《流体力学》复习提纲20111023
流体力学复习要点

流体力学复习要点流体力学复习要点第一章绪论1.1流体的主要物理力学性质1、流体的主要物理力学性质包括哪几部分?2、水的密度为1000kg/m33、牛顿内摩擦定律4、牛顿内摩擦定律表明内摩擦力的大小与流体的角变形速率成正比5、流体的黏度,运动黏性系数与动力黏性系数的关系;液体的μ随温度的升高而减小,气体的μ随温度的升高而增大1.2作用在流体上的力1、按作用方式的不同分为:表面力和质量力2、单位质量力是作用在单位质量流体上的质量力1.3流体的力学模型1、常用的物理力学模型:连续介质模型、理想流体、不可压缩流体。
2、连续介质模型是指的流体是一种毫无空隙的充满其所占空间的连续体的假定。
流体质点指的是大小同一切流体空间相比微不足道,又含有大量分子具有一定质量的流体微元。
3、理想流体是指假定流体没有黏性4、不可压缩流体是指假定流体的密度是一个常数第一章流体静力学2.1静止流体中压强的特征1、静压强的定义2、静止流体中压强的特征:(1)静止流体只能承受压应力,压强的方向垂直指向作用面(受力面的内法线方向)(2)流体内同一点的静压强的大小在各个方向均相等2.2流体平衡微分方程1、等压面:压强相等的空间点构成的面2、对于仅受重力作用的联通的同一均质流体,等压面为水平面。
2.3重力作用下流体静压强的分布规律1、p z C gρ+= 当质量力仅为重力时,静止流体内部任一点的p z gρ+是常数 2、0p p g ρ=+h 3、压强的度量:相对压强、绝对压强、真空度。
4、静压强分布图的绘制2.4压强的测量一般采用仪器测得都是相对压强2.5流体的相对平衡1、等加速直线运动的流体的等压面:倾斜面2、等角速旋转运动的流体的等压面:旋转抛物面2.6液体作用在平面上的总压力1、解析法c F p A= c c c +D I y y y A=(注意一下:y D 代表的是什么) 2、图解法F=bS 2.6作用在曲面上的液体压力1、压力体的组成有3个面,分别是:2、压力体的绘制第二章流体运动理论与动力学基础3.1流体运动的描述方法欧拉法中加速度由两部分组成:位变加速度、时变加速度(或者说迁移加速度和当地加速度)3.2流场的基本概念(分类)1、按照运动要素是否随时间发生变化,分为:恒定流和非恒定流2、按照运动要素与坐标变量之间的关系分为:一元流、二元流和三元流。
西安交大景思睿、张鸣远版《流体力学》复习资料

流体力学知识要点第一章 流体及其主要物理性质1. 流体的连续介质模型a) 流体的定义:任何微小的剪切力都会导致连续变形的物质b) 质点:含有足够多分子数,并且具有确定宏观统计特征的分子集合。
c) 连续介质模型:(欧拉)假定组成流体的最小物理实体是流体质点而不是流体分子,即:流体是由无穷多个、无穷小的、紧密毗邻、连绵不断的流体质点所组成的一种绝无间隙的连续介质。
2. 流体的主要物理性质a) 流体的密度:表征流体在空间某点质量的密集程度i. 密度:'limV V mV('V 特征体积,此时具有统计平均特性和确定性)ii.比容:1vb) 压缩性:当作用在一定量流体上的压强增加时,其体积将减小, 用单位压强所引起的体积变化率表示 i.压缩性系数b : /b dV Vdpii.体积弹性模量E :1/bdp VdpE dV V dV(Pa)v dp E d (1/)(1/)/V dpVdp dp dpm dp dV d dV d d m对气体: (等温 E p ;等熵 E p ,一般 1.4 )对液体,无明确比例可压缩流体和不可压缩流体液体的体积弹性模量值大,液体平衡和运动的绝大多数问题可以用不可压缩流体解决。
气体的体积弹性模量值小,气体平衡和运动的大多数问题需要按可压缩流体来解决。
c) 流体的粘性:是流体抵抗剪切变形或相对运动的一种固有属性,表现为流体内摩擦 i. 粘性内摩擦力产生的原因:分子间吸引力(内聚力)产生阻力 分子不规则运动的动量交换产生的阻力 ii. 牛顿粘性实验U U F AF A h h牛顿内摩擦定律:/UF A h(μ动力粘性系数,Pa ·s ) du d dy dt(d dt 角变形率) iii.粘性系数动力粘性系数 Pa ·s 运动粘性系数2/m s iv. 影响粘性的因素 压强:0pp e正相关温度:液体温度大粘度小 气体温度大粘度大 v. 理想流体:不具有粘性(对应粘性流体,一切实际流体都具有粘性) vi. 牛顿流体:满足牛顿内摩擦定律的流体(对应非牛顿流体,不满足牛顿内摩擦定律)3. 作用在流体上的力 ( 表面力 质量力)a) 表面力:作用在所取的流体分离体表面上的力。
2011 流体力学II 总复习

提水高度
H 吸水管 Hs
压水管
l
和过流能力Q
Q 1 A2 gh H v s l d
水泵向单位重量液体所提 供的机械能,称为水泵的 扬程 H Z h h t w 吸 水 管 w 压 水 管
b.水泵压水管 压水管的水力计算包括 水泵的扬程Hm Hm=Z+hw 吸+hw 压 和水泵的输入功率Np。 QH m Np 1000
淹没出流
A A 2 1
se 1.0
24
十二、减少阻力的措施
方法一 方法二 调整边界条件,改善边壁对流动的影响。
加添加剂,影响流体运动的内部结构,减阻。
25
第九章 孔口、管嘴与有压管流
一、孔口出流
孔 口 的 分 类 小孔口 大孔口 自由出流 淹没出流 薄壁孔口 与 厚壁孔口 恒定出流
u 0 t
十一. 局部水头损失的计算
计算局部水头损失的公式
v 2 f( 局部阻碍形状 , ,Re hj d 2g
突然放大
2 (v v ) 2 hj 1 2g
2 2 2 2 A v v A v v 2 2 1 2 1 1 2 2 h ( 1 ) h ( 1 ) j 1 j 2 A 2 g 2 g A 2 g 2 g 2 1
H 10 d H 10 d
非恒定出流
u 0 t
26
第九章 孔口、管嘴与有压管流
1、了解孔口出流的基本特点,掌握孔口划分条件。
2、了解管嘴出流的基本特点,掌握管嘴设计形状。 3、了解有压管流的基本特点,掌握管流分为长管流
动和短管流动的条件。 4、掌握简单管道的水力计算和测压管水头线、总水 头线的绘制,并能确定管道内的压强分布。 5、了解复杂管道的特点和计算方法。 6、了解有压管道中的水击现象和水击传播过程。
《流体力学》复习提纲

《流体力学》复习提纲《流体力学》2017复习提纲1. 考试题型(1)判断题(15分,15小题,每小题1分)(2)选择题(20分,10小题,每题2分)(3)填空题(20分,20个空,每空1分)(4)简答题(30分,5小题,每小题7分)(5)计算题(10分,1小题)2.自带计算器等文具,考试过程中不允许借用计算器等文具,3.考试过程中不允许上卫生间;第一章绪论1.流体力学研究内容、研究方法2.流体、流体质点的定义3.流体的连续性假设4.作用在流体上力分质量力(重力、惯性力、离心力)、表面力(压应力、切应力、摩擦力)5.流体的比体积、相对密度、压缩性、膨胀性、不可压缩流体、汽化压强的定义6.粘性、粘性切应力、速度梯度的定义;粘度的分类和单位7. 牛顿内摩擦定律的公式及应用(例题1-1)8.牛顿流体、非牛顿流体的定义和举例;9.粘性流体和理想流体的定义第二章流体静力学1.液体平衡的定义、特性和分类。
2.流体静压强的定义、2个基本特性(方向,各向同性)3.欧拉平衡微分方程(★)和适用条件(式2-1a、b、c,式2-3,适用于绝对静止状态和相对静止状态,适用于可压缩流体和不可压缩流体。
)4. 质量力势函数的定义,及与压强差的关系(式2-5★)5. 等压面的定义和性质6. 流体静力学基本方程(★,式2-8a、b)及其物理意义(位置势能、压强势能、总势能)、几何意义(位置水头、压强水头、测压管水头)7. 不可压缩流体的静压强的计算公式(式2-9,★),帕斯卡定律(静压强传递定律)8. 静压强分布图定义9. 压强的分类:绝对压强(相对于绝对真空)、计示压强(相对于大气压,为负时称为真空度)10.压强的3种单位:应力单位Pa,液柱高单位(水柱高、汞柱高),大气压单位11. 常用的液柱式测压计的原理12. 国基标准大气压的定义13. 液体的相对平衡的定义(1)容器与液体一起作等加速α的直线运动,等压面(含自由液面)为一组斜平面族,a g;与水平面夹角为arctan(/)(2)容器与液体一起作等角速都ω的回转运动,等压面(含自由液面)为一组旋转抛物面;14. 平面上液体的总压力(1)作用在平面上的总压力F等于平面形心处的压强与面积的乘积(式2-14★)(2)压力中心的定义和求取。
流体力学复习资料

流体力学复习资料流体力学是研究流体(包括液体和气体)的平衡和运动规律的学科。
它在工程、物理学、气象学、海洋学等众多领域都有着广泛的应用。
以下是为大家整理的流体力学复习资料,希望能对大家的学习有所帮助。
一、流体的物理性质1、流体的密度和比容密度(ρ)是指单位体积流体的质量,公式为:ρ = m / V 。
比容(ν)则是密度的倒数,即单位质量流体所占的体积,ν = 1/ρ 。
2、流体的压缩性和膨胀性压缩性表示流体在压力作用下体积缩小的性质,通常用体积压缩系数β来衡量,β =(1 / V)×(dV / dp)。
膨胀性是指流体在温度升高时体积增大的特性,用体积膨胀系数α来描述,α =(1 / V)×(dV / dT)。
3、流体的粘性粘性是流体抵抗剪切变形的一种属性。
牛顿内摩擦定律:τ =μ×(du / dy),其中τ为切应力,μ为动力粘度,du / dy 为速度梯度。
二、流体静力学1、静压强的特性静压强的方向总是垂直于作用面,并指向作用面内。
静止流体中任意一点处各个方向的静压强大小相等。
2、静压强的分布规律对于重力作用下的静止液体,其静压强分布公式为:p = p0 +ρgh ,其中 p0 为液面压强,h 为液体中某点的深度。
3、压力的表示方法绝对压力:以绝对真空为基准度量的压力。
相对压力:以大气压为基准度量的压力,包括表压力和真空度。
三、流体动力学基础1、流体运动的描述方法拉格朗日法:跟踪流体质点的运动轨迹来描述流体的运动。
欧拉法:通过研究空间固定点上流体的运动参数随时间的变化来描述流体的运动。
2、流线和迹线流线是在某一瞬时,在流场中所作的一条曲线,在该曲线上各点的速度矢量都与该曲线相切。
迹线是流体质点在一段时间内的运动轨迹。
3、连续性方程对于定常流动,质量守恒定律表现为连续性方程:ρ1v1A1 =ρ2v2A2 。
4、伯努利方程理想流体在重力作用下作定常流动时,沿流线有:p /ρ + gz +(1 / 2)v²=常量。
流体力学-总结复习

流体力学总结+复习第一章 绪论一、流体力学与专业的关系流体力学——是研究流体(液体和气体)的力学运动规律及其应用的学科。
主要研究在各种力的作用下,流体本身的状态,以及流体和固体壁面、流体和流体间、流体与其他运动形态之间的相互作用的力学分支。
研究对象:研究得最多的流体是液体和气体。
根底知识:牛顿运动定律、质量守恒定律、动量〔矩〕定律等物理学和高等数学的根底知识。
后续课程:船舶静力学、船舶阻力、船舶推进、船舶操纵等都是以它为根底的。
二、连续介质模型连续介质:质点连续地充满所占空间的流体。
流体质点(或称流体微团) :忽略尺寸效应但包含无数分子的流体最小单元。
连续介质模型:流体由流体质点组成,流体质点连续的、无间隙的分布于整个流场中。
三、流体性质密度:单位体积流体的质量。
以表示,单位:kg/m 3。
0limA V m dmV dVρ∆→∆==∆ 重度:单位体积流体的重量。
以 γ 表示,单位:N/m 3。
0lim A V G dGV dVγ∆→∆==∆ 密度和重度之间的关系为:g γρ=流体的粘性:流体在运动的状态下,产生内摩擦力以抵抗流体变形的性质。
,其中μ为粘性系数,单位:N ·s /m 2=Pa ·sm 2/s 粘性产生的原因:是由流动流体的内聚力和分子的动量交换所引起的。
牛顿流体:内摩擦力按粘性定律变化的流体。
非牛顿流体:内摩擦力不按粘性定律变化的流体。
四、作用于流体上的力质量力〔体积力〕:其大小与流体质量〔或体积〕成正比的力,称为质量力。
例如重000lim,lim,limy xzm m m F F F Y Z mm m→→→=== 外表力:五、流体静压特性特性一:静止流体的压力沿作用面的内法线方向特性二:静止流体中任意一点的压力大小与作用面的方向无关,只是该点的坐标函数。
六、压力的表示方法和单位绝对压力p abs :以绝对真空为基准计算的压力。
相对压力p :以大气压p a 为基准计算计的压力,其值即为绝对压力超过当地大气压的数值。
流体力学复习资料
流体力学复习资料第一章绪论1-2、连续介质的概念:流体占据空间的所有各点由连续分布的介质点组成。
流体质点具有以下四层含义:1、流体质点的宏观尺寸很小很小。
2、流体质点的微观尺寸足够大。
3、流体质点是包含有足够多分子在的一个物理实体,因而在任何时刻都应该具有一定的宏观物理量。
4、流体质点的形状可以任意划定,因而质点和质点之间可以完全没有空隙。
1-5、流动性:液体与固体不同之处在于各个质点之间的聚力极小,易于流动,不能自由地保持固定的形状,只能随着容器形状而变化,这个特性叫做流动性。
惯性:物体反抗外力作用而维持其原有状态的性质。
黏性:指发生相对运动时流体部呈现摩擦力而阻止发生剪切变形的一种特性,是流体的固有属性。
摩擦力或黏滞力:由于流体变形(或不同层的相对运动),而引起的流体质点间的反向作用力。
F :摩擦力;=du F A dyμ±。
τ:单位面积上的摩擦力或切应力(N/m 2);==F du A dy τμ±。
A :流体的接触面积(m 2)。
μ:与流体性质有关的比例系数,称为动力黏性系数,或称动力黏度。
du dy:速度梯度,即速度在垂直于该方向上的变化率(1s -)。
黏度:分为动力黏度、运动黏度和相对粘度。
恩氏黏度:试验液体在某一温度下,在自重作用下从直径2.8mm 的测定管中流出200cm 3所需的时间T1与在20℃时流出相同体积蒸馏水所需时间T2之比。
1t 2T E T =。
牛顿流体:服从牛顿摩擦定律的流体(水、大部分轻油、气体等)温度、压力对黏性系数的影响?温度升高时液体的黏度降低,流动性增加;气体则相反,温度升高时,它的黏度增加。
这是因为液体的黏度主要是由分子间的聚力造成的。
压力不是特别高时,压力对动力黏度的影响很小,并且与压力的变化基本是线性关系,当压力急剧升高,黏性就急剧增加。
对于可压缩流体来说,运动黏度与压力是密切相关的。
在考虑到压缩性时,更多的是动力黏度而不用运动粘度。
流体力学复习知识结构图
U u= z h
U qv = Bh 2
第九章 缝隙流动
3.环形缝隙流动 同心: ∆p u= (h − z ) z 2µ L
π dh3∆p qv = π d ∫ udz = 12 µ L 0
h
Байду номын сангаас
偏心:
qe = (1 + 1.5ε )
2
π dδ 3 12 µ l
∆p
2.薄壁小孔自由出流
qv = vc Ac = Cv 2( gH +
没有局部 阻力时的 出口流速
∆p
ρ
) × Cc A = Cv Cc A 2( gH +
断面没有 收缩时的 面积
∆p
ρ
)
第八章 孔口出流
3.孔口出流系数
: CV = 1 / ξ + 1 →
由于局部阻力损失而使出流速度降低 0.97~0.99 实际流量
Cd =
qv A 2( gH +
∆p
ρ
)
理论流量(C处的面积没有收缩、出流 处没有局部阻力的影响时C处的流量)
0.60~0.62
Cd Cc = Cv
0.64
第九章 缝隙流动
各种缝隙的流动特性及其流量公式,作为分析 和计算元件泄漏的依据。
平面缝隙 缝隙 环形缝隙 特征: 特征: 小 摩阻大 压差: 压差: Re小 小 压差流 层流 混合流 平行 楔形
第二章 物理性质
5.流体的含气量、空气分离压、饱和蒸汽压 6.表面张力
第三章 流体静力学
1 ∂p =0 ρ ∂x 1 ∂p fy − =0 ρ ∂y 1 ∂p fz − =0 ρ ∂z fx −
∂p ∂p ∂p ρ ( f x dx + f y dy + f z dz ) = dx + dy + dz = dp ∂x ∂y ∂z
工程流体力学复习提纲
工程流体力学复习提纲第一章 绪论1、 三种理想模型:连续介质假说、理想流体、不可压缩流体2、 流体的粘性:牛顿内摩擦实验dydu μAτA T == 3、 作用在流体上的力表面力:法向力和切向力 质量力:重力第二章 流体静力学1、 静水压强的两大特性2、 重力场中流体静压强的分布规律:c p z =γ+相对压强、绝对压强、真空值:a p -=abs p p ;abs v p p -=a p 3、 流体作用在平面壁上的总压力大小:A h P c γ= 方向:垂直指向受压面 作用点:Ay J y y C CC D += 4、 流体作用在曲面壁上的总压力x c x A h P γ=;V P z γ=22P z x P P +=;xz P P anctan =θ第三章 流体动力学基础1、 拉格朗日法、欧拉法的特点2、 欧拉法的基本概念:流线方程:zy x u dz u dy u dx == 3、 连续性方程2211A v A v =4、 恒定总流的伯努利方程w h gvp z g v p z +α+γ+=α+γ+2222222211115、 恒定总流的动量方程()()()⎪⎪⎭⎪⎪⎬⎫β-βρ=β-βρ=β-βρ=∑∑∑1z 12z 2z1y 12y 2y1x 12x 2xv v Q Fv v Q F v v Q F第四章 管路、孔口、管嘴的水力计算1、沿程水头损失:2gv d l h 2f λ=(普遍适用)局部水头损失:2g v h 2j ζ=(普遍适用),特殊地,对于突扩管()2gv v h 221j -= 2、 粘性流动的两种流态:层流、紊流描述雷诺实验 雷诺数:ν=vd Re 流态的判别:2320Re :层流;2320Re :紊流;2320Re =:临界流 3、 层流运动沿程阻力系数:Re64=λ 紊流运动沿程阻力系数:尼古拉兹实验曲线 3、 孔口、管嘴出流孔口自由出流:gH A gH A Q 22μεϕ== 孔口淹没出流:gz A gz A Q 22μϕε'='=有97.0='=ϕϕ、62.0='=μμ、64.0=ε,所以μεϕ 。
流体力学复习资料
流体力学复习资料流体力学复习资料第一章基本概念1、流体力学的定义、流体的性质。
流体力学就是研究流体运动规律,以及流体和固体之间相互作用等方面的一门学科。
流体有三大性质:易流动性,黏性和压缩性。
2、流点的定义及其物理性质。
流点是指微观上足够大,宏观上足够小的分子团。
微观上足够大:使分子团的空间尺度选得足够大,使其含有大量的分子;平均的时间也应该足够大,使得这段时间内分子团内分子间碰撞已发生过很多次。
宏观上足够小:一方面使其可以近似看作几何上没有维度的一个点,另一方面使分子团被看作一个瞬间。
3、流体连续介质假说?并说明其必要性和可能性。
连续介质假设是把离散分子构成的实际流体,看作是由无数流体质点没有空隙连续分布而构成的。
可能性:通常,这样的分子团是存在的,如:0℃, 1个大气压,1cm3气体含有2.7x1019个分子;流点:10-9cm3 含有2.7x1010个分子;(体积上足够小)(微观上足够大,含有这么多分子)。
特殊问题,如稀薄气体运动或者空气动力学中的基波区。
稀薄气体运动:流点必须取得很大,则失去点的意义。
基波区:在非常小的空间范围内流体物理量就有剧烈的变化,就需要流点取得很小,结果无法包括足够多的分子数量来确定统计量。
必要性:a) 有了连续介质假定就可以不考虑流体的分子结构,从连续介质力学看来,流体的形象是宏观的均匀排列的流体,而不是含有大量分子的离散体。
b) 有了连续介质假定,当我们说流体质点处于静止状态时,那就是说它是停留在原地不动的,虽然那里的分子由于热运动将不断的位置移动。
c) 有了连续介质假定,当我们在连续介质内的某点A 上取极限时,不管A点多近的地方都有流体质点存在,并有确定的物理量。
(大量分子的总体表现是有规律的,或说微观量运动的统计平均是有规律的,这种微观量的统计平均值就是物体(流体)的宏观总体表现。
因而需要我们想个办法找到流体的基本运动元,(就像固体的质点一样),使我们对流体运动的描述变得简单方便,而且是可能和有效的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《流体力学》复习提纲 学习重点——四个基本: 基本概念(术语)、基本原理(方法)、基本方程(公式)、基本计算(应用) 复习思考题;自测题;习题
第一章 绪论 基本要求 ❖ 理解流体的主要物理性质,特别是粘滞性和牛顿内摩擦定律; ❖ 理解连续介质假设和流体质点的概念; ❖ 理解理想流体和实际流体、可压缩流体和不可压缩流体的概念; ❖ 掌握作用在流体上的质量力、表面力的概念和表示方法。
1-1 流体力学的任务及其发展简史 1、流体力学的主要研究内容 ①流体在外力作用下,静止与运动的规律;②流体与边界的相互作用。 流体力学研究流体的宏观运动规律,是宏观力学的一个独特分支。
2、流体力学的研究方法和数学方法 (1)研究方法:①理论分析(Theoretical analysis);②实验研究(Experimental study);③数值模拟(Numerical simulation)。
(2)数学方法(Mathematical method):①矢量分析(vector analysis);②场论(Field theory)。
1-2 流体的主要物理力学性质(力学模型) 1、流体的基本特性 — 流动性 ①流体(气体和液体)区别于固体的主要物理特性是易于流动。 ②流体几乎不能承受拉力,没有抵抗拉伸变形的能力。 ③流体能承受压力,具有抵抗压缩变形的能力。 ④流体不能承受集中力,只能承受分布力。 ⑤运动流体具有抵抗剪切变形的能力,这种抵抗体现在限制剪切变形的速率而不是大小上,这就是流体的粘滞性。 ⑥流体在静止时不能承受剪切力、抵抗剪切变形。流体只有在运动状态下,当流体质点之间有相对运动时,才能抵抗剪切变形。只要有剪切力的作用,流体就不会静止下来,发生连续变形而流动。作用在流体上的剪切力不论多么微小,只要有足够的时间,便能产生任意大的变形。
2、流体质点概念和连续介质假设 (1)流体质点概念 ①宏观(流体力学处理问题的尺度)上看,流体质点足够小,只占据一个空间几何点,体积趋于零。 ②微观(分子自由程的尺度)上看,流体质点是一个足够大的分子团,包含了足够多的流体分子,以致于对这些分子行为的统计平均值将是稳定的,作为表征流体物理特性和运动要素的物理量就定义在流体质点上。 (2)理解流体质点概念的含义 ①流体质点宏观尺寸充分小,微观尺寸足够大。 ②流体质点是构成流体的最小单元。流体可以看成是由相互之间无任何间隙的大量的流体质点所组成。由流体质点的性质,便引出连续介质的概念。 (3)流体微团 流体中任意小的微元,包含了大量流体质点,当微元体积充分小并以某坐标点为极限时,流体微团就成为处于这个坐标点上的流体质点。流体微团的概念在流体力学中有着重要价值。 (4)连续介质假设 ①连续介质假设将流体区域看成由流体质点连续组成,占满空间而没有间隙,其物理特性和运动要素在空间是连续分布的,在流场中每一个流体质点都对应于一个空间点。 ②连续介质假设是近似的、宏观的假设,连续介质概念的提出来自数学上的要求,它为建立流场的概念奠定了基础,也为数学工具(微积分、场论)的应用提供了依据,使用该假设的力学统称为“连续介质力学”。 ③除了个别情形外,在流体力学中使用连续介质假设(即把流体可看成是连续介质)是合理的,实验已经证明基于连续介质假设而建立起来的流体力学理论是正确的。
3、流体的粘滞性 (1)流体粘性概念的表述 ①运动流体具有抵抗剪切变形的能力,就是粘滞性,这种抵抗体现在剪切变形的快慢(速率)上。 ②发生相对运动的流体质点(或流层)之间所呈现的内摩擦力以抵抗剪切变形(发生相对运动)的物理特性称为流体的黏性或黏滞性。 ③黏性是指发生相对运动时流体内部呈现的内摩擦力特性。在剪切变形中,流体内部出现成对的切应力,称为内摩擦应力,来抵抗相邻两层流体之间的相对运动。 ④粘性是流体的固有属性。但理想流体分子间无引力,故没有黏性;静止的流体因为没有相对运动而不表现出黏性。 (2)牛顿内摩擦定律
①切应力~剪切(角)变形速率:dddduyt(0,能否说明是理想流体?静止的粘性流体0) ②—动力粘度系数(Pas,动力学量纲);—运动黏度(2m/s,运动学量纲),。 ③当温度升高时,液体的粘性降低,而气体的粘性增大。 ④牛顿内摩擦定律适用条件:一维、层流、牛顿流体。 ⑤应用牛顿内摩擦定律的相关计算:平移和旋转缝隙内的剪切流动。 ⑥牛顿流体与非牛顿流体
4、理想流体假设 ①理想流体假设是忽略粘性影响的假设,可近似反映粘性作用不大的实际流动,粘性作用不大是相对于其它因素的作用而言的。 ②忽略粘性影响实际上就是忽略切应力,由于m是流体的客观属性,所以往往是在变形速率不大的区域将实际流体简化为理想流体。 ③理想流体假设给流体问题的处理带来很大的方便,可以大大简化理论分析过程。
5、流体的压缩性和膨胀性(Compressibility & Expansibility) (1)压缩性定义为流体的体积随压力的增大而变小的特性。用体积压缩系数p或体积弹性模数1/pE表示。 ①体积压缩性系数:d/d/ddpVVpp; ②体积弹性模数:1dd/ppE。E 越大,越不易被压缩。 (2)膨胀性通常称热膨胀性,是指在压强不变的情况下,流体体积随温度升高而增大的特性。可用体积膨胀系数V—单位温度的体积相对变化率表示。
体积膨胀系数:d/d/ddVVVTT。V越大,越易膨胀。 (3)与液体相比,气体通常具有显著的压缩性和膨胀性。 6、不可压缩流体假设 ①不可压缩流体同样是流体力学中的重要假设模型之一。为研究问题方便,规定等温条件下,压缩系数和体积膨胀系数等于零的流体为不可压缩流体,即忽略不可压缩流体假设忽略压缩性和膨胀性。 ②对于不可压缩流体有:DD0t,0u。在绝大多数情况下,不可压缩流体的密度为常数。从严格意义上来说,只有不可压缩、均质流体的密度才为常数。 ③一般情况下可将液体看作不可压缩流体,只有在某些特殊情况下,如水下爆炸、水击、热水采暖等问题时,才必须考虑压缩性和膨胀性。 ④尽管气体的压缩性和膨胀性比较显著,但当气流速度远小于音速时,密度变化不大,仍可采用不可压缩流体假设。
7、液体的表面张力特性 (1)表面张力 ①由于分子间引力作用,在液体的自由表面上产生极其微小的拉力,称为表面张力。 ②表面张力只发生在液体与气体、固体或者与另一种不相混合的液体的界面上。 ③表面张力的作用使液体表面有尽量缩小的趋势,从而使表面积最小。表面张力现象是常见的自然现象,如水滴和气泡的形成、液体的雾化,毛细管现象等。 ④表面张力的大小用液体表面上单位长度所受拉力来度量,用表面张力系数s 表示。 ⑤表面张力方向垂直长度方向,沿着自由表面切向。 ⑤表面张力很小,例如水在200C时的表面张力为0.0728N/m,一般可以不予考虑。但在液面曲率半径很小时,表面张力有时可达到不可忽略的程度。 (2)毛细管现象 ①将直径很小两端开口的细管竖直插入液体中,由于表面张力的作用,管中的液面会发生上升或下降的现象,称为毛细管现象。 ②毛细管现象中液面究竟上升还是下降,取决于液体与管壁分子间的吸引力(附着力)与液体分子间的吸引力(内聚力)之间大小的比较:附着力>内聚力,液面上升;附着力
③由液体重量与表面张力的铅垂分量相平衡,确定毛细管中液面升降高度h,4coshgd。 ④为减小毛细管现象引起误差,测压用的玻璃管内径应不小于10mm。 1-3 作用在流体上的力 流体不能承受集中力,只能承受分布力。分布力按表现形式又分为:质量力、表面力。 1、质量力(mass force,body force) ①质量力是指作用在隔离体内每个流体质点上的力,其大小与流体质量成正比。对均质流体也称为体积力。 ②质量力是一种远程力。最常见的质量力是重力(Gravity)、惯性力(Iinertia force)。 ③单位质量力(即单位质量流体所承受的质量力)矢:xyzfffXYZfijkijk,单位质量力具有加速度的单位(m/s2)。 ④当质量力仅为重力时,在直角坐标系中(z轴向上):0,0,xyzfffg。 2、表面力 ①表面力是指作用在隔离体表面上的力,其大小与受力作用的表面面积成正比。表面力是相邻流体或其他物体对隔离体作用的结果。 ②表面力分布在流体面上,是一种接触力。常见的表面力有压力(法向力)、切向力、表面张力(surface tension)。
③定义表面力的面积密度,即单位面积上流体所承受的表面力为应力(N/m2,Pa),0limnAAPp。应力np
是矢量,可分解成法向应力(p或)和切应力()。 ④凡谈及应力,应注意明确以下四个要素: 哪一点的应力(空间位置)——作用点; 哪个方位作用面(一般用作用面的法线方向表征)上的应力——作用面; 作用面的哪一侧流体是研究对象(表面力的受体),从而决定法线的指向——受力侧; 应力在哪个方向上的分量——作用方向。 附:流体力学课程中使用的单位制一些重要物理量的数值(见第一章课件)。
第二章 流体静力学 基本要求 ❖ 掌握流体静压强的概念及其特性,掌握流体静压强的计测和表示方法; ❖ 掌握流体平衡微分方程,了解流体的绝对和相对平衡; ❖ 熟练进行重力场中静止流体压强分布和平面与曲面上静水总压力计算。
流体静力学(fluid statics)研究流体的平衡规律,由平衡条件求静压强分布,并求静水总压力。 静止是相对于坐标系而言的,不论相对于惯性系中的绝对静止或非惯性系中的相对静止的情况,流体质点之间均没有相对运动,因此粘性将不起作用,所以流体静力学的讨论不须区分流体是实际流体还是理想流体。
2-1 流体静压强特性 1、流体静压强的两个基本特性 ①静压强作用的垂向性:静止流体的应力只有内法向分量—静压强(静止流体内的压应力)。 ②静压强的各向等值性:静压强的大小与作用面的方位无关—静压强是标量函数。 2、静压强场 静止流体的应力状态只须用一个静压强标量场(,,)pxyz来描述,有了这个静压强场,即可知道在任意一个作用点、以任意方位n为法向的面元上的应力为:(,,)(,,)nxyzpxyzpn。
2-2 流体平衡微分方程 1、平衡微分方程的推导: 静止流体中取微元体→各坐标方向微元体受力分析(质量力、表面力)→列各坐标方向的受力平衡方程。 2、平衡微分方程——欧拉平衡方程(1775)