二次函数图像与系数关系(含答案)
二次函数图像与性质总结含答案

二次函数的图像及性质一、二次函数的根本形式1. 二次函数根本形式:2y ax =的性质:2. 2y ax c =+的性质: 上加下减。
3. ()2y a x h =-的性质:左加右减。
4. ()2y a x h k =-+的性质:二、二次函数图象的平移1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2. 平移规律在原有函数的根底上“h 值正右移,负左移;k 值正上移,负下移〞. 概括成八个字“左加右减,上加下减〞. 方法二:⑴c bx ax y ++=2沿y 轴平移:向上〔下〕平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2〔或m c bx ax y -++=2〕⑵c bx ax y ++=2沿轴平移:向左〔右〕平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2〔或c m x b m x a y +-+-=)()(2〕三、二次函数()2y a x h k =-+及2y ax bx c =++的比拟从解析式上看,()2y a x h k =-+及2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中2424b ac b h k a a -=-=,. 四、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、及y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、及x 轴的交点()10x ,,()20x ,〔假设及x 轴没有交点,那么取两组关于对称轴对称的点〕.画草图时应抓住以下几点:开口方向,对称轴,顶点,及x 轴的交点,及y 轴的交点.五、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2bx a=-时,y 有最小值244ac b a-.2. 当0a <时,抛物线开口向下,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2bx a=-时,y 有最大值244ac b a-.六、二次函数解析式的表示方法1. 一般式:2y ax bx c =++〔a ,b ,c 为常数,0a ≠〕;2. 顶点式:2()y a x h k =-+〔a ,h ,k 为常数,0a ≠〕;3. 两根式:12()()y a x x x x =--〔0a ≠,1x ,2x 是抛物线及x 轴两交点的横坐标〕. 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线及x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.七、二次函数的图象及各项系数之间的关系1. 二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大; ⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小. 2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下,当0b >时,02ba-<,即抛物线的对称轴在y 轴左侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba->,即抛物线对称轴在y 轴的右侧.⑵ 在0a <的前提下,结论刚好及上述相反,即 当0b >时,02ba->,即抛物线的对称轴在y 轴右侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba-<,即抛物线对称轴在y 轴的左侧. 总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.ab 的符号的判定:对称轴abx 2-=在y 轴左边那么0>ab ,在y 轴的右侧那么0<ab ,概括的说就是“左同右异〞总结:3. 常数项c⑴ 当0c >时,抛物线及y 轴的交点在x 轴上方,即抛物线及y 轴交点的纵坐标为正; ⑵ 当0c =时,抛物线及y 轴的交点为坐标原点,即抛物线及y 轴交点的纵坐标为0; ⑶ 当0c <时,抛物线及y 轴的交点在x 轴下方,即抛物线及y 轴交点的纵坐标为负. 总结起来,c 决定了抛物线及y 轴交点的位置. 总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的.二次函数解析式确实定:根据条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 抛物线上三点的坐标,一般选用一般式;2. 抛物线顶点或对称轴或最大〔小〕值,一般选用顶点式;3. 抛物线及x 轴的两个交点的横坐标,一般选用两根式;4. 抛物线上纵坐标一样的两点,常选用顶点式.八、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于x 轴对称2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---;2. 关于y 轴对称2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++;3. 关于原点对称2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-; 4. 关于顶点对称〔即:抛物线绕顶点旋转180°〕2y ax bx c =++关于顶点对称后,得到的解析式是222b y ax bx c a=--+-;()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+.5. 关于点()m n ,对称 ()2y a x h k =-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+-根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原那么,选择适宜的形式,习惯上是先确定原抛物线〔或表达式的抛物线〕的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.二次函数图像参考:十一、2-32y=-2x 2y=3(x+4)22y=3x2y=-2(x-3)2【例题精讲】一、一元二次函数的图象的画法【例1】求作函数64212++=x x y 的图象 【解】 )128(21642122++=++=x x x x y2-4)(214]-4)[(21 2222+=+=x x【例2】求作函数342+--=x x y 的图象。
二次函数中各项系数abc与图像的关系

二次函数中各项系数a ,b ,c 与图像的关系一、首先就y=ax 2+bx+c (a≠0)中的a ,b ,c 对图像的作用归纳如下:1 a 的作用:决定开口方向:a > 0开口向上;a < 0开口向下;决定张口的大小:∣a ∣越大,抛物线的张口越小.2 b 的作用:b 和a 与抛物线图像的对称轴、顶点横坐标有关.b 与a 同号,说明02<-a b ,则对称轴在y 轴的左边; b 与a 异号,说明−b 2a >0,则对称轴在y 轴的右边;特别的,b = 0,对称轴为y 轴.3 c 的作用:c 决定了抛物线与y 轴的交点纵坐标.抛物线与y 轴的交点(0,c )c > 0 抛物线与y 轴的交点在y 轴的正半轴;c < 0 抛物线与y 轴的交点在y 轴的负半轴;特别的,c = 0,抛物线过原点.4 a,b,c 共同决定判别式?=b 2−4ac 的符号进而决定图象与x 轴的交点b 2−4ac >0 与x 轴两个交点b 2−4ac =0 与x 轴一个交点b 2−4ac <0 与x 轴没有交点5 几种特殊情况:x=1时,y=a + b + c ;x= -1时,y=a - b + c .当x = 1时,① 若y > 0,则a + b + c >0;② 若y < 时0,则a + b + c < 0当x = -1时,① 若y > 0,则a - b + c >0;② 若y < 0,则a - b + c < 0.扩:x=2, y=4a + 2b + c ;x= -2, y=4a -2b + c ; x=3, y=9a +3 b + c ;x= -3, y=9a -3b + c 。
一.选择题(共8小题)1.已知二次函数y=ax 2+bx +c 的图象大致如图所示,则下列关系式中成立的是( )A .a >0B .b <0C .c <0D .b +2a >02.如果二次函数y=ax 2+bx +c (a ≠0)的图象如图所示,那么下列不等式成立的是( )A .a >0B .b <0C .ac <0D .bc <0.3.已知二次函数y=ax 2+bx +c (a ≠0)的图象如图所示,有下列4个结论:①abc >0;②b <a +c ;③4a +2b +c >0;④b 2﹣4ac >0;其中正确的结论有( )A .1个B .2个C .3个D .4个4.二次函数y=ax 2+bx +c (a ≠0)的图象如图所示,对于下列结论:①a <0;②b <0;③c >0;④2a +b=0;⑤a ﹣b +c <0,其中正确的个数是( )A .4个B .3个C .2个D .1个第3题图 第4题图 第5题图 第6题图5.二次函数y=ax 2+bx +c (a ≠0)的图象如图,给出下列四个结论::①a <0;②b >0;③b 2﹣4ac >0;④a +b +c <0;其中结论正确的个数有( )A .1个B .2个C .3个D .4个6.如图所示,抛物线y=ax 2+bx +c 的顶点为(﹣1,3),以下结论:①b 2﹣4ac <0;②4a ﹣2b +c <0;③2c﹣b=3;④a+3=c,其中正确的个数()A.1 B.2 C.3 D.47.如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为直线x=﹣1,下列给出四个结论中,正确结论的个数是()个①c>0;②若点B(﹣,y1)、C(﹣,y2)为函数图象上的两点,则y1<y2;③2a﹣b=0;④<0;⑤4a﹣2b+c>0.A.2 B.3 C.4 D.58.二次函数y=ax2+bx+c的图象如图所示,以下结论:①abc>0;②4ac<b2;③2a+b>0;④当x<时,y随x的增大而减小;⑤a+b+c>0.其中正确的有()A.5个 B.4个 C.3个 D.2个二.填空题(共4小题)9.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论:①4ac<b2;②方程ax2+bx+c=0的两个根是x1=﹣1,x2=3;③3a+c>0;④当y>0时,x的取值范围是﹣1≤x<3;⑤当x<0时,y随x增大而增大;其中结论正确有.10.一抛物线和抛物线y=﹣2x2的形状、开口方向完全相同,顶点坐标是(﹣1,3),则该抛物线的解析式为.11.抛物线y=ax2+12x﹣19顶点横坐标是3,则a=.12.将二次函数y=x2+6x+5化为y=a(x﹣h)2+k的形式为.三.解答题(共7小题)13.已知:抛物线y=﹣x2+bx+c经过点B(﹣1,0)和点C(2,3).(1)求此抛物线的表达式;(2)如果此抛物线沿y轴平移一次后过点(﹣2,1),试确定这次平移的方向和距离.14.函数y=(m+2)是关于x的二次函数,求:(1)满足条件的m值;(2)m为何值时,抛物线有最低点?求出这个最低点.这时,当x为何值时,y随x的增大而增大?(3)m为何值时,函数有最大值?最大值是多少?这时,当x为何值时,y随x的增大而减小.15.已知二次函数的图象经过(0,0)(﹣1,﹣1),(1,9)三点.(1)求这个函数的解析式;(2)求这个函数图象的顶点坐标.16.已知抛物线的顶点坐标是(1,﹣4),且经过点(0,﹣3),求与该抛物线相应的二次函数表达式.17.已知二次函数y=x2﹣4x+5.(1)将y=x2﹣4x+5化成y=a (x﹣h)2+k的形式;(2)指出该二次函数图象的对称轴和顶点坐标;(3)当x取何值时,y随x的增大而增大?18.如图,二次函数的图象的顶点坐标为(1,),现将等腰直角三角板直角顶点放在原点O,一个锐角顶点A在此二次函数的图象上,而另一个锐角顶点B在第二象限,且点A的坐标为(2,1).(1)求该二次函数的表达式;(2)判断点B是否在此二次函数的图象上,并说明理由.19.已知二次函数y=a(x﹣h)2,当x=4时有最大值,且此函数的图象经过点(1,﹣3).(1)求此二次函数的解析式;(2)当x为何值时,y随x的增大而增大?。
二次函数系数abc与图像的关系

二次函数系数a、b、c与图象的关系知识归纳:1.a的作用:决定开口方向和开口大小2.a与b的作用:左同右异(对称轴的位置)3.c的作用:与y轴交点的位置。
4.b2-4ac的作用:与x轴交点的个数。
5.几个特殊点:顶点,与x轴交点,与y轴交点,(1,a+b+c),(-1,a-b+c) (2,4a+2b+c), (-2,4a-2b+c)。
针对训练:1.判断下列各图中的a、b、c及△的符号。
(1)a___0;b___0;c___0;△__0.(2)a___0; b___0; c___0;△__0.(3)a___0; b___0; c___0;△__0.(4)a___0; b___0; c___0;△__0.(5)a___0; b___0; c___0;△__0.2.二次函数y=ax2+bx+c的图象如图,用(>,<,=)填空:a___0; b___0; c___0; a+b+c__0; a-b+c__0.3.二次函数y=ax 2+bx+c 的图象如图1所示,则下列关于a 、b 、c 间的关系判断正确的是( )A.ab<0B.bc<0C.a+b+c>0D.a -b+c<04.二次函数y=ax 2+bx+c 图象如图,则点 A (b 2-4ac ,-b a)在第 象限.5.已知a <0,b>0,c >0,那么抛物线y=ax 2+bx+c 的顶点在( )A.第一象限B.第二象限C.第三象限D.第四象限6.已知二次函数y=ax 2+bx+c 的图像如图所示,判断下列各式的符号: (1)a ; (2)b ; (3)c ; (4)a+b+c ; (5)a-b+c ;(6)b 2-4ac ; (7)4ac-b 2; (8)2a+b ; (9)2a-b7.练习:填空(1)函数y=ax 2+bx+c (a≠0)的函数值恒为正的条件: ,恒为负的条件: .(2)已知抛物线y=ax 2+bx+c 的图象在x 轴的下方,则方程ax 2+bx+c=0的解得情况为: .(3)二次函数y=ax 2+bx+c 中,ac <0,则抛物线与x 轴有 交点。
初中数学 二次函数的图像的顶点坐标与系数的关系如何确定

初中数学二次函数的图像的顶点坐标与系数的关系如何确定二次函数的图像的顶点坐标与系数的关系是数学中一个重要的概念,它可以帮助我们确定二次函数图像的顶点坐标。
下面我将为你详细介绍二次函数图像的顶点坐标与系数的关系的确定方法,并提供一些解题技巧和实例。
一、二次函数图像的顶点坐标与系数的关系的确定方法1. 二次函数的标准形式:-二次函数的标准形式为y = ax^2 + bx + c,其中a、b、c为常数,且a ≠ 0。
2. 二次函数的顶点坐标的定义:-二次函数的顶点坐标是指二次函数图像的最高点或最低点在坐标系中的坐标,顶点坐标可以表示为(x, y)。
3. 系数与顶点坐标的关系的定义:-系数a和b决定了二次函数图像的顶点坐标。
4. 系数与顶点坐标的关系的确定:-顶点坐标的x坐标为-b / (2a),顶点坐标的y坐标为f(-b / (2a))。
二、系数与顶点坐标的关系的求解技巧1. 求解系数与顶点坐标的关系的步骤:-首先,确定二次函数的系数a和b的值。
-然后,通过系数a和b的值,可以确定二次函数图像的顶点坐标。
三、解题技巧和实例分析1. 解题技巧:-确定二次函数的系数a和b的值。
-根据系数a和b的值,可以确定二次函数图像的顶点坐标。
2. 实例分析:例题:已知二次函数的方程为y = 2x^2 - 3x + 1,确定二次函数图像的顶点坐标。
解析:首先,确定二次函数的系数a和b的值。
对于二次函数y = 2x^2 - 3x + 1,系数a = 2,系数b = -3。
然后,通过系数a和b的值,可以确定二次函数图像的顶点坐标。
顶点坐标的x坐标为-b / (2a)。
代入系数b = -3和a = 2,得到x = -(-3) / (2*2) = 3/4。
顶点坐标的y坐标为f(-b / (2a))。
代入系数b = -3和a = 2,得到y = 2(3/4)^2 - 3(3/4) + 1 = 7/8。
所以,二次函数图像的顶点坐标为(3/4, 7/8)。
二次函数系数与图像的关系

二次函数系数a ,b ,c 与图像的关系二次函数)0(2≠++=a c bx ax y 的图像确定后,解析式中的系数a ,b ,c 也随之确定,反之,根据所给字母系数a ,b ,c 的符号,也可以判断抛物线的开口方向和位置.这一知识点在中考也属于必考知识点,在选择题第10题考察,难度中等,综合性较强.那么,字母系数a ,b ,c 又是分别对图像有着怎样的影响,下面我们来一一归纳:一、a 的作用1.决定开口方向:0>a 开口向上;0<a 开口向下; 2.决定开口的大小:∣a ∣越大,抛物线的开口越小.二、b 的作用与抛物线的对称轴和a 有关,b 与a 的符号共同决定抛物线的对称轴 1.b 与a 同号.⇔<-02ab对称轴在y 轴的左边.如图一,对称轴在 y 轴的左边,所以b 与a 同号,因为抛物线开口向下,所以0<a ,则0<b ; 2.b 与a 异号.⇔>-02ab对称轴在y 轴的右边.如图二,对称轴在 y 轴的右边,所以b 与a 异号,因为抛物线开口向下,所以0<a ,则0>b ;3.0=b .顶点在y 轴上. 简记:左同右异三、c 的作用:由抛物线与y 轴的交点坐标决定 1. 0>c ⇔抛物线与y 轴的交点在y 轴的正半轴; 2. 0<c ⇔抛物线与y 轴的交点在y 轴的负半轴; 3. c = 0⇔抛物线过原点.图一 图二四、抛物线与x 轴的交点个数决定ac b 42-的符号 1.抛物线与x 轴有两个交点042>-⇔ac b ; 2.抛物线与x 轴有一个交点042=-⇔ac b ; 3.抛物线与x 轴没有交点042<-⇔ac b .五、b a ±2的符号由对称轴所在位置来决定1.判断b a +2的符号,需要判断抛物线的对称轴与1的大小关系; ①如果对称轴在1的右面,则12>-ab,如果抛物线开口向上,则0>a ,不等式就可转化为a b 2>-,移项可得02>+b a ;②如果对称轴在1的左面,则12<-ab,如果抛物线开口向上,则0>a ,不等式就可转化为a b 2<-,移项可得02<+b a ;例如:在图三中,抛物线对称轴在1=x 的左侧,则12<-ab,因为开口向下,所以0<a ,两边同时乘以a ,不等号方向改变,则有02<+b a .根据这一方法,很容易推出图四中02>+b a .2.判断b a -2的符号,需要判断抛物线的对称轴与1-的大小关系; ①如果对称轴在1-的右面,则12->-ab,如果抛物线开口向上,则0>a ,不等式就可转化为a b 2->-,移项可得02>-b a ;图三 图四1-=x 1-=x ②如果对称轴在1-的左面,则12-<-ab,如果抛物线开口向上,则0>a ,不等式就可转化为a b 2-<-,移项可得02<-b a .例如:在图五中,抛物线对称轴在1-=x 的左侧,则12-<-ab,因为开口向下,所以0>a ,两边同时乘以a ,不等号方向不变,则有02<-b a .根据这一方法,很容易推出图六中02>-b a .六、其他情况(解析式c bx ax y ++=2中x 取特殊值)1.当1=x ,则c b a y ++=,所以抛物线c bx ax y ++=2必过),1(c b a ++,在图像中找到这个点的位置.如图七,抛物线c bx ax y ++=2与1=x 的交点位置在第一象限,所以0>++c b a .当1-=x 时,c b a y +-=图五 图六2.当2=x ,则c b a y ++=24,所以抛物线c bx ax y ++=2)24,2(c b a ++,在图像中找到这个点的位置.c bx ax y ++=2与2=x 的交点位置在第四象限024<++c b a .当2-=x 时,c b a y +-=24,用同样的方法即可判断符号;3.当3=x ,则c b a y ++=39,所以抛物线c bx ax y ++=2)39,3(c b a ++,在图像中找到这个点的位置.c bx ax y ++=2与3=x 的交点位置在第四象限,所以39+b a 当3-=x 时,c b a y +-=39,用同样的方法即可判断符号.以上总结的知识点,在考试中也经常考察,在中考也有直接考察;这一部分知识点属于二次函数性质中非常重要的部分,必须熟练掌握.下面给出几道例题,供大家试试身手:例1:二次函数c bx ax y ++=2的图像如图所示,用<,>,=填空:a 0,b 0,c 0, b a -2 0, ac b 42- 0,c b a ++ 0, c b a +- 0,xy例2:已知,二次函数c bx ax y ++=2的图象如图所示,则点M (cb,a )在( )A .第一象限B .第二象限C .第三象限D .第四象限xy。
二次函数系数a、b、c与图像的关系

二次函数系数a 、b、c与图像的关系一、首先就y =a x2+b x+c(a≠0)中的a,b ,c 对图像的作用归纳如下:1 a 的作用:决定开口方向:a > 0开口向上;a < 0开口向下;决定张口的大小:∣a ∣越大,抛物线的张口越小.2 b的作用:b 和a 与抛物线图像的对称轴、顶点横坐标有关.b 与a 同号,说明02<-a b ,则对称轴在y 轴的左边;b 与a 异号,说明−b 2a >0,则对称轴在y 轴的右边;特别的,b = 0,对称轴为y 轴.3 c 的作用:c决定了抛物线与y 轴的交点纵坐标.抛物线与y轴的交点(0,c) c > 0 抛物线与y 轴的交点在y 轴的正半轴;c < 0 抛物线与y轴的交点在y 轴的负半轴;特别的,c = 0,抛物线过原点.4 a,b,c 共同决定判别式∆=b 2−4ac 的符号进而决定图象与x轴的交点b 2−4ac >0 与x 轴两个交点b 2−4ac =0 与x 轴一个交点b 2−4ac <0 与x 轴没有交点5 几种特殊情况:x =1时,y=a + b + c ;x= -1时,y=a - b + c .当x = 1时,∣ 若y > 0,则a + b + c >0;∣ 若y < 时0,则a + b + c < 0 当x = -1时,∣ 若y > 0,则a - b + c >0;∣ 若y < 0,则a - b + c < 0.扩:x =2, y=4a + 2b + c ;x= -2, y=4a -2b + c ; x =3, y=9a +3 b+ c ;x= -3, y=9a -3b + c 。
反之,给我们相应的二次函数图象,我们可以得到其系数a,b,c以及它们组合成的一些关系结构(例如对称轴−b2a ; 判别式b 2−4ac ; y =a +b +c ……等等)的符号二、经典例题讲解例1 已知二次函数()02≠++=a c b a χχγ的图像如图,则a 、b 、c满足( ) A .a < 0,b < 0,c > 0 ;B .a < 0,b < 0,c < 0 ;C . a < 0,b > 0,c > 0 ;D.a > 0,b < 0,c > 0 ;例2(2015呼和浩特)如图,四个二次函数的图像中分别对应的是: ∣2χγa =∣2χγb =∣2χγc =∣2χγd =,则a , b, c , d 的大小关系是 .A.a > b > c > d ﻩﻩﻩB.a > b > d > cC .b > a > c > d ﻩﻩﻩﻩD .b > a > d > c例3已知二次函数y=a x2+bx+c的图象如图,其对称轴x =-1,给出下列结果①b 2>4ac;②a bc>0;③2a+b =0;④a+b+c>0;⑤4a-2b +c<0,则正确的结论是( )A 、①②③④ B、②④⑤ C、②③④ D 、①④⑤y xO x y O ① ② ④ ③练习1. (2015•重庆)已知抛物线y=a x2+bx+c(a≠0)在平面直角坐标系中的 位置如图所示,则下列结论中,正确的是( )A 、a>0B 、b<0C 、c<0 D、a+b+c>02.(2015•文山州)已知二次函数y=ax 2+bx +c 的图象如图所示,则a,b,c 满足( )A 、a <0,b<0,c >0,b 2- 4ac >0B 、a <0,b <0,c<0,b 2- 4a c>0C 、a<0,b>0,c>0,b 2- 4ac >0D 、a >0,b<0,c>0,b2- 4ac>03.(2015•泸州)已知二次函数y=ax 2+bx+c(a,b ,c 为常数,a ≠0)的图象如图所示,有下列结论:①abc<0,②b 2- 4ac>0,③a-b+c=0,④a+b+c >0,其中正确结论的个数是( )A 、1B 、2C 、3D 、44.(2015•仙游县二模)已知二次函数y =ax 2+b x+c (a≠0)的图象如图所示,给出以下结论: ①a +b+c<0; ②a ﹣b+c <0; ③b+2a<0; ④abc >0. \其中所有正确结论的序号是( )A. ③④ B. ②③ C. ①④ D. ①②③yx O5.(2011•雅安)已知二次函数y=ax2+bx+c的图象如图,其对称轴x=-1,给出下列结果①b2>4ac;②abc>0;③2a+b=0;④a+b+c>0;⑤a-b+c<0,则正确的结论是( )A、①②③④B、②④⑤C、②③④D、①④⑤6.(2015•黔南州)如图所示为二次函数y=ax2+bx+c(a≠0)的图象,在下列选项中错误的是()A、ac<0 B、x>1时,y随x的增大而增大C、a+b+c>0 D、方程ax2+bx+c=0的根是x1=-1,x2=3能力提升1.已知二次函数y=ax2+bx+c(a≠0)的图象如下图所示,有下列5个结论:①abc<0; ②a-b+c>0;③2a+b=0; ④b2- 4ac>0;⑤a+b+c>m(am+b)+c(m>1的实数),其中正确的结论有( )A.1个B.2个C.3个D.4个2.(2014•玉林一模)如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为x=﹣1.给出四个结论:①b2>4ac; ②2a+b=0;③3a+c=0; ④a+b+c=0.其中正确结论的个数是()A.1个B.2个C.3个D.4个3.(2015•天津)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列结论:①b2- 4ac>0; ②abc>0;③8a+c>0; ④9a+3b+c<0其中,正确结论的个数是( )A、1B、2 C、3 D、44. 如图所示,二次函数y=ax2+bx+c(a≠0)的图象经过点(-1,2),且与x轴交点的横坐标为x1、x2,其中-2<x1<-1,0<x2<1,下列结论:①abc>0;②4a-2b+c<0;③2a-b>0;④b2+8a>4ac,正确的结论是。
21.3.3二次函数系数与图像的关系
④(a+c)2<b2
y
o
x
x=1
练习1:已知二次函数y=ax2+bx+c(a≠0)的 图象,下列结论正确的有: ①abc>0; ②b<a+c; ③2a-b=0; ④3a+b<0; ⑤4a+2b+c>0; ⑥2c<3b; ⑦a+b>m(am+b)(m为任意实数)
如图,给出四个结论:
(1)abc 0(2)2a b 0
y
(3)a c 1(4)a 1
其中正确结论的序号
2
是 ______
1
1x
已知抛物线y=ax2+bx+c (a<0)经过点(-1,0), 且满足4a+2b+c>0.以下结论:①a+b>0;②a+ c>0;③-a+b+c>0;④b2-2ac>5a2.其中正确的 个数有________
练习:二次函数y=ax2+bx+c(a≠0)图象如图,下 列结论: ①abc>0; ②2a+b=0; ③当m≠1时,a+b>am2+bm;
④a-b+c>0; ⑤若ax12+bx1=ax22+bx2,且x1≠x2,x1+x2=2
二次函数图像与系数的关系
快速回答:
抛物线y=ax2+bx+c如图所示,试确定a、b、c、△的 符号:
(5)2a+b;
(6)a+b+c; (7)a-b+c.
练一练:
已知:二次函数y=ax2+bx+c的图象如图所示,下列 结论中:①abc>0;②b=2a;③4ac-b2<0
y ④a+b+c<0; ⑤a-b+c>0; ⑥a+b-c>0;
二次函数中各项系数a,b,c与图像的关系
二次函数中各项系数 a ,b, c 与图像的关系 一、首先就y=ax 2 +bx+c (a 工0)中的a ,b ,c 对图像的作用归纳如下: a 的作用:决定开口方向:a > 0开口向上;a < 0开口向下; 决定张口的大小:l a I 越大,抛物线的张口越小. b 的作用:b 和a 与抛物线图像的对称轴、顶点横坐标有关. b 与a 同号,说明 _L .. o ,则对称轴在y 轴的左边; 2a b 与a 异号,说明 b -> 0 '口 ,则对称轴在y 轴的右边; 特别的,b = 0,对称轴为y 轴.c 的作用:c 决定了抛物线与y 轴的交点纵坐标.抛物线与y 轴的交点(0,c ) c > 0抛物线与y 轴的交点在y 轴的正半轴;c < 0抛物线与y 轴的交点在y 轴的负半轴; 特别的,c = 0 ,抛物线过原点. ■ . 2 a,b,c 共同决定判别式 b 2 - 4ac > 0 b 2 - 4ac = 0 b 2 - 4ac < 0 * = b ~4ac 的符号进而决定图象与X 轴的交点 与X 轴两个交点 与X 轴一个交点 与X 轴没有交点 x=1 时,y=a + b + c ; x= -1 时,y=a - b + c .当 x = 1 时,①若 y > 0,贝U a + b + c >0 ; ® 若 y < 时 0,贝Ua +b +c < 0 当 x = -1 时,①若 y > 0,贝U a - b + c >0 ;②若 y < 0,贝U a - b + 扩:x=2, y=4a + 2b + c ; x= -2, y=4a -2b + c ; x=3, y=9a +3 b + c 一.选择题(共8小题) 1 .已知二次函数y=ax +bx+c 的图象大致如图所示,贝U 下列关系式中成立的是 A. a >0 B . b v 0 C. c v 0D . b+2a >0 2.如果二次函数y=a£+bx+c (a ^ 0)的图象如图所示,那么下列不等式成立 几种特殊情况: c < 0 . ;x= -3, y=9a -3b + c 。
二次函数中各项系数与图像的关系
二次函数中各项系数a ,b ,c 与图像的关系一、首先就y=ax 2+bx+c (a≠0)中的a ,b ,c 对图像的作用归纳如下:1 a 的作用:决定开口方向:a > 0开口向上;a < 0开口向下;决定张口的大小:∣a ∣越大,抛物线的张口越小.2 b 的作用:b 和a 与抛物线图像的对称轴、顶点横坐标有关.b 与a 同号,说明02<-a b ,则对称轴在y 轴的左边; b 与a 异号,说明−b 2a >0,则对称轴在y 轴的右边;特别的,b = 0,对称轴为y 轴.3 c 的作用:c 决定了抛物线与y 轴的交点纵坐标.抛物线与y 轴的交点(0,c )c > 0 抛物线与y 轴的交点在y 轴的正半轴;c < 0 抛物线与y 轴的交点在y 轴的负半轴;特别的,c = 0,抛物线过原点.4 a,b,c 共同决定判别式?=b 2−4ac 的符号进而决定图象与x 轴的交点b 2−4ac >0 与x 轴两个交点b 2−4ac =0 与x 轴一个交点b 2−4ac <0 与x 轴没有交点5 几种特殊情况:x=1时,y=a + b + c ;x= -1时,y=a - b + c .当x = 1时,① 若y > 0,则a + b + c >0;② 若y < 时0,则a + b + c < 0当x = -1时,① 若y > 0,则a - b + c >0;② 若y < 0,则a - b + c < 0.扩:x=2, y=4a + 2b + c ;x= -2, y=4a -2b + c ; x=3, y=9a +3 b + c ;x= -3, y=9a -3b + c 。
一.选择题(共8小题)1.已知二次函数y=ax 2+bx+c 的图象大致如图所示,则下列关系式中成立的是( )A .a >0B .b <0C .c <0D .b+2a >02.如果二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,那么下列不等式成立的是( )A .a >0B .b <0C .ac <0D .bc <0.3.已知二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,有下列4个结论:①abc >0;②b <a+c ;③4a+2b+c >0;④b 2﹣4ac >0;其中正确的结论有( )A .1个B .2个C .3个D .4个4.二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,对于下列结论:①a <0;②b <0;③c >0;④2a+b=0;⑤a ﹣b+c <0,其中正确的个数是( )A .4个B .3个C .2个D .1个第3题图 第4题图 第5题图 第6题图5.二次函数y=ax 2+bx+c (a ≠0)的图象如图,给出下列四个结论::①a <0;②b >0;③b 2﹣4ac >0;④a+b+c <0;其中结论正确的个数有( )A .1个B .2个C .3个D .4个6.如图所示,抛物线y=ax 2+bx+c 的顶点为(﹣1,3),以下结论:①b 2﹣4ac <0;②4a ﹣2b+c <0;③2c﹣b=3;④a+3=c,其中正确的个数()A.1 B.2 C.3 D.47.如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为直线x=﹣1,下列给出四个结论中,正确结论的个数是()个①c>0;②若点B(﹣,y1)、C(﹣,y2)为函数图象上的两点,则y1<y2;③2a﹣b=0;④<0;⑤4a﹣2b+c>0.A.2 B.3 C.4 D.58.二次函数y=ax2+bx+c的图象如图所示,以下结论:①abc>0;②4ac<b2;③2a+b>0;④当x<时,y随x的增大而减小;⑤a+b+c>0.其中正确的有()A.5个B.4个C.3个D.2个二.填空题(共4小题)9.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论:①4ac<b2;②方程ax2+bx+c=0的两个根是x1=﹣1,x2=3;③3a+c>0;④当y>0时,x的取值范围是﹣1≤x<3;⑤当x<0时,y随x增大而增大;其中结论正确有.10.一抛物线和抛物线y=﹣2x2的形状、开口方向完全相同,顶点坐标是(﹣1,3),则该抛物线的解析式为.11.抛物线y=ax2+12x﹣19顶点横坐标是3,则a= .12.将二次函数y=x2+6x+5化为y=a(x﹣h)2+k的形式为.三.解答题(共7小题)13.已知:抛物线y=﹣x2+bx+c经过点B(﹣1,0)和点C(2,3).(1)求此抛物线的表达式;(2)如果此抛物线沿y轴平移一次后过点(﹣2,1),试确定这次平移的方向和距离.14.函数y=(m+2)是关于x的二次函数,求:(1)满足条件的m值;(2)m为何值时,抛物线有最低点?求出这个最低点.这时,当x为何值时,y随x的增大而增大?(3)m为何值时,函数有最大值?最大值是多少?这时,当x为何值时,y随x的增大而减小.15.已知二次函数的图象经过(0,0)(﹣1,﹣1),(1,9)三点.(1)求这个函数的解析式;(2)求这个函数图象的顶点坐标.16.已知抛物线的顶点坐标是(1,﹣4),且经过点(0,﹣3),求与该抛物线相应的二次函数表达式.17.已知二次函数y=x2﹣4x+5.(1)将y=x2﹣4x+5化成y=a (x﹣h)2+k的形式;(2)指出该二次函数图象的对称轴和顶点坐标;(3)当x取何值时,y随x的增大而增大?18.如图,二次函数的图象的顶点坐标为(1,),现将等腰直角三角板直角顶点放在原点O,一个锐角顶点A在此二次函数的图象上,而另一个锐角顶点B在第二象限,且点A的坐标为(2,1).(1)求该二次函数的表达式;(2)判断点B是否在此二次函数的图象上,并说明理由.19.已知二次函数y=a(x﹣h)2,当x=4时有最大值,且此函数的图象经过点(1,﹣3).(1)求此二次函数的解析式;(2)当x为何值时,y随x的增大而增大?。
中考复习课件 二次函数的图象与各项字母系数之间的关系
A、4个 B、3个
y
C、2个 D、1个
o
x
x=1
3、已知:二次函数y=ax2+bx+c的图象如图所示, 下列结论中:①abc>0;②b=2a;③a+b+c<0;
④a+b-c>0; ⑤a-b+c>0正确的个数是 (C )
A、2个 B、3个
y
C、4个 D、5个
小试牛刀 快速回答:
抛物线y=ax2+bx+c如图所示,试确定a、b、c、△ 的符号:
快速回答:
抛物线y=ax2+bx+c如图所示,试确定a、b、c、△ 的符号:
20
快速回答:
抛物线y=ax2+bx+c如图所示,试确定a、b、c、△ 的符号:
21
快速回答:
抛物线y=ax2+bx+c如图所示,试确定a、b、c、△ 的符号:
b
2a+b
- 与1比较,等于1,大于1,小于1
2a
2a-b
- b 与-1比较,等于-1,大于-1,小于-1 2a
b2-4ac
与x轴交点个数
a+b+c 令x=1,y=a+b+c,看纵坐标是在y轴的正半
轴上(>0)还是在负半轴上(<0)
a-b+c 令x=-1,y=a-b+c,看纵坐标
4a+2b+ c
4a-
b24ac>0
b2-4ac=0
与x轴无交点
b24ac<0
5.二次函数图象的对称轴特殊情况
(1)当对称轴是x=1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 二次函数图像与系数关系 一.选择题(共9小题) 1.如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),顶点坐标为(1,n),与y轴的交点在(0,2)、(0,3)之间(包含端点),则下列结论:
①当x>3时,y<0;②3a+b>0;③﹣1≤a≤﹣;④3≤n≤4中, 正确的是( )
A. ①② B. ③④ C. ①④ D. ①③ 考点: 二次函数图象与系数的关系. 专题: 计算题;压轴题. 分析: ①由抛物线的对称轴为直线x=1,一个交点A(﹣1,0),得到另一个交点坐标,利用图象即可对于选项①作出判断; ②根据抛物线开口方向判定a的符号,由对称轴方程求得b与a的关系是b=﹣2a,将其代入(3a+b),并判定其符号;
③根据两根之积=﹣3,得到a=﹣,然后根据c的取值范围利用不等式的性质来求a的取值范围; ④把顶点坐标代入函数解析式得到n=a+b+c=c,利用c的取值范围可以求得n的取值范围. 解答: 解:①∵抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),对称轴直线是x=1,
∴该抛物线与x轴的另一个交点的坐标是(3,0), ∴根据图示知,当x>3时,y<0. 故①正确;
②根据图示知,抛物线开口方向向下,则a<0. ∵对称轴x=﹣=1,
∴b=﹣2a, ∴3a+b=3a﹣2a=a<0,即3a+b<0. 故②错误;
③∵抛物线与x轴的两个交点坐标分别是(﹣1,0),(3,0), ∴﹣1×3=﹣3, ∴=﹣3,则a=﹣. ∵抛物线与y轴的交点在(0,2)、(0,3)之间(包含端点), ∴2≤c≤3,
∴﹣1≤﹣≤﹣,即﹣1≤a≤﹣.
故③正确;
④根据题意知,a=﹣,﹣=1, ∴b=﹣2a=, ∴n=a+b+c=c. ∵2≤c≤3, ∴≤c≤4,即≤n≤4.
故④错误. 综上所述,正确的说法有①③. 故选D.
点评: 本题考查了二次函数图象与系数的关系.二次函数y=ax2+bx+c系数符号由抛物线开
口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.
2.如图是二次函数y=ax2+bx+c图象的一部分,其对称轴为x=﹣1,且过点(﹣3,0).下列说法:①abc<0;②2a﹣b=0;③4a+2b+c<0;④若(﹣5,y1),(,y2)是抛物线上两点,则 y1>y2.其中说法正确的是( )
A. ①② B. ②③ C. ①②④ D. ②③④ 考点: 二次函数图象与系数的关系. 专题: 压轴题. 分析: 根据图象得出a>0,b=2a>0,c<0,即可判断①②;把x=2代入抛物线的解析式即可判断③,求出点(﹣5,y1)关于对称轴的对称点的坐标是(3,y1),根据当x>﹣1时,y随x的增大而增大即可判断④. 解答: 解:∵二次函数的图象的开口向上, ∴a>0, ∵二次函数的图象y轴的交点在y轴的负半轴上, ∴c<0, ∵二次函数图象的对称轴是直线x=﹣1,
∴﹣=﹣1, ∴b=2a>0, ∴abc<0,∴①正确; 2a﹣b=2a﹣2a=0,∴②正确; ∵二次函数y=ax2+bx+c图象的一部分,其对称轴为x=﹣1,且过点(﹣3,0).
∴与x轴的另一个交点的坐标是(1,0), ∴把x=2代入y=ax2+bx+c得:y=4a+2b+c>0,∴③错误;
∵二次函数y=ax2+bx+c图象的对称轴为x=﹣1,
∴点(﹣5,y1)关于对称轴的对称点的坐标是(3,y1),
根据当x>﹣1时,y随x的增大而增大,
∵<3,
∴y2<y1,∴④正确;
故选C. 点评: 本题考查了二次函数的图象与系数的关系的应用,题目比较典型,主要考查学生的理解能力和辨析能力.
3.如图,二次函数y=ax2+bx+c(a≠0)的图象的顶点在第一象限,且过点(0,1)和(﹣1,0).下列结论:①ab<0,②b2>4a,③0<a+b+c<2,④0<b<1,⑤当x>﹣1时,y>0,其中正确结论的个数是( )
A. 5个 B. 4个 C. 3个 D. 2个 考点: 二次函数图象与系数的关系. 专题: 压轴题. 分析: 由抛物线的对称轴在y轴右侧,可以判定a、b异号,由此确定①正确; 由抛物线与x轴有两个交点得到b2﹣4ac>0,又抛物线过点(0,1),得出c=1,由此 判定②正确; 由抛物线过点(﹣1,0),得出a﹣b+c=0,即a=b﹣1,由a<0得出b<1;由a<0,及ab<0,得出b>0,由此判定④正确; 由a﹣b+c=0,及b>0得出a+b+c=2b>0;由b<1,c=1,a<0,得出a+b+c<a+1+1<2,由此判定③正确; 由图象可知,当自变量x的取值范围在一元二次方程ax2+bx+c=0的两个根之间时,函数值y>0,由此判定⑤错误. 解答: 解:∵二次函数y=ax2+bx+c(a≠0)过点(0,1)和(﹣1,0),
∴c=1,a﹣b+c=0.
①∵抛物线的对称轴在y轴右侧,∴x=﹣>0, ∴a与b异号,∴ab<0,正确; ②∵抛物线与x轴有两个不同的交点,∴b2﹣4ac>0, ∵c=1,∴b2﹣4a>0,b2>4a,正确;
④∵抛物线开口向下,∴a<0, ∵ab<0,∴b>0. ∵a﹣b+c=0,c=1,∴a=b﹣1, ∵a<0,∴b﹣1<0,b<1, ∴0<b<1,正确; ③∵a﹣b+c=0,∴a+c=b, ∴a+b+c=2b>0. ∵b<1,c=1,a<0, ∴a+b+c=a+b+1<a+1+1=a+2<0+2=2, ∴0<a+b+c<2,正确; ⑤抛物线y=ax2+bx+c与x轴的一个交点为(﹣1,0),设另一个交点为(x0,0),则x0>0, 由图可知,当x0>x>﹣1时,y>0,错误; 综上所述,正确的结论有①②③④. 故选B. 点评: 本题主要考查二次函数图象与系数之间的关系,不等式的性质,难度适中.二次函数y=ax2+bx+c(a≠0),a的符号由抛物线开口方向决定;b的符号由对称轴的位置及a的符号决定;c的符号由抛物线与y轴交点的位置决定;抛物线与x轴的交点个数,决定了b2﹣4ac的符号,此外还要注意二次函数与方程之间的转换.
4.二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论中,正确的是( )
A. abc<0 B. a+c<b C. b>2a D. 4a>2b﹣c 考点: 二次函数图象与系数的关系;二次函数与不等式(组). 专题: 压轴题. 分析: 由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及图象经过的点的情况进行推理,进而对所得结论进行判断. 解答: 解:A、∵图象开口向下,∴a<0,∵与y轴交于正半轴,∴c>0,∵对称轴在y轴
左侧,﹣<0,∴b<0,∴abc>0,故本选项错误; B、∵当x=﹣1时,对应的函数值y>0,即a﹣b+c>0,∴a+c>b,故本选项错误; C、∵抛物线的对称轴为直线x=﹣>﹣1,又a<0,∴b>2a,故本选项正确; D、∵当x=﹣2时,对应的函数值y<0,即4a﹣2b+c<0,∴4a<2b﹣c,故本选项错误. 故选C. 点评: 本题主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与不等式的关系,难度中等.
5.小轩从如图所示的二次函数y=ax2+bx+c(a≠0)的图象中,观察得出了下面五条信息: ①ab>0;②a+b+c<0;③b+2c>0;④a﹣2b+4c>0;⑤. 你认为其中正确信息的个数有( )
A. 2个 B. 3个 C. 4个 D. 5个 考点: 二次函数图象与系数的关系. 专题: 压轴题. 分析: 由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断. 解答: 解:①如图,∵抛物线开口方向向下,∴a<0.
∵对称轴x=﹣=﹣,∴b=a<0,
∴ab>0.故①正确;
②如图,当x=1时,y<0,即a+b+c<0. 故②正确;
③如图,当x=﹣1时,y=a﹣b+c>0, ∴2a﹣2b+2c>0,即3b﹣2b+2c>0, ∴b+2c>0. 故③正确;
④如图,当x=﹣时,y>0,即a﹣b+c>0. ∴a﹣2b+4c>0, 故④正确;
⑤如图,对称轴x=﹣=﹣,则.故⑤正确. 综上所述,正确的结论是①②③④⑤,共5个. 故选D.
点评: 本题考查了二次函数图象与系数的关系.二次函数y=ax2+bx+c系数符号由抛物线开
口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.
6.函数y=x2+bx+c与y=x的图象如图所示,有以下结论: ①b2﹣4c>0;②b+c+1=0;③3b+c+6=0;④当1<x<3时,x2+(b﹣1)x+c<0. 其中正确的个数为( )
A. 1 B. 2 C. 3 D. 4 考点: 二次函数图象与系数的关系. 专题: 压轴题. 分析: 由函数y=x2+bx+c与x轴无交点,可得b2﹣4c<0;当x=1时,y=1+b+c=1;当x=3
时,y=9+3b+c=3;当1<x<3时,二次函数值小于一次函数值,可得x2+bx+c<x,继而可求得答案. 解答: 解:∵函数y=x2+bx+c与x轴无交点,
∴b2﹣4c<0;
故①错误;