叶轮机械原理 71.ppt
合集下载
叶轮机械原理_第五章

发出音调低而沉闷的放炮声;
非常强烈的机械振动;转速不稳定。 喘振时,其气流脉动频率和脉动振幅与流路容积特性 相关,频率低、强度大。 只要具备一定的出口高反压管路系统,旋转失速基本 上会成为喘振的前奏。
25
5.4 压气机的不稳定工况与扩稳
失速裕度的定义
流量稳定裕度 增压比稳定裕度 综合稳定裕度的定义
27
5.4 压气机的不稳定工况与扩稳
(2)压气机中间级放气
28
5.4 压气机的不稳定工况与扩稳
(3)可调进口导流叶片和静子叶片
29
第五章 轴流压气机性能特性
(4)双转子压气机工作原理
• 若工作压比高于设计值,此时流道收缩太慢,轴向速 度逐级加速变小; • 若工作压比低于设计值,此时流道收缩太快,轴向速 度逐级加速变大。
4
上节课内容回顾
四类非设计工况分析
G A1 1c1a A2 2c2a Az z cza
p const
c1a=
c1a
u1
n
c za=
16
5.3 轴流压气机相似准则的应用
求解:
(1) “加零级”设计的相似准则是
G T0 / p0
n / T0
在什么截面上应用如下等式?
G T1* G ` T1* ` * * P P 1 1 `
n T
* 1
n` T1* `
问:是否满足雷诺数大于2×105?
17
5.3 轴流压气机相似准则的应用
Maa0 , Mau1
q(a0 ),u1
G
T0 / p0 , n / T0
2
上节课内容回顾
单级压气机的实验特性曲线
叶轮机械原理第二章+基本方程

Lad
2 1
1
dp
k
k 1 RT1
p2 p1
k
1
多变压缩过程:过程中存在损失和热交换,产生了多变指
数 p / n 常数
n=k时,绝热过程 n=1时,等温过程
多变压缩功
n1
Lpol
2 1
1
dp
n
n
1
RT1
Lf
0
机械能形式的能量方程
2 dp w22 w12
1
2
Lf
0
➢ 压气机: >0 <0 >0
气体的相对动能减少,用于克服流阻和压缩功
➢ 涡轮: <0 >0 >0
膨胀功用于克服流阻和增加气体的相对动能
➢ 机械能形式的能量方程没有显式地反映气体与 外界热量交换的情况,但对与外界有或无热量 交换的流动过程都是适用的。气体与外界的热 量交换对压缩功或膨胀功项有影响,进而会影 响到气体绝对和相对动能变化量的大小
T
v
2k RT *
k 1
其中K为综合常数,
k=1.4 ,R=287.06J/(kg·K)时, K=0.0404sK0.5/m;
k=1.33,R=287.4 J/(kg·K)时,K=0.0397
0.5
连续方程
如果在叶轮机中沿轴向任一截面Ai上气流参数 是均匀的,即一维流动(气体参数仅沿流动方向发
叶轮机械原理
第二章 气动热力学基本方程 在叶轮机械中的应用
➢ 在气体动力学和工程热力学中已介绍过描述气 体运动的基本方程(三大守恒)
➢ 连续方程
叶轮机械原理-第二章单级蒸汽透平

透平级
进汽管路
前后 轴承
汽封 汽缸
转子
排汽管路
② 从流动过程、能量转换的损失、作功上:
蒸汽流程: 透
级前→喷管→动叶1→导叶→动叶2→级后
涉 及: 平
级通流部分中的流动情况和能量转换
考 虑: 级
级的喷管/动叶1/导叶/动叶2/余速损失
功率和效率:轮周功率和轮周效率
单 级
蒸汽流程:阀前→主汽阀→调节阀→进汽部分 →透平级→排汽部分→汽缸外
④ 辐流式速度级透平 → 只适用于功率要求很小的场合。
图2.6 辐流式汽轮机纵剖面图
◆ 单级透平的损失、功率和效率
单 → 包含主汽阀、进排汽部分、透平级等许多零部件。 级 → 蒸汽流经的路程和零部件多。 透 → 由于结构和流动而产生能量损失的地方也多, 平 导致能量转换效率低。
① 节流损失
◆ 进汽节流损失: 原 因:是由于进汽阀门和进汽管道引起的能量损失。
图2.8 汽轮机机械效率与有效功率的关系曲线
表 2.1 双列复速级透平的损失、功率和效率对应表
损失名称及损失项目
符 号 计算根据 单 位
效率和功率名称
节流 进汽节流损失
损失 排汽节流损失
透 透
平 平
损级
轮
流 喷管损失
周
动 动叶Ⅰ损失
损
失
损 导叶损失
失
动叶Ⅱ损失
u
…… 余速损失
损 结构损失 失 失 轮面摩擦损失
影响因素:与排汽管的直径和结构、排汽速度有关。
计算公式:
pk
pk
pk
cex
2
100
pk
图2.7 多级汽轮机示意图和焓-熵图
泵与风机课件--泵与风机的叶轮理论

送
叶轮类型包括 离心式、轴流 式、混流式等, 适用于不同的 流体输送场景
叶轮的分类
离心式叶轮:叶片沿径向分布,适用于低压、大流量场合
轴流式叶轮:叶片沿轴向分布,适用于高压、小流量场合
混流式叶轮:叶片沿径向和轴向混合分布,适用于中压、中流 量场合
旋流式叶轮:叶片沿径向和轴向旋转分布,适用于高压、大流 量场合
铸造工艺:砂型铸造、金属型铸造、离心铸造等 材料选择:不锈钢、铸铁、铝合金、铜合金等 铸造方法:重力铸造、低压铸造、高压铸造等 材料性能:耐磨性、耐腐蚀性、耐热性等 铸造缺陷:气孔、缩孔、裂纹等 铸造工艺优化:提高铸造质量,降低成本,提高生产效率
焊接工艺与材料选择
焊接工艺:包括电弧焊、激光焊、电子束焊等 材料选择:根据叶轮的工作环境和性能要求选择合适的材料,如不锈钢、铝合金、钛合金等 焊接质量控制:通过无损检测、金相分析等方法确保焊接质量 焊接工艺优化:通过优化焊接参数、改进焊接设备等方法提高焊接效率和质量
斜流式叶轮:叶片沿斜向分布,适用于低压、中流量场合
轴向流叶轮:叶片沿轴向分布,适用于低压、大流量场合
叶轮的工作原理
叶轮是泵与风机的核心部件,负责将流体能量转化为机械能
叶轮由叶片和轮毂组成,叶片负责将流体能量转化为机械能,轮毂负责支撑叶片
叶轮通过旋转将流体吸入,加速,排出,பைடு நூலகம்现流体能量的转换 叶轮的工作原理涉及到流体力学、机械工程等多个学科领域
风压:气流通过叶轮的压力
叶片角度与风量、风压的关系:叶片角度越大,风量越大,风压越小;叶片角度越小, 风量越小,风压越大。
叶片形状对风量与风压的影响
叶片形状:影响 风量与风压的主 要因素
叶片形状与风量: 叶片形状不同, 风量也不同
叶轮类型包括 离心式、轴流 式、混流式等, 适用于不同的 流体输送场景
叶轮的分类
离心式叶轮:叶片沿径向分布,适用于低压、大流量场合
轴流式叶轮:叶片沿轴向分布,适用于高压、小流量场合
混流式叶轮:叶片沿径向和轴向混合分布,适用于中压、中流 量场合
旋流式叶轮:叶片沿径向和轴向旋转分布,适用于高压、大流 量场合
铸造工艺:砂型铸造、金属型铸造、离心铸造等 材料选择:不锈钢、铸铁、铝合金、铜合金等 铸造方法:重力铸造、低压铸造、高压铸造等 材料性能:耐磨性、耐腐蚀性、耐热性等 铸造缺陷:气孔、缩孔、裂纹等 铸造工艺优化:提高铸造质量,降低成本,提高生产效率
焊接工艺与材料选择
焊接工艺:包括电弧焊、激光焊、电子束焊等 材料选择:根据叶轮的工作环境和性能要求选择合适的材料,如不锈钢、铝合金、钛合金等 焊接质量控制:通过无损检测、金相分析等方法确保焊接质量 焊接工艺优化:通过优化焊接参数、改进焊接设备等方法提高焊接效率和质量
斜流式叶轮:叶片沿斜向分布,适用于低压、中流量场合
轴向流叶轮:叶片沿轴向分布,适用于低压、大流量场合
叶轮的工作原理
叶轮是泵与风机的核心部件,负责将流体能量转化为机械能
叶轮由叶片和轮毂组成,叶片负责将流体能量转化为机械能,轮毂负责支撑叶片
叶轮通过旋转将流体吸入,加速,排出,பைடு நூலகம்现流体能量的转换 叶轮的工作原理涉及到流体力学、机械工程等多个学科领域
风压:气流通过叶轮的压力
叶片角度与风量、风压的关系:叶片角度越大,风量越大,风压越小;叶片角度越小, 风量越小,风压越大。
叶片形状对风量与风压的影响
叶片形状:影响 风量与风压的主 要因素
叶片形状与风量: 叶片形状不同, 风量也不同
泵与风机课件2泵与风机的叶轮理论

叶轮振动的原因
叶轮的不平衡、转子弯曲、轴承 磨损等都会引起叶轮振动。
稳定性分析
对叶轮进行稳定性分析,可以判断 其在不同工况下的稳定性,避免发 生共振和失稳现象。
减振措施
为减小叶轮振动,可采取增加支撑 刚度、优化转子平衡等措施。
04
CATALOGUE
叶轮的应用与优化
叶轮在不同领域的应用
01
02
03
泵与风机课件2泵与风机的叶轮 理论
目 录
• 叶轮理论概述 • 叶轮的设计与制造 • 叶轮的性能分析 • 叶轮的应用与优化 • 叶轮的未来发展展望
01
CATALOGUE
叶轮理论概述
叶轮的基本概念
叶轮是泵与风机中的核心部件 ,主要由叶片和轮毂组成。
叶片的形状、大小、角度等参 数对泵与风机的性能有重要影 响。
叶轮的未来发展展望
新型叶轮材料的研究与应用
高强度轻质材料
利用新型复合材料和金属基复合 材料,提高叶轮的强度和减轻重 量,从而提高泵与风机的效率。
耐腐蚀和耐磨材料
研究和发展具有优异耐腐蚀和耐 磨性能的材料,提高叶轮的使用 寿命和可靠性。
先进制造技术在叶轮制造中的应用
精密铸造和锻造技术
利用精密铸造和锻造技术,制造出高 精度和高质量的叶轮,提高产品的稳 定性和可靠性。
叶轮的材料选择
高强度材料
耐腐蚀材料
为了满足叶轮的强度和刚度要求,应 选择高强度材料,如铸钢、不锈钢等 。
对于在腐蚀性环境中工作的叶轮,应 选择耐腐蚀的材料,如不锈钢、镍基 合金等。
轻质材料
为了减小叶轮的质量和转动惯量,提 高泵和风机的响应速度,可以选择轻 质材料,如铝合金、钛合金等。
叶轮的制造工艺
叶轮的不平衡、转子弯曲、轴承 磨损等都会引起叶轮振动。
稳定性分析
对叶轮进行稳定性分析,可以判断 其在不同工况下的稳定性,避免发 生共振和失稳现象。
减振措施
为减小叶轮振动,可采取增加支撑 刚度、优化转子平衡等措施。
04
CATALOGUE
叶轮的应用与优化
叶轮在不同领域的应用
01
02
03
泵与风机课件2泵与风机的叶轮 理论
目 录
• 叶轮理论概述 • 叶轮的设计与制造 • 叶轮的性能分析 • 叶轮的应用与优化 • 叶轮的未来发展展望
01
CATALOGUE
叶轮理论概述
叶轮的基本概念
叶轮是泵与风机中的核心部件 ,主要由叶片和轮毂组成。
叶片的形状、大小、角度等参 数对泵与风机的性能有重要影 响。
叶轮的未来发展展望
新型叶轮材料的研究与应用
高强度轻质材料
利用新型复合材料和金属基复合 材料,提高叶轮的强度和减轻重 量,从而提高泵与风机的效率。
耐腐蚀和耐磨材料
研究和发展具有优异耐腐蚀和耐 磨性能的材料,提高叶轮的使用 寿命和可靠性。
先进制造技术在叶轮制造中的应用
精密铸造和锻造技术
利用精密铸造和锻造技术,制造出高 精度和高质量的叶轮,提高产品的稳 定性和可靠性。
叶轮的材料选择
高强度材料
耐腐蚀材料
为了满足叶轮的强度和刚度要求,应 选择高强度材料,如铸钢、不锈钢等 。
对于在腐蚀性环境中工作的叶轮,应 选择耐腐蚀的材料,如不锈钢、镍基 合金等。
轻质材料
为了减小叶轮的质量和转动惯量,提 高泵和风机的响应速度,可以选择轻 质材料,如铝合金、钛合金等。
叶轮的制造工艺
离心泵叶轮水力设计讲解ppt课件.ppt

S
Su
sin
sin
1 ctg 2
sin 2 cos2 ctg 2 cos2 sin 2
1 ctg 2 (1 cos2 ) 1 ctg 2
sin 2
sin 2
Sm
S
cos
1 ctg 2 cos2 cos2
1 tg 2 ctg 2
Sr Sm sin 1 tg 2 ctg 2 sin
可根据汽蚀比转数选取
5.62n Q C
NPSH3r / 4
离心泵设计
离心泵设计
四、计算比转数ns,确定 水力方案
3.65n Q ns H3/4
离心泵设计
在确定比转数时应考虑下列因素 • ns=120~210的区间,泵的效率 最高,ns〈60的效率显著下降 • 可以采用单吸或双吸的结构形 式来改变比转数的大小
tg1'
v m1 u1 v u1
vu1由吸水室的结构确定。对直锥形吸水 室vu1=0;对螺旋形吸水室,可按经验 公式确定各流线的vu1值。
离心泵设计
K vur m3 Q2n
式中 m=0.055~0.08,ns小取小值。
叶片进口轴面速度
v m1
Q v F1k1
k1
1
ZSu D1
1
ZS1 D1sin 1
第三节 速度系数设计法
比转数相等的泵的速度系数是相等 的。不同的比转速就有不同的速度系数。 我们以现有性能比较好的产品为基础, 统计出离心泵的速度系数曲线,设计时 按nS选取速度系数,作为计算叶轮尺 寸的依据,这样的设计方法就叫做速度 系数设计法。
离心泵设计
叶轮主要几何参数有:
• 叶轮进口直径D0 • 叶片进口直径D1 • 叶轮轮毂直径dh • 叶片进口角β1
叶轮机械原理第二章 基本方程..
叶轮机械原理
第二章 气动热力学基本方程 在叶轮机械中的应用
在气体动力学和工程热力学中已介绍过描述气 体运动的基本方程(三大守恒)
连续方程 热焓形式的能量方程 机械能形式的能量方程 热力学第一定律方程 (广义伯努利方程) 动量方程(欧拉方程) 动量矩方程(叶轮机欧拉方程)
本章重点介绍上述方程在叶轮机械中的应用
i1w i2 w 2 w12 w2 c pT1 c pT2 2 2
热力学第一定律方程
热力学第一定律
dq c p dT 1
dp di
1
dp
在叶轮机中,气体微团从截面1运动到截面2, 气体从状态1变化到状态2,过程积分
q i2 i1
n 1 n 2 1 p n dp RT1 2 1 1 p1 n 1
机械能形式的能量方程
气体压缩过程——焓熵图
热力学第二定律: dq Tds 热力学关系式: ds
cp T dT R dp p
s2 s1 c p ln T2 T1
2
1
p 1 pd( ) RTd( ) RT ln 1 RT ln 2 1 2 p1
1
2
故,压缩功 Lis 1
2
1
dp RT ln
p2 p1
机械能形式的能量方程
绝热压缩过程:过程与外界无热交换且无损失,即 qe q f =0
p / k 常数
vu
扭速
Lu u vu
第二章作业
以两种不同形式的能量方程(热焓形式和机械能 形式)解释涡轮中的能量转换 判断压气机转子所受轴向力是向前还是向后, 并解释之
第二章 气动热力学基本方程 在叶轮机械中的应用
在气体动力学和工程热力学中已介绍过描述气 体运动的基本方程(三大守恒)
连续方程 热焓形式的能量方程 机械能形式的能量方程 热力学第一定律方程 (广义伯努利方程) 动量方程(欧拉方程) 动量矩方程(叶轮机欧拉方程)
本章重点介绍上述方程在叶轮机械中的应用
i1w i2 w 2 w12 w2 c pT1 c pT2 2 2
热力学第一定律方程
热力学第一定律
dq c p dT 1
dp di
1
dp
在叶轮机中,气体微团从截面1运动到截面2, 气体从状态1变化到状态2,过程积分
q i2 i1
n 1 n 2 1 p n dp RT1 2 1 1 p1 n 1
机械能形式的能量方程
气体压缩过程——焓熵图
热力学第二定律: dq Tds 热力学关系式: ds
cp T dT R dp p
s2 s1 c p ln T2 T1
2
1
p 1 pd( ) RTd( ) RT ln 1 RT ln 2 1 2 p1
1
2
故,压缩功 Lis 1
2
1
dp RT ln
p2 p1
机械能形式的能量方程
绝热压缩过程:过程与外界无热交换且无损失,即 qe q f =0
p / k 常数
vu
扭速
Lu u vu
第二章作业
以两种不同形式的能量方程(热焓形式和机械能 形式)解释涡轮中的能量转换 判断压气机转子所受轴向力是向前还是向后, 并解释之
叶轮机械原理第五章ppt文档
n / T0
在什么截面上应用如下等式?
G
T1*
G`
T1* `
P1*
P1* `
n n`
T1*
T1* `
问:是否满足雷诺数大于2×105?
5.3 轴流压气机相似准则的应用
➢求解:
(2)“零级”后的总温为:
k 1
T 1 ' T 1 (*' k 1 )/ 'T 1 3K 51
满足相似准则所需达到的新转速、流量:
❖第二类是单纯气动现象,它也会激发叶片的振动,但 这种叶片振动性质属于他激振动。 ❖第二类非稳定工况又分为两种:一是旋转失速或称旋 转分离;另一种是喘振现象。二者既有差别又有联系。
5.4 压气机的不稳定工况与扩稳
➢一,旋转失速
➢当转速一定而空气流量减少时,就会引起转子动叶攻角 的增加。空气流量减少到一定程度就能观察到不稳定流动, 同时压气机发出特殊叫声,振动也增大。在转子后测得的 流场表明,有一个或多个低速气流区以某一转速沿动叶旋 转方向转动,这种非稳定工况被称为旋转失速。
n n`
T1*
T1* `
n' 1.104n
G
T1*
G`
T1* `
P1*
P1* `
G' 1.81G
5.4 压气机的不稳定工况与扩稳
➢5.4 压气机的不稳定工况与扩稳
❖不稳定工况的分类
❖压气机非稳定工况可以分为两大类。第一类属于气 动弹性现象,这时叶片的振动属于自激振动,这种现 象被称之为颤振。这种现象不在这里介绍。
➢1,利用好的原型压气机进行缩放设计 ❖一台性能良好的多级压气机可以按相似准则进 行放大或缩小,应用到所需要的新机种中去。
热力叶轮机械原理第二章 单级蒸汽透平2
2019/11/1
27
双列复速级蒸汽透平的热力计算
四排叶栅采用的叶型:
喷 管 叶 栅:C-9012A叶栅,b1 44mm B1 30mm
第一列动叶栅: b2 B2 25mm
转 向 导 叶:P-3021A叶栅,
b1 B1 25mm 第二列动叶栅: b2 B2 25mm
叶轮摩擦损失原因
A-A 截面
径 向
汽缸壁面 静止
叶轮壁面 旋转
周向
② 叶轮两侧的旋涡区,产生涡流,也消耗一部 分轮周功。
2019/11/1
3
摩擦损失、鼓风损失和弧端损失
叶轮摩擦损失概述
摩擦损失:克 的轮服周叶功轮。摩擦阻力和涡流所消耗
摩擦损失位置:叶轮的两个端面/叶轮前后 的两个空间。
摩擦损失功率的计算方法(通常用实验方法 来确定):
30mm
e f
v
在一起,就可得相对内效
率与速比的变化曲线。
0 0.1 0.2 0.3 0.4 xa
双列复速级 oi 曲线
2019/11/1
18
级的相对内效率
2) f 、 v 、en 对相对内效o率i
的
影响
① 级相对内效率 < 轮周效
率;
0i u
较大A1 较小A1
u
(xa )opt 1
三排叶栅中。得到:
hs 261.30.9 235kJ / kg p1 1.57MPa
1 1.57 / 3.5 0.449 0.45 v1 v1s 0.171m3 / kg
根据:Gv1s 6.6 0.171 1.026m3 / s 必须采用较小的部分进汽度: e 0.25 则: xa 0.25
流体机械原理课件
流体机械原理课件
PPT文档演模板
2020/11/25
流体机械原理课件
•第一章 叶片式流体机械概述
•第一节 叶片式流体机械的工作过程
• 叶片式流体机械中的能量转换,是在 带有叶片的转子及连续绕流叶片的流体介 质之间进行的。叶片与介质间的作用力是 惯性力。该力作用在转动的叶片上,因而 产生了功(正或负视力矩和叶轮运动方向 而定)。
•水头与扬程表示每一牛顿(单位重量) 的液体通过机器时发生的能量的变化量
•问题2:水头与扬程的定义能否用在“神舟六号”上?
•可以引入一个与重力无关的定义,只需将 “重量”改为“质量”,这个定义称为能 量头
PPT文档演模板
流体机械原理课件
•2、不可压缩气体介质(通风机) •风压(全压与静压)
PPT文档演模板
PPT文档演模板
流体机械原理课件
•第三节
•叶片式流体机械结构形式简 介
PPT文档演模板
流体机械原理课件
•过流部件(通流部件)和结构部件
PPT文档演模板
流体机械原理课件
•问题:单个叶轮的流量和能量头有没有限制?
•一、叶轮的配置方式,多级与多流,级的概 念
PPT文档演模板
流体机械原理课件
PPT文档演模板
•背靠背
流体机械原理课件
•二、水轮机的结构
•(一)水轮机的整体结构 •立式与卧式
•1、轴流式水轮机
PPT文档演模板
流体机械原理课件
•
导 水 机 构 活 动 导 叶
PPT文档演模板
•转 轮
•
Байду номын сангаас
固 定 导 叶 •蜗 壳
•尾水管
流体机械原理课件
•
PPT文档演模板
2020/11/25
流体机械原理课件
•第一章 叶片式流体机械概述
•第一节 叶片式流体机械的工作过程
• 叶片式流体机械中的能量转换,是在 带有叶片的转子及连续绕流叶片的流体介 质之间进行的。叶片与介质间的作用力是 惯性力。该力作用在转动的叶片上,因而 产生了功(正或负视力矩和叶轮运动方向 而定)。
•水头与扬程表示每一牛顿(单位重量) 的液体通过机器时发生的能量的变化量
•问题2:水头与扬程的定义能否用在“神舟六号”上?
•可以引入一个与重力无关的定义,只需将 “重量”改为“质量”,这个定义称为能 量头
PPT文档演模板
流体机械原理课件
•2、不可压缩气体介质(通风机) •风压(全压与静压)
PPT文档演模板
PPT文档演模板
流体机械原理课件
•第三节
•叶片式流体机械结构形式简 介
PPT文档演模板
流体机械原理课件
•过流部件(通流部件)和结构部件
PPT文档演模板
流体机械原理课件
•问题:单个叶轮的流量和能量头有没有限制?
•一、叶轮的配置方式,多级与多流,级的概 念
PPT文档演模板
流体机械原理课件
PPT文档演模板
•背靠背
流体机械原理课件
•二、水轮机的结构
•(一)水轮机的整体结构 •立式与卧式
•1、轴流式水轮机
PPT文档演模板
流体机械原理课件
•
导 水 机 构 活 动 导 叶
PPT文档演模板
•转 轮
•
Байду номын сангаас
固 定 导 叶 •蜗 壳
•尾水管
流体机械原理课件
•