08级数字试题A 大连民族学院

合集下载

计算机网络试卷2008A答案

计算机网络试卷2008A答案

##大学2007~2008学年第二学期 “计算机网络”考试A 卷参考答案及评分标准一、填空题(每空 1 分,共 30分)1、分组交换 , 存储转发2、数据链路层 ,传输层(或运输层)3、语义,同步4、信源,信宿5、解调,调相6、波分复用(WDM 、WDMA ),码分复用(CDM 、CDMA )7、传输透明,差错检测8、星形结构,基带9、虚电路,数据报 10、拥塞,死锁 11、ICMP ,ARP12、套接字(插口/socket ),端口 13、篡改,伪造14、协议名://<主机>:<端口>/<路径> 15、公钥,私钥二、选择题(每题2分,共 20分)1-5、 C D B A D 6-10、 B C D A B 三、计算题(共3题,共 25 分)1. 设报文和分组的长度分别为x 和(p+h)比特,其中p 为分组的数据部分的长度,h 为每个分组所带的控制信息固定长度,与p 的大小无关。

通信的两端共经过k 段链路,每段链路的传播时延为d ,数据传输速率为b (b/s )。

不考虑传播时延和节点的排队处理时延,若打算使总时延为最小,问分组的数据部分长度p 应取为多大?(8分) 解:画出正确分组交换时序图,(2分) 设报文传输的时延为D由图求得: pxb h p k b h p kd D ⋅++-⋅++=)()1()((2分) 微分求导后求极值:0)(12=-⋅⋅+-=-p bh x b k dp dD (2分) 解得:1-⋅=k hx p (2分) 2. 误码率(BER )是一个位在规定时间区间受损的概率。

设BER=10-3,异步传输方式发送字符的格式为(8,start 1,stop 1,parity 0),试计算一个字符发送受损的概率。

如果用这样的链路发送125个字符组成的字符帧,这样的帧长度设计是否合理?(7分) 解: 一个字符受损的概率为:1-(1-10-3)10,约等于0.01。

2008级DB-A卷

2008级DB-A卷

武汉大学计算机学院2009—2010学年度第二学期2008年级《数据库原理与设计》期末考试试题(A)班号姓名学号注:所有的答题内容必须答在答题纸上,本试卷和答题纸一起上交。

一、判断题正确的打“√”,错误的打“×”(每小题1分,共10分)1.关系DBS中一次只能获取关系中的一个元组。

2. 用SQL语言,用户只能定义及查询基本表数据。

3. 外码不能引用不存在的主码值。

4. 函数依赖最小集不是惟一的。

5. 可串行化调度是串行调度。

6.对关系DB的封锁粒度小,则系统开销小。

7.查询优化的基本原则是尽量减少查询的中间结果。

8.对DB进行的各种定义保存在数据字典中。

9.数据的独立性是数据模型的基本要素。

10.数据库系统结构中,两级映像是由DBA实现。

二、单项选择题(每小题1分,共10分)( ) 1. 建立聚族索引的目的是A.减少存储空间B.提高查询效率C.减少输入输出D.减少冗余( ) 2. 关系规范化中所介绍的插入操作异常是指A. 不应该删除数据被删除B. 不应该插入数据被插入C. 应该删除数据未被删除D. 应该插入的数据未被插入( ) 3. 在关系数据库设计中,设计E-R图是数据库设计中哪个阶段的任务?A. 需求分析B. 概念设计C. 逻辑设计D. 物理设计()4. 关系模式中,满足3NF的模式A. 不可能2NFB. 必定是2NFC. 必定是4NFD. 必定是BCNF( ) 5.一个数据库系统必须能表示实体和联系,联系有关的实体有A. 0个B. 1个C. 2个D. 1个或1个以上( ) 6.写一个修改到DB中,与写一个表示这个修改的运行记录到日志中是两个不同的操作,对这两个操作的顺序安排应该是A. 前者先做B. 后者先做C. 由程序员在程序中作安排D. 哪一个先做由系统决定()7. 当局部E-R图合并成全局E-R图时,可能出现冲突,下列所列冲突中哪个不属于上述冲突?A.属性冲突B. 命名冲突C.结构冲突D. 事务冲突( )8. 若事务T 对数据R 已加S 锁,则其他事务对数据R( )A .先加S 锁再加X 锁B .可加S 锁C .可加X 锁D .禁止加锁( )9. 已知关系模式R ={A ,B ,C ,X ,E},函数依赖集为{A →X ,B →C ,E →A},则该关系模式的候选码是:A .AB B. BEC .CX D. XE( )10. 数据库完整性保护中的约束条件主要是对( )。

2008年全国统一考试数学卷(全国新课标.理)

2008年全国统一考试数学卷(全国新课标.理)

2008年全国统一考试数学卷(全国新课标.理)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.参考公式:样本数据12,,,n x x x 的标准差s =其中x 为样本平均数 柱体体积公式V Sh = 其中S 为底面面积,h 为高锥体体积公式13V Sh =其中S 为底面面积,h 为高球的表面积,体积公式24R S π=,334R V π=其中R 为球的半径第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知函数2sin()(0)y x ωϕω=+>在区间[]0,2π的图像如下:A .1B .2C .12D .132.已知复数1z i =-,则21zz -=A .2B .2-C .2iD .2i -3.如果等腰三角形的周长是底边长的5倍,那么它的顶角的余弦值为A .518B .34C .2D .784.设等比数列{}n a 的公比2q =,前n 项和为n S ,则42S a =A .2B .4C .152D .1725.右面的程序框图,如果输入三个实数a 、b 、c ,要求输出这三个数中最大的数,那么在空白的判断框中,应该填入下面四个选项中的A .c x >B .x c >C .c b >D .b c >6.已知1230a a a >>>,则使得2(1)1(1,2,3)i a x i -<=都成立的x 取值范围是A .11(0,)a B .12(0,)a C .31(0,)a D .32(0,)a7.23sin 702cos 10--=A .12B .2C .2D 28.平面向量,a b共线的充要条件是A .,a b方向相同B .,a b两向量中至少有一个为零向量C .R λ∃∈,b a λ=D .存在不全为零的实数12,λλ,120a b λλ+=9.甲、乙、丙3位志愿者安排在周一至周五的5天中参加某项志愿者活动,要求每人参加一天且每天至多安排一人,并要求甲安排在另外两位前面.不同的安排方法共有A .20种B .30种C .40种D .60种10.由直线12x =,2x =,曲线1y x=及x 轴所围成图形的面积是A .154B .174C .1ln 22D .2ln 211.已知点P 在抛物线24y x =上,那么点P 到点(2,1)Q -的距离与点P 到抛物线焦点距离之和取得最小值时,点P 的坐标为A .1(,1)4-B .1(,1)4C .(1,2)D .(1,2)-12.某几何体的一条棱长为,在该几何体的正视图中,这条棱的投影是长为的线段,在该几何体的侧视图与俯视图中,这条棱的投影分别是长为a 和b 的线段,则a b +的最大值为A .B .C .4D .第Ⅱ卷(非选择题共90分)注意事项:用钢笔或圆珠笔直接答在答题卡上.二、填空题:本大题共4小题,每小题5分,共20分,把答案填在题中横线上.13.已知向量(0,1,1)a =- ,(4,1,0)b = ,||a b λ+=且0λ>,则λ= .14.双曲线221916xy-=的右顶点为A ,右焦点为F .过点F 平行双曲线的一条渐近线的直线与双曲线交于点B ,则△A F B 的面积为 .15.一个六棱柱的底面是正六边形,其侧棱垂直底面.已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为98,底面周长为3,那么这个球的体积为 .16.从甲、乙两品种的棉花中各抽测了25根棉花的纤维长度(单位:mm ),结果如下: 甲 品种 271 273 280 285 285 287 292 294 295 301 303 303 307 308 310 314 319 323 325 325 328 331 334 337 352 乙 品种284 292 295 304 306 307 312 313 315 315 316 318 318 320322322324327329331333336337343356由以上数据设计了如下茎叶图:根据以上茎叶图,对甲乙两品种棉花的纤维长度比较,写出两个统计结论:① . ② .三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)已知数列{}n a 是一个等差数列,且21a =,55a =-. (1)求{}n a 的通项n a ;(2)求{}n a 的前n 项和n S 的最大值.18.(本小题满分12分)如图,已知点P 在正方体1111A B C D A B C D -的对角线1BD 上,60PDA ∠=. (1)求D P 与1C C 所成角的大小; (2)求D P 与平面11AA D D 所成角的大小.27 28 29 30 31 32 33 34 351 37 5 5 05 4 2 8 7 3 39 4 0 8 5 5 37 4 124 2 35 56 8 8 4 6 72 5 0 2 2 4 7 9 13 6 7 3 6甲乙D 1PA 1B 1C 1ABCD19.(本小题满分12分)A 、B 两个投资项目的利润率分别为随机变量1X 和2X .根据市场分析,1X 和2X 的分布列分别为(1)在A 、B 两个项目上各投资100万元,1Y 和2Y 分别表示投资项目A 和B 所获得的利润,求方差1D Y 、2D Y ;(2)将(0100)x x ≤≤万元投资A 项目,100x -万元投资B 项目,()f x 表示投资A 项目所得利润的方差与投资B 项目所得利润的方差的和.求()f x 的最小值,并指出x 为何值时,()f x 取到最小值.(注:2()D aX b a D X +=)20.(本小题满分12分)在直角坐标系xOy 中,椭圆22122:1(0)x y C a b ab+=>>的左、右焦点分别为1F 、2F .2F 也是抛物线22:4C y x =的焦点,点M 为1C 与2C 在第一象限的交点,且25||3M F =.(1)求1C 的方程;(2)平面上的点N 满足12M N M F M F =+,直线l ∥M N ,且与1C 交于A 、B 两点,若0O A O B ⋅=,求直线l 的方程.21.(本小题满分12分)设函数1()(,)f x ax a b Z x b=+∈+,曲线()y f x =在点(2,(2))f 处的切线方程为3y =.(1)求()y f x =的解析式;(2)证明:曲线()y f x =的图像是一个中心对称图形,并求其对称中心;(3)证明:曲线()y f x =上任一点处的切线与直线1x =和直线y x =所围三角形的面积为定值,并求此定值.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.作答时请写清题号.22.(本小题满分10分)【选修4-1:几何选讲】如图,过圆O 外一点M 作它的一条切线,切点为A ,过A 作直线A P 垂直直线O M ,垂足为P . (1)证明:2OM OP OA ⋅=;(2)N 为线段A P 上一点,直线N B 垂直直线O N ,且交圆O 于B 点.过B 点的切线交直线O N 于K .证明:90OKM ∠= 23.(本小题满分10分)【选修4-4:坐标系与参数方程】已知曲线1cos :sin x C y θθ=⎧⎨=⎩(θ为参数),曲线22:2x C y ⎧=-⎪⎪⎨⎪=⎪⎩(t 为参数).(1)指出1C ,2C 各是什么曲线,并说明1C 与2C 公共点的个数;(2)若把1C ,2C 上各点的纵坐标都压缩为原来的一半,分别得到曲线1C ',2C '.写出1C ',2C '的参数方程.1C '与2C '公共点的个数和1C 与2C 公共点的个数是否相同?说明你的理由. 24.(本小题满分10分)【选修4-5:不等式选讲】 已知函数()|8||4|f x x x =---. (1)作出函数()y f x =的图像; (2)解不等式|8||4|2x x --->.2008年全国统一考试数学卷(全国新课标.理)参考答案一、选择题,本题考查基础知识,基本概念和基本运算能力13. 14.15.16.三、解答题 17.2008年普通高等学校统一考试(海南、宁夏卷)数学(理科)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知函数2sin()(0)y x ωϕω=+>)在区间[]02π,的图像如下:那么ω=( ) A .1 B .2 C .21 D .31解:由图象知函数的周期T π=,所以22Tπω=2.已知复数1z i =-,则122--z z z =( ) A .2iB .2i -C .2D .2-解:1z i =-∵,222(1)2(1)22111z z i i i z i i-----===-----∴,故选B3.如果等腰三角形的周长是底边长的5倍,那么它的顶角的余弦值为( ) A .185 B .43 C .23 D .87解:设顶角为C ,因为5,2l c a b c ===∴,由余弦定理x222222447cos 22228a b cc c c C abc c+-+-===⨯⨯4.设等比数列{}n a 的公比q =2,前n 项和为S n ,则24a S =( )A .2B .4C .215 D .217解:414421(1)1215122a q S q a a q---===-5.右面的程序框图,如果输入三个实数a ,b ,c ,要求输出这三 个数中最大的数,那么在空白的判断框中,应该填入下面四个选 项中的( )A .c x >B .x c >C .c b >D .b c >解:变量x 的作用是保留3个数中的最大值,所以第二个条件结构的判断框内语句为“c x >”, 满足“是”则交换两个变量的数值后输出x 的值结束程序,满足“否”直接输出x 的值结束程序.6.已知1230a a a >>>,则使得2(1)1(123)i a x i -<=,,都成立的x 取值范围是( ) A .110a ⎛⎫ ⎪⎝⎭,B .120a ⎛⎫ ⎪⎝⎭,C .310a ⎛⎫ ⎪⎝⎭,D .320a ⎛⎫ ⎪⎝⎭,解:22222(1)120()0i i i i ia x a x a x a x x a -<⇒-<⇒-<,所以解集为2(0,)ia ,又123222a a a <<,因此选B .7.23sin 702cos 10-=-( ) A .12B.2C .2 D2解:22223sin 703cos 203(2cos 201)22cos 102cos 102cos 10----===---,选C .8.平面向量a ,b 共线的充要条件是( ) A .a ,b 方向相同B .a ,b 两向量中至少有一个为零向量C .λ∈R ∃,λ=b aD .存在不全为零的实数1λ,2λ,12λλ+=0a b 解:注意零向量和任意向量共线.9.甲、乙、丙3位志愿者安排在周一至周五的5天中参加某项志愿者活动,要求每人参加一天且每天至多安排一人,并要求甲安排在另外两位前面.不同的安排方法共有( ) A .20种 B .30种 C .40种 D .60种 解:分类计数:甲在星期一有2412A =种安排方法,甲在星期二有236A =种安排方法,甲在星期三有222A =种安排方法,总共有126220++=种 10.由直线12x =,x =2,曲线1y x=及x 轴所围图形的面积为( )A .154B .174C .1ln 22D .2ln 2解:如图,面积22112211ln |ln 2ln2ln 22S x x===-=⎰11.已知点P 在抛物线24y x =上,那么点P 到点(21)Q -,的距离与点P 到抛物线焦点距离之和取得最小值时,点P 的坐标为( ) A .114⎛⎫- ⎪⎝⎭,B .114⎛⎫⎪⎝⎭,C .(12),D .(12)-,解:点P 到抛物线焦点距离等于点P 到抛物线准线距离,如图PF PQ PS PQ +=+,故最小值在,,S P Q 三点共线时取得,此时,P Q 的纵坐标都是1-,所以选A .(点P 坐标为1(,1)4-)12.某几何体的一条棱长为,在该几何体的正视图中,这条棱的投影是长为的线段,在该几何体的侧视图与俯视图中,这条棱的投影分别是长为a 和b 的线段,则a +b 的最大值为( ) A.B.C .4D.解:结合长方体的对角线在三个面的投影来理解计算.如图设长方体的高宽高分别为,,m n k ,由题意得==1n ⇒=a =b =,所以22(1)(1)6a b -+-=228a b ⇒+=,22222()282816a b a ab b ab a b +=++=+≤++=∴ 4a b ⇒+≤当且仅当2a b ==时取等号.第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答.第22题~第24题为选考题,考生根据要求做答. 二、填空题:本大题共4小题,每小题5分. 13.已知向量(011)=-,,a ,(410)=,,b,λ+=a b 0λ>,则λ= .解:由题意(4,1,)λ+-λλa b =2216(1)29(0)λλλ⇒+-+=>3λ⇒=14.设双曲线221916xy-=的右顶点为A ,右焦点为F .过点F 平行双曲线的一条渐近线的直线与双曲线交于点B ,则△AFB 的面积为 .解:双曲线的右顶点坐标(3,0)A ,右焦点坐标(5,0)F ,设一条渐近线方程为43y x =,建立方程组224(5)31916y x x y ⎧=-⎪⎪⎨⎪-=⎪⎩,得交点纵坐标3215y =-,从而132********A F B S =⨯⨯= 15.一个六棱柱的底面是正六边形,其侧棱垂直底面.已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为98,底面周长为3,则这个球的体积为 .解:令球的半径为R ,六棱柱的底面边长为a ,高为h ,显然有R =,且219624863a V h h a ⎧⎧==⨯⨯=⎪⎪⇒⎨⎨⎪⎪==⎩⎩1R ⇒=34433V R ππ⇒== 16.从甲、乙两品种的棉花中各抽测了25根棉花的纤维长度(单位:mm ),结果如下:甲品种:271 273 280 285 285 287 292 294 295 301 303 303 307 308 310 314 319 323 325 325 328 331 334 337 352乙品种:284 292 295 304 306 307 312 313 315 315 316 318 318 320 322 322 324 327 329 331 333 336 337 343 356 由以上数据设计了如下茎叶图根据以上茎叶图,对甲、乙两品种棉花的纤维长度作比较,写出两个统计结论: ① ;② .解:1.乙品种棉花的纤维平均长度大于甲品种棉花的纤维平均长度(或:乙品种棉花的纤维长度普遍大于甲品种棉花的纤维长度).2.甲品种棉花的纤维长度较乙品种棉花的纤维长度更分散.(或:乙品种棉花的纤维长度较甲品种棉花的纤维长度更集中(稳定).甲品种棉花的纤维长度的分散程度比乙品种棉花的纤维长度的分散程度更大). 3.甲品种棉花的纤维长度的中位数为307mm ,乙品种棉花的纤维长度的中位数为318mm . 4.乙品种棉花的纤维长度基本上是对称的,而且大多集中在中间(均值附近).甲品种棉花的纤维长度除一个特殊值(352)外,也大致对称,其分布较均匀.三、解答题:解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分) 已知{}n a 是一个等差数列,且21a =,55a =-.(Ⅰ)求{}n a 的通项n a ; (Ⅱ)求{}n a 前n 项和S n 的最大值.解:(Ⅰ)设{}n a 的公差为d ,由已知条件,11145a d a d +=⎧⎨+=-⎩,解出13a =,2d =-.所以1(1)25n a a n d n =+-=-+. (Ⅱ)21(1)42n n n S na d n n -=+=-+24(2)n =--.所以2n =时,n S 取到最大值4. 18.(本小题满分12分)如图,已知点P 在正方体A B C D A B C D ''''-的对角线BD '上,60P D A ∠=︒. (Ⅰ)求DP 与C C '所成角的大小;(Ⅱ)求DP 与平面AA D D ''所成角的大小.3 1 277 5 5 0 28 45 4 2 29 2 58 7 3 3 1 30 4 6 79 4 0 31 2 3 5 5 6 8 88 5 5 3 32 0 2 2 4 7 97 4 1 33 1 3 6 734 32 35 6甲乙A 'C 'D '解:如图,以D 为原点,D A 为单位长建立空间直角坐标系D xyz -. 则(100)D A =,,,(001)C C '=,,.连结B D ,B D ''. 在平面BB D D ''中,延长D P 交B D ''于H .设(1)(0)D H m m m => ,,,由已知60DH DA <>=,, 由cos D A D H D A D H D A D H =<> ,可得2m =2m =所以122D H ⎛⎫= ⎪ ⎪⎝⎭,.(Ⅰ)因为0011cos 2DH CC ⨯++⨯'<>==,,所以45DH CC '<>=,.即D P 与C C '所成的角为45.(Ⅱ)平面AA D D ''的一个法向量是(010)D C =,,.因为01101cos 2D H D C ⨯++⨯<>==,, 所以60DH DC <>=,. 可得D P 与平面AA D D ''所成的角为30 .19.(本小题满分12分)A B ,两个投资项目的利润率分别为随机变量X 1和X 2.根据市场分析,X 1和X 2的分布列分别为(Ⅰ)在A B ,两个项目上各投资100万元,Y 1和Y 2分别表示投资项目A 和B 所获得的利润,求方差DY 1,DY 2;(Ⅱ)将(0100)x x ≤≤万元投资A 项目,100x -万元投资B 项目,()f x 表示投资A 项目所得利润的方差与投资B 项目所得利润的方差的和.求()f x 的最小值,并指出x 为何值时,()f x 取到最小值.(注:2()D aX b a D X +=)解:(Ⅰ)由题设可知1Y 和2Y 的分布列分别为150.8100.26EY =⨯+⨯=,221(56)0.8(106)0.24D Y =-⨯+-⨯=,220.280.5120.38EY =⨯+⨯+⨯=,2222(28)0.2(88)0.5(128)0.312D Y =-⨯+-⨯+-⨯=.(Ⅱ)12100()100100xx f x D Y D Y -⎛⎫⎛⎫=+⎪ ⎪⎝⎭⎝⎭2212100100100x x D Y D Y -⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭22243(100)100x x ⎡⎤=+-⎣⎦ 2224(46003100)100x x =-+⨯, 当6007524x ==⨯时,()3f x =为最小值.20.(本小题满分12分) 在直角坐标系xOy 中,椭圆C 1:2222by ax +=1(a >b >0)的左、右焦点分别为F 1,F 2.F 2也是抛物线C 2:24y x =的焦点,点M 为C 1与C 2在第一象限的交点,且|MF 2|=35.(Ⅰ)求C 1的方程;(Ⅱ)平面上的点N 满足21MF MF MN +=,直线l ∥MN ,且与C 1交于A ,B 两点,若0OA OB = ,求直线l 的方程.20.解:(Ⅰ)由2C :24y x =知2(10)F ,.设11()M x y ,,M 在2C 上,因为253M F =,所以1513x +=,得123x =,13y =.M 在1C 上,且椭圆1C 的半焦距1c =,于是222248193 1.a bb a ⎧+=⎪⎨⎪=-⎩, 消去2b 并整理得 4293740a a -+=, 解得2a =(13a =不合题意,舍去).故椭圆1C 的方程为22143xy+=.(Ⅱ)由12M F M F M N +=知四边形12M F N F 是平行四边形,其中心为坐标原点O ,因为l M N ∥,所以l 与O M 的斜率相同,故l的斜率323k ==.设l的方程为)y x m =-.由223412)x y y x m ⎧+=⎪⎨=-⎪⎩,,消去y 并化简得 22916840x mx m -+-=. 设11()A x y ,,22()B x y ,,12169m x x +=,212849m x x -=.因为OA OB ⊥,所以12120x x y y +=.121212126()()x x y y x x x m x m +=+--2121276()6x x m x x m =-++22841676699m m m m -=-+ 21(1428)09m =-=.所以m =.此时22(16)49(84)0m m ∆=-⨯->,故所求直线l的方程为y =-,或y =+.21.(本小题满分12分) 设函数1()()f x ax a b x b=+∈+Z ,,曲线()y f x =在点(2(2))f ,处的切线方程为y =3.(Ⅰ)求()f x 的解析式:(Ⅱ)证明:函数()y f x =的图像是一个中心对称图形,并求其对称中心;(Ⅲ)证明:曲线()y f x =上任一点的切线与直线x =1和直线y =x 所围三角形的面积为定值,并求出此定值.21.解:(Ⅰ)21()()f x a x b '=-+,于是2121210(2)a b a b ⎧+=⎪+⎪⎨⎪-=+⎪⎩,,解得11a b =⎧⎨=-⎩,,或948.3a b ⎧=⎪⎪⎨⎪=-⎪⎩,因a b ∈Z ,,故1()1f x x x =+-.(Ⅱ)证明:已知函数1y x =,21y x=都是奇函数.所以函数1()g x x x=+也是奇函数,其图像是以原点为中心的中心对称图形.而1()111f x x x =-++-.可知,函数()g x 的图像按向量(11)=,a 平移,即得到函数()f x 的图像,故函数()f x 的图像是以点(11),为中心的中心对称图形. (Ⅲ)证明:在曲线上任取一点00011x x x ⎛⎫+ ⎪-⎝⎭,.由0201()1(1)f x x '=--知,过此点的切线方程为2000200111()1(1)x x y x x x x ⎡⎤-+-=--⎢⎥--⎣⎦. 令1x =得0011x y x +=-,切线与直线1x =交点为00111x x ⎛⎫+ ⎪-⎝⎭,.令y x =得021y x =-,切线与直线y x =交点为00(2121)x x --,. 直线1x =与直线y x =的交点为(11),.从而所围三角形的面积为00000111212112222121x x x x x +---=-=--.所以,所围三角形的面积为定值2.请考生在第22、23、24题中任选一题做答,如果多做,则按所做的第一题记分.做答时,用2B 铅笔在答题卡上把所选题目对应的题号涂黑.22.(本小题满分10分)选修4-1:几何证明选讲如图,过圆O 外一点M 作它的一条切线,切点为A ,过A 点作直线A P 垂直直线O M ,垂足为P .(Ⅰ)证明:2OM OP OA = ;(Ⅱ)N 为线段A P 上一点,直线N B 垂直直线O N ,且交圆O 于B 点.过B 点的切线交直线O N 于K .证明:90OKM = ∠.解:(Ⅰ)证明:因为M A 是圆O 的切线,所以O A A M ⊥.又因为A P O M ⊥.在R t O A M △中,由射影定理知,2OA OM OP = .(Ⅱ)证明:因为B K 是圆O 的切线,B N O K ⊥.同(Ⅰ),有2OB ON OK = ,又O B O A =, 所以O P O M O N O K = ,即O N O M O PO K=.又N O P M O K =∠∠,所以O N P O M K △∽△,故90OKM OPN ==∠∠.23.(本小题满分10分)选修4-4;坐标系与参数方程已知曲线C 1:cos sin x y θθ=⎧⎨=⎩,(θ为参数),曲线C 2:22x y ⎧=-⎪⎪⎨⎪=⎪⎩(t 为参数).(Ⅰ)指出C 1,C 2各是什么曲线,并说明C 1与C 2公共点的个数;(Ⅱ)若把C 1,C 2上各点的纵坐标都压缩为原来的一半,分别得到曲线12C C '',.写出12C C '',的参数方程.1C '与2C '公共点的个数和C 21C 与公共点的个数是否相同?说明你的理由. 解:(Ⅰ)1C 是圆,2C 是直线.1C 的普通方程为221x y +=,圆心1(00)C ,,半径1r =. 2C 的普通方程为0x y -+=.因为圆心1C 到直线0x y -+=的距离为1,所以2C 与1C 只有一个公共点. (Ⅱ)压缩后的参数方程分别为1C ':cos 1sin 2x y θθ=⎧⎪⎨=⎪⎩,(θ为参数); 2C ':24x y ⎧=-⎪⎪⎨⎪=⎪⎩(t 为参数).化为普通方程为:1C ':2241x y +=,2C ':122y x =+,联立消元得2210x ++=, 其判别式24210∆=-⨯⨯=,所以压缩后的直线2C '与椭圆1C '仍然只有一个公共点,和1C 与2C 公共点个数相同.24.(本小题满分10分)选修4-5:不等式选讲 已知函数()84f x x x =---. (Ⅰ)作出函数()y f x =的图像; (Ⅱ)解不等式842x x --->. 解:(Ⅰ)44()2124848.xf x x xx⎧⎪=-+<⎨⎪->⎩,≤,,≤,图像如下:(Ⅱ)不等式842x x--->,即()2f x>,由2122x-+=得5x=.由函数()f x图像可知,原不等式的解集为(5)-∞,.。

[VIP专享]2008机设数字电路试题A卷答案

[VIP专享]2008机设数字电路试题A卷答案

1) B2Ak+22+1=2+15+c51mc+=m5=21c11+m++12+2+1++=212=2+1+2+1+2+2+22+32k+1+2
C. SR 触发器
班级


总分

和 Y = ( AB+CD ) 。
A
B
C
D
& ≥1
(c)
D. 74160 D. T 触发器
阅卷 教师
Y
4分
(第 2 页 共 5 页)


一、填空题(每空 1 分,共 10 分)
1.1. 十进制数(127)10 转换为十六进制数为 (7F)16
1.2. (+1011)2 的反码为 01011
1.3. 逻辑函数的两种标准形式是 最小项之和 和 最大项之积
,(1101)2 的补码为 10011 。
1.4. 某二进制译码器的输入为 4 位二进制代码,则该译码器共有 16 根输出线。




湘潭大学 200 8 年 下学期 2006 级
《数字电路》课程考试试卷
(A 卷) 适用年级专业 2006 级机械设计制造及其自动化
学院
考试方式 闭卷
一二三
学号
专业

考试时间 120 分钟
姓名
4.1 4.2 4.3 5.1 5.2
………………………………………………………………………………………………………………
AB BC AC
2分
AB ABC ABC BC ABC ABC ( AB ABC) (BC ABC) ( ABC ABC) 2 分

2008年高考辽宁文科数学(含答案)

2008年高考辽宁文科数学(含答案)

2008年普通高等学校招生全国统一考试(辽宁卷)数学(供文科考生使用)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至4页,考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷(选择题共60分)参考公式:如果事件A B ,互斥,那么球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B =球的体积公式如果事件A 在一次试验中发生的概率是P ,那么 34π3V R =n 次独立重复试验中事件A 恰好发生k 次的概率()(1)(012)kkn kn n P k C P p k n -=-= ,,,, 其中R 表示球的半径一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}31M x x =-<<,{}3N x x =-≤,则M N = ( ) A .∅B .{}3x x -≥C .{}1x x ≥D .{}1x x <2.若函数(1)()y x x a =+-为偶函数,则a =( ) A .2-B .1-C .1D .23.圆221x y +=与直线2y kx =+没有..公共点的充要条件是( )A .(k ∈B . (k ∈C .()k ∈--+ ∞,∞D .()k ∈--+ ∞,∞4.已知01a <<,log log a ax =+1log 52a y =,log log a az =,则( ) A .x y z >>B .z y x >>C .y x z >>D .z x y >>5.已知四边形A B C D 的三个顶点(02)A ,,(12)B --,,(31)C ,,且2BC AD =,则顶点D 的坐标为( )A .722⎛⎫⎪⎝⎭,B .122⎛⎫-⎪⎝⎭, C .(32), D .(13),6.设P 为曲线C :223y x x =++上的点,且曲线C 在点P 处切线倾斜角的取值范围为04π⎡⎤⎢⎥⎣⎦,,则点P 横坐标的取值范围为( ) A .112⎡⎤--⎢⎥⎣⎦,B .[]10-,C .[]01,D .112⎡⎤⎢⎥⎣⎦, 7.4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为奇数的概率为( ) A .13B .12C .23D .348.将函数21x y =+的图象按向量a 平移得到函数12x y +=的图象,则( ) A .(11)=--,aB .(11)=-,aC .(11)=,aD .(11)=-,a9.已知变量x y ,满足约束条件1031010y x y x y x +-⎧⎪--⎨⎪-+⎩≤,≤,≥,则2z x y =+的最大值为( )A .4B .2C .1D .4-10.一生产过程有4道工序,每道工序需要安排一人照看.现从甲、乙、丙等6名工人中安排4人分别照看一道工序,第一道工序只能从甲、乙两工人中安排1人,第四道工序只能从甲、丙两工人中安排1人,则不同的安排方案共有( ) A .24种 B .36种 C .48种 D .72种 11.已知双曲线22291(0)y m x m -=>的一个顶点到它的一条渐近线的距离为15,则m =( ) A .1B .2C .3D .412.在正方体1111ABC D A B C D -中,E F ,分别为棱1A A ,1C C 的中点,则在空间中与三条直线11A D ,E F ,C D 都相交的直线( ) A .不存在B .有且只有两条C .有且只有三条D .有无数条第Ⅱ卷(非选择题共90分)二、填空题:本大题共4小题,每小题4分,共16分. 13.函数21()x y ex +=-<<+∞∞的反函数是 .14.在体积为的球的表面上有A 、B ,C 三点,AB =1,BC,A ,C 两点的球面距3,则球心到平面ABC 的距离为_________.15.6321(1)x x x ⎛⎫++ ⎪⎝⎭展开式中的常数项为 .16.设02x π⎛⎫∈ ⎪⎝⎭,,则函数22sin 1sin 2x y x +=的最小值为 .三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分) 在A B C △中,内角A B C ,,对边的边长分别是a b c ,,,已知2c =,3C π=.(Ⅰ)若A B C △,求a b ,; (Ⅱ)若sin 2sin B A =,求A B C △的面积.18.(本小题满分12分)某批发市场对某种商品的周销售量(单位:吨)进行统计,最近100周的统计结果如下表所示:周销售量 2 3 4 频数205030(Ⅰ)根据上面统计结果,求周销售量分别为2吨,3吨和4吨的频率; (Ⅱ)若以上述频率作为概率,且各周的销售量相互独立,求(ⅰ)4周中该种商品至少有一周的销售量为4吨的概率;(ⅱ)该种商品4周的销售量总和至少为15吨的概率.19.(本小题满分12分) 如图,在棱长为1的正方体A B C D A B C D ''''-中,AP=BQ=b (0<b <1),截面PQEF ∥A D ',截面PQGH ∥A D '.(Ⅰ)证明:平面PQEF 和平面PQGH 互相垂直; (Ⅱ)证明:截面PQEF 和截面PQGH 面积之和是定值,并求出这个值; (Ⅲ)若12b =,求D E '与平面PQEF 所成角的正弦值.A BCD E FPQ H A ' B 'C 'D ' G20.(本小题满分12分)在数列||n a ,||n b 是各项均为正数的等比数列,设()n n nb c n a =∈*N .(Ⅰ)数列||n c 是否为等比数列?证明你的结论;(Ⅱ)设数列|ln |n a ,|ln |n b 的前n 项和分别为n S ,n T .若12a =,21n nS n T n =+,求数列||n c 的前n 项和.21.(本小题满分12分)在平面直角坐标系xOy 中,点P到两点(0-,,(0的距离之和等于4,设点P 的轨迹为C . (Ⅰ)写出C 的方程;(Ⅱ)设直线1y kx =+与C 交于A ,B 两点.k 为何值时O A ⊥O B ?此时A B 的值是多少?22.(本小题满分14分)设函数322()31()f x ax bx a x a b =+-+∈R ,在1x x =,2x x =处取得极值,且122x x -=.(Ⅰ)若1a =,求b 的值,并求()f x 的单调区间; (Ⅱ)若0a >,求b 的取值范围.2008年普通高等学校招生全国统一考试(辽宁卷)数学(供文科考生使用)试题参考答案和评分参考一、选择题:本题考查基本知识和基本运算.每小题5分,共60分. 1.D 2.C 3.B 4.C 5.A 6.A 7.C 8.A 9.B 10.B 11.D 12.D 二、填空题:本题考查基本知识和基本运算.每小题4分,满分16分. 13.1(ln 1)(0)2y x x =->14.3215.35 16三、解答题17.本小题主要考查三角形的边角关系等基础知识,考查综合计算能力.满分12分. 解:(Ⅰ)由余弦定理得,224a b ab +-=, 又因为A B C △1sin 2ab C =4ab =.···························· 4分联立方程组2244a b ab ab ⎧+-=⎨=⎩,,解得2a =,2b =.······················································ 6分(Ⅱ)由正弦定理,已知条件化为2b a =, ································································· 8分 联立方程组2242a b ab b a ⎧+-=⎨=⎩,,解得3a =3b =.所以A B C △的面积1sin 23S ab C ==.·······························································12分18.本小题主要考查频率、概率等基础知识,考查运用概率知识解决实际问题的能力.满分12分.解:(Ⅰ)周销售量为2吨,3吨和4吨的频率分别为0.2,0.5和0.3. ························· 4分 (Ⅱ)由题意知一周的销售量为2吨,3吨和4吨的频率分别为0.2,0.5和0.3,故所求的概率为(ⅰ)4110.70.7599P =-=. ············································································· 8分(ⅱ)334240.50.30.30.0621P C =⨯⨯+=. ·······················································12分19.本小题主要考查空间中的线面关系和面面关系,解三角形等基础知识,考查空间想象能力与逻辑思维能力.满分12分.解法一:(Ⅰ)证明:在正方体中,AD A D ''⊥,AD AB '⊥, 又由已知可得PF A D '∥,PH AD '∥,PQ AB ∥,所以PH PF ⊥,PH PQ ⊥,所以PH ⊥平面PQEF .所以平面PQEF 和平面PQGH 互相垂直.·································································· 4分 (Ⅱ)证明:由(Ⅰ)知PF PH '==,,又截面PQEF 和截面PQGH 都是矩形,且PQ =1,所以截面PQEF 和截面PQGH 面积之和是)P A P Q '+⨯=····································································· 8分 (Ⅲ)解:设A D '交P F 于点N ,连结E N , 因为AD '⊥平面PQEF ,所以D E N '∠为D E '与平面PQEF 所成的角. 因为12b =,所以P Q E F ,,,分别为A A ',B B ',B C ,A D 的中点.可知4D N '=,32D E '=.所以4sin 322D EN '==∠. ················································································12分解法二:以D 为原点,射线DA ,DC ,DD ′分别为x ,y ,z 轴的正半轴建立如图的空间直角坐标系D -xyz .由已知得1D F b =-,故(100)A ,,,(101)A ',,,(000)D ,,,(001)D ',,,(10)P b ,,,(11)Q b ,,,(110)E b -,,, (100)F b -,,,(11)G b ,,,(01)H b ,,.(Ⅰ)证明:在所建立的坐标系中,可得(010)(0)PQ PF b b ==-- ,,,,,, (101)P H b b =--,,,(101)(101)AD A D ''=-=-- ,,,,,.因为00A D P Q A D P F ''== ,,所以AD '是平面PQEF 的法向量. 因为00A D PQ A D PH ''== ,,所以A D '是平面PQGH 的法向量.A BCDEFP Q HA 'B 'C 'D 'GN因为0AD A D ''= ,所以A D AD ''⊥ ,所以平面PQEF 和平面PQGH 互相垂直. ···································································· 4分(Ⅱ)证明:因为(010)E F =- ,,,所以EF PQ EF PQ ∥,=,又PF PQ ⊥ ,所以PQEF 为矩形,同理PQGH 为矩形.在所建立的坐标系中可求得)PH b =-,PF =,所以PH PF +=1PQ =,所以截面PQEF 和截面PQGH············································· 8分(Ⅲ)解:由(Ⅰ)知(101)AD '=-,,是平面PQEF 的法向量.由P 为A A '中点可知,Q E F ,,分别为B B ',B C ,A D 的中点.所以1102E ⎛⎫ ⎪⎝⎭,,,1112D E ⎛⎫'=- ⎪⎝⎭ ,,,因此D E '与平面PQEF 所成角的正弦值等于|cos |2AD D E ''<>=,. ··························································································12分20.本小题主要考查等差数列,等比数列,对数等基础知识,考查综合运用数学知识解决问题的能力.满分12分.解:(Ⅰ)n c 是等比数列. ·························································································· 2分 证明:设n a 的公比为11(0)q q >,n b 的公比为22(0)q q >,则11121110n n n n n nn n n n c b a b a qc a b b a q +++++===≠ ,故n c 为等比数列.··········································· 5分 (Ⅱ)数列ln n a 和ln n b 分别是公差为1ln q 和2ln q 的等差数列.由条件得1112(1)ln ln 22(1)21ln ln 2n n n a q n n n n b q -+=-++,即11122ln (1)ln 2ln (1)ln 21a n q nb n q n +-=+-+. ···················································································· 7分故对1n =,2,…,212111211(2ln ln )(4ln ln 2ln ln )(2ln ln )0q q n a q b q n a q -+--++-=.于是121112112ln ln 04ln ln 2ln ln 02ln ln 0.q q a q b q a q -=⎧⎪--+=⎨⎪-=⎩,,将12a =代入得14q =,216q =,18b =. ································································10分从而有11816424n nn n c --== .所以数列n c 的前n 项和为24444(41)3nn+++=-…. ·····················································································12分 21.本小题主要考查平面向量,椭圆的定义、标准方程及直线与椭圆位置关系等基础知识,考查综合运用解析几何知识解决问题的能力.满分12分.解:(Ⅰ)设P (x ,y ),由椭圆定义可知,点P 的轨迹C是以(0(0-,,为焦点,长半轴为2的椭圆.它的短半轴1b ==,故曲线C 的方程为2214yx +=. ·················································································· 4分 (Ⅱ)设1122()()A x y B x y ,,,,其坐标满足2214 1.y x y kx ⎧+=⎪⎨⎪=+⎩, 消去y 并整理得22(4)230k x kx ++-=, 故1212222344k x x x x k k +=-=-++,.······································································· 6分OA OB ⊥,即12120x x y y +=.而2121212()1y y k x x k x x =+++,于是222121222223324114444kkk x x y y k k k k -++=---+=++++.所以12k =±时,12120x x y y +=,故OA OB ⊥. ······················································· 8分当12k =±时,12417x x += ,121217x x =-.AB ==而22212112()()4x x x x x x -=+-23224434134171717⨯⨯=+⨯=,所以17AB = . ····································································································12分22.本小题主要考查函数的导数,单调性、极值,最值等基础知识,考查综合利用导数研究函数的有关性质的能力.满分14分解:22()323f x ax bx a '=+-.① ··············································································· 2分 (Ⅰ)当1a =时,2()323f x x bx '=+-;由题意知12x x ,为方程23230x bx +-=的两根,所以123x x -=由122x x -=,得0b =. ··························································································· 4分 从而2()31f x x x =-+,2()333(1)(1)f x x x x '=-=+-.当(11)x ∈-,时,()0f x '<;当(1)(1)x ∈--+ ∞,,∞时,()0f x '>.故()f x 在(11)-,单调递减,在(1)--∞,,(1)+,∞单调递增.···································· 6分 (Ⅱ)由①式及题意知12x x ,为方程223230x bx a +-=的两根,所以123x x a-=.从而221229(1)x x b a a -=⇔=-,由上式及题设知01a <≤. ························································································· 8分 考虑23()99g a a a =-,22()1827273g a a a a a ⎛⎫'=-=-- ⎪⎝⎭. ········································································10分故()g a 在203⎛⎫ ⎪⎝⎭,单调递增,在213⎛⎫ ⎪⎝⎭,单调递减,从而()g a 在(]01,的极大值为2433g ⎛⎫= ⎪⎝⎭.又()g a 在(]01,上只有一个极值,所以2433g ⎛⎫= ⎪⎝⎭为()g a 在(]01,上的最大值,且最小值为(1)0g =.所以2403b ⎡⎤∈⎢⎥⎣⎦,,即b 的取值范围为33⎡-⎢⎣⎦. ···············································14分。

计算机08级计算机组成基础试卷(A)

计算机08级计算机组成基础试卷(A)

08级计应计算机组成基础(A)一、填空题(每空1.5分,共30分)1.原码、反码、补码三种编码中,绝对值相同的一对正负数,其数值字段编码完全相反的是①;能够直接进行正负数加减法运算的是②;同等长度情况下,能表示的真值个数最多的是③。

2.IBM PC/XT上采用的8位ISA总线,该总线中地址总线为A0-A19,数据总线为D0-D7,则其寻址空间是①;USB通用串行总线的数据传输率(USB1.1版)是②;多总线结构与单总线结构相比,其具有的优点是③。

3.定点数运算结果出现溢出指的是①,判断定点数运算结果是否出现上溢可以采用②,这时其标志是③。

4.Intel2114存储芯片引脚中,/WE的作用是①,/CS的作用是②。

5.IO设备编址方法中,需要采用专用IO指令的是①,根据地址不同划分IO设备与内存的是②,8086CPU采用的编址方法是③。

6.接口电路中,端口指的是①,其中传送方向总是输入的一类端口是②。

7.在计算机组成原理实验箱中,SW_G控制信号的作用是①,若SW_G与ALU_G同时为低,则可能出现的问题是②。

8.一个三级流水线,分别完成取指、指令译码并取数、指令执行三个步骤,完成以上各步骤所需的时间依次为80ns,80ns,60ns,则流水线的操作周期应设计为①,若相邻两条指令发生数据相关,且在硬件上不采取措施,则第2条指令要推迟②进行。

二、单项选择题(每小题1分,共16分)1.在各种计算机语言中,能够被计算机直接执行的是______A.机器语言B.汇编语言C.高级语言D.操作系统2.两个浮点数相加时的对阶是______A.将较小的一个阶码调整到与较大的一个阶码相同B.将较大的一个阶码调整到与较小的一个阶码相同C.将被加数的阶码调整到与加数的阶码相同D.将加数的阶码调整到与被加数的阶码相同3.为了缩短指令中某个地址段的位数,有效的方法是采用______A.立即寻址B.变址寻址C.间接寻址D.寄存器寻址4.动态RAM的特点是______A.工作中存储内容动态地变化B.工作中需要动态地改变访存地址08级计组试卷第1 页共7 页C.每隔一定时间刷新一遍D.每次读出后需根据原存内容全部刷新一遍5.某数在计算机中用8421BCD码表示为0011 1001 1000,其真值为______。

电科08级数字图像处理模拟题及参考答案

电科08级数字图像处理模拟题及参考答案

电科08级数字图像处理模拟题及参考答案电科08级数字图像处理模拟题及参考答案电科08级数字图像处理模拟题及参考答案一、填空题1. 一般来说,对模拟图像数字化时采样间距越大,图像数据越________,图像质量越________ 2.若灰度图象每像素用8位表示,则灰度值可以取_____________________间的数值。

3. 在几何变换的3×3矩阵_________________________可以使图像实现平移变换4.二值形态学中,腐蚀运算的集合方式定义为________。

5.根据图像编码原理可以将图像编码分为________、预测编码、________和混合编码6. 图像与灰度直方图间的对应关系是________7. 常用的灰度内插法有最近邻域法和________。

8.一幅图象的分辩率为512×512×8是指____________,该图像大小约____________KB 9.检测边缘的Sobel算子对应的模板形式为________ 和________ 10.分辩率是用来描述图象____________, 一幅图象的分辩率为512×512×8是指____________, 电视摄象机的分辩率为480线是指___________, 激光打印机分辩率为300dpi是指_________________。

11.图象直方图表示____________12. 以下是一个16*16的8级灰度图像的直方图。

灰度级0 1 2 3 4 5 6 7 像素数 3 30 38 98 45 32 12 10 则至灰度级3的灰度分布的0阶矩=________________,1阶矩= _______________________ 13.影像数字化包括和两过程。

14.图象平滑既可在空间域中进行,也可在中进行。

边缘检测算子对应的模板是和。

16. 二值图象的欧拉数是与之差。

(08级)离散结构(a)答案

(08级)离散结构(a)答案

期末考试试卷( A 卷)2008 学年第二学期 考试科目: 离散结构考试类型:(闭卷) 考试时间: 120 分钟学号 姓名 年级专业注意事项:1.考试时间120分钟,闭卷考试2.试卷共五大题,满分100分3.全部答案写在答题纸上,试卷纸上答题无效........一、填空(每空2分,共30分)1、__________1____________;2、___________5____________;3、_)),)(()(()(x y L y F x F y x ∧→∃∀_;4、___________1____________;5、__________全为1________;6、___________9____________;7、__________25____________;8、__________45_____________;9、__________103__________; 10、))),(),(((y x Q z x P z y x →∀∀∀; 11、__________2rs ____________; 12、__________3____________; 13、_________a _____________; 14、__________否____________; 15、_________是_____________。

二、选择题(每题2分,共30分)三、计算题(每题6分,共18分)1、p=1邻接矩阵通路长度小于或等于6的条数为13 2、6阶所有非同构的无向树有6棵3关系矩阵关系图:传递闭包:t(R)=R四、证明题(每题6分,共18分)1、证明:设G 中两奇数度结点分别为u 和v ,若 u ,v 不连通,则G 至少有两个连通分支G 1、G 2 ,使得u 和v 分别属于G 1和G 2,于是G 1和G 2中各含有1个奇数度结点,这与图论基本定理矛盾,因而u ,v 一定连通。

2、由于T 为非平凡树,则n>1,且任何顶点的度数都大于等于1;设T 中m 条边,k 片树叶(顶点度数为1),则其余n-k 个分支点的度数均大于等于2,由握手定理与树的性质(m=n-1)有:)(2)(22)1(22k n k v d n n m i -+≤=-=-=∑,显然k ≥2,这说明T 至少有两片树叶。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电子、通信、自动化 专业 数字电子技术(A)
试题

题目 一 二 三 四 五 六 七 总分数
分数
评卷人
一、填空题(本题13分)

1、(127)10若编成8421BCD码为________________________8421BCD。
2、函数)(DCAABAF,其反函数
=_________________________;对偶式
F/=___________________________。
3、优先编码器74LS148输入为~
,输出为


。当使能输入端

,其余输入端为1时,

应为__________ ___。
4、R-S触发器有_________个稳态,它可记录_________________位二进制码。若存储

一个字节的二进制信息,需要_____________个触发器。
5、移位寄存器不仅可用来寄存数据,还可以对数据进行 操作。
6、要构成5进制计数器,至少需要 个触发器,其无效状态有 个。
7、造成逻辑电路竞争和险象的原因是 。
8、电路如图。其输出逻辑表达式 O= 。
9、若要求DAC电路的分辩率达到千分之一,则至少应选用
____________位二进制输入代码的转换器。

二、选择题(本题5分)
1、一个具有N个地址端的数据选择器的功能是( )。
A.N选1 B.2N选1 C.2N选1 D.(2N-1)选1
2、当JK FF在时钟CP作用下,欲使QQnn1,则必须使( )。
A.JK=01 B.JK=10 C.JK=00 D.JK=11
3、在4变量函数F(W,X,Y,Z)中,和最小项ZYXW相邻的项是( )。
A.ZYXW B.ZYXW C.WXYZ D.WXYZ
4、设所给电路均为TTL电路,能实现逻辑功能AF1的电路是( )。
A、 B、
1 EN A F1 =1
A
F1

VCC

=1
A
F1

10K
C、 D、

5、n个触发器构成的扭环形计数器中,无效状态有( )个。
A. n B. 2n C. 2n-1 D. 2n-2n 三、按要求做题:(本题28分) 1.化简(10分) (1)ADDECADCBAABDY(用公式法化简) (2))15,11,7,5,3,0()13,9,6,4,1(),,,(dmDCBAY(用卡诺图法化简) 2.分析下面电路的逻辑功能。要求:①写出电路的逻辑表达式;②列出真值表; ③判断电路的逻辑功能。(8分) ≥1≥1≥1≥1ABF

3. 某实验室用一个黄灯(Y)和一个红灯(R)显示三台设备的故障情况,当
一台设备有故障时,黄灯亮;当两台设备同时有故障时红灯亮;当三台设备

同时有故障时红、黄两灯都亮。(1)列出符合题意的真值表;(2)写出Y和
R的最简与-或表达式;
(3)画出由译码器74138实现上述功能的逻辑电路图。(10分)

四、(本题15分)
如图所示为由边沿J-K触发器组成的电路。(1)分别写出电路的驱动方程、
状态方程和输出方程(5分);(2)列出状态转换表,画出状态转换图(5分); (3)根据已给CP波形,画出触发器输出端Q1、Q2的波形(5分)(设各触发器初始状态均为0)。 五、(本题共14分) 1. 74LS162是具有同步清零、同步置数的十进制加法计数器,逻辑符号和功能表如下图,Q为输出D为并行输入。 1).用2片74LS162构成49进制计数器,画出连线图。(可使用适当的门电路)(8分) 2).若用4片74LS162进行级联,最多可以进行多少分频?(不用画图)(2分)
2.已知4位双向移位寄存器74LS194的功能表,请根据右侧电路图,画出Q0-Q2
的输出波形。(已知寄存器初态全0)(4分)

1
CP
Q1
Q2
1J

1K 1J 1K
&
Z

C1
C1
六、如图所示,由8片1024×8位的RAM和一片3线8线译码

器构成的存储器扩展电路,试回答下列问题:(本题共10
分)
1.本题是位扩展还是字扩展?(2分)
2.扩展后,存储器的容量是多大?(2分)
3.分别写出编号为(1),(2),(8)的三个存
储器的地址范围(用16进制数表示)。(6分)

七、555定时器内部原理图如下图
(a)所示。(本题共15分)
(1)若用555定时器构成单稳态触发器,画出
连线图(直接在图上画);(6分)
(2)取定时电容20μF,若要定时时间为
2.2
秒,计算定时电阻R的数值;(5分)
(3)输入信号如图(b)所示,定性画出3脚和
6脚的电压波形。(4分)

相关文档
最新文档