止时,D6将储能返还电源。
R31是功率转换部分电流取样电阻,当它两端电压超过1V时,IC1保护电路动作,关断⑥脚输出,这一功能在本电路里是第一功率限制电路。
该电路IC1的KA3842AP和UC3842可以通用。
IC1的运用,和常见充电器相比有两个不同点:在③脚和④脚间加了R25斜坡补偿,这样对输出占空比大于80%时有利,加C11对开关电源空载和轻载时,稳定振荡有益;电压和电流负反馈通过光电耦合器IC3加在IC1运算放大器的输出端①脚,而不是通常的反相输入端②脚,好处是缩短了信号传递和处理经过运算放大器的延迟时间。
2.低压部分T1次级N2和D13a、C21组成低压主整流和滤波,供电池充电。
R13、C12为吸收电路,消除变压器的尖峰电压,保护半导体器件。
L2是单激正激式开关电源特有的后续电感,D13b为续流二极管,R12是假负载。
当Q1导通时,T1初级的能量通过电磁耦合到N2,经低压主整流送入L2,一方面输出VB为电池充电,一方面储能;当Q1截止时,L2储能通过其续流二极管D13b组成C21和电池充电回路。
D14主要功能是防止电池接入时,C21充电造成的火花烧蚀充电插口,并无防电池极性反接功能。
D14的运用也与众不同,它接在电池负端并且接在电压取样电阻的外面,这和接在电池正端并且接在电压取样电阻的前面相比,不仅降低了故障率,还摆脱了二极管非线性对稳压负反馈的影响。
开关电源原理及原理图
金星D2902、D2912等机型的电源采用了三根公司的电源厚膜块STR-S6708,该电源具有适应电网电压宽(90V-270V)、保护电路完善、外围元件少等特点,该电路能改变开关电源脉冲宽度,在待机时采用窄脉冲方式工作,在正常开机时采用宽脉冲方式工作,因而无须另设待机时的辅助电源。
开关电路振荡过STR-S6708的(9)脚是电源供应脚,只有(9)脚供电正常,厚膜电路才会正常工作。
VD908从220V交流电上直接整流,经R903、R917限流、C909滤波后得到8V左右的直流电压,加到IC901的(9)脚,IC901开始工作,开关电源开始振荡,由VD908整流得到的电压能量较小,不能维持IC901的正常工作,但是当开关电源开始振荡后,开关变压器T901的(V2)脚将输出电压,经VD903整流、C909滤波后可得到稳定的8V电压,向IC901供电。
光有VD903整流后的电压仍然是不行的,因为当电视机进入待机状态时,整机的主电压将从127V下降到30V左右,此时,开关变压器的(V2)脚输出电压也将大幅度下降,经VD903整流后的电压根本达不到8V,这时就要靠V901这一回路来继续维持供电了。
在正常开机状态,开关变压器的(V3)脚输出电压,经VD902整流、C908滤波后得到约45V左右的直流电压,加到V901的C极,但是,由于这时的V901的发射极电压为8V,而基极接有稳压管VD920,VD920的稳压值是7.2V,所以V901的基极电压比发射极电压低,V901不会导通,IC901的(9)脚供电由VD903提供。
当整机进入待机状态时,开关变压器的(V3)脚输出电压经VD902整流后的到11V左右的电压,此时,由于VD903输出的电压很低,V901得到正偏开始导通,其发射极输出电压为6.7V左右,继续为IC901的(9)脚提供电源。
V901回路的另一个作用是,当电网电压降低时,VD903整流后的电压也将降低,当降低到6.6V以下时,V901会导通,继续向STR-S6708的(9)脚供电,所以,这种开关电源适应电网电压的范围很宽。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
开关电源辅助绕组供电电路原理
开关电源辅助绕组供电电路是一种常用的电源设计方案,它能够为开关电源的控制部分提供稳定可靠的辅助电源供电。
该电路的原理主要包括辅助绕组、整流电路和滤波电路。
辅助绕组是开关电源辅助供电电路的核心部分。
它通常是在主变压器上另外绕制的一组绕组,通过主变压器的漏感来实现电流传输。
辅助绕组一端连接到开关电源的控制电路,另一端与整流电路相连接。
整流电路通常由整流二极管、滤波电容和负载组成。
辅助绕组接通时,主变压器的漏感会产生电磁感应,使辅助绕组中的电流流过整流二极管,将交流电转换成直流电。
滤波电容用于平滑输出电压,以确保供电稳定。
负载则消耗电源提供的电能。
通过开关电源辅助绕组供电电路,可以实现对开关电源控制部分的稳定供电,提高整个电源系统的可靠性和稳定性。
当主电源出现异常或故障时,辅助绕组供电电路能够为控制电路提供备用电源,提供时间给系统保护机制来处理异常情况。
总之,开关电源辅助绕组供电电路通过辅助绕组、整流电路和滤波电路的协同作用,能够为开关电源的控制电路提供稳定可靠的辅助电源供电。
这种设计方案提高了电源系统的可靠性和稳定性,确保电源在异常情况下仍能正常工作。