学习k12精品高考数学(理科,天津课标版)二轮复习题型练 含答案 5
【K12小初高学习】高考数学(理科,天津课标版)二轮复习专题能力训练 含答案8

专题能力训练8利用导数解不等式及参数的取值范围一、能力突破训练1.设f(x)=x ln x-ax2+(2a-1)x,a∈R.(1)令g(x)=f'(x),求g(x)的单调区间;(2)已知f(x)在x=1处取得极大值,求实数a的取值范围.2.(2018全国Ⅲ,理21)已知函数f(x)=(2+x+ax2)·ln(1+x)-2x.(1)若a=0,证明:当-1<x<0时,f(x)<0;当x>0时,f(x)>0;(2)若x=0是f(x)的极大值点,求a.3.已知函数f(x)=ax+x ln x的图象在x=e(e为自然对数的底数)处的切线的斜率为3.(1)求实数a的值;(2)若f(x)≤kx2对任意x>0成立,求实数k的取值范围;(3)当n>m>1(m,n∈N*)时,证明:.4.设函数f(x)=ax2-a-ln x,其中a∈R.(1)讨论f(x)的单调性;(2)确定a的所有可能取值,使得f(x)>-e1-x在区间(1,+∞)内恒成立(e=2.718…为自然对数的底数).5.设函数f(x)=a ln x,g(x)=x2.(1)记g'(x)为g(x)的导函数,若不等式f(x)+2g'(x)≤(a+3)x-g(x)在x∈[1,e]内有解,求实数a的取值范围;(2)若a=1,对任意的x1>x2>0,不等式m[g(x1)-g(x2)]>x1f(x1)-x2f(x2)恒成立.求m(m∈Z,m≤1)的值.6.已知函数f(x)=-2(x+a)ln x+x2-2ax-2a2+a,其中a>0.(1)设g(x)是f(x)的导函数,讨论g(x)的单调性;(2)证明:存在a∈(0,1),使得f(x)≥0在区间(1,+∞)内恒成立,且f(x)=0在区间(1,+∞)内有唯一解.二、思维提升训练7.已知函数f(x)=x3+x2+ax+1(a∈R).(1)求函数f(x)的单调区间;(2)当a<0时,试讨论是否存在x0∈,使得f(x0)=f.专题能力训练8利用导数解不等式及参数的取值范围一、能力突破训练1.解(1)由f'(x)=ln x-2ax+2a,可得g(x)=ln x-2ax+2a,x∈(0,+∞).则g'(x)=-2a=,当a≤0时,x∈(0,+∞)时,g'(x)>0,函数g(x)单调递增;当a>0时,x时,g'(x)>0,函数g(x)单调递增,x时,函数g(x)单调递减.所以当a≤0时,g(x)的单调增区间为(0,+∞);当a>0时,g(x)单调增区间为,单调减区间为(2)由(1)知,f'(1)=0.①当a≤0时,f'(x)单调递增,所以当x∈(0,1)时,f'(x)<0,f(x)单调递减.当x∈(1,+∞)时,f'(x)>0,f(x)单调递增.所以f(x)在x=1处取得极小值,不合题意.②当0<a<时,>1,由(1)知f'(x)在区间内单调递增,可得当x∈(0,1)时,f'(x)<0,x时,f'(x)>0.所以f(x)在区间(0,1)内单调递减,在区间内单调递增,所以f(x)在x=1处取得极小值,不合题意.③当a=时,=1,f'(x)在区间(0,1)内单调递增,在区间(1,+∞)内单调递减,所以当x∈(0,+∞)时,f'(x)≤0,f(x)单调递减,不合题意.④当a>时,0<<1,当x时,f'(x)>0,f(x)单调递增,当x∈(1,+∞)时,f'(x)<0,f(x)单调递减,所以f(x)在x=1处取极大值,合题意.综上可知,实数a的取值范围为a>2.解(1)当a=0时,f(x)=(2+x)ln(1+x)-2x,f'(x)=ln(1+x)-,设函数g(x)=f'(x)=ln(1+x)-,则g'(x)=,当-1<x<0时,g'(x)<0;当x>0时,g'(x)>0.故当x>-1时,g(x)≥g(0)=0,且仅当x=0时,g(x)=0,从而f'(x)≥0,且仅当x=0时,f'(x)=0.所以f(x)在(-1,+∞)内单调递增.又f(0)=0,故当-1<x<0时,f(x)<0;当x>0时,f(x)>0.(2)①若a≥0,由(1)知,当x>0时,f(x)≥(2+x)·ln(1+x)-2x>0=f(0),这与x=0是f(x)的极大值点矛盾.②若a<0,设函数h(x)==ln(1+x)-由于当|x|<min时,2+x+ax2>0,故h(x)与f(x)符号相同.又h(0)=f(0)=0,故x=0是f(x)的极大值点当且仅当x=0是h(x)的极大值点.h'(x)=若6a+1>0,则当0<x<-,且|x|<min时,h'(x)>0,故x=0不是h(x)的极大值点.若6a+1<0,则a2x2+4ax+6a+1=0存在根x1<0,故当x∈(x1,0),且|x|<min时,h'(x)<0,所以x=0不是h(x)的极大值点.若6a+1=0,则h'(x)=则当x∈(-1,0)时,h'(x)>0;当x∈(0,1)时,h'(x)<0.所以x=0是h(x)的极大值点,从而x=0是f(x)的极大值点.综上,a=-3.解(1)∵f(x)=ax+x ln x,∴f'(x)=a+ln x+1.又f(x)的图象在点x=e处的切线的斜率为3,∴f'(e)=3,即a+ln e+1=3,∴a=1.(2)由(1)知,f(x)=x+x ln x,若f(x)≤kx2对任意x>0成立,则k对任意x>0成立.令g(x)=,则问题转化为求g(x)的最大值,g'(x)==-令g'(x)=0,解得x=1.当0<x<1时,g'(x)>0,∴g(x)在区间(0,1)内是增函数;当x>1时,g'(x)<0,∴g(x)在区间(1,+∞)内是减函数.故g(x)在x=1处取得最大值g(1)=1,∴k≥1即为所求.(3)证明:令h(x)=,则h'(x)=由(2)知,x≥1+ln x(x>0),∴h'(x)≥0,∴h(x)是区间(1,+∞)内的增函数.∵n>m>1,∴h(n)>h(m),即,∴mn ln n-n ln n>mn ln m-m ln m,即mn ln n+m ln m>mn ln m+n ln n,∴ln n mn+ln m m>ln m mn+ln n n.整理,得ln(mn n)m>ln(nm m)n.∴(mn n)m>(nm m)n,4.解(1)f'(x)=2ax-(x>0).当a≤0时,f'(x)<0,f(x)在区间(0,+∞)内单调递减.当a>0时,由f'(x)=0,有x=此时,当x时,f'(x)<0,f(x)单调递减;当x时,f'(x)>0,f(x)单调递增.(2)令g(x)=,s(x)=e x-1-x.则s'(x)=e x-1-1.而当x>1时,s'(x)>0,所以s(x)在区间(1,+∞)内单调递增.又由s(1)=0,有s(x)>0,从而当x>1时,g(x)>0.当a≤0,x>1时,f(x)=a(x2-1)-ln x<0.故当f(x)>g(x)在区间(1,+∞)内恒成立时,必有a>0.当0<a<时,>1.由(1)有f<f(1)=0,而g>0,所以此时f(x)>g(x)在区间(1,+∞)内不恒成立.当a时,令h(x)=f(x)-g(x)(x≥1).当x>1时,h'(x)=2ax--e1-x>x->0.因此,h(x)在区间(1,+∞)单调递增.又因为h(1)=0,所以当x>1时,h(x)=f(x)-g(x)>0,即f(x)>g(x)恒成立.综上,a5.解(1)不等式f(x)+2g'(x)≤(a+3)x-g(x),即a ln x+2x≤(a+3)x-x2,化简,得a(x-ln x)x2-x.由x∈[1,e]知x-ln x>0,因而a设y=,则y'=∵当x∈(1,e)时,x-1>0,x+1-ln x>0,∴y'>0在x∈[1,e]时成立.由不等式有解,可得a≥y min=-,即实数a的取值范围是(2)当a=1时,f(x)=ln x.由m[g(x1)-g(x2)]>x1f(x1)-x2f(x2)恒成立,得mg(x1)-x1f(x1)>mg(x2)-x2f(x2)恒成立,设t(x)=x2-x ln x(x>0).由题意知x1>x2>0,则当x∈(0,+∞)时函数t(x)单调递增,∴t'(x)=mx-ln x-1≥0恒成立,即m恒成立.因此,记h(x)=,得h'(x)=∵函数在区间(0,1)上单调递增,在区间(1,+∞)上单调递减,∴函数h(x)在x=1处取得极大值,并且这个极大值就是函数h(x)的最大值.由此可得h(x)max=h(1)=1,故m≥1,结合已知条件m∈Z,m≤1,可得m=1.6.(1)解由已知,函数f(x)的定义域为(0,+∞),g(x)=f'(x)=2(x-a)-2ln x-2,所以g'(x)=2-当0<a<时,g(x)在区间内单调递增, 在区间内单调递减;当a时,g(x)在区间(0,+∞)内单调递增.(2)证明由f'(x)=2(x-a)-2ln x-2=0,解得a=令φ(x)=-2ln x+x2-2x-2则φ(1)=1>0,φ(e)=--2<0.故存在x0∈(1,e),使得φ(x0)=0.令a0=,u(x)=x-1-ln x(x≥1).由u'(x)=1-0知,函数u(x)在区间(1,+∞)内单调递增.所以0==a0<<1.即a0∈(0,1).当a=a0时,有f'(x0)=0,f(x0)=φ(x0)=0.由(1)知,f'(x)在区间(1,+∞)内单调递增,故当x∈(1,x0)时,f'(x)<0,从而f(x)>f(x0)=0;当x∈(x0,+∞)时,f'(x)>0,从而f(x)>f(x0)=0.所以,当x∈(1,+∞)时,f(x)≥0.综上所述,存在a∈(0,1),使得f(x)≥0在区间(1,+∞)内恒成立,且f(x)=0在区间(1,+∞)内有唯一解.二、思维提升训练7.解(1)f'(x)=x2+2x+a,方程x2+2x+a=0的判别式为Δ=4-4a,①当a≥1时,Δ≤0,则f'(x)≥0,此时f(x)在R上是增函数;②当a<1时,方程x2+2x+a=0两根分别为x1=-1-,x2=-1+,解不等式x2+2x+a>0,解得x<-1-或x>-1+,解不等式x2+2x+a<0,解得-1-<x<-1+,此时,函数f(x)的单调递增区间为(-∞,-1-)和(-1+,+∞),单调递减区间为(-1-,-1+).综上所述,当a≥1时,函数f(x)的单调递增区间为(-∞,+∞);当a<1时,函数f(x)的单调递增区间为(-∞,-1-)和(-1+,+∞),单调递减区间为(-1-,-1+).(2)f(x0)-f+ax0+1--a-1=+a=+a+x0+(4+14x0+7+12a).若存在x0,使得f(x0)=f,则4+14x0+7+12a=0在内有解.由a<0,得Δ=142-16(7+12a)=4(21-48a)>0,k12小初高学习小初高学习精英学习计划页脚内容 故方程4+14x 0+7+12a=0的两根为x 1'=,x'2= 由x 0>0,得x 0=x'2=,依题意,0<<1,即7<<11,所以49<21-48a<121,即-<a<-, 又由得a=-,故要使满足题意的x 0存在,则a ≠-综上,当a时,存在唯一的x0满足f (x 0)=f ,当a时,不存在x0满足f (x 0)=f。
【最新资料精选】高考数学(理科,天津课标版)二轮复习专题能力训练 含答案6

专题能力训练6函数与方程及函数的应用一、能力突破训练1.f(x)=-1+log2x的一个零点落在下列哪个区间()A.(0,1)B.(1,2)C.(2,3)D.(3,4)2.设函数f(x)的零点为x1,函数g(x)=4x+2x-2的零点为x2,若|x1-x2|>14,则f(x)可以是()A.f(x)=2x-12B.f(x)=-x2+x-14C.f(x)=1-10xD.f(x)=ln(8x-2)3.如图,有一直角墙角,两边的长度足够长,若P处有一棵树与两墙的距离分别是4 m和a m(0<a<12),不考虑树的粗细.现用16 m长的篱笆,借助墙角围成一个矩形花圃ABCD,设此矩形花圃的最大面积为u,若将这棵树围在矩形花圃内,则函数u=f(a)(单位:m2)的图象大致是()4.已知M是函数f(x)=e-2|x-1|+2sin[π(x-12)]在区间[-3,5]上的所有零点之和,则M的值为()A.4B.6C.8D.105.已知函数f(x)是奇函数,且满足f(2-x)=f(x)(x∈R),当0<x≤1时,f(x)=ln x+2,则函数y=f(x)在区间(-2,4]上的零点个数是()A.7B.8C.9D.106.(2018全国Ⅲ,理15)函数f(x)=cos(3x+π6)在[0,π]上的零点个数为.7.已知e是自然对数的底数,函数f(x)=e x+x-2的零点为a,函数g(x)=ln x+x-2的零点为b,则f(a),f(1),f(b)的大小关系为.8.某商场对顾客实行购物优惠活动,规定购物付款总额要求如下:①若一次性购物不超过200元,则不给予优惠;②若一次性购物超过200元但不超过500元,则按标价给予9折优惠;③若一次性购物超过500元,则500元按第②条给予优惠,剩余部分给予7折优惠.甲单独购买A 商品实际付款100元,乙单独购买B 商品实际付款450元,若丙一次性购买A,B 两件商品,则应付款 元. 9.已知函数f (x )=2x ,g (x )=12|x |+2.(1)求函数g (x )的值域;(2)求满足方程f (x )-g (x )=0的x 的值. 10.如图,一个长方体形状的物体E 在雨中沿面P (面积为S )的垂直方向做匀速移动,速度为v (v>0),雨速沿E 移动方向的分速度为c (c ∈R ).E 移动时单位时间内的淋雨量包括两部分:①P 或P 的平行面(只有一个面淋雨)的淋雨量,假设其值与|v-c|×S 成正比,比例系数为110;②其他面的淋雨量之和,其值为12.记y 为E 移动过程中的总淋雨量.当移动距离d=100,面积S=32时, (1)写出y 的表达式;(2)设0<v ≤10,0<c ≤5,试根据c 的不同取值范围,确定移动速度v ,使总淋雨量y 最少.二、思维提升训练11.如图,偶函数f (x )的图象如字母M,奇函数g (x )的图象如字母N,若方程f (g (x ))=0,g (f (x ))=0的实根个数分别为m ,n ,则m+n=( )A.18B.16C.14D.1212.已知函数f (x )={2-|x |,x ≤2,(x -2)2,x >2,函数g (x )=3-f (2-x ),则函数y=f (x )-g (x )的零点个数为( )A .2B .3C .4D .513.设函数f (x )={2x -a ,x <1,4(x -a )(x -2a ),x ≥1.(1)若a=1,则f (x )的最小值为 ;(2)若f (x )恰有2个零点,则实数a 的取值范围是 .14.已知一家公司生产某种品牌服装的年固定成本为10万元,每生产1千件需另投入2.7万元.设该公司一年内生产该品牌服装x 千件并全部销售完,每千件的销售收入为R (x )万元,且R (x )={10.8-130x 2,0<x ≤10,108x-1 0003x 2,x >10.(1)写出年利润W (单位:万元)关于年产量x (单位:千件)的函数解析式;(2)当年产量为多少千件时,该公司在这一品牌服装的生产中所获得的年利润最大.(注:年利润=年销售收入-年总成本)15.甲方是一农场,乙方是一工厂,由于乙方生产须占用甲方的资源,因此甲方有权向乙方索赔以弥补经济损失并获得一定净收入,在乙方不赔付的情况下,乙方的年利润x (单位:元)与年产量q (单位:t)满足函数关系:x=2 000√q .若乙方每生产一吨产品必须赔付甲方s 元(以下称s 为赔付价格).(1)将乙方的年利润w(单位:元)表示为年产量q(单位:t)的函数,并求出乙方获得最大利润的年产量;(2)在乙方年产量为q(单位:t)时,甲方每年受乙方生产影响的经济损失金额y=0.002q2(单位:元),在乙方按照获得最大利润的产量进行生产的前提下,甲方要在索赔中获得最大净收入,应向乙方要求的赔付价格s是多少?专题能力训练6 函数与方程及函数的应用一、能力突破训练1.B 解析 由题意得f (x )单调递增,f (1)=-1<0,f (2)=1>0,所以f (x )=-1+log 2x 的零点落在区间(1,2)内. 2.C 解析 依题意得g (14)=√2+12-2<0,g (12)=1>0,则x 2∈(14,12).若f (x )=1-10x ,则有x 1=0,此时|x 1-x 2|>14,因此选C .3.B 解析 设AD 长为x cm,则CD 长为(16-x )cm,又因为要将点P 围在矩形ABCD 内,所以a ≤x ≤12,则矩形ABCD 的面积S=x (16-x ). 当0<a ≤8时,当且仅当x=8时,S=64, 当8<a<12时,S=a (16-a ),即f (a )={64,0<a ≤8,a (16-a ),8<a <12,画出分段函数图形可得其形状与选项B 接近,故选B.4.C 解析 因为f (x )=e -2|x-1|+2sin [π(x -12)]=e -2|x-1|-2cos πx ,所以f (x )=f (2-x ).因为f (1)≠0,所以函数零点有偶数个,且两两关于直线x=1对称.当x ∈[1,5]时,函数y=e -2(x-1)∈(0,1],且单调递减;函数y=2cos πx ∈[-2,2],且在[1,5]上有两个周期,因此当x ∈[1,5]时,函数y=e -2(x-1)与y=2cos πx 有4个不同的交点;从而所有零点之和为4×2=8,故选C.5.C 解析 由函数f (x )是奇函数且满足f (2-x )=f (x )知,f (x )是周期为4的周期函数,且关于直线x=1+2k (k ∈Z )成轴对称,关于点(2k ,0)(k ∈Z )成中心对称.当0<x ≤1时,令f (x )=ln x+2=0,得x=1e2,由此得y=f (x )在区间(-2,4]上的零点分别为-2+1e 2,-1e 2,0,1e 2,2-1e 2,2,2+1e 2,-1e 2+4,4,共9个零点.故选C . 6.3 解析 令f (x )=cos (3x +π6)=0,得3x+π6=π2+k π,k ∈Z ,∴x=π9+kπ3=(3k+1)π9,k ∈Z .则在[0,π]的零点有π9,4π9,7π9.故有3个.7.f (a )<f (1)<f (b ) 解析 由题意,知f'(x )=e x +1>0恒成立,则函数f (x )在R 上是单调递增的,因为f (0)=e 0+0-2=-1<0,f (1)=e 1+1-2=e -1>0,所以函数f (x )的零点a ∈(0,1). 由题意,知g'(x )=1x+1>0,则函数g (x )在区间(0,+∞)上是单调递增的.又g (1)=ln 1+1-2=-1<0,g (2)=ln 2+2-2=ln 2>0,则函数g (x )的零点b ∈(1,2). 综上,可得0<a<1<b<2.因为f (x )在R 上是单调递增的,所以f (a )<f (1)<f (b ). 8.520 解析 设商品价格为x 元,实际付款为y 元,则y={x ,0<x ≤200,0.9x ,200<x ≤500,500×0.9+0.7(x -500),x >500,整理,得y={x ,0<x ≤200,0.9x ,200<x ≤500,100+0.7x ,x >500.∵0.9×200=180>100,∴A 商品的价格为100元.∵0.9×500=450,∴B 商品的价格为500元.当x=100+500=600时,y=100+0.7×600=520,即若丙一次性购买A,B 两件商品,则应付款520元.9.解 (1)g (x )=12|x |+2=(12)|x |+2,因为|x|≥0,所以0<(12)|x |≤1,即2<g (x )≤3,故g (x )的值域是(2,3]. (2)由f (x )-g (x )=0,得2x -12|x |-2=0.当x ≤0时,显然不满足方程,当x>0时,由2x -12x -2=0整理,得(2x )2-2·2x -1=0,(2x -1)2=2, 解得2x =1±√2.因为2x >0,所以2x =1+√2, 即x=log 2(1+√2).10.解 (1)由题意知,E 移动时单位时间内的淋雨量为320|v-c|+12,故y=100v (320|v -c |+12)=5v (3|v-c|+10)(v>0).(2)由(1)知,当0<v ≤c 时,y=5v (3c-3v+10)=5(3c+10)v-15; 当c<v ≤10时,y=5v (3v-3c+10)=5(10-3c )v+15.故y={5(3c+10)v-15,0<v ≤c ,5(10-3c )v+15,c <v ≤10.①当0<c ≤103时,y 是关于v 的减函数.故当v=10时,y min =20-3c2.②当103<c ≤5时,在(0,c ]内,y 是关于v 的减函数;在(c ,10]内,y 是关于v 的增函数.故当v=c 时,y min =50c .二、思维提升训练11.A 解析 由题中图象知,f (x )=0有3个根0,a ,b ,且a ∈(-2,-1),b ∈(1,2);g (x )=0有3个根0,c ,d ,且c ∈(-1,0),d ∈(0,1).由f (g (x ))=0,得g (x )=0或a ,b ,由图象可知g (x )所对每一个值都能有3个根,因而m=9;由g (f (x ))=0,知f (x )=0或c ,d ,由图象可以看出f (x )=0时对应有3个根,f (x )=d 时有4个,f (x )=c 时只有2个,加在一起也是9个,即n=9,∴m+n=9+9=18,故选A .12.A 解析 因为f (x )={2+x ,x <0,2-x ,0≤x ≤2,(x -2)2,x >2,所以f (2-x )={2+(2-x ),2-x <0,2-(2-x ),0≤2-x ≤2,(2-x -2)2,2-x >2⇒f (2-x )={x 2,x <0,x ,0≤x ≤2,4-x ,x >2,f (x )+f (2-x )={x 2+x +2,x <0,2,0≤x ≤2,x 2-5x +8,x >2,所以函数y=f (x )-g (x )=f (x )-3+f (2-x )={x 2+x -1,x <0,-1,0≤x ≤2,x 2-5x +5,x >2.其图象如图所示.显然函数图象与x 轴有2个交点,故函数有2个零点. 13.(1)-1(2)[12,1)∪[2,+∞) 解析 (1)当a=1时,f (x )={2x -1,x <1,4(x -1)(x -2),x ≥1,当x<1时,2x -1∈(-1,1); 当x ≥1时,4(x-1)(x-2)∈[-1,+∞). 故f (x )的最小值为-1.(2)若函数f (x )=2x -a 的图象在x<1时与x 轴有一个交点,则a>0,并且当x=1时,f (1)=2-a>0,所以0<a<2.同时函数f (x )=4(x-a )(x-2a )的图象在x ≥1时与x 轴有一个交点,所以{a <1,2a ≥1.故12≤a<1.若函数f (x )=2x -a 的图象在x<1时与x 轴没有交点,则函数f (x )=4(x-a )(x-2a )的图象在x ≥1时与x 轴有两个不同的交点,当a ≤0时,函数f (x )=2x -a 的图象与x 轴无交点,函数f (x )=4(x-a )(x-2a )的图象在x ≥1上与x 轴也无交点,不满足题意.当21-a ≤0,即a ≥2时,函数f (x )=4(x-a )·(x-2a )的图象与x 轴的两个交点x 1=a ,x 2=2a 都满足题意. 综上,a 的取值范围为[1,1)∪[2,+∞).14.解 (1)当0<x ≤10时,W=xR (x )-(10+2.7x )=8.1x-x 330-10;当x>10时,W=xR (x )-(10+2.7x )=98-1 0003x-2.7x. 故W={8.1x -x 330-10,0<x ≤10,98-1 0003x -2.7x ,x >10.(2)①当0<x ≤10时,由W'=8.1-x 2=0,得x=9.当x ∈(0,9)时,W'>0;当x ∈(9,10]时,W'<0.所以当x=9时,W 取得最大值, 即W max =8.1×9-1×93-10=38.6.②当x>10时,W=98-(1 0003x+2.7x)≤98-2√1 0003x×2.7x =38, 当且仅当1 0003x =2.7x ,即x=1009时,W 取得最大值38. 综合①②知:当x=9时,W 取得最大值38.6,故当年产量为9千件时,该公司在这一品牌服装的生产中所获的年利润最大. 15.解 (1)因为赔付价格为s 元/吨,所以乙方的实际年利润为w=2 000√q -sq (q ≥0).因为w=2 000√q -sq=-s (√q -1 000s)2+1 0002s,所以当q=(1 000s)2时,w 取得最大值.所以乙方取得最大利润的年产量q=(1 000s)2t . (2)设甲方净收入为v 元,则v=sq-0.002q 2,将q=(1 000s )2代入上式,得到甲方净收入v 与赔付价格s 之间的函数关系式:v=1 0002s−2×1 0003s 4. 又v'=-1 0002s2+8×1 0003s 5=1 0002(8 000-s 3)s 5,令v'=0得s=20.当s<20时,v'>0;当s>20时,v'<0.所以当s=20时,v 取得最大值. 因此甲方向乙方要求赔付价格s 为20元/吨时,获最大净收入.。
高考数学(理科,天津课标版)二轮复习专题能力训练 含答案12

专题能力训练12 数列的通项与求和一、能力突破训练1.已知等差数列{a n }的前n 项和为S n ,若a 1=2,a 4+a 10=28,则S 9=( ) A.45B.90C.120D.752.已知数列{a n }是等差数列,满足a 1+2a 2=S 5,下列结论错误的是( ) A.S 9=0B.S 5最小C.S 3=S 6D.a 5=03.已知数列{a n }的前n 项和S n =n 2-2n-1,则a 3+a 17=( ) A.15B.17C.34D.3984.已知函数f (x )满足f (x+1)=32+f (x )(x ∈R ),且f (1)=52,则数列{f (n )}(n ∈N *)前20项的和为( ) A.305B.315C.325D.3355.已知数列{a n },构造一个新数列a 1,a 2-a 1,a 3-a 2,…,a n -a n-1,…,此数列是首项为1,公比为13的等比数列,则数列{a n }的通项公式为( )A.a n =32−32×(13)n,n ∈N *B.a n =32+32×(13)n,n ∈N *C.a n ={1,n =1,32+32×(13)n ,n >2,且n ∈N *D.a n =1,n ∈N *6.已知数列{a n }满足a 1=1,a n -a n+1=na n a n+1(n ∈N *),则a n = .7.(2018全国Ⅰ,理14)记S n 为数列{a n }的前n 项和.若S n =2a n +1,则S 6= .8.已知S n 是等差数列{a n }的前n 项和,若a 1=-2 017,S 2 0142 014−S2 0082 008=6,则S 2 017= . 9.已知在数列{a n }中,a 1=1,a n+1=a n +2n+1,且n ∈N *. (1)求数列{a n }的通项公式;(2)令b n =2n+1a n a n+1,数列{b n }的前n 项和为T n .如果对于任意的n ∈N *,都有T n >m ,求实数m 的取值范围.10.已知数列{a n}的前n项和为S n,且a1=0,对任意n∈N*,都有na n+1=S n+n(n+1).(1)求数列{a n}的通项公式;(2)若数列{b n}满足a n+log2n=log2b n,求数列{b n}的前n项和T n.11.设数列{a n}的前n项和为S n.已知2S n=3n+3.(1)求{a n}的通项公式;(2)若数列{b n}满足a n b n=log3a n,求{b n}的前n项和T n.二、思维提升训练12.给出数列11,12,21,13,22,31,…,1k ,2k -1,…,k1,…,在这个数列中,第50个值等于1的项的序号是( ) A.4 900B.4 901C.5 000D.5 00113.设S n 是数列{a n }的前n 项和,且a 1=-1,a n+1=S n S n+1,则S n = . 14.已知等差数列{a n }的公差为2,其前n 项和S n =pn 2+2n (n ∈N *). (1)求p 的值及a n ;(2)若b n =2(2n -1)a n,记数列{b n }的前n 项和为T n ,求使T n >910成立的最小正整数n 的值.15.已知数列{a n }满足a n+2=qa n (q 为实数,且q ≠1),n ∈N *,a 1=1,a 2=2,且a 2+a 3,a 3+a 4,a 4+a 5成等差数列. (1)求q 的值和{a n }的通项公式;(2)设b n =log 2a2n a 2n -1,n ∈N *,求数列{b n }的前n 项和.16.设数列A:a1,a2,…,a N(N≥2).如果对小于n(2≤n≤N)的每个正整数k都有a k<a n,则称n是数列A的一个“G时刻”.记G(A)是数列A的所有“G时刻”组成的集合.(1)对数列A:-2,2,-1,1,3,写出G(A)的所有元素;(2)证明:若数列A中存在a n使得a n>a1,则G(A)≠⌀;(3)证明:若数列A满足a n-a n-1≤1(n=2,3,…,N),则G(A)的元素个数不小于a N-a1.专题能力训练12 数列的通项与求和一、能力突破训练1.B 解析 因为{a n }是等差数列,设公差为d ,所以a 4+a 10=a 1+3d+a 1+9d=2a 1+12d=4+12d=28,解得d=2.所以S 9=9a 1+9×82d=18+36×2=90.故选B . 2.B 解析 由题设可得3a 1+2d=5a 1+10d ⇒2a 1+8d=0,即a 5=0,所以D 中结论正确.由等差数列的性质可得a 1+a 9=2a 5=0,则S 9=9(a 1+a 9)2=9a 5=0,所以A 中结论正确. S 3-S 6=3a 1+3d-6a 1-15d=-3(a 1+4d )=-3a 5=0,所以C 中结论正确. B 中结论是错误的.故选B . 3.C 解析 ∵S n =n 2-2n-1,∴a 1=S 1=12-2-1=-2.当n ≥2时,a n =S n -S n-1 =n 2-2n-1-[(n-1)2-2(n-1)-1] =n 2-(n-1)2+2(n-1)-2n-1+1 =n 2-n 2+2n-1+2n-2-2n=2n-3.∴a n ={-2,n =1,2n -3,n ≥2.∴a 3+a 17=(2×3-3)+(2×17-3)=3+31=34.4.D 解析 ∵f (1)=52,f (2)=32+52,f (3)=32+32+52,…… f (n )=32+f (n-1),∴{f (n )}是以52为首项,32为公差的等差数列. ∴S 20=20×52+20(20-1)2×32=335. 5.A 解析 因为数列a 1,a 2-a 1,a 3-a 2,…,a n -a n-1,…是首项为1,公比为13的等比数列,所以a n -a n-1=(13)n -1,n ≥2.所以当n ≥2时,a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n-1)=1+13+(13)2+…+(13)n -1=1-(13)n1-13=32−32×(13)n . 又当n=1时,a n =32−32×(13)n=1, 则a n =32−32×(13)n,n ∈N *.6.2n 2-n+2 解析 因为a n -a n+1=na n a n+1,所以a n -an+1a n a n+1=1a n+1−1a n =n ,1a n=(1a n -1a n -1)+(1a n -1-1a n -2)+…+(1a 2-1a 1)+1a 1=(n-1)+(n-2)+…+3+2+1+1a 1=(n -1)(n -1+1)2+1=n 2-n+22(n ≥2). 所以a n =2n 2-n+2(n ≥2).又a 1=1也满足上式,所以a n =2n 2-n+2. 7.-63 解析 ∵S n =2a n +1,①∴S n-1=2a n-1+1(n ≥2).②①-②,得a n =2a n -2a n-1,即a n =2a n-1(n ≥2).又S 1=2a 1+1,∴a 1=-1.∴{a n }是以-1为首项,2为公比的等比数列,则S 6=-1(1-26)1-2=-63.8.-2 017 解析 ∵S n 是等差数列{a n }的前n 项和,∴{S n n}是等差数列,设其公差为d.∵S 2 0142 014−S2 0082 008=6,∴6d=6,d=1. ∵a 1=-2 017,∴S 11=-2 017. ∴S nn=-2 017+(n-1)×1=-2 018+n. ∴S 2 017=(-2 018+2 017)×2 017=-2 017.故答案为-2 017. 9.解 (1)∵a n+1=a n +2n+1,∴a n+1-a n =2n+1,∴a n-a n-1=2n-1,∴a n=a1+(a2-a1)+(a3-a2)+…+(a n-a n-1)=1+3+5+…+(2n-1)=n(1+2n-1)2=n2.(2)由(1)知,b n=2n+1a n a n+1=2n+1n2(n+1)2=1n2−1(n+1)2,∴T n=(112-122)+(122-132)+…+[1n2-1(n+1)2]=1-1(n+1)2,∴数列{T n}是递增数列,∴最小值为1-1(1+1)2=34,只需要34>m,∴m的取值范围是(-∞,34).10.解(1)(方法一)∵na n+1=S n+n(n+1),∴当n≥2时,(n-1)a n=S n-1+n(n-1),两式相减,得na n+1-(n-1)a n=S n-S n-1+n(n+1)-n(n-1),即na n+1-(n-1)a n=a n+2n,得a n+1-a n=2.当n=1时,1×a2=S1+1×2,即a2-a1=2.∴数列{a n}是以0为首项,2为公差的等差数列.∴a n=2(n-1)=2n-2.(方法二)由na n+1=S n+n(n+1),得n(S n+1-S n)=S n+n(n+1),整理,得nS n+1=(n+1)S n+n(n+1),两边同除以n(n+1),得S n+1n+1−S nn=1.∴数列{S nn }是以S11=0为首项,1为公差的等差数列,∴S nn=0+n-1=n-1.∴S n=n(n-1).当n≥2时,a n=S n-S n-1=n(n-1)-(n-1)(n-2)=2n-2.又a1=0适合上式,∴数列{a n}的通项公式为a n=2n-2.(2)∵a n +log 2n=log 2b n ,∴b n =n ·2a n =n·22n-2=n·4n-1.∴T n =b 1+b 2+b 3+…+b n-1+b n =40+2×41+3×42+…+(n-1)×4n-2+n×4n-1,① 4T n =41+2×42+3×43+…+(n-1)×4n-1+n×4n , ②由①-②,得-3T n =40+41+42+…+4n-1-n×4n=1-4n 1-4-n×4n =(1-3n )×4n-13. ∴T n =19[(3n-1)×4n +1].11.解 (1)因为2S n =3n +3,所以2a 1=3+3,故a 1=3. 当n>1时,2S n-1=3n-1+3,此时2a n =2S n -2S n-1=3n -3n-1=2×3n-1,即a n =3n-1, 所以a n ={3,n =1,3n -1,n >1.(2)因为a n b n =log 3a n , 所以b 1=13,当n>1时,b n =31-n log 33n-1=(n-1)·31-n . 所以T 1=b 1=13;当n>1时,T n =b 1+b 2+b 3+…+b n =13+(1×3-1+2×3-2+…+(n-1)×31-n ), 所以3T n =1+(1×30+2×3-1+…+(n-1)×32-n ),两式相减,得2T n =23+(30+3-1+3-2+…+32-n )-(n-1)×31-n =23+1-31-n 1-3-1-(n-1)×31-n=136−6n+32×3n, 所以T n =1312−6n+34×3n. 经检验,当n=1时也适合. 综上可得T n =1312−6n+34×3n. 二、思维提升训练12.B 解析 根据条件找规律,第1个1是分子、分母的和为2,第2个1是分子、分母的和为4,第3个1是分子、分母的和为6,……第50个1是分子、分母的和为100,而分子、分母的和为2的有1项,分子、分母的和为3的有2项,分子、分母的和为4的有3项,……分子、分母的和为99的有98项,分子、分母的和为100的项依次是:199,298,397,…,5050,5149,…,991,第50个1是其中第50项,在数列中的序号为1+2+3+…+98+50=98(1+98)2+50=4 901. 13.-1n解析 由a n+1=S n+1-S n =S n S n+1,得1S n−1S n+1=1,即1S n+1−1S n =-1,则{1S n }为等差数列,首项为1S 1=-1,公差为d=-1,∴1S n =-n ,∴S n =-1n. 14.解 (1)(方法一)∵{a n }是等差数列,∴S n =na 1+n (n -1)2d=na 1+n (n -1)2×2=n 2+(a 1-1)n. 又由已知S n =pn 2+2n ,∴p=1,a 1-1=2,∴a 1=3,∴a n =a 1+(n-1)d=2n+1,∴p=1,a n =2n+1.(方法二)由已知a 1=S 1=p+2,S 2=4p+4, 即a 1+a 2=4p+4,∴a 2=3p+2. 又等差数列的公差为2,∴a 2-a 1=2,∴2p=2,∴p=1,∴a 1=p+2=3,∴a n =a 1+(n-1)d=2n+1,∴p=1,a n =2n+1.(方法三)当n ≥2时,a n =S n -S n-1=pn 2+2n-[p (n-1)2+2(n-1)]=2pn-p+2,∴a 2=3p+2,由已知a 2-a 1=2,∴2p=2,∴p=1, ∴a 1=p+2=3,∴a n =a 1+(n-1)d=2n+1, ∴p=1,a n =2n+1.(2)由(1)知b n =2(2n -1)(2n+1)=12n -1−12n+1,∴T n =b 1+b 2+b 3+…+b n=(11-13)+(13-15)+(15-17)+…+(12n -1-12n+1)=1-12n+1=2n2n+1.∵T n >910,∴2n2n+1>910, ∴20n>18n+9,即n>92. ∵n ∈N *,∴使T n >910成立的最小正整数n 的值为5.15.解 (1)由已知,有(a 3+a 4)-(a 2+a 3)=(a 4+a 5)-(a 3+a 4),即a 4-a 2=a 5-a 3,所以a 2(q-1)=a 3(q-1).又因为q ≠1,故a 3=a 2=2,由a 3=a 1·q ,得q=2. 当n=2k-1(k ∈N *)时,a n =a 2k-1=2k-1=2n -12; 当n=2k (k ∈N *)时,a n =a 2k =2k =2n2.所以,{a n }的通项公式为a n ={2n -12,n 为奇数,2n 2,n 为偶数.(2)由(1)得b n =log 2a 2n a 2n -1=n 2n -1.设{b n }的前n 项和为S n ,则S n =1×120+2×121+3×122+…+(n-1)×12n -2+n ×12n -1,12S n =1×121+2×122+3×123+…+(n-1)×12n -1+n ×12n , 上述两式相减,得12S n =1+12+122+…+12n -1−n2n =1-12n 1-12−n 2n =2-22n −n2n, 整理得,S n =4-n+22n -1.所以,数列{b n }的前n 项和为4-n+22n -1,n ∈N*.16.(1)解 G (A )的元素为2和5. (2)证明 因为存在a n 使得a n >a 1,所以{i ∈N *|2≤i ≤N ,a i >a 1}≠⌀.记m=min{i ∈N *|2≤i ≤N ,a i >a 1}, 则m ≥2,且对任意正整数k<m ,a k ≤a 1<a m . 因此m ∈G (A ).从而G (A )≠⌀. (3)证明 当a N ≤a 1时,结论成立.以下设a N >a 1. 由(2)知G (A )≠⌀.设G (A )={n 1,n 2,…,n p },n 1<n 2<…<n p . 记n 0=1.则a n 0<a n 1<a n 2<…<a n p .对i=0,1,…,p ,记G i ={k ∈N *|n i <k ≤N ,a k >a n i }. 如果G i ≠⌀,取m i =min G i ,最新中小学教案、试题、试卷则对任何1≤k<m i,a k≤a ni <a mi.从而m i∈G(A)且m i=n i+1,又因为n p是G(A)中的最大元素,所以G p=⌀.从而对任意n p≤k≤N,a k≤a np ,特别地,a N≤a np.对i=0,1,…,p-1,a ni+1-1≤a ni.因此a ni+1=a ni+1-1+(a ni+1−a ni+1-1)≤a ni+1.所以a N-a1≤a np -a1=∑i=1p(a ni−a ni-1)≤p.因此G(A)的元素个数p不小于a N-a1.。
高考数学(理科,天津课标版)二轮复习专题能力训练 含答案3

专题能力训练3平面向量与复数一、能力突破训练1.设有下面四个命题p1:若复数z满足∈R,则z∈R;p2:若复数z满足z2∈R,则z∈R;p3:若复数z1,z2满足z1z2∈R,则z1=;p4:若复数z∈R,则∈R.其中的真命题为()A.p1,p3B.p1,p4C.p2,p3D.p2,p42.设a,b是两个非零向量,则下列结论一定成立的为()A.若|a+b|=|a|-|b|,则a⊥bB.若a⊥b,则|a+b|=|a|-|b|C.若|a+b|=|a|-|b|,则存在实数λ,使得b=λaD.若存在实数λ,使得b=λa,则|a+b|=|a|-|b|3.(2018全国Ⅲ,理2)(1+i)(2-i)=()A.-3-iB.-3+iC.3-iD.3+i4.在复平面内,若复数z的对应点与的对应点关于虚轴对称,则z=()A.2-iB.-2-iC.2+iD.-2+i5.已知向量a=(1,-1),b=(-1,2),则(2a+b)·a=()A.-1B.0C.1D.2(i为虚数单位)的共轭复数是() 6.(2018浙江,4)复数-A.1+iB.1-iC.-1+iD.-1-i7.已知菱形ABCD的边长为a,∠ABC=60°,则=()A.-a2B.-a2C.a2D.a28.已知非零向量m,n满足4|m|=3|n|,cos<m,n>=.若n⊥(t m+n),则实数t的值为()A.4B.-4C.D.-9.如图,已知平面四边形ABCD,AB⊥BC,AB=BC=AD=2,CD=3,AC与BD交于点O,记I1=,I2=,I3=,则()A.I1<I2<I3B.I1<I3<I2C.I3<I1<I2D.I2<I1<I310.(2018全国Ⅲ,理13)已知向量a=(1,2),b=(2,-2),c=(1,λ).若c∥(2a+b),则λ=.11.在△ABC中,∠A=60°,AB=3,AC=2.若=2=λ(λ∈R),且=-4,则λ的值为.12.设a∈R,若复数(1+i)(a+i)在复平面内对应的点位于实轴上,则a=.13.已知a,b∈R,(a+b i)2=3+4i(i是虚数单位),则a2+b2=,ab=.14.设D,E分别是△ABC的边AB,BC上的点,|AD|=|AB|,|BE|=|BC|.若=λ1+λ2(λ1,λ2为实数),则λ1+λ2的值为.二、思维提升训练15.在△ABC中,已知D是AB边上一点,+λ,则实数λ=()A.-B.-C.D.16.已知,||=,||=t.若点P是△ABC所在平面内的一点,且,则的最大值等于()A.13B.15C.19D.2117.已知两点M(-3,0),N(3,0),点P为坐标平面内一动点,且||·||+=0,则动点P(x,y)到点M(-3,0)的距离d的最小值为()A.2B.3C.4D.618.已知向量a,b满足|a|=1,|b|=2,则|a+b|+|a-b|的最小值是,最大值是.19.在任意四边形ABCD中,E,F分别是AD,BC的中点,若=λ+μ,则λ+μ=.20.已知a∈R,i为虚数单位,若-为实数,则a的值为.专题能力训练3平面向量与复数一、能力突破训练1.B解析p1:设z=a+b i(a,b∈R),则-R,所以b=0,所以z∈R.故p1正确;p2:因为i2=-1∈R,而z=i∉R,故p2不正确;p3:若z1=1,z2=2,则z1z2=2,满足z1z2∈R,而它们实部不相等,不是共轭复数,故p3不正确;p4:实数的虚部为0,它的共轭复数是它本身,也属于实数,故p4正确.2.C解析设向量a与b的夹角为θ.对于A,可得cos θ=-1,因此a⊥b不成立;对于B,满足a⊥b时|a+b|=|a|-|b|不成立;对于C,可得cos θ=-1,因此成立,而D显然不一定成立.3.D解析(1+i)(2-i)=2+i-i2=3+i.=2+i所对应的点为(2,1),它关于虚轴对称的点为(-2,1),故z=-2+i.4.D解析--5.C解析∵2a+b=(1,0),又a=(1,-1),∴(2a+b)·a=1+0=1.=1+i,6.B解析--∴复数的共轭复数为1-i.-7.D解析如图,设=a,=b.则=()=(a+b)·a=a2+a·b=a2+a·a·cos 60°=a2+a2=a2.8.B解析由4|m|=3|n|,可设|m|=3k,|n|=4k(k>0),又n⊥(t m+n),所以n·(t m+n)=n·t m+n·n=t|m|·|n|cos<m,n>+|n|2=t×3k×4k+(4k)2=4tk2+16k2=0.所以t=-4,故选B.9.C解析由题图可得OA<AC<OC,OB<BD<OD,∠AOB=∠COD>90°,∠BOC<90°,所以I2=>0,I1=<0,I3=<0,且|I1|<|I3|,所以I3<I1<0<I2,故选C.10解析2a+b=2(1,2)+(2,-2)=(4,2),c=(1,λ),由c∥(2a+b),得4λ-2=0,得λ=11解析=2,)=又=,∠A=60°,AB=3,AC=2,=-4,=3×2=3,()=-4,即-=-4,4-9+-3=-4,即-5=-4,解得λ=12.-1解析∵(1+i)(a+i)=a-1+(a+1)i∈R,∴a+1=0,即a=-1.13.52解析由题意可得a2-b2+2ab i=3+4i,-解得则a2+b2=5,ab=2.则14解析由题意)=-,故λ1=-,λ2=,即λ1+λ2=二、思维提升训练15.D解析如图,D是AB边上一点,过点D作DE∥BC,交AC于点E,过点D作DF∥AC,交BC于点F,则因为+,所以=由△ADE∽△ABC,得,所以,故λ=16.A解析以点A为原点,所在直线分别为x轴、y轴建立平面直角坐标系,如图,则A(0,0),B,C(0,t),=(1,0),=(0,1),=(1,0)+4(0,1)=(1,4),∴点P的坐标为(1,4),--=(-1,t-4),=1--4t+16=-+17≤-4+17=13.当且仅当=4t,即t=时取“=”,的最大值为13.17.B解析因为M(-3,0),N(3,0),所以=(6,0),||=6,=(x+3,y),=(x-3,y).由||·||+=0,得6+6(x-3)=0,化简得y2=-12x,所以点M是抛物线y2=-12x的焦点,所以点P到M的距离的最小值就是原点到M(-3,0)的距离,所以d min=3.18.42解析设向量a,b的夹角为θ,由余弦定理得|a-b|=--,|a+b|=--则|a+b|+|a-b|=-令y=-,则y2=10+2-[16,20],据此可得(|a+b|+|a-b|)max==2,(|a+b|+|a-b|)min==4.即|a+b|+|a-b|的最小值是4,最大值是219.1解析如图,因为E,F分别是AD与BC的中点,所以=0,=0.又因为=0,所以①同理由①+②得,2+()+()=,所以).所以λ=,μ=所以λ+μ=1.20.-2解析-----i为实数,∴-=0,即a=-2.。
高考数学(理科,天津课标版)二轮复习题型练 含答案 6

题型练6大题专项(四)立体几何综合问题1.如图,已知四棱台ABCD-A1B1C1D1的上、下底面分别是边长为3和6的正方形.A1A=6,且A1A⊥底面ABCD.点P,Q分别在棱DD1,BC上.(1)若P是DD1的中点,证明:AB1⊥PQ;(2)若PQ∥平面ABB1A1,二面角P-QD-A的余弦值为,求四面体ADPQ的体积.2.(2018江苏,22)如图,在正三棱柱ABC-A1B1C1中,AB=AA1=2,点P,Q分别为A1B1,BC的中点.(1)求异面直线BP与AC1所成角的余弦值;(2)求直线CC1与平面AQC1所成角的正弦值.3.如图,在几何体ABCDE中,四边形ABCD是矩形,AB⊥平面BEC,BE⊥EC,AB=BE=EC=2,G,F分别是线段BE,DC的中点.(1)求证:GF∥平面ADE;(2)求平面AEF与平面BEC所成锐二面角的余弦值.4.在如图所示的组合体中,ABCD-A1B1C1D1是一个长方体,P-ABCD是一个四棱锥.AB=2,BC=3,点P∈平面CC1D1D,且PD=PC=.(1)证明:PD⊥平面PBC;(2)求PA与平面ABCD所成角的正切值;(3)当AA1的长为何值时,PC∥平面AB1D?5.如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.(1)证明:PC⊥AD;(2)求二面角A-PC-D的正弦值;(3)设E为棱PA上的点,满足异面直线BE与CD所成的角为30°,求AE的长.6.已知四边形ABCD满足AD∥BC,BA=AD=DC=BC=a,E是BC的中点,将△BAE沿AE翻折成△B1AE,使平面B1AE⊥平面AECD,F为B1D的中点.(1)求四棱锥B1-AECD的体积;(2)证明:B1E∥平面ACF;(3)求平面ADB1与平面ECB1所成锐二面角的余弦值.题型练6大题专项(四)立体几何综合问题1.解由题设知,AA1,AB,AD两两垂直,以A为坐标原点,AB,AD,AA1所在直线分别为x轴、y轴、z轴,建立如图所示的空间直角坐标系,则相关各点的坐标为A(0,0,0),B1(3,0,6),D(0,6,0),D1(0,3,6),Q(6,m,0),其中m=BQ,0≤m≤6.(1)证明:若P是DD1的中点,则P--又=(3,0,6),于是=18-18=0,所以,即AB1⊥PQ.(2)由题设知,=(6,m-6,0),=(0,-3,6)是平面PQD内的两个不共线向量.设n1=(x,y,z)是平面PQD的一个法向量,则即--取y=6,得n1=(6-m,6,3).又平面AQD的一个法向量是n2=(0,0,1),所以cos<n1,n2>=--.而二面角P-QD-A的余弦值为,因此-,解得m=4或m=8(舍去),此时Q(6,4,0).设=(0<λ≤1),而=(0,-3,6),由此得点P(0,6-3λ,6λ),所以=(6,3λ-2,-6λ).因为PQ∥平面ABB1A1,且平面ABB1A1的一个法向量是n3=(0,1,0),所以n3=0,即3λ-2=0,亦即λ=,从而P(0,4,4).于是,将四面体ADPQ视为以△ADQ为底面的三棱锥P-ADQ,则其高h=4.故四面体ADPQ的体积V=S△ADQ·h=6×6×4=24.2.解如图,在正三棱柱ABC-A1B1C1中,设AC,A1C1的中点分别为O,O1,则OB⊥OC,OO1⊥OC,OO1⊥OB,以{}为基底,建立空间直角坐标系O-xyz.因为AB=AA1=2,所以A(0,-1,0),B(,0,0),C(0,1,0),A1(0,-1,2),B1(,0,2),C1(0,1,2).(1)因为P为A1B1的中点,所以P-,从而--=(0,2,2),故|cos<>|=因此,异面直线BP与AC1所成角的余弦值为(2)因为Q为BC的中点,所以Q,因此=(0,2,2),=(0,0,2).设n=(x,y,z)为平面AQC1的一个法向量,则即不妨取n=(,-1,1).设直线CC1与平面AQC1所成角为θ,则sin θ=|cos<,n>|=,所以直线CC1与平面AQC1所成角的正弦值为3.(1)证法一如图,取AE的中点H,连接HG,HD,又G是BE的中点,所以GH∥AB,且GH=AB.又F是CD的中点,所以DF=CD.由四边形ABCD是矩形,得AB∥CD,AB=CD,所以GH∥DF,且GH=DF,从而四边形HGFD是平行四边形,所以GF∥DH.又DH⊂平面ADE,GF⊄平面ADE,所以GF∥平面ADE.证法二如图,取AB中点M,连接MG,MF.又G是BE的中点,可知GM∥AE.又AE⊂平面ADE,GM⊄平面ADE,所以GM∥平面ADE.在矩形ABCD中,由M,F分别是AB,CD的中点,得MF∥AD.又AD⊂平面ADE,MF⊄平面ADE,所以MF∥平面ADE.又因为GM∩MF=M,GM⊂平面GMF,MF⊂平面GMF,所以平面GMF∥平面ADE.因为GF⊂平面GMF.所以GF∥平面ADE.(2)解如图,在平面BEC内,过点B作BQ∥EC.因为BE⊥CE,所以BQ⊥BE.又因为AB⊥平面BEC,所以AB⊥BE,AB⊥BQ.以B为原点,分别以的方向为x轴、y轴、z轴的正方向建立空间直角坐标系, 则A(0,0,2),B(0,0,0),E(2,0,0),F(2,2,1).因为AB⊥平面BEC,所以=(0,0,2)为平面BEC的法向量.设n=(x,y,z)为平面AEF的法向量.又=(2,0,-2),=(2,2,-1),由得--取z=2,得n=(2,-1,2).从而cos<n,>=所以平面AEF与平面BEC所成锐二面角的余弦值为4.(1)证明如图建立空间直角坐标系.设棱长AA1=a,则D(0,0,a),P(0,1,a+1),B(3,2,a),C(0,2,a).于是=(0,-1,-1),=(3,1,-1),=(0,1,-1),所以=0,=0.所以PD垂直于平面PBC内的两条相交直线PC和PB,由线面垂直的判定定理,得PD⊥平面PBC.(2)解A(3,0,a),=(3,-1,-1),而平面ABCD的一个法向量为n1=(0,0,1),所以cos<,n1>==-所以PA与平面ABCD所成角的正弦值为所以PA与平面ABCD所成角的正切值为(3)解因为D(0,0,a),B1(3,2,0),A(3,0,a),所以=(3,0,0),=(0,2,-a).设平面AB1D的法向量为n2=(x,y,z),则有-令z=2,可得平面AB1D的一个法向量为n2=(0,a,2).若要使得PC∥平面AB1D,则要n2,即n2=a-2=0,解得a=2.所以当AA1=2时,PC∥平面AB1D.5.解如图,以点A为原点建立空间直角坐标系,依题意得A(0,0,0),D(2,0,0),C(0,1,0),B-,P(0,0,2).(1)证明:易得=(0,1,-2),=(2,0,0).于是=0,所以PC⊥AD.(2)=(0,1,-2),=(2,-1,0).设平面PCD的法向量n=(x,y,z).则即--不妨令z=1,可得n=(1,2,1).可取平面PAC的法向量m=(1,0,0).于是cos<m,n>=,从而sin<m,n>=所以二面角A-PC-D的正弦值为(3)设点E的坐标为(0,0,h),其中h∈[0,2].由此得-又=(2,-1,0),故cos<>=,所以=cos 30°=,解得h=,即AE=6.(1)解取AE的中点M,连接B1M.因为BA=AD=DC=BC=a,△ABE为等边三角形,所以B1M= a.又因为平面B1AE⊥平面AECD,所以B1M⊥平面AECD,所以V=a×a×a×sin(2)证明连接ED交AC于点O,连接OF,因为四边形AECD为菱形,OE=OD,所以FO∥B1E,所以B1E ∥平面ACF.(3)解连接MD,则∠AMD=90°,分别以ME,MD,MB1所在直线为x,y,z轴建立空间直角坐标系,则E,C,A-,D,B1,所以-,设平面ECB1的法向量为u=(x,y,z),则-令x=1,u=-,同理平面ADB1的法向量为v=--,所以cos<u,v>=-,故平面ADB1与平面ECB1所成锐二面角的余弦值为。
学习k12精品高考数学(理科,天津课标版)二轮复习专题能力训练 含答案14

专题能力训练14空间中的平行与垂直一、能力突破训练1.如图,O为正方体ABCD-A1B1C1D1的底面ABCD的中心,则下列直线中与B1O垂直的是()A.A1DB.AA1C.A1D1D.A1C12.如图,在正方形ABCD中,E,F分别是BC,CD的中点,沿AE,AF,EF把正方形折成一个四面体,使B,C,D三点重合,重合后的点记为P,点P在△AEF内的射影为O.则下列说法正确的是()A.O是△AEF的垂心B.O是△AEF的内心C.O是△AEF的外心D.O是△AEF的重心3.α,β是两个平面,m,n是两条直线,有下列四个命题:①如果m⊥n,m⊥α,n∥β,那么α⊥β.②如果m⊥α,n∥α,那么m⊥n.③如果α∥β,m⊂α,那么m∥β.④如果m∥n,α∥β,那么m与α所成的角和n与β所成的角相等.其中正确的命题有.(填写所有正确命题的编号)4.已知正四棱锥S-ABCD的底面边长为2,高为2,E是边BC的中点,动点P在表面上运动,并且总保持PE⊥AC,则动点P的轨迹的周长为.5.下列命题中正确的是.(填上你认为正确的所有命题的序号)①空间中三个平面α,β,γ,若α⊥β,γ⊥β,则α∥γ;②若a,b,c为三条两两异面的直线,则存在无数条直线与a,b,c都相交;③若球O与棱长为a的正四面体各面都相切,则该球的表面积为a2;④在三棱锥P-ABC中,若PA⊥BC,PB⊥AC,则PC⊥AB.在正三棱柱A1B1C1-ABC中,点D是BC的中点,BC=BB1.设B1D∩BC1=F.求证:(1)A1C∥平面AB1D;(2)BC1⊥平面AB1D.7.如图,在四棱锥P-ABCD中,侧面PAD是边长为2的正三角形,且与底面垂直,底面ABCD是∠ABC=60°的菱形,M为PC的中点.(1)求证:PC⊥AD;(2)证明在PB上存在一点Q,使得A,Q,M,D四点共面;(3)求点D到平面PAM的距离.8.(2018全国Ⅰ,理18)如图,四边形ABCD为正方形,E,F分别为AD,BC的中点,以DF为折痕把△DFC折起,使点C到达点P 的位置,且PF⊥BF.(1)证明:平面PEF⊥平面ABFD;(2)求DP与平面ABFD所成角的正弦值.二、思维提升训练9.(2018浙江,8)已知四棱锥S-ABCD的底面是正方形,侧棱长均相等,E是线段AB上的点(不含端点).设SE与BC所成的角为θ1,SE与平面ABCD所成的角为θ2,二面角S-AB-C的平面角为θ3,则()A.θ1≤θ2≤θ3B.θ3≤θ2≤θ1C.θ1≤θ3≤θ2D.θ2≤θ3≤θ110.如图,在侧棱垂直底面的四棱柱ABCD-A1B1C1D1中,AD∥BC,AD⊥AB,AB=,AD=2,BC=4,AA1=2,E 是DD1的中点,F是平面B1C1E与直线AA1的交点.(1)证明:①EF∥A1D1;②BA1⊥平面B1C1EF;(2)求BC1与平面B1C1EF所成角的正弦值.11.如图,在长方形ABCD中,AB=2,BC=1,E为CD的中点,F为AE的中点.现在沿AE将△ADE向上折起,在折起的图形中解答下列问题:(1)在线段AB上是否存在一点K,使BC∥平面DFK?若存在,请证明你的结论;若不存在,请说明理由;(2)若平面ADE⊥平面ABCE,求证:平面BDE⊥平面ADE.12.已知正三棱柱ABC-A1B1C1中,AB=2,AA1=,点D为AC的中点,点E在线段AA1上.(1)当AE∶EA1=1∶2时,求证:DE⊥BC1;(2)是否存在点E,使三棱锥C1-BDE的体积恰为三棱柱ABC-A1B1C1体积的?若存在,求AE的长,若不存在,请说明理由.13.如图,在四边形ABCD中(如图①),E是BC的中点,DB=2,DC=1,BC=,AB=AD=.将△ABD(如图①)沿直线BD折起,使二面角A-BD-C为60°(如图②).(1)求证:AE⊥平面BDC;(2)求异面直线AB与CD所成角的余弦值;(3)求点B到平面ACD的距离.专题能力训练14空间中的平行与垂直一、能力突破训练1.D解析易知A1C1⊥平面BB1D1D.∵B1O⊂平面BB1D1D,∴A1C1⊥B1O,故选D.2.A解析如图,易知PA,PE,PF两两垂直,∴PA⊥平面PEF,从而PA⊥EF,而PO⊥平面AEF,则PO⊥EF,∴EF⊥平面PAO,∴EF⊥AO.同理可知AE⊥FO,AF⊥EO,∴O为△AEF的垂心.3.②③④解析对于①,若m⊥n,m⊥α,n∥β,则α,β的位置关系无法确定,故错误;对于②,因为n∥α,所以过直线n作平面γ与平面α相交于直线c,则n∥c.因为m⊥α,所以m⊥c,所以m⊥n,故②正确;对于③,由两个平面平行的性质可知正确;对于④,由线面所成角的定义和等角定理可知其正确,故正确的命题有②③④.4解析如图,取CD的中点F,SC的中点G,连接EF,EG,FG.设EF交AC于点H,连接GH,易知AC⊥EF.又GH∥SO,∴GH⊥平面ABCD,∴AC⊥GH.又GH∩EF=H,∴AC⊥平面EFG.故点P的轨迹是△EFG,其周长为5.②③④解析①中也可以α与γ相交;②作平面与a,b,c都相交;③中可得球的半径为r=a;④中由PA⊥BC,PB⊥AC得点P在底面△ABC的射影为△ABC的垂心,故PC⊥AB.6.证明(1)连接A1B,设A1B交AB1于点E,连接DE.∵点D是BC的中点,点E是A1B的中点,∴DE∥A1C.∵A1C⊄平面AB1D,DE⊂平面AB1D,∴A1C∥平面AB1D.(2)∵△ABC是正三角形,点D是BC的中点,∴AD⊥BC.∵平面ABC⊥平面B1BCC1,平面ABC∩平面B1BCC1=BC,AD⊂平面ABC,∴AD⊥平面B1BCC1.∵BC1⊂平面B1BCC1,∴AD⊥BC1.∵点D是BC的中点,BC=BB1,∴BD=BB1.,∴Rt△B1BD∽Rt△BCC1,∴∠BDB1=∠BC1C.∴∠FBD+∠BDF=∠C1BC+∠BC1C=90°.∴BC1⊥B1D.∵B1D∩AD=D,∴BC1⊥平面AB1D.7.(1)证法一取AD的中点O,连接OP,OC,AC,依题意可知△PAD,△ACD均为正三角形,所以OC⊥AD,OP⊥AD.又OC∩OP=O,OC⊂平面POC,OP⊂平面POC,所以AD⊥平面POC.又PC⊂平面POC,所以PC⊥AD.证法二连接AC,依题意可知△PAD,△ACD均为正三角形.因为M为PC的中点,所以AM⊥PC,DM⊥PC.又AM∩DM=M,AM⊂平面AMD,DM⊂平面AMD,所以PC⊥平面AMD.因为AD⊂平面AMD,所以PC⊥AD.(2)证明当点Q为棱PB的中点时,A,Q,M,D四点共面,证明如下:取棱PB的中点Q,连接QM,QA.因为M为PC的中点,所以QM∥BC.在菱形ABCD中,AD∥BC,所以QM∥AD,所以A,Q,M,D四点共面.(3)解点D到平面PAM的距离即点D到平面PAC的距离.由(1)可知PO⊥AD,又平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,PO⊂平面PAD, 所以PO⊥平面ABCD,即PO为三棱锥P-ACD的高.在Rt△POC中,PO=OC=,PC=,在△PAC中,PA=AC=2,PC=,边PC上的高AM=-,所以△PAC的面积S△PAC=PC·AM=设点D到平面PAC的距离为h,由V D-PAC=V P-ACD,得S△PAC·h=S△ACD·PO.因为S△ACD=22=,所以h=,解得h=,所以点D到平面PAM的距离为8.(1)证明由已知可得,BF⊥PF,BF⊥EF,所以BF⊥平面PEF.又BF⊂平面ABFD,所以平面PEF⊥平面ABFD.(2)解作PH⊥EF,垂足为H.由(1)得,PH⊥平面ABFD.以H为坐标原点,的方向为y轴正方向,||为单位长,建立如图所示的空间直角坐标系H-xyz.由(1)可得,DE⊥PE.又DP=2,DE=1,所以PE=又PF=1,EF=2,故PE⊥PF.可得PH=,EH=则H(0,0,0),P,D--为平面ABFD的法向量.设DP与平面ABFD所成角为θ,则sin θ=所以DP与平面ABFD所成角的正弦值为二、思维提升训练9.D解析当点E不是线段AB的中点时,如图,点G是AB的中点,SH⊥底面ABCD,过点H作HF∥AB,过点E作EF∥BC,连接SG,GH,EH,SF.可知θ1=∠SEF,θ2=∠SEH,θ3=∠SGH.由题意可知EF⊥SF,故tan θ1==tan θ3.∴θ1>θ3.又tan θ3==tan θ2,∴θ3>θ2.∴θ1>θ3>θ2.当点E是线段AB的中点时,即点E与点G重合,此时θ1=θ3=θ2.综上可知,θ1≥θ3≥θ2.10.(1)证明①因为C1B1∥A1D1,C1B1⊄平面ADD1A1,所以C1B1∥平面ADD1A1.因为平面B1C1EF∩平面ADD1A1=EF,所以C1B1∥EF.所以A1D1∥EF.②因为BB1⊥平面A1B1C1D1,所以BB1⊥B1C1.因为B1C1⊥B1A1,所以B1C1⊥平面ABB1A1,所以B1C1⊥BA1.在矩形ABB1A1中,F是AA1的中点,即tan∠A1B1F=tan∠AA1B=,即∠A1B1F=∠AA1B.故BA1⊥B1F.又B1F∩B1C1=B1,所以BA1⊥平面B1C1EF.(2)解设BA1与B1F的交点为H,连接C1H(如图).由(1)知BA1⊥平面B1C1EF,所以∠BC1H是BC1与平面B1C1EF所成的角.在矩形ABB1A1中,AB=,AA1=2,得BH=在Rt△BHC1中,BC1=2,BH=,得sin∠BC1H=所以BC1与平面B1C1EF所成角的正弦值是11.(1)解线段AB上存在一点K,且当AK=AB时,BC∥平面DFK.证明如下:设H为AB的中点,连接EH,则BC∥EH.又因为AK=AB,F为AE的中点,所以KF∥EH,所以KF∥BC.因为KF⊂平面DFK,BC⊄平面DFK,所以BC∥平面DFK.(2)证明因为F为AE的中点,DA=DE=1,所以DF⊥AE.因为平面ADE⊥平面ABCE,所以DF⊥平面ABCE.因为BE⊂平面ABCE,所以DF⊥BE.又因为在折起前的图形中E为CD的中点,AB=2,BC=1,所以在折起后的图形中AE=BE=,从而AE2+BE2=4=AB2,所以AE⊥BE.因为AE∩DF=F,所以BE⊥平面ADE.因为BE⊂平面BDE,所以平面BDE⊥平面ADE.12.(1)证明因为三棱柱ABC-A1B1C1为正三棱柱,所以△ABC是正三角形.因为D是AC的中点,所以BD⊥AC.又平面ABC⊥平面CAA1C1,所以BD⊥DE.因为AE∶EA1=1∶2,AB=2,AA1=,所以AE=,AD=1,所以在Rt△ADE中,∠ADE=30°.在Rt△DCC1中,∠C1DC=60°,所以∠EDC1=90°,即DE⊥DC1.因为C1D∩BD=D,所以DE⊥平面BC1D,所以DE⊥BC1.(2)解假设存在点E满足题意.设AE=h,则A1E=-h,所以△四边形-S△AED-△△=2h-(-h)-h.因为BD⊥平面ACC1A1,所以--h,又V棱柱=2=3, 所以h=1,解得h=,故存在点E,当AE=,即E与A1重合时,三棱锥C1-BDE的体积恰为三棱柱ABC-A1B1C1体积的13.(1)证明如图,取BD的中点M,连接AM,ME.∵AB=AD=,DB=2,∴AM⊥BD.∵DB=2,DC=1,BC=满足DB2+DC2=BC2,∴△BCD是以BC为斜边的直角三角形,BD⊥DC,∵E是BC的中点,∴ME为△BCD的中位线,ME CD,∴ME⊥BD,ME=,∴∠AME是二面角A-BD-C的平面角,∴∠AME=60°.∵AM⊥BD,ME⊥BD,且AM,ME是平面AME内两相交于M的直线,∴BD⊥平面AEM.∵AE⊂平面AEM,∴BD⊥AE.∵△ABD为等腰直角三角形,∴AM=BD=1.在△AEM中,∵AE2=AM2+ME2-2AM·ME·cos∠AME=1+-2×1cos 60°=,∴AE=,∴AE2+ME2=1=AM2,∴AE⊥ME.∵BD∩ME=M,BD⊂平面BDC,ME⊂平面BDC,∴AE⊥平面BDC.(2)解取AD的中点N,连接MN,则MN是△ABD的中位线,MN∥AB.又ME∥CD,∴直线AB与CD所成角θ等于MN与ME所成的角,即∠EMN或其补角.AE⊥平面BCD,DE⊂平面BCD,∴AE⊥DE.∵N为Rt△AED斜边的中点,∴NE=AD=,MN=AB=,ME=,-∴cos θ=|cos∠EMN|=-(3)解记点B到平面ACD的距离为d,则三棱锥B-ACD的体积V B-ACD=d·S△ACD.又由(1)知AE是三棱锥A-BCD的高,BD⊥CD,∴V B-ACD=V A-BCD=AE·S△BCD=∵E为BC中点,AE⊥BC,∴AC=AB=又DC=1,AD=,△ACD为等腰三角形,S△ACD=DC-1-,∴点B到平面ACD的距离d=-△。
【最新资料精选】高考数学(理科,天津课标版)二轮复习专题能力训练 含答案3
专题能力训练3平面向量与复数一、能力突破训练1.设有下面四个命题∈R,则z∈R;p1:若复数z满足1zp2:若复数z满足z2∈R,则z∈R;p3:若复数z1,z2满足z1z2∈R,则z1=z2;p4:若复数z∈R,则z∈R.其中的真命题为()A.p1,p3B.p1,p4C.p2,p3D.p2,p42.设a,b是两个非零向量,则下列结论一定成立的为()A.若|a+b|=|a|-|b|,则a⊥bB.若a⊥b,则|a+b|=|a|-|b|C.若|a+b|=|a|-|b|,则存在实数λ,使得b=λaD.若存在实数λ,使得b=λa,则|a+b|=|a|-|b|3.(2018全国Ⅲ,理2)(1+i)(2-i)=()A.-3-iB.-3+iC.3-iD.3+i的对应点关于虚轴对称,则z=()4.在复平面内,若复数z的对应点与5i1+2iA.2-iB.-2-iC.2+iD.-2+i5.已知向量a=(1,-1),b=(-1,2),则(2a+b)·a=()A.-1B.0C.1D.2(i为虚数单位)的共轭复数是() 6.(2018浙江,4)复数21-iA.1+iB.1-iC.-1+iD.-1-i7.已知菱形ABCD 的边长为a ,∠ABC=60°,则BD ⃗⃗⃗⃗⃗⃗ ·CD ⃗⃗⃗⃗⃗ = ( )A.-32a 2 B.-34a 2C.34a 2D.32a 28.已知非零向量m ,n 满足4|m |=3|n |,cos <m ,n >=13.若n ⊥(t m +n ),则实数t 的值为( ) A .4 B .-4C .94D .-949.如图,已知平面四边形ABCD ,AB ⊥BC ,AB=BC=AD=2,CD=3,AC 与BD 交于点O ,记I 1=OA ⃗⃗⃗⃗⃗ ·OB⃗⃗⃗⃗⃗ ,I 2=OB ⃗⃗⃗⃗⃗ ·OC ⃗⃗⃗⃗⃗ ,I 3=OC ⃗⃗⃗⃗⃗ ·OD ⃗⃗⃗⃗⃗⃗ ,则( )A.I 1<I 2<I 3B.I 1<I 3<I 2C.I 3<I 1<I 2D.I 2<I 1<I 310.(2018全国Ⅲ,理13)已知向量a =(1,2),b =(2,-2),c =(1,λ).若c ∥(2a +b ),则λ= . 11.在△ABC 中,∠A=60°,AB=3,AC=2.若BD ⃗⃗⃗⃗⃗⃗ =2DC ⃗⃗⃗⃗⃗ ,AE ⃗⃗⃗⃗⃗ =λAC ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ (λ∈R ),且AD ⃗⃗⃗⃗⃗ ·AE ⃗⃗⃗⃗⃗ =-4,则λ的值为 .12.设a ∈R ,若复数(1+i)(a+i)在复平面内对应的点位于实轴上,则a= . 13.已知a ,b ∈R ,(a+b i)2=3+4i(i 是虚数单位),则a 2+b 2= ,ab= .14.设D ,E 分别是△ABC 的边AB ,BC 上的点,|AD|=12|AB|,|BE|=23|BC|.若DE⃗⃗⃗⃗⃗ =λ1AB ⃗⃗⃗⃗⃗ +λ2AC ⃗⃗⃗⃗⃗ (λ1,λ2为实数),则λ1+λ2的值为 .二、思维提升训练15.在△ABC 中,已知D 是AB 边上一点,CD ⃗⃗⃗⃗⃗ =1CA ⃗⃗⃗⃗⃗ +λCB ⃗⃗⃗⃗⃗ ,则实数λ=( ) A .-23B .-13C .13D .2316.已知AB ⃗⃗⃗⃗⃗ ⊥AC ⃗⃗⃗⃗⃗ ,|AB ⃗⃗⃗⃗⃗ |=1t,|AC ⃗⃗⃗⃗⃗ |=t.若点P 是△ABC 所在平面内的一点,且AP ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗⃗ |AB ⃗⃗⃗⃗⃗⃗ |+4AC ⃗⃗⃗⃗⃗⃗|AC ⃗⃗⃗⃗⃗⃗ |,则PB ⃗⃗⃗⃗⃗ ·PC ⃗⃗⃗⃗⃗ 的最大值等于( ) A.13B.15C.19D.2117.已知两点M (-3,0),N (3,0),点P 为坐标平面内一动点,且|MN ⃗⃗⃗⃗⃗⃗⃗ |·|MP ⃗⃗⃗⃗⃗⃗ |+MN ⃗⃗⃗⃗⃗⃗⃗ ·NP⃗⃗⃗⃗⃗⃗ =0,则动点P (x ,y )到点M (-3,0)的距离d 的最小值为( ) A.2 B.3C.4D.618.已知向量a ,b 满足|a |=1,|b |=2,则|a +b |+|a -b |的最小值是 ,最大值是 . 19.在任意四边形ABCD 中,E ,F 分别是AD ,BC 的中点,若EF ⃗⃗⃗⃗⃗ =λAB ⃗⃗⃗⃗⃗ +μDC ⃗⃗⃗⃗⃗ ,则λ+μ= . 20.已知a ∈R ,i 为虚数单位,若a -i2+i为实数,则a 的值为 .专题能力训练3 平面向量与复数一、能力突破训练1.B 解析 p 1:设z=a+b i(a ,b ∈R ),则1z=1a+bi=a -bi a 2+b2∈R ,所以b=0,所以z ∈R .故p 1正确;p 2:因为i 2=-1∈R ,而z=i ∉R ,故p 2不正确;p 3:若z 1=1,z 2=2,则z 1z 2=2,满足z 1z 2∈R ,而它们实部不相等,不是共轭复数,故p 3不正确; p 4:实数的虚部为0,它的共轭复数是它本身,也属于实数,故p 4正确.2.C 解析 设向量a 与b 的夹角为θ.对于A,可得cos θ=-1,因此a ⊥b 不成立;对于B,满足a ⊥b 时|a +b |=|a |-|b |不成立;对于C,可得cos θ=-1,因此成立,而D 显然不一定成立.3.D 解析 (1+i)(2-i)=2+i -i 2=3+i .4.D 解析5i 1+2i=5i (1-2i )(1+2i )(1-2i )=5(i+2)5=2+i 所对应的点为(2,1),它关于虚轴对称的点为(-2,1),故z=-2+i .5.C 解析 ∵2a +b =(1,0),又a =(1,-1),∴(2a +b )·a =1+0=1.6.B 解析 ∵21-i =2(1+i )(1-i )(1+i )=2(1+i )2=1+i, ∴复数21-i 的共轭复数为1-i .7.D解析 如图,设BA ⃗⃗⃗⃗⃗ =a ,BC ⃗⃗⃗⃗⃗ =b .则BD ⃗⃗⃗⃗⃗⃗ ·CD ⃗⃗⃗⃗⃗ =(BA ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ )·BA ⃗⃗⃗⃗⃗ =(a+b )·a =a 2+a ·b =a 2+a·a·cos 60°=a 2+12a 2=32a 2.8.B 解析 由4|m |=3|n |,可设|m |=3k ,|n |=4k (k>0),又n ⊥(t m +n ),所以n ·(t m +n )=n ·t m +n ·n =t|m |·|n |cos <m ,n >+|n |2=t×3k×4k ×13+(4k )2=4tk 2+16k 2=0.所以t=-4,故选B .9.C 解析 由题图可得OA<12AC<OC ,OB<12BD<OD ,∠AOB=∠COD>90°,∠BOC<90°,所以I 2=OB⃗⃗⃗⃗⃗ ·OC ⃗⃗⃗⃗⃗ >0,I 1=OA ⃗⃗⃗⃗⃗ ·OB ⃗⃗⃗⃗⃗ <0,I 3=OC ⃗⃗⃗⃗⃗ ·OD ⃗⃗⃗⃗⃗⃗ <0,且|I 1|<|I 3|, 所以I 3<I 1<0<I 2,故选C .10.1解析 2a +b =2(1,2)+(2,-2)=(4,2),c =(1,λ),由c ∥(2a +b ),得4λ-2=0,得λ=12. 11.311解析 ∵BD ⃗⃗⃗⃗⃗⃗ =2DC ⃗⃗⃗⃗⃗ ,∴AD ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +BD ⃗⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +23BC ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +23(AC ⃗⃗⃗⃗⃗ −AB⃗⃗⃗⃗⃗ )=23AC ⃗⃗⃗⃗⃗ +13AB ⃗⃗⃗⃗⃗ . 又AE ⃗⃗⃗⃗⃗ =λAC ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ ,∠A=60°,AB=3,AC=2,AD ⃗⃗⃗⃗⃗ ·AE ⃗⃗⃗⃗⃗ =-4, ∴AB ⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗ =3×2×12=3,(23AC ⃗⃗⃗⃗⃗ +13AB ⃗⃗⃗⃗⃗ )·(λAC ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ )=-4, 即2λ3AC ⃗⃗⃗⃗⃗ 2−13AB ⃗⃗⃗⃗⃗ 2+(λ3-23)AB ⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗=-4,∴2λ3×4-13×9+(λ3-23)×3=-4,即113λ-5=-4,解得λ=311. 12.-1 解析 ∵(1+i)(a+i)=a-1+(a+1)i ∈R ,∴a+1=0,即a=-1. 13.5 2 解析 由题意可得a 2-b 2+2ab i =3+4i,则{a 2-b 2=3,ab =2,解得{a 2=4,b 2=1,则a 2+b 2=5,ab=2. 14.12解析 由题意DE ⃗⃗⃗⃗⃗ =DB ⃗⃗⃗⃗⃗⃗ +BE ⃗⃗⃗⃗⃗ =12AB ⃗⃗⃗⃗⃗ +23BC ⃗⃗⃗⃗⃗ =12AB ⃗⃗⃗⃗⃗ +23(BA ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ )=-16AB ⃗⃗⃗⃗⃗ +23AC ⃗⃗⃗⃗⃗ ,故λ1=-16,λ2=23,即λ1+λ2=12.二、思维提升训练15.D 解析 如图,D 是AB 边上一点,过点D 作DE ∥BC ,交AC 于点E ,过点D 作DF ∥AC ,交BC 于点F ,则CD ⃗⃗⃗⃗⃗ =CE ⃗⃗⃗⃗⃗ +CF ⃗⃗⃗⃗⃗ . 因为CD ⃗⃗⃗⃗⃗ =13CA ⃗⃗⃗⃗⃗ +λCB ⃗⃗⃗⃗⃗ , 所以CE ⃗⃗⃗⃗⃗ =13CA ⃗⃗⃗⃗⃗ ,CF ⃗⃗⃗⃗⃗ =λCB ⃗⃗⃗⃗⃗ . 由△ADE ∽△ABC ,得DEBC=AE AC =23,所以ED⃗⃗⃗⃗⃗ =CF ⃗⃗⃗⃗⃗ =23CB ⃗⃗⃗⃗⃗ ,故λ=23. 16.A 解析 以点A 为原点,AB⃗⃗⃗⃗⃗ ,AC ⃗⃗⃗⃗⃗ 所在直线分别为x 轴、y 轴建立平面直角坐标系,如图,则A (0,0),B (1t,0),C (0,t ), ∴AB ⃗⃗⃗⃗⃗⃗ |AB ⃗⃗⃗⃗⃗⃗ |=(1,0),AC ⃗⃗⃗⃗⃗⃗ |AC⃗⃗⃗⃗⃗⃗ |=(0,1), ∴AP⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗⃗ |AB ⃗⃗⃗⃗⃗⃗ |+4AC⃗⃗⃗⃗⃗⃗ |AC⃗⃗⃗⃗⃗⃗ |=(1,0)+4(0,1)=(1,4), ∴点P 的坐标为(1,4),PB ⃗⃗⃗⃗⃗ =(1t -1,-4),PC ⃗⃗⃗⃗⃗ =(-1,t-4),∴PB ⃗⃗⃗⃗⃗ ·PC ⃗⃗⃗⃗⃗ =1-1t -4t+16=-(1t +4t)+17≤-4+17=13.当且仅当1t =4t ,即t=12时取“=”, ∴PB⃗⃗⃗⃗⃗ ·PC ⃗⃗⃗⃗⃗ 的最大值为13. 17.B 解析 因为M (-3,0),N (3,0),所以MN ⃗⃗⃗⃗⃗⃗⃗ =(6,0),|MN ⃗⃗⃗⃗⃗⃗⃗ |=6,MP ⃗⃗⃗⃗⃗⃗ =(x+3,y ),NP ⃗⃗⃗⃗⃗⃗ =(x-3,y ).由|MN ⃗⃗⃗⃗⃗⃗⃗ |·|MP ⃗⃗⃗⃗⃗⃗ |+MN ⃗⃗⃗⃗⃗⃗⃗ ·NP⃗⃗⃗⃗⃗⃗ =0,得6√(x +3)2+y 2+6(x-3)=0,化简得y 2=-12x ,所以点M 是抛物线y 2=-12x 的焦点,所以点P 到M 的距离的最小值就是原点到M (-3,0)的距离,所以d min =3. 18.4 2√5 解析 设向量a ,b 的夹角为θ,由余弦定理得|a -b |=√12+22-2×1×2×cosθ=√5-4cosθ, |a +b |=√12+22=√5+4cosθ, 则|a +b |+|a -b |=√5+4cosθ+√5-4cosθ. 令y=√5+4cosθ+√5-4cosθ, 则y 2=10+2√25-16cos 2θ∈[16,20],据此可得(|a +b |+|a -b |)max =√20=2√5,(|a +b |+|a -b |)min =√16=4. 即|a +b |+|a -b |的最小值是4,最大值是2√5. 19.1 解析如图,因为E ,F 分别是AD 与BC 的中点,所以EA ⃗⃗⃗⃗⃗ +ED ⃗⃗⃗⃗⃗ =0,BF ⃗⃗⃗⃗⃗ +CF ⃗⃗⃗⃗⃗ =0.又因为AB ⃗⃗⃗⃗⃗ +BF ⃗⃗⃗⃗⃗ +FE ⃗⃗⃗⃗⃗ +EA ⃗⃗⃗⃗⃗ =0,所以EF ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +BF ⃗⃗⃗⃗⃗ +EA ⃗⃗⃗⃗⃗ . ①同理EF ⃗⃗⃗⃗⃗ =ED ⃗⃗⃗⃗⃗ +DC⃗⃗⃗⃗⃗ +CF ⃗⃗⃗⃗⃗ .② 由①+②得,2EF ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +DC ⃗⃗⃗⃗⃗ +(EA ⃗⃗⃗⃗⃗ +ED ⃗⃗⃗⃗⃗ )+(BF ⃗⃗⃗⃗⃗ +CF ⃗⃗⃗⃗⃗ )=AB ⃗⃗⃗⃗⃗ +DC ⃗⃗⃗⃗⃗ , 所以EF⃗⃗⃗⃗⃗ =1(AB ⃗⃗⃗⃗⃗ +DC ⃗⃗⃗⃗⃗ ).所以λ=1,μ=1. 所以λ+μ=1.20.-2 解析 ∵a -i=(a -i )(2-i )(2+i )(2-i )=2a -1−a+2i 为实数,∴-a+25=0,即a=-2.。
【K12小初高学习】高考数学(理科,天津课标版)二轮复习专题能力训练 含答案17
专题能力训练17椭圆、双曲线、抛物线一、能力突破训练1.已知双曲线C:=1(a>0,b>0)的一条渐近线方程为y=x,且与椭圆=1有公共焦点,则C的方程为()A.=1B.=1C.=1D.=12.以抛物线C的顶点为圆心的圆交C于A,B两点,交C的准线于D,E两点.已知|AB|=4,|DE|=2,则C的焦点到准线的距离为()A.2B.4C.6D.83.(2018全国Ⅱ,理5)若双曲线=1(a>0,b>0)的离心率为,则其渐近线方程为()A.y=±xB.y=±xC.y=±xD.y=±x4.(2018天津,理7)已知双曲线=1(a>0,b>0)的离心率为2,过右焦点且垂直于x轴的直线与双曲线交于A,B两点.设A,B到双曲线的同一条渐近线的距离分别为d1和d2,且d1+d2=6,则双曲线的方程为()A.=1B.=1C.=1D.=15.设双曲线=1(a>0,b>0)的右焦点为F,过点F作与x轴垂直的直线l交两渐近线于A,B两点,与双曲线的一个交点为P,设O为坐标原点.若=m+n(m,n∈R),且mn=,则该双曲线的离心率为()A. B.C. D.6.双曲线=1(a>0,b>0)的渐近线为正方形OABC的边OA,OC所在的直线,点B为该双曲线的焦点.若正方形OABC的边长为2,则a=.7.已知双曲线C:=1(a>0,b>0)的右顶点为A,以A为圆心,b为半径作圆A,圆A与双曲线C的一条渐近线交于M,N两点.若∠MAN=60°,则C的离心率为.8.如图,已知抛物线C1:y=x2,圆C2:x2+(y-1)2=1,过点P(t,0)(t>0)作不过原点O的直线PA,PB分别与抛物线C1和圆C2相切,A,B为切点.(1)求点A,B的坐标;(2)求△PAB的面积.注:直线与抛物线有且只有一个公共点,且与抛物线的对称轴不平行,则称该直线与抛物线相切,称该公共点为切点.9.如图,动点M与两定点A(-1,0),B(1,0)构成△MAB,且直线MA,MB的斜率之积为4,设动点M的轨迹为C.(1)求轨迹C的方程;(2)设直线y=x+m(m>0)与y轴相交于点P,与轨迹C相交于点Q,R,且|PQ|<|PR|,求的取值范围.10.已知三点O(0,0),A(-2,1),B(2,1),曲线C上任意一点M(x,y)满足||=·()+2.(1)求曲线C的方程;(2)点Q(x0,y0)(-2<x0<2)是曲线C上动点,曲线C在点Q处的切线为l,点P的坐标是(0,-1),l与PA,PB 分别交于点D,E,求△QAB与△PDE的面积之比.二、思维提升训练11.已知F为抛物线C:y2=4x的焦点,过F作两条互相垂直的直线l1,l2,直线l1与C交于A,B两点,直线l2与C交于D,E两点,则|AB|+|DE|的最小值为()A.16B.14C.12D.1012.(2018全国Ⅲ,理11)设F1,F2是双曲线C:=1(a>0,b>0)的左、右焦点,O是坐标原点,过F2作C的一条渐近线的垂线,垂足为P.若|PF1|=|OP|,则C的离心率为()A.B.2 C.D.13.已知F是抛物线C:y2=8x的焦点,M是C上一点,FM的延长线交y轴于点N,若M为FN的中点,则|FN|=.14.在平面直角坐标系xOy中,双曲线=1(a>0,b>0)的右支与焦点为F的抛物线x2=2py(p>0)交于A,B两点,若|AF|+|BF|=4|OF|,则该双曲线的渐近线方程为.15.已知圆C:(x+1)2+y2=20,点B(1,0),点A是圆C上的动点,线段AB的垂直平分线与线段AC交于点P.(1)求动点P的轨迹C1的方程;(2)设M,N为抛物线C2:y=x2上的一动点,过点N作抛物线C2的切线交曲线C1于P,Q两点,求△MPQ面积的最大值.16.已知动点C是椭圆Ω:+y2=1(a>1)上的任意一点,AB是圆G:x2+(y-2)2=的一条直径(A,B是端点),的最大值是.(1)求椭圆Ω的方程;(2)已知椭圆Ω的左、右焦点分别为点F1,F2,过点F2且与x轴不垂直的直线l交椭圆Ω于P,Q两点.在线段OF2上是否存在点M(m,0),使得以MP,MQ为邻边的平行四边形是菱形?若存在,求实数m的取值范围;若不存在,请说明理由.专题能力训练17椭圆、双曲线、抛物线一、能力突破训练1.B解析由题意得,c=3.又a2+b2=c2,所以a2=4,b2=5,故C的方程为=1.2.B解析不妨设抛物线C的方程为y2=2px(p>0),圆的方程为x2+y2=R2.因为|AB|=4,所以可设A(m,2).又因为|DE|=2,所以解得p2=16.故p=4,即C的焦点到准线的距离是4.3.A解析∵e=,+1=3.∵双曲线焦点在x轴上,∴渐近线方程为y=±x,∴渐近线方程为y=±x.4.C解析由双曲线的对称性,不妨取渐近线y=x.如图所示,|AD|=d1,|BC|=d2,过点F作EF⊥CD于点E.由题易知EF为梯形ABCD的中位线,所以|EF|=(d1+d2)=3.又因为点F(c,0)到y=x的距离为=b,所以b=3,b2=9.因为e==2,c2=a2+b2,所以a2=3,所以双曲线的方程为=1.故选C.5.C解析在y=±x中令x=c,得A,B,在双曲线=1中令x=c得P当点P的坐标为时,由=m+n,得由(舍去),,,∴e=同理,当点P的坐标为时,e=故该双曲线的离心率为6.2解析∵四边形OABC是正方形,∴∠AOB=45°,∴不妨设直线OA的方程即双曲线的一条渐近线的方程为y=x=1,即a=b.又|OB|=2,∴c=2a2+b2=c2,即a2+a2=(2)2,可得a=2.7解析如图所示,由题意可得|OA|=a,|AN|=|AM|=b,∵∠MAN=60°,∴|AP|=b,|OP|=设双曲线C的一条渐近线y=x的倾斜角为θ,则tan θ=又tanθ=,,解得a2=3b2,∴e=8.解(1)由题意知直线PA的斜率存在,故可设直线PA的方程为y=k(x-t),由消去y,整理得x2-4kx+4kt=0,由于直线PA与抛物线相切,得k=t.因此,点A的坐标为(2t,t2).设圆C2的圆心为D(0,1),点B的坐标为(x0,y0),由题意知:点B,O关于直线PD对称,故解得因此,点B的坐标为(2)由(1)知|AP|=t和直线PA的方程tx-y-t2=0.点B到直线PA的距离是d=设△PAB的面积为S(t),所以S(t)=|AP|·d=9.解(1)设M的坐标为(x,y),当x=-1时,直线MA的斜率不存在;当x=1时,直线MB的斜率不存在.于是x≠1,且x≠-1.此时,MA的斜率为,MB的斜率为由题意,有=4.整理,得4x2-y2-4=0.故动点M的轨迹C的方程为4x2-y2-4=0(x≠±1).(2)由消去y,可得3x2-2mx-m2-4=0.①对于方程①,其判别式Δ=(-2m)2-4×3(-m2-4)=16m2+48>0,而当1或-1为方程①的根时,m的值为-1或1.结合题设(m>0)可知,m>0,且m≠1.设Q,R的坐标分别为(x Q,y Q),(x R,y R),则x Q,x R为方程①的两根,因为|PQ|<|PR|,所以|x Q|<|x R|.因为x Q=,x R=,且Q,R在同一条直线上,所以=1+此时>1,且2,所以1<1+<3,且1+,所以1<<3,且综上所述,的取值范围是10.解(1)由题意可知=(-2-x,1-y),=(2-x,1-y),=(x,y),=(0,2).∵||=()+2,=2y+2,∴x2=4y.∴曲线C的方程为x2=4y.(2)设Q,则S△QAB=2=2∵y=,∴y'=x,∴k l=x0,∴切线l的方程为y-x0(x-x0)与y轴交点H,|PH|==1-直线PA的方程为y=-x-1,直线PB的方程为y=x-1,由得x D=由得x E=,∴S△PDE=|x D-x E|·|PH|=1-,∴△QAB与△PDE的面积之比为2.二、思维提升训练11.A解析方法一:由题意,易知直线l1,l2斜率不存在时,不合题意.设直线l1方程为y=k1(x-1),联立抛物线方程,得消去y,得x2-2x-4x+=0,所以x1+x2=同理,直线l2与抛物线的交点满足x3+x4=由抛物线定义可知|AB|+|DE|=x1+x2+x3+x4+2p=+4=+8≥2+8=16, 当且仅当k1=-k2=1(或-1)时,取得等号.方法二:如图所示,由题意可得F(1,0),设AB倾斜角为作AK1垂直准线,AK2垂直x轴,结合图形,根据抛物线的定义,可得所以|AF|·cos θ+2=|AF|,即|AF|=同理可得|BF|=,所以|AB|=又DE与AB垂直,即DE的倾斜角为+θ,则|DE|=,所以|AB|+|DE|=16,当θ=时取等号,即|AB|+|DE|最小值为16,故选A.12.C解析由题意画图,如图所示,可知|PF2|=b,|OP|=a.由题意,得|PF1|= a.设双曲线渐近线的倾斜角为θ.∴在△OPF1中,由余弦定理知cos(180°-θ)==-cos θ.又cos θ=,=-,解得c2=3a2.∴e=13.6解析设N(0,a),由题意可知F(2,0).又M为FN的中点,则M因为点M在抛物线C上,所以=8,即a2=32,即a=±4所以N(0,±4).所以|FN|==6.14.y=±x解析抛物线x2=2py的焦点F,准线方程为y=-设A(x1,y1),B(x2,y2),则|AF|+|BF|=y1++y2+=y1+y2+p=4|OF|=4=2p.所以y1+y2=p.联立双曲线与抛物线方程得消去x,得a2y2-2pb2y+a2b2=0.所以y1+y2==p,所以所以该双曲线的渐近线方程为y=±x.15.解(1)由已知可得,点P满足|PB|+|PC|=|AC|=2>2=|BC|,所以动点P的轨迹C1是一个椭圆,其中2a=2,2c=2.动点P的轨迹C1的方程为=1.(2)设N(t,t2),则PQ的方程为y-t2=2t(x-t)⇒y=2tx-t2.联立方程组消去y整理,得(4+20t2)x2-20t3x+5t4-20=0,有而|PQ|=|x1-x2|=,点M到PQ的高为h=,由S△MPQ=|PQ|h代入化简,得S△MPQ=,当且仅当t2=10时,S△MPQ可取最大值16.解(1)设点C的坐标为(x,y),则+y2=1.连接CG,由,又G(0,2),=(-x,2-y),可得=x2+(y-2)2-=a(1-y2)+(y-2)2-=-(a-1)y2-4y+a+,其中y∈[-1,1].因为a>1,所以当y=-1,即1<a≤3时,取y=-1,得有最大值-(a-1)+4+a+,与条件矛盾;当y=>-1,即a>3时,的最大值是,由条件得,即a2-7a+10=0,解得a=5或a=2(舍去).综上所述,椭圆Ω的方程是+y2=1.(2)设点P(x1,y1),Q(x2,y2),PQ的中点坐标为(x0,y0),则满足=1,=1,两式相减,整理,得=-=-,从而直线PQ的方程为y-y0=-(x-x0).又右焦点F2的坐标是(2,0),将点F2的坐标代入PQ的方程得-y0=-(2-x0),因为直线l与x轴不垂直,所以2x0-=5>0,从而0<x0<2.假设在线段OF2上存在点M(m,0)(0<m<2),使得以MP,MQ为邻边的平行四边形是菱形,则线段PQ的垂直平分线必过点M,而线段PQ的垂直平分线方程是y-y0=(x-x0),将点M(m,0)代入得-y0=(m-x0),得m=x0,从而m。
高考数学(理科,天津课标版)二轮复习专题能力训练 含答案2
专题能力训练2不等式、线性规划一、能力突破训练1.已知实数x,y满足a x<a y(0<a<1),则下列关系式恒成立的是()A.B.ln(x2+1)>ln(y2+1)C.sin x>sin yD.x3>y32.已知函数f(x)=(x-2)(ax+b)为偶函数,且在区间(0,+∞)内单调递增,则f(2-x)>0的解集为()A.{x|x>2或x<-2}B.{x|-2<x<2}C.{x|x<0或x>4}D.{x|0<x<4}3.不等式组--的解集为()A.(0,)B.(,2)C.(D.(2,4)4.若x,y满足则x+2y的最大值为()A.1B.3C.5D.95.已知函数f(x)=(ax-1)(x+b),若不等式f(x)>0的解集是(-1,3),则不等式f(-2x)<0的解集是()A.--B.-C.--D.-6.已知实数x,y满足则的取值范围是()A. B.[3,11]C. D.[1,11]7.已知变量x,y满足约束条件--若z=2x-y的最大值为2,则实数m等于()A.-2B.-1C.1D.28.已知变量x,y满足约束条件-若x+2y≥-5恒成立,则实数a的取值范围为()A.(-∞,-1]B.[-1,+∞)C.[-1,1]D.[-1,1)9.(2018全国Ⅱ,理14)若x,y满足约束条件---则z=x+y的最大值为.10.(2018浙江,12)若x,y满足约束条件-则z=x+3y的最小值是,最大值是.11.某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A需要甲材料1.5 kg,乙材料1 kg,用5个工时;生产一件产品B需要甲材料0.5 kg,乙材料0.3 kg,用3个工时.生产一件产品A的利润为2 100元,生产一件产品B的利润为900元.该企业现有甲材料150 kg,乙材料90 kg,则在不超过600个工时的条件下,生产产品A、产品B的利润之和的最大值为元.12.设不等式组---表示的平面区域为D,若指数函数y=a x的图象上存在区域D上的点,则a的取值范围是.二、思维提升训练13.已知x,y满足约束条件----若z=y-ax取得最大值的最优解不唯一,则实数a的值为()A.或-1B.或2C.1或2D.-1或214.设对任意实数x>0,y>0,若不等式x+≤a(x+2y)恒成立,则实数a的最小值为()A.B.C.D.15.设x,y满足约束条件---若目标函数z=ax+by(a>0,b>0)的最大值为8,则ab的最大值为.16.已知x,y∈(0,+∞),2x-3=,则的最小值为.17.若函数f(x)=-·lg x的值域为(0,+∞),则实数a的最小值为.18.已知存在实数x,y满足约束条件----则R的最小值是.专题能力训练2不等式、线性规划一、能力突破训练1.D解析由a x<a y(0<a<1)知,x>y,故x3>y3,选D.2.C解析∵f(x)=ax2+(b-2a)x-2b为偶函数,∴b-2a=0,即b=2a,∴f(x)=ax2-4a.∴f'(x)=2ax.又f(x)在区间(0,+∞)上单调递增,∴a>0.由f(2-x)>0,得a(x-2)2-4a>0,∵a>0,∴|x-2|>2,解得x>4或x<0.3.C解析由|x-2|<2,得0<x<4;由x2-1>2,得x>或x<-,取交集得<x<4,故选C.4.D解析由题意画出可行域(如图).设z=x+2y,则z=x+2y表示斜率为-的一组平行线,当过点C(3,3)时,目标函数取得最大值z max=3+2×3=9.故选D.5.A解析由f(x)>0,得ax2+(ab-1)x-b>0.∵其解集是(-1,3),∴a<0,且---解得a=-1或a=(舍去),∴a=-1,b=-3.∴f(x)=-x2+2x+3,∴f(-2x)=-4x2-4x+3,由-4x2-4x+3<0,得4x2+4x-3>0,解得x>或x<-,故选A.6.C解析=1+其中表示两点(x,y)与(-1,-1)所确定直线的斜率,由图知,k min=k PB=----,k max=k PA=----=5,所以的取值范围是的取值范围是故选C.7.C解析画出约束条件-的可行域,如图,作直线2x-y=2,与直线x-2y+2=0交于可行域内一点A(2,2),由题知直线mx-y=0必过点A(2,2),即2m-2=0,得m=1.故选C.8.C解析设z=x+2y,要使x+2y≥-5恒成立,即z≥-5.作出不等式组对应的平面区域如图阴影部分所示,要使不等式组成立,则a≤1,由z=x+2y,得y=-x+,平移直线y=-x+,由图象可知当直线经过点A时,直线y=-x+的截距最小,此时z最小,即x+2y=-5,由--解得--即A(-1,-2),此时a=-1,所以要使x+2y≥-5恒成立,则-1≤a≤1,故选C.9.9解析由题意,作出可行域如图.要使z=x+y取得最大值,当且仅当过点(5,4)时,z max=9.10.-2 8 解析 由约束条件 -画出可行域,如图所示的阴影部分.由z=x+3y , 可知y=-x+由题意可知,当目标函数的图象经过点B 时,z 取得最大值,当目标函数的图象经过点C 时,z 取得最小值.由 得此时z 最大=2+3×2=8, 由 得 - 此时z 最小=4+3×(-2)=-2.11.216 000 解析 设生产产品A x 件,生产产品B y 件,由题意得∈即∈目标函数z=2 100x+900y ,画出约束条件对应的可行域(如图阴影部分中的整数点所示),作直线y=-x,当直线过5x+3y=600与10x+3y=900的交点时,z取最大值,由解得所以z max=2 100×60+900×100=216 000.12.1<a≤3解析作出平面区域D如图阴影部分所示,联系指数函数y=a x的图象,当图象经过区域的边界点C(2,9)时,a可以取到最大值3,而显然只要a大于1,图象必然经过区域内的点,则a的取值范围是1<a≤3.二、思维提升训练13.D解析在平面直角坐标系内作出不等式组所表示的平面区域,如图所示的△ABC,目标函数z=y-ax可变形为y=ax+z,z的几何意义为直线y=ax+z在y轴上的截距.因为z=y-ax取得最大值的最优解不唯一,所以直线y=ax+z与区域三角形的某一边平行,当直线y=ax+z与边线x+y-2=0平行时,a=-1符合题意;当直线y=ax+z与边线x-2y-2=0平行时,a=不符合题意;当直线y=ax+z与边线2x-y-2=0平行时,a=2符合题意,综上所述,实数a的值为-1或2.故选D.14.A解析原不等式可化为(a-1)x-+2ay≥0,两边同除以y,得(a-1)+2a≥0,令t=,则(a-1)t2-t+2a≥0,由不等式恒成立知,a-1>0,Δ=1-4(a-1)·2a≤0,解得a,a min=,故选A.15.2解析画出可行域如图阴影部分所示,目标函数变形为y=-x+,由已知,得-<0,且纵截距最大时,z取到最大值,故当直线l过点B(2,4)时,目标函数取到最大值,即2a+4b=8,因为a>0,b>0,由基本不等式,得2a+4b=8≥4,即ab≤2(当且仅当2a=4b=4,即a=2,b=1时取“=”),故ab的最大值为2.16.3解析由2x-3=,得x+y=3,故(x+y)(5+4)=3,当且仅当即(x,y∈(0,+∞))时等号成立.17.-2解析函数f(x)的定义域为(0,1)∪(1,+∞),由>0及函数f(x)的值域为(0,+∞)知x2+ax+1>0对-∀x∈{x|x>0,且x≠1}恒成立,即a>-x-在定义域内恒成立,而-x-<-2(当x≠1时等号不成立),因此a≥-2.作出可行域如图中阴影部分所示.由存在实数x,y满18.2解析根据前三个约束条件---足四个约束条件,得图中阴影部分与以(0,1)为圆心、半径为R的圆有公共部分,因此当圆与图中阴影部分相切时,R最小.由图可知R的最小值为2.。
精品高考数学(理科,天津课标版)二轮复习题型练含答案2
题型练2选择题、填空题综合练(二)能力突破训练1.(2018浙江,1)已知全集U={1,2,3,4,5},A={1,3},则∁U A=()A.⌀B.{1,3}C.{2,4,5}D.{1,2,3,4,5}2.一个由半球和四棱锥组成的几何体,其三视图如下图所示.则该几何体的体积为()A.πB.πC.πD.1+π3.已知sin θ=-,cos θ=-,则tan等于()A.--B.--C.D.54.已知实数x,y满足约束条件-则z=2x+4y的最大值是()A.2B.0C.-10D.-155.已知等差数列{a n}的通项是a n=1-2n,前n项和为S n,则数列的前11项和为()A.-45B.-50C.-55D.-666.已知P为椭圆=1上的一点,M,N分别为圆(x+3)2+y2=1和圆(x-3)2+y2=4上的点,则|PM|+|PN|的最小值为()A.5B.7C.13D.157.(2018全国Ⅰ,理12)已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为()A.B.C.D.8.已知a>0,a≠1,函数f(x)=+x cos x(-1≤x≤1),设函数f(x)的最大值是M,最小值是N,则()A.M+N=8B.M+N=6C.M-N=8D.M-N=69.已知-=1+i(i为虚数单位),则复数z=.10.若a,b∈R,ab>0,则的最小值为.11.已知f(x)为偶函数,当x<0时,f(x)=ln(-x)+3x,则曲线y=f(x)在点(1,-3)处的切线方程是.12.已知圆C的参数方程为(θ为参数),以原点为极点,x轴的非负半轴为极轴建立极坐标系,直线的极坐标方程为ρsin θ+ρcos θ=1,则直线截圆C所得的弦长是.13.执行如图所示的程序框图,若输入a=1,b=2,则输出的a的值为.14.已知直线y=mx与函数f(x)=-的图象恰好有三个不同的公共点,则实数m的取值范围是.思维提升训练1.复数z=(i为虚数单位)的虚部为()。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学习资料精品资料 学习资料精品资料 题型练5 大题专项(三) 统计与概率问题 1.为推动乒乓球运动的发展,某乒乓球比赛允许不同协会的运动员组队参加.现有来自甲协会的运动员3名,其中种子选手2名;乙协会的运动员5名,其中种子选手3名.从这8名运动员中随机选择4人参加比赛.
(1)设A为事件“选出的4人中恰有2名种子选手,且这2名种子选手来自同一个协会”,求事件A发生的概率;
(2)设X为选出的4人中种子选手的人数,求随机变量X的分布列和数学期望.
2.(2018北京,理17)电影公司随机收集了电影的有关数据,经分类整理得到下表: 电影类型 第一类 第二类 第三类 第四类 第五类 第六类 电影部数 140 50 300 200 800 510 好评率 0.4 0.2 0.15 0.25 0.2 0.1
好评率是指:一类电影中获得好评的部数与该类电影的部数的比值. 假设所有电影是否获得好评相互独立. (1)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率; (2)从第四类电影和第五类电影中各随机选取1部,估计恰有1部获得好评的概率; (3)假设每类电影得到人们喜欢的概率与表格中该类电影的好评率相等.用“ξk=1”表示第k类电影得到人们喜欢,用“ξk=0”表示第k类电影没有得到人们喜欢(k=1,2,3,4,5,6).写出方差D(ξ1),D(ξ2),D(ξ3),D(ξ4),D(ξ5),D(ξ6)的大小关系. 学习资料精品资料 学习资料精品资料 3.某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:
上年度出险次数 0 1 2 3 4 ≥5 保费 0.85a a 1.25a 1.5a 1.75a 2a
设该险种一续保人一年内出险次数与相应概率如下: 一年内出险次数 0 1 2 3 4 ≥5 概率 0.30 0.15 0.20 0.20 0.10 0.05
(1)求一续保人本年度的保费高于基本保费的概率; (2)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率; (3)求续保人本年度的平均保费与基本保费的比值.
4.(2018天津,理16)已知某单位甲、乙、丙三个部门的员工人数分别为24,16,16.现采用分层抽样的方法从中抽取7人,进行睡眠时间的调查.
(1)应从甲、乙、丙三个部门的员工中分别抽取多少人? (2)若抽出的7人中有4人睡眠不足,3人睡眠充足,现从这7人中随机抽取3人做进一步的身体检查. ①用X表示抽取的3人中睡眠不足的员工人数,求随机变量X的分布列与数学期望;
②设A为事件“抽取的3人中,既有睡眠充足的员工,也有睡眠不足的员工”,求事件A发生的概率. 学习资料精品资料 学习资料精品资料 5.一款击鼓小游戏的规则如下:每盘游戏都需击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐;每盘游戏击鼓三次后,出现一次音乐获得10分,出现两次音乐获得20分,出现三次音乐获得100分,没有出现音乐则扣除200分(即获得-200分).设每次击鼓出现音乐的概率为 ,且各次击鼓出现音乐相互独立.
(1)设每盘游戏获得的分数为X,求X的分布列; (2)玩三盘游戏,至少有一盘出现音乐的概率是多少? (3)玩过这款游戏的许多人都发现,若干盘游戏后,与最初的分数相比,分数没有增加反而减少了.请运用概率统计的相关知识分析分数减少的原因.
6.某工厂为了检查一条流水线的生产情况,从该流水线上随机抽取40件产品,测量这些产品的质量(单位:g),整理后得到如下的频率分布直方图(其中质量的分组区间分别为(490,495],(495,500],(500,505],(505,510],(510,515]). 学习资料精品资料 学习资料精品资料 (1)若从这40件产品中任取两件,设X为质量超过505 g的产品数量,求随机变量X的分布列; (2)若将该样本分布近似看作总体分布,现从该流水线上任取5件产品,求恰有两件产品的质量超过505 g的概率. 学习资料精品资料
学习资料精品资料 题型练5 大题专项(三) 统计与概率问题 1.解 (1)由已知,有P(A)=
所以,事件A发生的概率为
(2)随机变量X的所有可能取值为1,2,3,4.
P(X=k)= - (k=1,2,3,4). 所以,随机变量X的分布列为 X 1 2 3 4 P
随机变量X的数学期望E(X)=1 +2 +3 +4
2.解 (1)设“从电影公司收集的电影中随机选取1部,这部电影是获得好评的第四类电影”为事件A, 第四类电影中获得好评的电影为200×0.25=50(部). P(A)= =0.025. (2)设“从第四类电影和第五类电影中各随机选取1部,恰有1部获得好评”为事件B,P(B)=0.25×0.8+0.75×0.2=0.35.
(3)由题意可知,定义随机变量如下:
ξk= 第 类电影没有得到人们喜欢 第 类电影得到人们喜欢
则ξk显然服从两点分布,则六类电影的分布列及方差计算如下: 第一类电影: ξ1 1 0
P 0.4 0.6
D(ξ1)=0.4×0.6=0.24; 学习资料精品资料 学习资料精品资料 第二类电影: ξ2 1 0
P 0.2 0.8
D(ξ2)=0.2×0.8=0.16; 第三类电影: ξ3 1 0
P 0.15 0.85
D(ξ3)=0.15×0.85=0.127 5; 第四类电影: ξ4 1 0
P 0.25 0.75
D(ξ4)=0.25×0.75=0.187 5; 第五类电影: ξ5 1 0
P 0.2 0.8
D(ξ5)=0.2×0.8=0.16; 第六类电影: ξ6 1 0
P 0.1 0.9
D(ξ6)=0.1×0.9=0.09. 综上所述,D(ξ1)>D(ξ4)>D(ξ2)=D(ξ5)>D(ξ3)>D(ξ6). 3.解 (1)设A表示事件:“一续保人本年度的保费高于基本保费”,则事件A发生当且仅当一年内出险次数大于1,故P(A)=0.2+0.2+0.1+0.05=0.55. 学习资料精品资料 学习资料精品资料 (2)设B表示事件:“一续保人本年度的保费比基本保费高出60%”,则事件B发生当且仅当一年内出险次数大于3,故P(B)=0.1+0.05=0.15.
又P(AB)=P(B), 故P(B|A)=
因此所求概率为
(3)记续保人本年度的保费为X,则X的分布列为
X 0.85a a 1.25a 1.5a 1.75a 2a P 0.30 0.15 0.20 0.20 0.10 0.05
E(X)=0.85a×0.30+a×0.15+1.25a×0.20+1.5a×0.20+1.75a×0.10+2a×0.05=1.23a. 因此续保人本年度的平均保费与基本保费的比值为1.23. 4.解 (1)由已知,甲、乙、丙三个部门的员工人数之比为3∶2∶2,由于采用分层抽样的方法从中抽取7人,因此应从甲、乙、丙三个部门的员工中分别抽取3人,2人,2人.
(2)①随机变量X的所有可能取值为0,1,2,3.
P(X=k)= - (k=0,1,2,3). 所以,随机变量X的分布列为 X 0 1 2 3 P
随机变量X的数学期望E(X)=0 +1 +2 +3
②设事件B为“抽取的3人中,睡眠充足的员工有1人,睡眠不足的员工有2人”;事件C为“抽取
的3人中,睡眠充足的员工有2人,睡眠不足的员工有1人”,则A=B∪C,且B与C互斥.由①
知,P(B)=P(X=2),P(C)=P(X=1),故P(A)=P(B∪C)=P(X=2)+P(X=1)= 所以,事件A发生的概率为
5.解 (1)X可能的取值为10,20,100,-200. 根据题意, P(X=10)= - ; 学习资料精品资料 学习资料精品资料 P(X=20)= - ; P(X=100)= - ; P(X=-200)= - 所以X的分布列为 X 10 20 100 -200 P
(2)设“第i盘游戏没有出现音乐”为事件Ai(i=1,2,3),则P(A1)=P(A2)=P(A3)=P(X=-200)= 所以,“三盘游戏中至少有一盘出现音乐”的概率为 1-P(A1A2A3)=1- =1-
因此,玩三盘游戏至少有一盘出现音乐的概率是
(3)X的数学期望为E(X)=10 +20 +100 -200 =- 这表明,获得分数X的均值为负,因此,多次游戏之后分数减少的可能性更大. 6.解 (1)根据频率分布直方图可知,质量超过505 g的产品数量为[(0.01+0.05)×5]×40=12. 由题意得随机变量X的所有可能取值为0,1,2.
P(X=0)= ; P(X=1)= ; P(X=2)=
则随机变量X的分布列为 X 0 1 2 P
(2)由题意得该流水线上产品的质量超过505 g的概率为 =0.3.