ch8 Numerical Technique
ch8 功率放大

功放电路的分析方法
• 由于功放电路输入端为大信号,所以对功放电路分析常 采用图解法, • 而小信号放大电路分析时用的微变等效电路法则不再适 用!
• 功率放大就是在有较大的电压输出的同时, 又要有较大的电流输出。 • 前面学过的放大电路多用于多级放大电路 的输入级或中间级,主要用于放大微弱的 电压或电流信号。
• 为了克服交越失真,可以利用PN结压降、电阻 压降、或其它元器件压降给两个功放管的基极 加上正向偏臵电压(Vbia=VT),使功放管处于 临界导通状态,即可消除交越失真 • 实际偏臵电路中的偏执电压Vbia一般由导通的 PN结提供,如P220图所示,导通的D1和D2分别 为TN和TP提供约0.7V的偏执电压,与发射结压 降有较好的匹配性。
因而也需要给功放管加上偏臵电流,即使其工作于甲乙类放大 状态, 以此来克服交越失真。 下图为常见的几种甲乙类互补对称功率放大器。(a)图为 OCL电路,(b)图为OTL电路。在(a)、(b)两图中, V3为推
动级,V3的集电极电路中接有两个二极管 VD1和V
电极电流在V
• 主要技术指标: • (1)输出功率Po和最大不失真输出功率Pom • 输出电压有效值与输出电流有效值的乘积定义为输出功 率Po Vom I om 1
PO VO I O 2 · Vom I om 2 2
• 其中Vom和Iom分别为输出电压和电流的峰值。 • 最大不失真输出功率指输出在基本不失真情况下,放大 电路最大输出电压Vomax和最大输出电流Iomax有效值的 乘积,记为Pom Vo max I o max 1
Pom
• (2)效率η • 放大电路的效率定义为放大电路输出给负载的交流功率 Po与直流电源提供的功率PV 之比,即: PO 100% P • (3)管耗PT V • 损耗在功放管上的功率称为功放管的损耗,简称管耗, 用PT表示。
ch8_后处理

Workbench-Simulation Introduction 11.0第八章结果后处理概述Training Manual •在本章中, 将介绍后处理方面的部分内容:–查看结果–区域显示结果(Scoping Results)–输出结果–坐标系和方向解–结果组合(Solution Combinations)–应力奇异(Stress Singularities)–误差估计–收敛状况•本节所介绍的性能适合于所有的ANSYS 的licenses, 额外注明的除外Training ManualTraining Manual真实位移自动位移缩放Training ManualTraining Manual…图例控制点击并拖拉等值线尺度来指定等值线范围.右键点击图例改变颜色配置.右键指定超出/低于图例范围的独立段.Training ManualTraining ManualSlice Planes IsoSurfacesExterior Capped IsoSurfacesTraining Manual Top Capped Isosurface Bottom Capped IsosurfaceTraining ManualSolid FillContour BandsSmooth ContoursIsolinesTraining Manual No Wireframe Show Undeformed WireframeShow Undeformed Model Show ElementsTraining ManualProcessor with results Click on one side of bar to cap viewTraining Manual•Probe tool 工具允许用户在云图结果上的任何点添加注释;•Probe tool 工具允许用户对某点结果进行更加细致的研究,并且可以将结果数据参数化;•Probe tool 工具可以选择几何体或者坐标系中的位置点;•结果的方向性可以参考整体或者局部坐标系;…探测工具Training ManualLocal CSProbe ToolTraining ManualTraining ManualTraining ManualTraining ManualTraining ManualSolid Form, Equal LengthProportional LengthSolid Form, Grid AlignedEqual LengthTraining Manual…多窗口显示•在后处理中,使用多窗口显示是很有用的, 它能同时显示多个结果图–同时对比多个结果是很有必要的, 例如对比来自不同工况的结果数据或是多个振型Training ManualTraining Manual指定面上的应力结果单个体上的结果显示单个零件上的主应力矢量Training Manual 视图下可以只显示路径绘图Training Manual…输出结果Training Manual •通常, 对于结果项, 内部的ANSYS 节点号和结果均可以输出,如下所示,如要输出节点位置, 改变“Tools menu >Options…>Simulation: Export”的选项Training ManualTraining Manual Stresses in Local Cylindrical Y-DirectionTraining ManualTraining Manual ).Training Manual “Environment”“Environment 3”组合后的结果ANSYS License AvailabilityDesignSpace EntraDesignSpaceProfessional xTraining ManualTraining Manual 上述情况下, 在高应力区域进行网格的细化会增加应力Training Manual 点载荷分布载荷Training Manual. . . 误差估计Training Manual •误差图可以指出需要单元细化的位置.•误差图是以能量为基础的H. 收敛性Training Manual •如前面所述, 当网格细化之后, 数学模型将变得更加精确. 但是, 网格细化是以增加计算时间为代价的.•得到一个最佳的网格划分需要以下几步:–有确定网格是否足够的准则–只在必要的地方将网格细化•手工去完成这些任务是很繁琐的,而且也不是很精确–但用户不得不去手工完成这些细化,重新求解,并和以前的求解结果进行对比.•Design Simulation 有收敛性控制,根据用户指定的精度等级去自适应细化Training Manual收敛性(分支的详细列表中,选择最大或者最小值,并输入允许的不会以未定义的方式尝试着细化网Training Manual …收敛性•上一步完成后,求解时Design Simulation 将自动细化网格并重新求解–至少需要两步迭代(初始解和第一次细化循环)–在求解(Solution )分支条细节里面的“最大细化循环次数(Max RefinementLoops )”允许用户设置每次求解的最大循环次数,这样可以防止DesignSimulation 进行过多的细化。
Ch8 渠道领袖与领导方法

谁是渠道领袖?
影响着一个企业或组织在渠道中的领导地位的因素:
品牌的归属及其影响力 企业在渠道中的角色 渠道的长度、宽度和企业的渠道影响力 渠道成员之间的契约或协议 产品性质 市场性质
渠道领导的影响因素
影响渠道领导的直接因素
渠道领袖的权力、渠道领袖自身的特性因素
领导意愿、风险承受力和承受意愿 依赖程度与互依结构
L对P的 奖励 L渠道管 理人员对P 的奖励 L渠道管 理人对P渠 道员工的 奖励
A——期望 B——工具
P的目标 P渠道员 工的目标
P=被领导或被激励的渠道成员 L=渠道领袖或实施激励的渠道成员
C——吸引力
三个链接与三个缺口
能力缺口:选择较有能力的渠道成员 信任缺口:言而有信,奖罚分明 认知缺口:了解渠道成员和其渠道员工的需要,设计奖 罚制度 只有这三个缺口很好地被弥合起来,渠道领袖的激励才 是最为有效的 这里要特别注意
渠道参与者和其渠道员工在多方面有可能存在差异,如在需要、 产出认知和吸引力评价等方面,因此针对渠道参与者的激励政 策与激励措施不一定能激发其渠道员工工作的积极性 这是渠道激励的一个重要特点,也是渠道领袖进行渠道激励时 需要考虑的一个重要内容
渠道激励的原则
实事求是原则 目标相容原则 适时原则 奖励与惩罚相结合的原则 公平原则
经营建议
一起进行渠道计划工作,
的私人接触
定期的信息交流
统筹货源、促销等活动
承担长期责任(较高的专
销售知识
提供广告或促销方面的扶
有资产投入)
定期举办渠道成员会议 听取渠道成员对于本企业
持
人员培训
经常性磋商机制
Ch8 供应链管理新生产理念:大规模定制

大规模定制与大规模生产的比较
大规模定制
大规模生产
焦点:通过稳定性和
控制力取得高效率
焦点:通过灵活性和快速
响应来实现多样化和定制化
目标:以几乎人人买
得起的低价格开发、生 产、销售、交付产品和 服务
目标:开发、生产、销售、
交付的产品和服务,具有足 够的多样化和定制化,同时 是人们负担的起的,即几乎 人人都买得起自己想要产品
例:美克美家的定制化窗帘服务
供应链与物流管理-Supply Chain & Logistics Management
工商管理学院
School .Busi Admin
制造定制化
制造定制化是指接到客户定单后,在已有的零部件、模 块的基础上进行变形设计、制造和装配,最终向客户提供定 制产品的生产方式。在这种定制生产中,产品的结构设计是 固定的,变形设计及其下游的活动由客户定单所驱动。
在这种延迟方式中codp点发生在配送或销售环节制造延迟是指企业在接到客户订单之后在已有的零部件模块基础上进行变形设计制造和装配最终将定制化的产品交付到客户手中装配延迟在接到客户订单之后企业对现有标准化零部件或是模块经过重新配置和组装后向客户提供定制化的产品
浙江工商大学 工商管理学院
School of Business Administration
例:戴尔电脑的案例
供应链与物流管理-Supply Chain & Logistics Management
工商管理学院
School .Busi Admin
自定制化
自定制化是指产品完全是标准化的产品,但产品是可客 户化的,客户可从产品所提供的众多选项中,选择当前最符 合其需要的一个选项。因此,在自定制方式中产品的设计、 制造和装配都是固定的,不受客户定单的影响。
分子生物学 ch8真核生物基因表达调控

CpG岛(CpG island) 岛 )
真核生物基因组中,常见富含的 的区域, 真核生物基因组中,常见富含的CpG的区域, 的区域 称为CpG岛,常位于转录调控区及其附近,其 称为 岛 常位于转录调控区及其附近, 甲基化程度直接影响转录活性. 甲基化程度直接影响转录活性. 人类基因组中约有29,000个CpG岛 个 人类基因组中约有 岛 CpG岛的甲基化可抑制启动子的活性. 岛的甲基化可抑制启动子的活性 岛的甲基化可抑制启动子的活性.
转录调节因子结构
DNA结合结构域 DNA结合结构域 TF 转录激活结构域 二聚体结构域
与RNA聚合酶结合 聚合酶结合 与顺式元件识别, 与顺式元件识别,结合
DNA结合域 DNA结合域
螺旋-转角 螺旋 螺旋 转角-螺旋(HTH)结构基序 转角 螺旋( ) 锌指( ) 锌指(ZF)结构基序 螺旋-突环 螺旋 螺旋 突环-螺旋(HLH)结构基序 突环 螺旋( ) 亮氨酸拉链( ) 亮氨酸拉链(LZ)结构基序 同源异型( ) 同源异型(HD)基序
☆ 真核基因表达调控的层次
染色体和染色质水平:基因数量,结构 染色体和染色质水平:基因数量, 转录水平:顺式作用元件与反式作用因子 转录水平: 转录后水平:mRNA的加工 成熟, 的加工, 转录后水平:mRNA的加工,成熟,转运 翻译水平:起始复合物及mRNA稳定性 翻译水平:起始复合物及mRNA稳定性 翻译后水平:蛋白质加工,修饰,转运 翻译后水平:蛋白质加工,修饰,
螺旋-转角-螺旋(Helix-turn-helix) 螺旋-转角-螺旋( )
最常见的一种基序,基序包含有两个 螺旋 螺旋, 最常见的一种基序,基序包含有两个a螺旋,螺旋之间间 隔有一个短的b转角 使两个螺旋可通过疏水作用装配起来. 转角, 隔有一个短的 转角,使两个螺旋可通过疏水作用装配起来. 第一个螺旋稳定并使第二个螺旋暴露出来, 第一个螺旋稳定并使第二个螺旋暴露出来,与DNA的大沟作 的大沟作 而特异性地与碱基接触.因此, 用,而特异性地与碱基接触.因此,第二个螺旋被称为识别 螺旋(recognition helix).上述的相互作用锚定了蛋白质中识别 螺旋 . 螺旋的位置并稳定了DNA的构象,从而调节不同蛋白和其结 的构象, 螺旋的位置并稳定了 的构象 合位点的亲和力. 合位点的亲和力.
Ch8(码分多址移动通信系统)

7
8.1.1 码分多址的特征
软容量 软容量
在模拟频分和数字时分的移动通信中, 每个小区的信道数是固 定的.当没有空闲信道时, 移动用户既不能再呼叫也不能接收 其他用户的呼叫. 在码分多址CDMA系统中,多用户是靠码型来区分的, 只要接收 机在允许最小信噪比条件下, 增加一个用户或几个用户只使信 噪比有所下降, 不会因没有信道而不能通话.这种小区信道数 可扩容的现象称软容量. 系统软容量的另一种形式是小区呼吸功能:指各个小区的覆盖
2
多址技术 频分多址(FDMA)技术 频分多址(FDMA)
含义:每个用户占用一个频率 含义 用户识别:频道号 用户识别 特点: 特点 以频率复用为基础,以频带划分各种小区 对功控的要求不严 是频率受限和干扰受限系统 基站由多部不同载波频率的发射机同时工作 应用: 应用:第一代模拟/第二代数字蜂窝移动通信系统
18
8.1.5 IS-95 IS-
CDMA蜂窝通信系统的时间基准 CDMA蜂窝通信系统的时间基准
CDMA蜂窝系统利用"全球定位系统"(GPS)的时 标, GPS的时间和"世界协调时间"(UTC)是同步的, 二者之差是秒的整倍数. 各基站都配有GPS接收机,保持系统中各基站有 统一的时间基准,称为CDMA系统的公共时间基准.移 动台通常利用最先到达并用于解调的多径信号分量建 立基准.
反向链路上的"远近效应"
- 基站远处的用户的信号会被近处用户的信号淹没 移动台位于相邻小区交界处时,收到服务基站的有用信号很 低,还会收到相邻小区基站的较强干扰. 无线信道的衰落
– 慢衰落
地形起伏,大型建筑物以及树林等的阻挡 多径传播以及多普勒频移的存在
12
– 快衰落
第八章-数学形态学处理市公开课获奖课件省名师示范课获奖课件
Jan., 2023
7
2 基本处理定义
Jan., 2023
8
2 基本处理定义
2)平移(translation)
A, x E N,A平移x记作Ax,定义为
Ax c E N ,c a x,a A
其中AB表示x B时的平移。
例:A 0,1,1,1,2,1,2,2,3,0, x 0,1 则Ax 0,2,1,2,2,2,2,3,3,1
A
B
AB
(腐蚀)
Jan., 2023
15
2 基本处理定义
Jan., 2023
16
2 基本处理定义
文字图象
Jan., 2023
膨胀后旳文字图象 腐蚀后旳文字图象
17
2 基本处理定义
5)腐蚀与扩张并不互为逆运算,但有下列性质:
Aa
B
A
B
a
分配率:A B B A B A B
AB B AB AB
峰,在研究物体旳形态分布时常用。用来消除小物体、 在纤细点处分离物体、平滑较大物体旳边界旳同步并 不明显变化其面积。
Jan., 2023
21
3 形态学变换
A
B
A
B
A
B
Jan., 2023
22
3 形态学变换
Jan., 2023
Lenna Sobel边界 旳二值图象
23
3 形态学变换
Jan., 2023
九十年代,数学形态学应用在图象增强、分割、恢复、 边沿检测、纹理分析等领域。
Jan., 2023
4
1 什么是形态学处理
1)起源
60年代采矿、动植物调查时采用旳数学工具; 是针对二值图象根据数学形态学( Mathematical
Ch8半导体光电子器件
8. Semiconductor lasers8Semiconductor lasersypA typical semiconductor laser is formed froma semiconductor diode and a pair of plane-parallel mirrors.In operation, the diode is forward biasedIn operation the diode is forward biasedThe populations are so large that f e+ f h> 1 for some photon energy (above the bandgap energy), thereby giving gain in the semiconductor material.If the gain per pass exceeds the mirror transmission loss and any other losses experienced by the beam (e.g, diffraction, absorption loss in nominally transparent parts of the structure, loss from scattering off material, or structure imperfections)the structure will lase.Semiconductor laser structuresThere are two basic configurations edge-emittingedge emittingsurface emitting.Edge emitting lasers(1)Edge-emitting lasers(1) The edge-emitting laser usually is based on a The edge-emitting laser usually is based on a waveguide structure.Edge-emitting lasers(2)Ed itti l(2)A “slab” waveguide is formed from the p and n AlGaAs layers to give waveguiding in one direction, surrounding the GaAs layer. The AlGaAs is essentially transparent at the laser operating wavelength has a relatively lower refractive index than the GaAs, both confining the optical mode and electrons and holes injected b th fi i th ti l d d l t d h l i j t d Improve the effectiveness of the stimulated emission gain.The mirrors in a laser are usually formed from the natural reflectivity of the semiconductor-air interfacereflectivity of the semiconductor-air interfaceThese plane-parallel mirrors form a Fabry-Perot cavity, and such lasers are known as Fabry-Perot lasers.Edge-emitting lasers(3)Edge emitting lasers(3)To obtain enough gain per pass to overcome this relatively large mirror loss the laser ca it needs to be t picall 100s of microns mirror loss, the laser cavity needs to be typically 100s of microns long. Heat dissipation is always a problem in semiconductor laser structures since relatively high current densities (e.g., 100s of A/)i d t t ffi i t i A/cm 2or more) are required to generate sufficient carrier densities in the diode. In most edgeemitting laser diodes, therefore, it is desirable to g g ,,confine the current injection and the optical mode in a relatively narrow stripe to minimize the total dissipation, and to allow for some heat spreading. Also, confining in a narrow stripe gives a p g ,g p g mode shape that is more nearly the same size in both directions, as is desirable if we want to couple into. Hence, a long narrow contact stripe is often used.contact stripe is often used.The injection of current into this narrow stripe can itself cause a weak guiding effect in the lateral direction, giving rise to a “gain-guided”laserguided laser.Edge-emitting lasers(4)Edge-emitting lasers(4)In modern lasers, this gain guiding is usually supplemented by In modern lasers this“gain guiding”is usually supplemented by refractive index guiding to give “index-guided” lasers. A commong g q g p g y index guiding technique is to etch a ridge in the top cladding layer of the slab guide, which tends to give a higher effective index for the laser mode in the region just below the ridge, hence givingidisome waveguiding.Edge-emitting lasers(5)Edge-emitting lasers(5)In a more sophisticated index-guided structure the index is larger in the center partly because there is only the low bandgap active material (InGaAsP) present.In this structure, a deep mesa ridge is formed in the originalIn this structure,a deep mesa ridge is formed in the original layered material,down to just below the active region; then the additional InP layers are “regrown”on the sides, burying the activeon the sides“burying”the activeheterostructure (hence the name“buried heterostructure”).)This kind of structure is particularlyefficient at injecting carriers only intothe active region in the middle of thelaser mode.There are many variants of the buriedThere are many variants of the buriedheterostructure concept.g g()Edge-emitting lasers(6)It is difficult to get the laser beam in an edge-emitting laser to be the same dimensions in both directions.h di i i b h di iThe beam as it leaves the laser is small in the “vertical” direction, and relatively larger in the “horizontal” direction.d l ti l l i th“h i t l”di tiAs it propagates into thefar field, the situationf fi ld th it tireverses because ofdiffraction, with a relativelydiff i i h l i llarge beam in the verticaldirection and a smallerbeam in the horizontal direction.Edge-emitting lasers(7) Edge-emitting lasers(7)Edge-emitting lasers(8)Edge-emitting lasers(8) p pA separate confinement heterostructure is a more sophisticated heterostructure in which a greater number of different layers of material are added,with some of the layers being primarily present to guide(or confine)the optical mode,and some being theremodeprimarily to position the electron and hole populations optimally for gain.In the GRINSCH,the material is graded approximately quadratically around about the thin active region.The approximately parabolic grading of index gives good control over the waveguide mode profile,and the thin active layer with deep potential wells for electrons and holes results in good overlap of the excited electron and hole populations for strong gain. The active region is also in the middle of the optical mode where the amplitude is highest,and hence the effective gain is also highest.highest highestOutput spectrum of a laser at a current just Output spectrum of a laser at a current justabove thresholdDistributed feedback(DFB)laser Distributed feedback (DFB) laserpp g y For applications where the laser wavelength must be more closely controlled (as in telecommunications), it is common to use either distributed Bragg reflector (DBR) or distributed feedback (DFB) laser structures.Both of these rely on the use of periodic grating structures, usually formed by corrugating an interface in the laser structure. The period of the corrugations is a (small) integer number of half-Th i d f th ti i(ll)i t b f h lf wavelengths, which isalso the basic structureof the simplest DFBlaser.A distributed Bragg reflector laser structure A distributed Bragg reflector laser structureThis high reflectivity arises because all of the reflections off of different periods in the grating add up in phase.S h i f d bSuch a mirror formed by anoptical structure with a periodf h lf l h i ll dof half a wavelength is calleda Bragg mirror or a distributedBragg reflector(DBR)Vertical-cavity surface-emitting lasers(1) Vertical-cavity surface-emitting lasers(1)e ve c c v y su ce e g se(VCS)s eThe vertical-cavity surface-emitting laser (VCSEL) is like a DBR laser, but made in the vertical direction.The motivations for making the VCSEL are not so much to obtaingnarrow-linewidth, single-frequency operation, but more to make lasers that can have intrinsically circular beam profiles, therefore making them easier to interface to fibers, and to allow the construction of arrays of lasers.VCSELs are also very small compared to edge emitters, because CS l ll d d i bthey avoid the long waveguide region.VCSELs have been enabled partly by the development of low-loss VCSEL h b bl d tl b th d l t f l l mirrors made integral to the semiconductor structure. These mirrors are formed from alternating quarter wave layers of low and high are formed from alternating quarter-wave layers of low and high index transparent semiconductors.Vertical cavity surface emitting lasers(2) Vertical-cavity surface-emitting lasers(2)(a)Emitting through anetched hole in theh d h l i hsubstrate.(b)Emitting through the topof the structure.(c)Emitting through atransparentt tsubstrate.Vertical cavity surface emitting lasers(3) Vertical-cavity surface-emitting lasers(3) Various other advantages come from the quantum confinement Various other advantages come from the quantum confinement effects seen in such thin, quantum-well layers.In particular, the density of states in quantum wells has a muchIn particular,the density of states in quantum wells has a much more favorable form for laser gain, being more abrupt.y g yThis better form of the density of states leads to significantly improved differential gain in the laser, which can be particularly important in high-speed modulation.In addition, the quantum confinement effects also give another degree of freedom in designing structures, since the quantum confinement can change the laser wavelength without changing fi t h th l l th ith t h i the composition.Almost all modern high-performance laser structures now use Almost all modern high performance laser structures now use quantum-well active layers.Laser gain dynamics(1)Laser gain dynamics(1)We can understand some of the basic phenomena that occur aswe try to modulate a laser at progressively higher speeds basedon a relatively simple rate equation model.s ode,we eed o co s de wo coup ed spec s.In this model, we need to consider two coupled aspects.One aspect is how the carrier density is affected by the number ofphotons in the cavity, and the other is how the number of photons h t i th it d th th i h th b f h tin the cavity is affect by the carrier density.We therefore consider two simple “rate equations” –first orderq pdifferential equations that are coupled to one another.Laser gain dynamics(2)g y()Consider first the rate of change of the number of carriers per unit ,,gvolume, N, in the laser gain medium.We are passing current, I, into the laser diode. Some fraction of the carriers in this current add to the carrier density in the active (gain) region of the device (usually most of them in a(i)i f h d i(ll f h iwelldesigned laser diode).If the volume of the gain region is then in the gain regionIf the volume of the gain region is V gain, then, in the gain region, The number of carriers added per unit volume per unit time I/I / eV gainWe expect there will be some recombination of the carriers that does not add photons to the cavity mode of interest.we presume this undesired recombination is characterized by a simple lifetime, , so we have the number of undesired carrier recombinations per unit volume per unit time = N /recombinations per unit volume per unit time=NLaser gain dynamics(3)g y()The number of photons added to the light beam in the laser mode p g y p y gper unit length inside the laser cavity is simply the gaincoefficient, g, times the number of photons in the laser mode. if the number of photons per unit volume in the laser mode is Np , the number of photons added to the beam per unit volume per unit length inside the cavity is gNp .The photons are traveling at a velocity vg inside the cavity, where vg is the group velocity.Hence the number of photons added to the beam per unit volume H h b f h dd d h b i lper unit time is v g N g p.Because a carrier is removed from N for each photon added by this Beca se a carrier is remo ed from N for each photon added b this stimulated recombination process, we have the number ofstimulated carrier recombinations per unit volume per unit time stimulated carrier recombinations per unit volume per unit timev g N g pLaser gain dynamics(4)Adding the creation and recombination rates calculated above with the appropriate signs, we have a net rate equation for the carrier densitycarrier densityLaser gain dynamics(5)g y()For the photons in the laser mode of interest in the cavity, We can lump all of these photon loss mechanisms into a photon lifetime, , for this cavity mode, to obtain the number of photons lost from the cavity per unit cavity volume per unit time = N p/ Photons are being added to the laser mode by the process of stimulated emission. We know that, per unit volume of the gain material, v g N g p photons are being added per unit time.As a result of both of these effects, to calculate the number of photons being added to the cavity mode per unit cavity volume per unit time, we need to introduce a correction factor called the “mode confinement factor”, G, so that the number of photons added perN g punit cavity volume per unit time = G vgLaser gain dynamics(6)we obtain a rate equation for the number of photons per unit volume in the cavity modevolume in the cavity modesteady state situationsteady state situationSuppose for the moment that we were running the laser in aS f th t th t i th l isteady state manner, at some fixed current, I o. In this condition, the gain would be and the carrier and photon densities would the gain would be g o, and the carrier and photon densities would be N o and N po, respectively. In this steady state situation, the p(carrier and photon densities would also be stable (i.e., dN / dt= 0 and dN p/ dt= 0)The gain dynamics of the laser in a simple The gain dynamics of the laser in a simple “small-signal” model(1)The gain dynamics of the laser in a simplesmall signal model (2)“small-signal”model(2)This equation is that of a simple damped harmonic oscillator, This equation is that of a simple damped harmonic oscillator driven by the term on the right hand side.We can usefully define a resonance (angular) frequencyThe gain dynamics of the laser in a simpleThe gain dynamics of the laser in a simple “small-signal” model (3)output power at different modulation frequencies output power at different modulation frequenciesLaser diode markets(1)()Laser diode markets(2) Laser diode markets(2)Laser diode markets(3)Laser diode markets(4) Laser diode markets(4)Laser diode markets(5)。
神经网络设计课件_Ch8_性能曲面和最优点
T
c B ( BLB ) Bc
T
T
c Lc
T
i ci ci
2
2
p
c B Bc
c c
i=1
-- m i n -----------2 ma x
p Ap p
T
1
8
特征向量(最大的特征值)
0 0
p = zmax
T T c = B p = B zm a x =
0 1 0 0
n
பைடு நூலகம்
zm a x A zm a x zma x
1
8
例子
F( x ) = x 1 + 2 x 1 x 2 + 2 x 2 + x 1
F ( x) = 2 x1 + 2 x 2 + 1 2 x1 + 4 x 2 = 0
2 2
x* = – 1
0.5
2 F (x ) = 2 2 24
(不是x的函数)
检查上述Hessian矩阵的特征值来检验正定性。如果特征值全都大于零,则该 矩阵是正定的。
1.5
2
2
2
1
1
0.5
0
0
-0 .5
-1
-1
-1 .5
-2 -2
-1 .5
-1
-0 .5
0
0.5
1
1.5
2
-2 -2
-1
0
1
2
12
8
6 8 4 4 2
0 2 1 0 -1 -2 -2 0 -1 1 2
0 2 1 0 -1 -2 -2 0 -1 1 2
1
8
ch8-最优化方法
最优化方法一个新纪元孕育两种新一代:理论的实践家和实践的理论家线性代数方程组解法1引言1-1什么是优化–完成一项任务,在可能的方案中选取最合理的一种,以达到某种意义的下最优目的的科学。
对象课题可行集合nR⊂Ω决策变量x ∈Ω大或小max or min数学分支度量目标函数f (x )线性代数方程组解法例:回顾第一个数学实验--求π 计算机能否比祖冲之计算得更准确?))(())((d141111121-=--=-≈-≈-=∑∑⎰iiiniiiinixxxfxxxfxxπ-+-+-==917151311)1arctg(4πn=?线性代数方程组解法最佳分数近似π值标准:(1)绝对误差小(2)分母小问题2i,j=?ei,j=| π–j / i |e*=min { ei,j}三要素?线性代数方程组解法1-2 优化问题分类●1)与时间的有关性质:●与时间有关的问题动态规划●与时间无关的问题静态规划●2)按变量的性质分类:连续、离散●随机、确定性质●3)线性、非线性线性代数方程组解法1-4本章基本内容与要求●1工程计算问题●2无约束优化–基本概念、结论–最速下降法–牛顿法–变尺度方法–MATLAB优化工具箱●3约束优化–线性规划–非线性规划•Lagrange乘数法•罚函数方法•单纯形方法●4工程实际问题会建立简单问题的数学模型掌握掌握掌握了解掌握掌握掌握了解3次课12学时1-5意义很多实际问题都可以抽象成优化问题,应用最广泛的数学方法。
1-6 重点是数学思想1-7考核问题线性代数方程组解法2 工程计算中几个例题2-1运输专业户盈利最丰问题价格买地卖地A B C D产销量甲21257152000乙515137151100建立数学模型:1)基本假设:市场畅通,价格相差无几;用xi,j表示从买地i 运往卖地j 的运量,即决策变量。
获利最丰等价于运费最省。
2)市场调查:线性代数方程组解法3)建立数学模型满足条件:x1,1+ x1,2 + x1,3+ x1,4=2000x2,1+ x2,2 + x2,3+ x2,4=1100x1,1+ x2,1=1700x1,2+ x2,2 =1100x1,3+ x2,3 =200x价格买地卖地A B C D产量甲x1,1x1,2x1,3x1,42000乙x2,1x2,2x2,3x2,41100运输量17001100200100获利最丰等价于运费最省f(x1,1, x1,2, x1,3, x1,4,x2,1,x2,2, x2,3, x2,4)=21x1,1+25x1,2+7x1,3+15 x1,4+51x2,1+51x1,1+37x2,3+15x2,4实际问题:x i,j≥0线性代数方程组解法5 大学生建模竞赛课题●优化问题是竞赛的永恒课题●1 游乐场的快速通道04I CM-B●2 煤矿场的运输问题03 CAM●3 公交车调度问题02 CAM-B●4 飞越北极2000-C,钢管订购和运输2000B●5 自动化车床管理1999-A●6 钻井布局1999-D●7 投资的收益与风险1998-A●8 优化零件参数设计97 CAM-A●9 最优捕鱼策略1996-A●10 天车与冶炼炉的作业调度1995-B●11 逢山开路1994-A●12 足球队排名次1993CAM-B足以说明其应用的普遍性、广泛性学习的价值线性代数方程组解法2-3参数识别问题(参考范例9-1) SARS方程的参数问题线性代数方程组解法2-4污水处理生物絮体最佳半径(参考范例9-2)二阶方程边界值反问题线性代数方程组解法2-5地震勘探问题、听鼓问题(参考范例9-3)●乐队指挥听鼓:●波动方程系统参数识别线性代数方程组解法3 无约束优化方法●0引言●0-1这一节的中心问题:min f (x )x ∈Rn ●0-2高等数学中的结果●1)必要条件:梯度●2)充分条件:Hessan 矩阵*|),,()(1*x x T nx f x f x f =∂∂∂∂=∇ ⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡∂∂∂∂∂∂∂∂∂∂==∇2212122122*)(*)(n n n x f x x fx x f x f x H x f =0>0x =x*=∇)(*x f 0 且线性代数方程组解法3) 条件极值问题的Lagrange乘数法将条件极值转化成无条件极值,构造Lagrange函数理论完美!存在性但是,实际课题几乎不能直接应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Ch8_6
1 2 3 2 − 1 0 0 1 3 1 0 0 0 1 2
≈ R1 + (−2) R 2 R 2 + (−3) R3
Comparison of Gauss-Jordan and Gaussian Elimination
Count of Operations for n × n system with Unique Solution Number of Multiplications Gauss-Jordan Gaussian elimination n3 n 2 n3 + ≈ ( for large n ) 2 2 2 n3 n n3 2 +n − ≈ 3 3 3 Number of Additions n3 n n3 − ≈ 2 2 2 n 3 n 2 5n n 3 + − ≈ 3 2 6 3
upper triangular matrix
Ch8_8
Example 1 Solving the following system of equations, which has a triangular matrix of coefficients. 2x =8
1
x +3x2 1
= −2
Solution
Ch8_3
The corresponding system of equation is x1 + 2 x2 + 3 x3 + 2 x4 = −1 x3 + 3 x4 = 1 x4 = 2 We get x3 + 3(2) = 1 x3 = −5 Substituting x4 = 2 and x3 = −5 into the first equation, x1 + 2 x2 + 3(−5) + 2(2) = −1 x1 + 2 x2 = 10 x1 = −2 x2 + 10 Let x2 = r. The system has many solutions. The solutions are x1 = −2r + 10, x2 = r , x3 = −5, x4 = 2
4x +5x2 −x3 =3 1
By forward substitution: 1st equations gives 2 x1 = 8 ⇒ x1 = 4 2nd equation gives 3rd equation gives
x1 + 3x2 = −2 ⇒ 4 + 3x2 = −2 ⇒ x2 = −2
1 0 0 I 3 = 0 1 0 0 0 1
R2 ↔ R3
1 0 0 E1 = 0 0 1 0 1 0 1 0 0 E 2 = 0 5 0 0 0 1 1 0 0 E3 = 2 1 0 0 0 1
Ch8_7
8.2 The Method of LU Decomposition
0 2 0 3 − 1 0 5 2 7 4 0 − 2 0 0 0 8 8 0 0 0 − 3 1 0 −4 2 0 0 7 2 2 5 9
lower triangular matrix Ax=y ⇒ A=LU …
Ch8_10
Definition
Let A be a square matrix that can be factored into the form A = LU, where L is a lower triangular matrix and U is an upper triangular matrix, This factoring is called an LU decomposition of A. (Not every matrix has an LU decomposition, and when it exists, it is not unique.)
Ch8_13
5R2
R2+ 2R1
Elementary Matrices(複習第二章)
一個矩陣做 elementary row operation, 相當於在左邊乘一個對應的 elementary matrix。
a b R2 ↔ R3 g h d e
c 1 0 0 i = 0 0 1 ⋅ A = E1 A f 0 1 0
Ch8_4
Example 2
Solving the following system of linear equations using the method of Gaussian elimination, performing back substitution using matrices. x +2x2 +3x3 +2x4 = − 1 1 −x −2x2 −2x3 + x4 = 2 1 2x +4x2 +8x3 +12x4 = 4 1 Solution We arrive at the echelon form as in the previous example. 2 3 2 − 1 1 1 2 3 2 − 1 − 1 − 2 − 2 1 2 ≈ L ≈ 0 0 1 3 1 0 0 0 1 2 4 8 12 4 2
Ch8_11
Method of LU Decomposition
Let AX = B be a system of n equations in n variables, where A has LU decomposition A = LU. ⇒ LUX = B ⇒ two subsystems: UX = Y (upper triangular) and LY = B (lower triangular)
Linear Algebra
Chapter 8
Numerical Technique
大葉大學 資訊工程系 黃鈴玲
8.1 Gaussian Elimination
Definition
A matrix is in echelon form if 1. Any rows consisting entirely of zeros are grouped at the bottom of the matrix. 2. The first nonzero element of each row is 1. This element is called a leading 1. . 3. The leading 1 of each row after the first is positioned to the right of the leading 1 of the previous row. (This implies that all the elements below a leading 1 are zero.) Reduced echelon form與echelon from的差異: echelon form 的 leading 1 上面的數字不必為零
Ch8_2
Example 1
Solving the following system of linear equations using the method of Gaussian elimination. x +2x2 +3x3 +2x4 = − 1 1 −x −2x2 −2x3 + x4 = 2 1 2x +4x2 +8x3 +12x4 = 4 1 Solution Starting with the augmented matrix, create zeros below the pivot in the first column. 2 3 2 − 1 ≈ 1 1 2 3 2 − 1 − 1 − 2 − 2 1 2 R 2 + R1 0 0 1 3 1 2 4 8 12 4 R3 + (−2) R1 0 0 2 8 6 At this stage, we create a zero only below the pivot. 1 2 3 2 − 1 ≈ 1 2 3 2 − 1 ≈ 0 0 1 3 1 1 0 0 1 3 1 R3 + (−2) R 2 2 R 3 0 0 0 1 2 0 0 0 2 4 Echelon form We have arrived at the echelon form.
2x −x2 +4x3 =0 1 x2 −x3 = 4 3x3 = −6
Solution By back substitution:
3rd equation gives 3 x3 = −6 ⇒ x3 = −2 2nd equation gives x2 − x3 = 4 ⇒ x2 + 2 = 4 ⇒ x2 = 2 1st equations gives 2 x1 − x2 + 4 x3 = 0 ⇒ 2 x1 − 2 − 8 = 0 ⇒ x1 = 5 The solution is x1 = 5, x2 = 2, x3 = −2.
Echelon form
This marks the end of the forward elimination of variables from equations. We now commence the back substitution using matrices.
Ch8_5
1 2 3 0 − 5 0 0 1 0 − 5 0 0 0 1 2 ≈ 1 2 0 0 10 R1 + (−3) R 3 0 0 1 0 − 5 0 0 0 1 2 This matrix is the reduced echelon form of the original augmented matrix. The corresponding system of equations is x1 + 2 x2 = 10 x3 = −5 x4 = 2 Let x2 = r. We get same solution as previously, x1 = −2r + 10, x2 = r , x3 = −5, x4 = 2