2021年沪科版六年级数学第一次月考试题及答案
2014--2015学年度安徽省怀宁县金拱初中九年级(沪科版)数学第一次月考试题及答案

2014--2015学年度安徽省怀宁县金拱初中九年级(沪科版)数学第一次月考试题一.选择题(每题4分,满分40分)1.抛物线1822-+-=x x y 的顶点坐标为( ) A (-2,7) B (-2,-25) C (2,7) D (2,-9) 2.抛物线y=a(x+1)(x-3)(a ≠0)的对称轴是( ) A .x=1 B .x=-1 C .x= - 3 D .x=33..二次函数c bx x y ++-=2的图像的最高点是(-1,-3),则b ,c 的值是( ) A.b =2,c =4 B.b =2,c =-4 C.b=-2 ,c=4 D.b= -2,c= -4.4.若M(-1,y 1),N(1,y 2),P(2,y 3)三点都在函数y=kx(k<0)的图像上,则y 1,y 2,y 3的大小关系为( )A y 1>y 2>y 3 B. y 1>y 3 >y 2 C. y 3 >y 1>y 2 D. y 3> y 2> y 15.把抛物线y=12x 2向左平移3个单位,再向下平移2个单位后,所得的抛物线的表达式为( )A.y=12 (x+3)2+2B.y=12 (x-3)2+2C.y=12 (x-2)2+3D.y=12 (x+3)2-26. 在同一坐标系中,一次函数y=kx-1与函数y=kx的图象形状大致是( )7.对于反比例函数2y x=,下列说法不正确...的是( ) A .点(-2,-1)在它的图象上 B .它的图象在第一、三象限C .y 随x 的增大而减小D .当0x <时,y 随x 的增大而减小 8.给出下列四个函数:①x y -=;②x y =;③xy 1=;④2x y =.0<x 时,y 随x 的增大而减小的函数有( )A .1个B .2个C .3个D .4个9.抛物线2y x bx c =-++上部分点的横坐标x ,纵坐标y 的对应值如下表:从上表可知,下列说法正确的个数是( )①抛物线与x 轴的一个交点为(20)-,②抛物线与y 轴的交点为(06), ③抛物线的对称轴是:1x = ④在对称轴左侧y 随x 增大而增大A .1B .2C .3D .410.如图是二次函数y=ax 2+bx+c (a ≠0)图象的一部分,x=﹣1是对称轴,有下列判断:①b ﹣2a=0;②4a ﹣2b+c <0;③ a ﹣b+c=﹣9a ;④若(﹣3,y 1),(,y 2)是抛物线上两点,则y 1>y 2,其中正确的是( )x … 2- 1- 01 2 … y … 0 4 6 6 4 …x y O x yO O xyO xyABCDA. ①②③B. ①③④C.①②④D.②③④二.填空题(每题5分,满分20分) 11.写一个开口向上,对称轴为x=1,且与y 轴的交点坐标为(0,2)的抛物线的解析式 . 12.已知函数12++=x kx y 的图象与x 轴只有一个交点,则k=___________.13.如图,在平面直角坐标系中,反比例函数y 1=的图象与一次函数y 2=kx+b 的图象交于A 、B 两点.若y 1<y 2,则x 的取值范围是________________.14.如图,四边形OABC 是矩形,ADEF 是正方形,点A 、D 在x 轴的正半轴上,点C 在y 轴的正半轴上,点F 在AB 上,点B 、E 在反比例函数xky =的图像上,OA=1,OC=6,则正方形ADEF 的边长为 . 三.(每小题8分,满分16分)15.已知y=y 1+y 2,y 1与x 成反比例,y 2与x 成正比例,并且当x=2时y=7,当x=3时,y=8,求y 与x 的函数解析式.16.抛物线()20y ax bx c a =++≠与x 轴交于点A(- 1,0),B(3,0)两点,与y 轴交于点C(0,- 3).(1)求该抛物线的解析式及顶点M 的坐标;(2)求△BCM 的面积与△ABC 的面积的比. 四.(每小题8分,满分16分) 17.如图,二次函数32++-=mx x y 的图象与y 轴交于点A ,与x 轴的负半轴交于点B,且△AOB 的面积为6.(1)求该二次函数的表达式;(2)如果点P 在x 轴上,且△ABP 是等腰三角形,请直接写出点P 的坐标.第14题 第13题第10题18.如图,在平面直角坐标系中,过点M(0,2)的直线与x 轴平行,且直线分别与反比例函数6y x x =(>0)和0y x x =<()k的图象交于点P 、点Q . ⑴ 求点P 的坐标;⑵ 若△POQ 的面积为8 ,求k 的值 .五.(每小题10分,满分20分)19.某商场要经营一种新上市的文具,进价为20元,试营销阶段发现:当销售单价是25元时,每天的销售量为250件,销售单价每上涨1元,每天的销售量就减少10件(1)写出商场销售这种文具,每天所得的销售利润w (元)与销售单价x (元)之间的函数关系式;(2)商场的营销部结合上述情况,提出了A 、B 两种营销方案 方案A :该文具的销售单价高于进价且不超过30元;方案B :每天销售量不少于10件,且每件文具的利润至少为25元 请比较哪种方案的最大利润更高,并说明理由.20.实验数据显示,一般成人喝半斤低度白酒后,1.5小时内其血液中酒精含量y (毫克/百毫升)与时间x (时)的关系可近似地用二次函数y=﹣200x 2+400x 刻画;1.5小时后(包括1.5小时)y 与x 可近似地用反比例函数y=(k >0)刻画(如图所示).(1)根据上述数学模型计算:①喝酒后几时血液中的酒精含量达到最大值?最大值为多少? ②当x=5时,y=45,求k 的值.(2)按国家规定,车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升时属于“酒后驾驶”,不能驾车上路.参照上述数学模型,假设某驾驶员晚上20:00在家喝完半斤低度白酒,第二天早上7:00能否驾车去上班?请说明理由.Q yo x P M六.(本题满分12分)21.某体育用品商场为了推销某一运动服,先做了市场调查,得到数据如下表: 卖出价格x (元/件) 50 51 52 53 …… 销售量p (件) 500 490 480 470 ……(1)以x 作为点的横坐标,p 作为纵坐标,把表中的数据,在如图所示的直角坐标系中描出相应的点,观察连结各点所得的图形,判断p 与x 的函数关系式;(2)如果这种运动服的买入价为每件40元,试求销售利润y(元)与卖出价格x (元/件)的函数关系式(销售利润=销售收入-买入支出); (3)在(2)的条件下,当卖出价为多少时,能获得最大利润?七.(本题满分12分)22.某研究所将某种材料加热到1000℃时停止加热,并立即将材料分为A 、B 两组,采用不同工艺做降温对比实验,设降温开始后经过x min 时,A 、B 两组材料的温度分别为y A ℃、y B ℃,y A 、y B 与x 的函数关系式分别为y A =kx+b ,y B =(x ﹣60)2+m (部分图象如图所示),当x=40时,两组材料的温度相同.(1)分别求y A 、y B 关于x 的函数关系式;(2)当A 组材料的温度降至120℃时,B 组材料的温度是多少? (3)在0<x <40的什么时刻,两组材料温差最大?八.(本题满分14分)23、已知抛物线y=x 2+(2n-1)x+n 2-1 (n 为常数).(1)当该抛物线经过坐标原点,并且顶点在第四象限时,求出抛物线的函数关系式;并求出对称轴方程。
2024学年沪科版七年级下册数学第一次月考卷

2024学年沪科版七年级下册数学第一次月考卷注意事项:本试卷满分120分,考试时间120分钟,试题共25题。
答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置一、选择题(10小题,每小题2分,共20分)1. (2023上匹川成都八年级校考期末)下列选项是无理数的是()A . 3B . ,rC.示22 D. —2. (2023上伪蒙古包头,,\年级校考阶段练习)若a.b为两个连续整数,且(J <、fj <h , 则a t h 的值是()A. 3B. 4C. 6D. 53. (2024下全国七年级专题练习)如图,该数轴表示的不等式的解集为()II``..-I. O I 3·J -+5A . x> 2 B. x <3C.2<x<3D.2�、·/4. (2024下全国士年级专题练习)某品牌纯牛奶的包装盒上标有净含量500毫升"苺百毫升中含有原生高钙:>120毫克”,那么这样的一盒纯牛奶中原生高钙的含量是()A . 600毫克C. 最多600毫克B . 700毫克D. 至少600毫克5. (2023上山东青岛汃年级校考阶段练习)下列正确的是()A. 9的平方根是-3C. —5是25的平方根B .,49的算术平方根7D. 立方根是它本身的数只有0,16. (2024上浙江宁歧汃年级校考期末)巳知关于m 的不等式(2h )m >h 2的解集为m <-1,则h的取值范围是(A. h>2B . h< 2C. h >OD. h<O7. (2023上浙江温州士年级校联考期中)如图,一块面积为16平方米的正方形墙上镶嵌着一块正方形石雕,石雕四个角恰好分别在墙的四边的中点,请估计石雕边长的整数部分为()A. 1 B . 2 C. 3 D. 48. (2023安徽模拟预测)若实数a ,h 满足ah >0、a t O , 2a�h ! 3 0 , 令m a -t 2h , 则m 的取值范围是()IJ A. -5<m s --B . --O <m s --2 2IC . -6s m s --3D . -7<m �--29. (2024上重庆北码七年级西南大学附中校考期末)若整数a使关于有少至ux x2 >l ui ,2 x x,`, 组式等不的3个整数解,且使关于y 立的方程组尸I 2z -4的解为非负整数,那么满足条件的所有整数a 的和是()2y I Z 4 A.2B . ---6C.D .1010. (2023下福建福州生年级统考期末)巳知关千x ,V 的方程组{x+2y a+_,其中I <:a <:2, 下列2xy -(>J a说法正确的是() 也当a0时,X与V相等;®ix -0是原方程组的解;y 3@无论a 为何值时,x +y3;"I,3->- x 若@ —虾,则m 的最大值为11;A.心@B . ®@C . ®@@二、填空题(6小题,每小题2分,共12分)11. (2021上焦龙江哈尔滨士年级哈尔滨市第四十七中学校考阶段练习)比较大小(上>、<或=),,5D . @@1.12. (2024下全国士年级专题练习)一个正方体集装箱的原体积为216m'.现准备将其扩容(仍为正方体)用来放更多的货物.若要使新的正方体的体积达到343m 1, 则它的棱长需增加_m.13. (2023下开南洛阳七年级校考阶段练习)2023年4月22日是第54个世界地球日,为提倡节能减排、保护环境,光明中学举办了环保知识竞赛.竞赛中共有25道试题,答对I题得4分,不答或答错I 题扣分.若皓皓本次竟赛的得分不低于80分,则他至少答对道题.14. (2024下樵龙江绥化汃年级绥化市第八中学校校考开学考试)巳知关于X 的不等式组j 2x ,2<3n 3仅x -a �I 有三个整数解,则U的取值范围为15. (2024下全国生年级专题练习)观察下表后回答问题:a0. 0001 0. 01 1 100 10000 易0. 01X1y100(1)表格中X -_, _v(2)根据你发现的规律填空:句巳知句:::::1.732, 则5面:::::』而祝五:::::. _,_,@巳知"\/0.003136::::: 0.056, 则"\/J t :马面:::_.16. (2024上浙江金华生年级统考期末)巳如x是一个有理数,我们把不超过x 的最大整数记作[X ]. 例如,[3.2]=3, [s] s , [2.q3. 因此,3.2=[3.2]I 0.2, 5 [5]-1 0, 2.1 [21]�09, 所以有x [x ]1a ,其中O s;;u <I.(1)若X53, 则[x], a =(2)巳知加l x J +2. 则x =三、解答题(9小题,共68分)17. (2024上匹川眉山汃年级校考期末)计算:\闷卜压3�Z I 飞4I (1、心18. (2023上咐肃张掖汃年级校考阶段练习)求x的值:(1)4(X I f -9; (2)8 (X I I )'27.19. (2024下全国汃年级专题练习)解下列一元一次不等式组,并把它们的解集在数轴上表示出来.厂2\I> I(!)3(4x, 2)>2(2x 5)(�)20. (2023上江苏徐州汃年级校考阶段练习)因为,T< ,l J <、14'即I<,/3 <2, 所以,3的整数部分为1,小数部分为,3-1.类比以上推理解答下列问题:(1), 爪的整数部分是————;小数部分是———·(2诺m是11✓•订的小数部分,11是11I、1行的小数部分,且(x I l f -m I fl, 求x的值.21. (四川省巴中币2022-2023学年七年级下学期期末数学试题)巳知关于X、y的方程组{若X的值为非负数,Y的值为正数.(1沫:m的取值范围;(2冲m的取值范围内,当m为何负整数时,不等式,n,+x<m+I的解集为X>I.X�X-J 5m -l+Jm22. (2023上江苏苏州汃年级苏州市平江中学校校联考期中)(1)下面是小李探索'3的近似值的过程,请补充完整:我们知道面积是3的正方形的边长是'3'且,13>I. 设,/3I t-x, 可画出如下示意图.由面积公式,可得x�12x t I3. 当X l足够小时,略去X2'得方程_,解得X-_, 即"\J,3:::::_.l XI1· --Fy(O <y <1), 求"3的近似值.(画出示意图,标明数据,并写出"3的近(2)仿照上述方法,若设寸3似值)23. (2022下安徽六安生年级校考阶段练习)由无理数的定义可知无理数与有理数不可能相等,若m,n 为有理数,X为无理数,且,nr+n0, 则m0, n 0.(1枷果{a4)、压,h9 0,其中a,b为有理数,求a h的平方根;(2枷果{2+✓2)a-(1-v,2)b5,其中a,b为有理数且是p的平方根,求p的值.24. C四川省巴中币2022-2023学年七年级下学期期末数学试题)为了拓宽学生视野,某校计划组织900名师生开展以悝寻红色足逊,传承红色精神”为主题的研学活动·一旅旃公司有A 、B 两种型号的客车可以租用,巳知I 辆A 型车和I 辆B 型车可以载乘客85人,3辆A型车和2辆B型车可以载乘客210人.(1)求一辆A 型车和一辆B型车分别可以载多少乘客;(2痒校计划共租A 、B两种型号的客车22辆,其中A型车数量的一半不少于B 型车的数量,共有多少种租车方案;(3诺一辆A型车的租金为360元,一辆B型车的租金为400元.在(2)的条件最少租车费用是多少.25. (2023下朔南长沙士年级长沙市开福区青竹湖湘一外国语学校校考期末)我们定义:使方程(组)与不等式(组)同时成立的未知数的值称为此方程(组)和不等式(组)的梦想解".例:巳知方程2x -3I 与不等式X t-3> 0, 方程的解为x —2'使得不等式也成立,则称飞-2"为方程2x —3I和不等式x心>0的梦想解“(1)巳知句x梦想解";I3>, @2(x1J )x I, ® -<3, 试判断方程2x t 3 I 解是否为它与它们中某个不等式的J x 2(2诺关于x ,y的二元一次方程组{的值."口2x�y >m -5的解是不等式组{x t y <i 的梦想解,且m 为整数,求m(3)若关于x的方程x+4-J m 的解是关于x的不等式组lX>/1/I 的梦想解",且此时不等式组有7个整数解,x l <J m试求m的取值范围.2024学年沪科版七年级下册数学第一次月考卷注意事项:本试卷满分120分,考试时间120分钟,试题共25题。
沪科版_2021年安徽省中考数学试题评析

安徽省2021年中考数学试题评析注重能力稳中求新2021年安徽中考数学试题延续了近五年的命题风格,考查全面,难易适中,既有利于检测出全体考生的基础知识,也满足了后续学校对考生能力的选拔需求。
充分体现了安徽省“以稳为主,稳中求变”的命题指导思想,是一份值得肯定的好试卷。
一、试卷结构和难度分析试卷选材较前两年有所变化,但没有超出《安徽省2021年中考(数学)纲要》的要求,试题设置有一定的梯度和灵活度,较2021年难度有所增加,尤其几何题对学生的思维水平较前四年要求提高。
整张试卷中“数与代数”约占50%,“空间与图形”约占40%,“统计与概率”约占10%。
均接近于前几年中考各部分所占比例的平均值。
试题考查的重点突出,并保持适当的梯度:方程及其应用、整式的化简、圆、解直角三角形、图形变换、概率统计以及函数等重点知识都以不同的形式呈现,部分知识之间呈现出一定的综合和跨越。
考生做题时较容易上手,即使是难题也有似曾相识的感觉,试题考查的效度较高。
二、试卷考查重点分析1、试题注重学生数学实际应用能力的考查。
全卷考查学生数学实际应用的有六道试题(第5 、11 、12 、18 、20、21题),约占总分的1/3 。
这些题目涉及工农业、信息产业、交通、环境保护、正确决策等方面,具有时代气息。
这些问题都要求学生能从问题中读出必要的数学信息,并从数学的角度寻求解决问题的策略和方法。
2、试题具有一定创新性与操作性,全面考查学生的探究能力。
试卷第8、14、18、21、22、23题等都具有探究性,需要学生通过“观察、思考、猜测、推理”等思维活动分析并解决问题。
其中第22题是一个“新概念题”,题目定义了一个“同簇二次函数”的概念,然后以这个概念展开两个问题,题目很新颖,其中第(2)问学生感觉有些难度,需要较好的计算能力和丰富的解题经验。
第23题(压轴题)要求学生能将多边形问题转化为三角形问题进行研究,体现了“化归”的数学思想;同时要求学生能够合理运用图形变换,正确添加辅助线,体现出学生的创新思维。
安徽省2020-2021学年度第一学期九年级数学第一次月考试卷及答案

2020-2021学年度第一学期九年级质量检测试卷(一)数学(沪科版)注意事项:1.你拿到的试卷满分为150分,考试时间为120分钟。
2.本试卷包括“试题卷”和“答题卷”两部分。
“试题卷”共4页,“答题卷”共6页。
3.请务必在“答题卷”上答题,在“试题卷”上答题是无效的。
4.考试结束后,请将“试题卷”和“答题卷”一并交回。
一、选择题(本大题共10小题,每小题4分,共40分) 1.下列y 和x 之间的函数表达式中,是二次函数的是( ) A.y =(x +1)(x -4) B.y =x 2+2 C.y =x 2+x1D.y =x -12.已知点A (-8,y 1),B (4,y 2),C (-3,y 3)都在反比例函数y =(k <0)的图象上,则 A.y 1<y 2<y 3 B.y 3<y 2<y 1 C.y 3<y 1<y 2D.y 2<y 1<y 33.已知二次函数y =mx 2+x +m (m -2)的图像经过原点,则m 的值为( ) A.0或2B.0C.2D.无法确定4.如图,过反比例函数y =x6(x >0)的图象上一点A 作AB ⊥x 轴于点B ,连接AO ,则 S △AOB =( ) A.3B.2C.6D.85.抛物线y =-3x 2+4的开口方向和顶点坐标分别是( ) A.向下,(0,-4) B.向下,(0,4) C.向上,(0,4)D.向上,(0,-4)6.如图,二次函数y =ax 2-bx +3图象的对称轴为直线x =1,与x 轴交于A 、B 两点,且点B 坐标为(3,0),则方程ax 2=bx -3的根是( ) A.x 1=x 1=3B.x 1=1,x 2=3C.x 1=1,x 2=-3D.x 1=-1,x 2=37.共享单车为市民出行带来了方便,某单车公司第一月投放a 辆单车,计划第三个月投放单 车y 辆,设该公司第二、第三两个月投放单车数量的月平均增长率为x ,那么y 与x 的函数关系式为( ) A.y =a (1+x )2B.y =a (1-x )2C.y =(1-x )2+aD.x 2+a8.某广场有一个小型喷泉,水流从垂直于地面的水管QA 喷出,0A 长为1.5m.水流在各个方 向上沿形状相同的抛物线路径落到地面上,某方向上抛物线路径的形状如图所示,落点B 到0的距离为3m 。
七年级数学第一次月考卷(沪科版2024)(解析版)【测试范围:第一章】

2024-2025学年七年级数学上学期第一次月考卷基础知识达标测(考试时间:120分钟 试卷满分:120分)考前须知:1.本卷试题共24题,单选10题,填空6题,解答8题。
2.测试范围:第一章(沪科版2024)。
第Ⅰ卷一、单选题1.―12024的相反数是( )A .―2024B .12024C .―12024D .以上都不是【答案】B【分析】本题主要考查了相反数的定义,解题的关键是熟练掌握“只有符号不同的两个数互为相反数”.根据相反数的定义解答即可.【详解】解:―12024的相反数是12024,故选:B .2.今年春节电影《热辣滚烫》《飞驰人生2》《熊出没·逆转时空》《第二十条》在网络上持续 引发热议,根据国家电影局2月18日发布数据,我国2024年春节档电影票房达80.16亿元,创造了新的春节档票房纪录.其中数据80.16亿用科学记数法表示为( )A .80.16×108B .8.016×109C .0.8016×1010D .80.16×1010【答案】B【分析】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.【详解】解:80.16亿=8.016×109,故选:B .3.有下列说法:①一个有理数不是正数就是负数;②整数和分数统称为有理数;③零是最小的有理数;④正分数一定是有理数;⑤―a一定是负数,其中正确的个数是()A.1B.2C.3D.4【答案】B【分析】根据有理数的分类逐项分析判断即可求解.【详解】解:①一个有理数不是正数就是负数或0,故①不正确;②整数和分数统称为有理数,故②正确;③没有最小的有理数,故③不正确;④正分数一定是有理数,故④正确;⑤―a不一定是负数,故④不正确,故选:B.【点睛】本题考查了有理数的分类,掌握有理数的分类是解题的关键.4.两江新区正加快打造智能网联新能源汽车产业集群,集聚了长安、长安福特、赛力斯、吉利、理想等10家整车企业,200余家核心零部件企业.小虎所在的生产车间需要加工标准尺寸为4.5 mm的零部件,其中(4.5±0.2)mm范围内的尺寸为合格,则下列尺寸的零部件不合格的是( )A.4.4mm B.4.5mm C.4.6mm D.4.8mm【答案】D【分析】本题考查正数和负数,根据正数和负数的实际意义求得合格尺寸的范围,然后进行判断即可,结合已知条件求得合格尺寸的范围是解题的关键.【详解】解:由题意可得合格尺寸的范围为4.3mm∼4.7mm,4.8mm不在尺寸范围内,故选:D.5.下列各组数相等的有()A.(―2)2与―22B.(―1)3与―(―1)2C.―|―0.3|与0.3D.|a|与a【答案】B【分析】根据负数的奇次幂是负数,负数的偶次幂是正数,可得答案.【详解】解∶ A.(―2)2=4,―22=―4,故(―2)2≠―22;B.(―1)3=―1,―(―1)2=―1,故(―1)3=―(―1)2;C.―|―0.3|=―0.3,0.3,故―|―0.3|≠0.3;D.当a小于0时,|a|与a不相等,;故选∶B.【点睛】本题考查了有理数的乘方,熟练求解一个数的乘方是解题的关键.6.如图,将一刻度尺放在数轴上(数轴的单位长度是1cm),刻度尺上“0cm”和“3cm”分别对应数轴上的3和0,那么刻度尺上“5.6cm”对应数轴上的数为()A.―1.4B.―1.6C.―2.6D.1.6【答案】C【分析】本题考查了数轴,熟练掌握在数轴上右边点表示的数减去左边点表示的数等于这两点间的距离是解题关键.利用点在数轴上的位置,以及两点之间的距离分析即可求解.【详解】解:设刻度尺上“5.6cm”对应数轴上的数的点在原点的左边,距离原点有5.6―3=2.6的单位长度,所以这个数是―2.6故选:C.7.观察下图,它的计算过程可以解释( )这一运算规律A.加法交换律B.乘法结合律C.乘法交换律D.乘法分配律【答案】D【分析】根据图形,可以写出相应的算式,然后即可发现用的运算律.【详解】解:由图可知,6×3+4×3=(6+4)×3,由上可得,上面的式子用的是乘法分配律,故选:D.【点睛】本题考查有理数的混合运算,熟练掌握运算律是解答本题的关键.8.如图,A、B两点在数轴上表示的数分别为a,b,有下列结论:①a―b<0;②a+b>0;>0.其中正确的有( )个.③(b―1)(a+1)>0;④b―1|a―1|A.4个B.3个C.2个D.1个【答案】A【分析】本题主要考查了数轴,有理数的加减,乘除运算.先根据a、b在数轴上的位置判断出a、b的取值范围,再比较出各数的大小即可.【详解】解:观察数轴得:―1<a<0<1<b,∴a―b<0,故①正确;a+b>0,故②正确;b―1>0,a+1>0,∴(b―1)(a+1)>0,故③正确;b―1>0故④正确.|a―1|故选:A9.定义运算:a⊗b=a(1―b).下面给出了关于这种运算的几种结论:①2⊗(―2)=6,②a⊗b=b⊗a,③若a+b=0,则(a⊗a)+(b⊗b)=2ab,④若a⊗b=0,则a=0或b=1,其中结论正确的序号是()A.①④B.①③C.②③④D.①②④【答案】A【分析】各项利用题中的新定义计算得到结果,即可做出判断.此题考查了新定义运算,以及整式的混合运算、以及有理数的混合运算,熟练掌握运算法则是解本题的关键.【详解】解:根据题目中的新定义计算方法可得,①2⊗(―2)=2×(1+2)=6,①正确;②a⊗b=a(1―b)=a―ab,b⊗a=b(1―a)=b―ab,故a⊗b与b⊗a不一定相等,②错误;③(a⊗a)+(b⊗b)=a(1―a)+b(1―b)=a+b―a2―b2≠2ab,③错误;④若a⊗b=a(1―b)=0,则a=0或b=1,④正确,故选:A.10.下列图中所有小正方形都是全等的.图(1)是一张由4个小正方形组成的“L”形纸片,图(2)是一张由6个小正方形组成的3×2方格纸片.把“L”形纸片放置在图(2)中,使它恰好盖住其中的4个小正方形,共有如图(3)中的4种不同放置方法,图(4)是一张由36个小正方形组成的6×6方格纸片,将“L”形纸片放置在图(4)中,使它恰好盖住其中的4个小正方形,共有n种不同放置方法,则n的值是()A.160B.128C.80D.48【答案】A【分析】先计算出6×6方格纸片中共含有多少个3×2方格纸片,再乘以4即可得.【详解】由图可知,在6×6方格纸片中,3×2方格纸片的个数为5×4×2=40(个)则n=40×4=160故选:A.【点睛】本题考查了图形类规律探索,正确得出在6×6方格纸片中,3×2方格纸片的个数是解题关键.第II卷(非选择题)二、填空题11.甲地海拔高度为―50米,乙地海拔高度为―65米,那么甲地比乙地.(填“高”或者“低”).【答案】高【分析】先计算甲地与乙地的高度差,再根据结果进行判断即可.【详解】解:由题意可得:(―50)―(―65)=―50+65=15>0,∴甲地比乙地高.故答案为:高【点睛】本题考查的是有理数的大小比较,有理数的减法运算的实际应用,理解题意是解本题的关键.12.绝对值大于1且不大于5的负整数有.【答案】―2,―3,―4,―5【分析】本题考查了绝对值的意义,根据绝对值的意义即可求解,掌握绝对值的意义是解题的关键.【详解】解:绝对值大于1且不大于5的负整数有―2,―3,―4,―5,故答案为:―2,―3,―4,―5.13.若(2a ―1)2与2|b ―3|互为相反数,则a b = .【答案】18【分析】本题考查相反数的概念及绝对值的知识.根据互为相反数的两个数的和为0,可得(2a ―1)2与2|b ―3|的和为0,再根据绝对值和偶次方的非负性即可分别求出a ,b .【详解】∵ (2a ―1)2与2|b ―3|互为相反数∴ (2a ―1)2+2|b ―3|=0∵ (2a ―1)2≥0,2|b ―3|≥0∴2a ―1=0,2|b ―3|=0∴ a =12,b =3∴ a b =(12)3=18.故答案为:18.14.电影《哈利•波特》中,小哈利波特穿越墙进入“934站台”的镜头(如示意图的Q 站台),构思奇妙,能给观众留下深刻的印象.若A 、B 站台分别位于―23,83处,AP =2PB ,则P 站台用类似电影的方法可称为“ 站台”.【答案】159或6【分析】先根据两点间的距离公式得到AB 的长度,再根据AP =2PB 求得AP 的长度,再用―23加上该长度即为所求.【详解】解:AB =|83――=103,AP =|103×22+1|=209,或AP =|103×2|=203,P :―23+209=149=159,或―23+203=183=6.故P 站台用类似电影的方法可称为“159站台”或者“6站台”.故答案为:159或6.【点睛】本题考查了数轴,关键是用几何方法借助数轴来求解,非常直观,且不容易遗漏,其中题干表达模糊,并没有明确指出P在AB中间,所以有两个答案(P在AB中间,或者P在AB的右侧).但题目需要用类似电影的方法表达,故而答案可以仅为“159站台”,这个题体现了数形结合的优点.15.若a|a|+b|b|+c|c|+d|d|=2,则|abcd|abcd的值为.【答案】-1【分析】先根据a|a|+b|b|+c|c|+d|d|=2,a|a|,b|b|,c|c|,d|d|的值为1或-1,得出a、b、c、d中有3个正数,1个负数,进而得出abcd为负数,即可得出答案.【详解】解:∵当a、b、c、d为正数时,a|a|,b|b|,c|c|,d|d|的值为1,当a、b、c、d为负数时,a|a|,b |b|,c|c|,d|d|的值为-1,又∵a|a|+b|b|+c|c|+d|d|=2,∴a、b、c、d中有3个正数,1个负数,∴abcd为负数,∴|abcd|abcd=-1.故答案为:-1.【点睛】本题主要考查了绝对值的意义和有理数的乘法,根据题意得出a、b、c、d中有3个正数,1个负数,是解题的关键.16.如图,圆的周长为4个单位长度,在该圆的4等分点处分别标上0,1,2,3,先让圆周上表示数字0的点与数轴上表示―1的点重合,再将圆沿着数轴向右滚动,则圆周上表示数字的点与数轴上表示2023的点重合.【答案】0【分析】圆周上的0点与―1重合,滚动到2023,圆滚动了2024个单位长度,用2024除以4,余数即为重合点.【详解】解:圆周上的0点与―1重合,2023+1=2024,2024÷4=506,圆滚动了506 周到2023,圆周上的0与数轴上的2023重合,故答案为:0.【点睛】本题考查了数轴,找出圆运动的规律与数轴上的数字的对应关系是解决此类题目的关键.三、解答题17.计算.(1)(―59)―(―46)+(―34)―(+73)(2)(―334)―(―212)+(―416)―(―523)―1【答案】(1)―120(2)―34【分析】本题考查了有理数的混合运算.(1)去括号,再计算加减即可.(2)去括号,通分,再计算加法即可.【详解】(1)(―59)―(―46)+(―34)―(+73)=―59+46―34―73=―120(2)(―334)―(―212)+(―416)―(―523)―1=―334―2―416―5―1=―54+32―1=―3418.计算:(1)4×―12―34+2.5―|―6|;(2)―14―(1―0.5)×13―2―(―3)2.【答案】(1)―1;(2)356.【分析】(1)利用乘法分配律、绝对值的性质分别运算,再合并即可;(2)按照有理数的混合运算的顺序进行计算即可求解;本题考查了有理数的混合运算,掌握有理数的运算法则和运算律是解题的关键.【详解】(1)解:原式=4×――4×34+4×2.5―6=―2―3+10―6,=―1;(2)解:原式=―1―12×13―(2―9)=―1―16+7,=6―16,=356.19.如图,数轴上每个刻度为1个单位长度上点A 表示的数是―3.(1)在数轴上标出原点,并指出点B 所表示的数是 ;(2)在数轴上找一点C ,使它与点B 的距离为2个单位长度,那么点C 表示的数为 ;(3)在数轴上表示下列各数,并用“<”号把这些数按从小到大连接起来.2.5,―4,512,―212,|―1.5|,―(+1.6).【答案】(1)见解析,4(2)2或6(3)数轴表示见解析,―4<―212<―(+1.6)<|―1.5|<2.5<512【分析】本题主要考查了在数轴上表示有理数以及有理数的比较大小:(1)根据点A 表示―3即可得原点位置,进一步得到点B 所表示的数;(2)分两种情况讨论即可求解;(3)首先在数轴上确定表示各数的点的位置,再根据在数轴上表示的有理数,右边的数总比左边的数大用“<”号把这些数连接起来即可.【详解】(1)如图,O 为原点,点B 所表示的数是4,故答案为:4;(2)点C 表示的数为4―2=2或4+2=6.故答案为:2或6;(3)|―1.5|=1.5,―(+1.6)=―1.6,在数轴上表示,如图所示:由数轴可知:―4<―212<―(+1.6)<|―1.5|<2.5<51220.(1)已知|a |=5,|b |=3,且|a ―b |=b ―a ,求a ―b 的值.(2)已知a 和b 互为相反数,c 和d 互为倒数,x 的绝对值等于2,求式子: x ―(a +b +cd )+a+b cd 的值.【答案】(1)―8或―2;(2)1或―3【分析】本题考查有理数的混合运算,熟练掌握运算法则和运算顺序是解答本题的关键.(1)根据|a |=5,|b |=3,且|a ―b |=b ―a ,可以得到a 、b 的值,然后代入所求式子计算即可;(2)根据a 与b 互为相反数,c 与d 互为倒数,x 的绝对值等于2,可以得到a +b =0,cd =1,x =±2,然后代入所求式子计算即可.【详解】解:(1)∵|a |=5,|b |=3,∴a =±5,b =±3,∵|a ―b |=b ―a ,∴b ≥a ,∴a =―5,b =±3,当a =―5,b =3时,a ―b =―5―3=―8,当a =―5,b =―3时,a ―b =―5―(―3)=―5+3=―2,由上可得,a +b 的值是―8或―2;(2)∵a 与b 互为相反数,c 与d 互为倒数,x 的绝对值等于2,∴a +b =0,cd =1,x =±2,∴当x =2时,x ―(a +b +cd )+a +b cd=2―(0+1)+0=2―1=1;当x =―2时,x―(a+b+cd)+a+b cd=―2―(0+1)+0=―2―1=―3.综上所述,代数式的值为1或―3.21.某风筝加工厂计划一周生产某种型号的风筝700只,平均每天生产100只,但由于种种原因,实际每天生产量与计划量相比有出入.下表是某周的生产情况(增产记为正、减产记为负);星期一二三四五六日增减+5―2―4+13―6+6―3(1)根据记录的数据,该厂生产风筝最多的一天是星期______;(2)产量最多的一天比产量最少的一天多生产多少只风筝?(3)该厂实行每周计件工资制,每生产一只风筝可得20元,若超额完成任务,则超过部分每只另奖5元;少生产一只扣4元,那么该厂工人这一周的工资总额是多少元?【答案】(1)四(2)19(3)14225【分析】(1)根据表格中的数据求解即可;(2)最高一天的产量减去最少一天的产量求解即可;(3)根据题意列出算式求解即可.【详解】(1)由表格可得,星期四生产的风筝数量是最多的,故答案为:四.(2)13―(―6)=19,∴产量最多的一天比产量最少的一天多生产19只风筝;(3)700+5―2―4+13―6+6―3=709(只)709×20+9×5=14225(元).∴该厂工人这一周的工资总额是14225元【点睛】本题考查了正数和负数,有理数的加减和乘法运算的实际应用.解决本题的关键是理解题意正确列式.22.阅读下面材料:点A、B在数轴上分别表示数a、b.A、B两点之间的距离表示为|AB|.则数轴上A、B两点之间的距离|AB|=|a﹣b|.回答下列问题:(1)数轴上表示1和﹣3的两点之间的距离是 ;数轴上表示﹣2和﹣5的两点之间的距离是 ;(2)数轴上表示x和﹣1的两点A和B之间的距离是 ,如果|AB|=2,那么x为 ;(3)当|x+1|+|x﹣2|取最小值时,符合条件的整数x有 ;(4)令y=|x+1|+|x﹣2|+|x﹣3|,问当x取何值时,y最小,最小值为多少?请求解.【答案】(1)4;3;(2)|x+1|,1或﹣3;(3)﹣1,0,1,2;(4)x=2时,y最小,最小值为4【分析】(1)根据两点间的距离的求解列式计算即可得解;(2)根据两点之间的距离表示列式并计算即可;(3)根据数轴上两点间的距离的意义解答;(4)根据数轴上两点间的距离的意义解答.【详解】解:(1)数轴上表示1和﹣3的两点之间的距离是:|1―(―3)|=1+3=4;数轴上表示﹣2和﹣5的两点之间的距离是:|―2―(―5)|=5―2=3;(2)∵A,B分别表示的数为x,﹣1,∴数轴上表示x和﹣1的两点A和B之间的距离是|x+1|,如果|AB|=2,则|x+1|=2,解得:x=1或﹣3;(3)当|x+1|+|x﹣2|取最小值时,﹣1≤x≤2,∴符合条件的整数x有﹣1,0,1,2;(4)当|x+1|+|x﹣2|+|x﹣3|取最小值时,x=2,∴当x=2时,y最小,即最小值为:|2+1|+|2﹣2|+|2﹣3|=4.故x=2时,y最小,最小值为4.【点睛】本题考查数轴与绝对值,熟练掌握数轴上两点之间距离的计算方法是解题的关键.23.观察下列三列数:―1、+3、―5、+7、―9、+11、……①―3、+1、―7、+5、―11、+9、……②+3、―9、+15、―21、+27、―33、……③(1)第①行第10个数是,第②行第10个数是;(2)在②行中,是否存在三个连续数,其和为83?若存在,求这三个数;若不存在,说明理由;(3)若在每行取第k个数,这三个数的和正好为―101,求k的值.【答案】(1)+19;―21(2)存在,这三个数分别为85,―91,89(3)k=―49【分析】本题主要考查了数字规律,一元一次方程的应用,做题的关键是找出数字规律.(1)第①和②行规律进行解答即可;(2)设三个连续整数为(―1)n﹣1(2n―3)―2,(―1)n(2n―1)―2,(―1)n+1(2n+1)―2,根据题意列出方程,即可出答案;(3)设k为奇数和偶数两种情况,分别列出方程进行解答.【详解】(1)解:根据规律可得,第①行第10个数是2×10―1=19;第②行第10个数是―(2×10+1)=―21;故答案为:+19;―21;(2)解:存在.理由如下:由(1)可知,第②行数的第n个数是(―1)n(2n―1)―2,设三个连续整数为(―1)n﹣1(2n――2,(―1)n(2n―1)―2,(―1)n+1(2n+1)―2,当n为奇数时,则2n―3―2―2n+1―2+2n+1―2=83,化简得2n―7=83,解得n=45,这三个数分别为85,―91,89;当n为偶数时,则―(2n―3)―2+(2n―1)―2―(2n+1)―2=83,化简得―2n―5=83,解得n=―44(不符合题意舍去),这三个数分别为85,―91,89;综上,存在三个连续数,其和为83,这三个数分别为85,―91,89;(3)解:当k为奇数时,根据题意得,―(2k ―1)―(2k +1)+3×(2k ―1)=―101,解得:k =―49,当k 为偶数时,根据题意得,(2k +1)+(2k ―3)―3(2k ―1)=―101,解得,k =51(舍去),综上,k =―49.24.如图,数轴上有A ,B ,C 三个点,分别表示数―20,―8,16,有两条动线段PQ 和MN (点Q 与点A 重合,点N 与点B 重合,且点P 在点Q 的左边,点M 在点N 的左边),PQ =2,MN =4,线段MN 以每秒1个单位的速度从点B 开始向右匀速运动,同时线段PQ 以每秒3个单位的速度从点A 开始向右匀速运动.当点Q 运动到点C 时,线段PQ 立即以相同的速度返回;当点Q 回到点A 时,线段PQ 、MN 同时停止运动.设运动时间为t 秒(整个运动过程中,线段PQ 和MN 保持长度不变).(1)当t =20时,点M 表示的数为 ,点Q 表示的数为 .(2)在整个运动过程中,当CQ =PM 时,求出点M 表示的数.(3)在整个运动过程中,当两条线段有重合部分时,速度均变为原来的一半,当重合部分消失后,速度恢复,请直接写出当线段PQ 和MN 重合部分长度为1.5时所对应的t 的值.【答案】(1)8,―8(2)―2.8或2(3)5.5或8.5或18.25或19.75【分析】本题考查一元一次方程的应用,解题的关键是读懂题意,能用含t 的代数式表示点运动后所表示的数.(1)当t =20时,根据起点位置以及运动方向和运动速度,即可得点M 表示的数为8、点Q 表示的数为―8;(2)当t ≤12时,Q 表示的数是―20+3t ,P 表示的数是―22+3t ,M 表示的数是―12+t ,36―3t =|―10+2t|,此时―12+t =―12+465=―145,当12<t ≤24时,Q 表示的数是16―3(t ―12)=52―3t ,P 表示的数是50―3t ,M 表示的数是―12+t ,3t ―36=|62―4t |,(3)当PQ 从A 向C 运动时,―8+32(t ―4)――8+12(t ―4)=1.5或―4+12(t ―4)―[―10+32(t ―4)]=1.5,当PQ 从C 向A 运动时,132+―――=1.5或172――――=1.5,解方程即可得到答案.【详解】(1)解:依题意,∵―8―4+20×1=8,∴当t =20时,点M 表示的数为8;∵16―{20×3―[16―(―20)]}=―8,∴当t =20时,点Q 表示的数为―8;故答案为:8,―8;(2)解:当t ≤12时,Q 表示的数是―20+3t ,P 表示的数是―22+3t ,M 表示的数是―12+t ,∴CQ =16―(―20+3t )=36―3t ,PM =|―22+3t ―(―12+t )|=|―10+2t |,∴36―3t =|―10+2t |,解得t =465或t =26(舍去),此时―12+t =―12+465=―145当12<t ≤24时,Q 表示的数是16―3(t ―12)=52―3t ,P 表示的数是50―3t ,M 表示的数是―12+t ,∴CQ =16―(52―3t )=3t ―36,PM =|50―3t ―(―12+t )|=|62―4t |,∴3t ―36=|62―4t |,解得t =14或t =26(舍去),此时―12+t =―12+14=2,∴当CQ =PM 时,点M 表示的数是―145或2;(3)解:当PQ 从A 向C 运动时,t =4时,PQ 与MN 开始有重合部分,有重合部分时,Q 表示的数为―8+32(t ―4),P 表数为―10+32(t ―4),M 表示的数为―8+12(t ―4),N 表示的数是―4+12(t ―4),若线段PQ 和MN 重合部分长度为1.5则―8+32(t ―4)――8+12(t ―4)=1.5或―4+12(t ―4)―[―10+32(t ―4)]=1.5,解得t =5.5或t =8.5,由―10+32(t ―4)=―4+12(t ―4)得t =10,∴当t =10时,PQ 与MN 的重合部分消失,恢复原来的速度,此时Q 表示的数是1,再过(16―1)÷3=5(秒),Q 到达C ,此时t =15,则M 所在点表示的数是―12+4+10―42+5=0,N 所在点表示的数4,当PQ 从C 向A 运动时,t =352时,PQ 与MN 开始有重合部分,有重合部分时,Q 表示的数为172――P 表示的数为132―M 表示的数为52N 表示的数是132―若线段PQ 和MN 重合部分长度为1.5,132+―――=1.5或172―――=1.5,解得t =18.25或t =19.75,∴重合部分长度为1.5时所对应的t 的值是5.5或8.5或18.25或19.75.。
沪科版2022-2023学年九年级数学上册第一次月考测试题(附答案) (2)

2022-2023学年九年级数学上册第一次月考测试题(附答案)一、单选题(24分)1.已知三点P1(x1,y1),P2(x2,y2),P3(x3,y3)都在反比例函数y=﹣的图象上,若x1<0<x2<x3,则下列式子正确的是()A.y1<y2<y3B.y3<y2<y1C.y2>y3>y1D.y1>y3>y2 2.二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)中,x与y的部分对应值如下表:x﹣3﹣2﹣10y0﹣3﹣4﹣3下列结论:①ac<0;②当x>1时,y随x的增大而增大;③﹣4是方程ax2+(b﹣4)x+c=0的一个根;④当﹣1<x<0时,ax2+(b﹣1)x+c+3>0.其中正确结论的个数为()A.4个B.3个C.2个D.1个3.已知一块蓄电池的电压为定值,以此蓄电池为电源时,电流I(A)与电阻R(Ω)之间的函数关系如图,则电流I关于电阻R的函数解析式为()A.B.C.D.4.将抛物线y=x2向右平移2个单位,再向上平移3个单位后,抛物线的解析式为()A.y=x2+4x+7B.y=x2﹣4x+7C.y=x2+4x+1D.y=x2﹣4x+1 5.若二次函数y=ax2+bx+c(a<0)的图象经过点(2,0),且其对称轴为x=﹣1,则使函数值y>0成立的x的取值范围是()A.x<﹣4或x>2B.﹣4≤x≤2C.x≤﹣4或x≥2D.﹣4<x<2 6.把二次函数y=ax2+bx+c(a>0)的图象作关于x轴的对称变换,所得图象的解析式为y =﹣a(x﹣1)2+4a,若(m﹣1)a+b+c≤0,则m的最大值是()A.﹣4B.0C.2D.6二、填空题(20分)7.已知二次函数y=﹣x2+x+6及一次函数y=﹣x+m,将该二次函数在x轴上方的图象沿x 轴翻折到x轴下方,图象的其余部分不变,得到一个新函数(如图所示),当直线y=﹣x+m与新图象有4个交点时,m的取值范围是.8.如图,在平面直角坐标系中,反比例函数y=(x>0)的图象和矩形OABC的边AB交于点E,且AE:EB=1:2,则矩形OABC的面积为.9.如图,是反比例函数y=和y=(k1<k2)在第一象限的图象,直线AB∥x轴,并分别交两条曲线于A、B两点,若S△AOB=2,则k2﹣k1的值为.10.若关于x的一元二次方程a(x+m)2=3的两个实数根x1=﹣1,x2=3,则抛物线y=a (x+m﹣2)2﹣3与x轴的交点坐标是.三、解答题(76分)11.如图,已知直线l过点A(4,0),B(0,4)两点,它与二次函数y=ax2的图象在第一象限内交于点P,若S△AOP=4,试求二次函数的表达式.12.反比例函数y=(k≠0)与一次函数y=mx+b(m≠0)交于点A(1,2k﹣1).(1)求反比例函数的解析式;(2)若一次函数与x轴交于点B,且△AOB的面积为3,求一次函数的解析式.13.如图,Rt△ABC的斜边AC的两个顶点在反比例函数的图象上,点B在反比例函数的图象上,AB与x轴平行,BC=2,点A的坐标为(1,3).(1)求C点的坐标;(2)求点B所在函数图象的解析式.14.如图,抛物线与x轴交于点A(﹣,0),点B(2,0),与y轴交于点C(0,1),连接BC.(1)求抛物线的解析式;(2)N为抛物线上的一个动点,过点N作NP⊥x轴于点P,设点N的横坐标为t(﹣),求△ABN的面积s与t的函数解析式;(3)若0<t<2且t≠0时,△OPN∽△COB,求点N的坐标.15.某公司生产A种产品,它的成本是6元/件,售价是8元/件,年销售量为5万件.为了获得更好的效益,公司准备拿出一定的资金做广告,根据经验,每年投入的广告费是x 万元,产品的年销售量将是原销售量的y倍,且y与x之间满足我们学过的二种函数(即一次函数和二次函数)关系中的一种,它们的关系如下表:x(万元)00.51 1.52…y1 1.275 1.5 1.675 1.8…(1)求y与x的函数关系式(不要求写出自变量的取值范围)(2)如果把利润看作是销售总额减去成本费用和广告费用,试求出年利润W(万元)与广告费用x(万元)的函数关系式,并计算每年投入的广告费是多少万元时所获得的利润最大?(3)如果公司希望年利润W(万元)不低于14万元,请你帮公司确定广告费的范围.16.如图,抛物线y=x2+bx﹣2与x轴交于A、B两点,与y轴交于C点,且A(﹣1,0).(1)求抛物线的解析式及顶点D的坐标;(2)判断△ABC的形状,证明你的结论;(3)点M是x轴上的一个动点,当△DCM的周长最小时,求点M的坐标.17.如图,抛物线y=ax2+bx+4交x轴于A(﹣3,0),B(4,0)两点,与y轴交于点C,连接AC,BC,点P是第一象限内抛物线上的一个动点,点P的横坐标为m,过点P作PM⊥x轴,垂足为点M,PM交BC于点Q.(1)求此抛物线的表达式;(2)过点P作PN⊥BC,垂足为点N,请用含m的代数式表示线段PN的长;(3)当m为何值时PN有最大值,最大值是多少?18.已知,如图,抛物线y=ax2+3ax+c(a>0)与y轴交于点C,与x轴交于A、B两点,点A在点B左侧,点B的坐标为(1,0)、C(0,﹣3).(1)求抛物线的解析式.(2)若点D是线段AC下方抛物线上的动点,求四边形ABCD面积的最大值.(3)若点E在x轴上,点P在抛物线上,是否存在以A、C、E、P为顶点且以AC为一边的平行四边形?如存在,求点P的坐标;若不存在,请说明理由.参考答案一、单选题(24分)1.解:∵反比例函数y=﹣中k=﹣3<0,∴函数图象在二四象限,∵x1<0<x2<x3,∴点P1(x1,y1)在第二象限,y1>0,点P2(x2,y2),P3(x3,y3)在第四象限,∴y1>y3>y2.故选:D.2.解:∵x=﹣3时y=0,x=0时,y=﹣3,x=﹣1时,y=﹣4,∴,解得,∴y=x2+2x﹣3,∴ac=1×(﹣3)=﹣3<0,故①正确;对称轴为直线x=﹣=﹣1,所以,当x>﹣1时,y随x的增大而增大,故②正确;方程ax2+(b﹣4)x+c=0可化为x2﹣2x﹣3=0,解得x1=﹣1,x2=3,所以﹣4是方程ax2+(b﹣4)x+c=0的一个根,错误,故③错误;﹣1<x<0时,ax2+(b﹣1)x+c+3<0,原题干中错误,故④错误;综上所述,结论正确的是①②.故选:C.3.解:设I=,∵图象经过点(4,8),∴8=,解得:k=32,∴电流I关于电阻R的函数解析式为I=.4.解:抛物线y=x2向右平移2个单位后的解析式为:y=(x﹣2)2.再向上平移3个单位后所得抛物线的解析式为:y=(x﹣2)2+3,即y=x2﹣4x+7.故选:B.5.解:∵二次函数y=ax2+bx+c(a<0)的图象经过点(2,0),且其对称轴为x=﹣1,∴二次函数的图象与x轴另一个交点为(﹣4,0),∵a<0,∴抛物线开口向下,则使函数值y>0成立的x的取值范围是﹣4<x<2.故选:D.6.解:∵把二次函数y=ax2+bx+c(a>0)的图象作关于x轴的对称变换,所得图象的解析式为y=﹣a(x﹣1)2+4a,∴原二次函数的顶点为(1,﹣4a),∴原二次函数为y=a(x﹣1)2﹣4a=ax2﹣2ax﹣3a,∴b=﹣2a,c=﹣3a,∵(m﹣1)a+b+c≤0,∴(m﹣1)a﹣2a﹣3a≤0,∵a>0,∴m﹣1﹣2﹣3≤0,即m≤6,∴m的最大值为6,故选:D.二、填空题(20分)7.解:如图,当y=0时,﹣x2+x+6=0,解得x1=﹣2,x2=3,则A(﹣2,0),B(3,0),将该二次函数在x轴上方的图象沿x轴翻折到x轴下方的部分图象的解析式为y=(x+2)即y=x2﹣x﹣6(﹣2≤x≤3),当直线y=﹣x+m经过点A(﹣2,0)时,2+m=0,解得m=﹣2;当直线y=﹣x+m与抛物线y=x2﹣x﹣6(﹣2≤x≤3)有唯一公共点时,方程x2﹣x﹣6=﹣x+m有相等的实数解,解得m=﹣6,所以当直线y=﹣x+m与新图象有4个交点时,m的取值范围为﹣6<m<﹣2.故答案为:﹣6<m<﹣2.8.解:∵四边形OABC是矩形,∴∠OAB=90°,设E点的坐标是(a,b),∵双曲线y=(x>0)与矩形OABC的AB边交于点E,且AE:EB=1:2,∴ab=2,AE=a,BE=2a,∴OA=b,AB=3a,∴矩形OABC的面积是AO×AB=b•3a=3ab=3×2=6,故答案为:6.9.解:设A(a,b),B(c,d),代入得:k1=ab,k2=cd,∵S△AOB=2,∴cd﹣ab=2,∴cd﹣ab=4,∴k2﹣k1=4,故答案为:4.10.解:∵关于x的一元二次方程3的两个实数根x1=﹣1,x2=3,∴,解得,,则抛物线y=a(x+m﹣2)2﹣3=(x﹣3)2﹣3,令y=0,则(x﹣3)2﹣3=0,解得,x=5或x=1,∴抛物线y=a(x+m﹣2)2﹣3与x轴的交点坐标是(5,0)和(1,0).故答案是:(5,0)和(1,0).三、解答题(76分)11.解:设直线l的解析式为y=kx+b,把A(4,0),B(0,4)分别代入得,解得,∴直线l的关系式为y=﹣x+4,设P(t,﹣t+4),∵S△AOP=4,∴×4×(﹣t+4)=4,解得t=2,∴P(2,2),把P(2,2)代入y=ax2得4a=2,解得a=,∴二次函数的表达式为y=x2.12.解:(1)把A(1,2k﹣1)代入y=得,2k﹣1=k,∴k=1,∴反比例函数的解析式为:y=;(2)由(1)得k=1,∴A(1,1),设B(a,0),∴S△AOB=•|a|×1=3,∴a=±6,∴B(﹣6,0)或(6,0),把A(1,1),B(﹣6,0)代入y=mx+b得:,∴,∴一次函数的解析式为:y=x+,把A(1,1),B(6,0)代入y=mx+b得:,∴,∴一次函数的解析式为:y=﹣.所以符合条件的一次函数解析式为:y=﹣或y=x+.13.解:(1)把点A(1,3)代入反比例函数得k1=1×3=3,所以过A点与C点的反比例函数解析式为y=,∵AB与x轴平行,∴B点的纵坐标为3,∵BC平行y轴,BC=2,∴C点的纵坐标为1,把y=1代入y=得x=3,∴C点坐标为(3,1);(2)把B(3,3)代入反比例函数得k2=3×3=9,所以点B所在函数图象的解析式为y=.14.解:(1)设抛物线的解析式为y=ax2+bx+c,由题意可得:,解得:.∴抛物线的函数关系式为y=﹣x2+x+1;(2)当﹣<t<2时,y N>0,∴NP=|y N|=y N=﹣t2+t+1,∴S=AB•PN=×(2+)×(﹣t2+t+1)=(﹣t2+t+1)=﹣t2+t+;(3)∵△OPN∽△COB,∴=,∴=,∴PN=2PO.当0<t<2时,PN=|y N|=y N=﹣t2+t+1,PO=|t|=t,∴﹣t2+t+1=2t,整理得:3t2﹣t﹣2=0,解得:t3=﹣,t4=1.∵﹣<0,0<1<2,∴t=1,此时点N的坐标为(1,2).故点N的坐标为(1,2).15.解:(1)设y与x的函数关系式为y=ax2+bx+c,由题意,得,解得:,∴y=﹣0.1x2+0.6x+1;(2)由题意,得W=(8﹣6)×5(﹣0.1x2+0.6x+1)﹣x,W=﹣x2+5x+10,W=﹣(x﹣2.5)2+16.25.∴a=﹣1<0,∴当x=2.5时,W最大=16.25.答:年利润W(万元)与广告费用x(万元)的函数关系式为W=﹣x2+5x+10,每年投入的广告费是2.5万元时所获得的利润最大为16.25万元.(3)当W=14时,﹣x2+5x+10=14,解得:x1=1,x2=4,∴1≤x≤4时,年利润W(万元)不低于14万元.16.解:(1)∵点A(﹣1,0)在抛物线上,∴,解得,∴抛物线的解析式为.∵,∴顶点D的坐标为;(2)△ABC是直角三角形.理由如下:当x=0时,y=﹣2,∴C(0,﹣2),则OC=2.当y=0时,,∴x1=﹣1,x2=4,则B(4,0),∴OA=1,OB=4,∴AB=5.∵AB2=25,AC2=OA2+OC2=5,BC2=OC2+OB2=20,∴AC2+BC2=AB2,∴△ABC是直角三角形;(3)作出点C关于x轴的对称点C′,则C'(0,2).连接C′D交x轴于点M,根据轴对称性及两点之间线段最短可知,CD一定,当MC+MD 的值最小时,△CDM的周长最小.设直线C′D的解析式为y=ax+b(a≠0),则,解得,∴.当y=0时,,则,∴.17.解:(1)∵抛物线y=ax2+bx+4交x轴于A(﹣3,0),B(4,0)两点,∴,解得,,∴此抛物线的表达式为y=x2+x+4.(2)如图,抛物线y=x2+x+4,当x=0时,y=4,∴C(0,4),∴OB=OC,∵∠BOC=90°,∴∠OBC=∠OCB=45°,∵PM∥OC,PN⊥BC,∴∠NQP=∠OCB=45°,∠PNQ=90°,∴∠NPQ=∠NQP=45°,∴PN=QN,∴PN2+QN2=2PN2=PQ2,∴PN=PQ;设直线BC的表达式为y=k+4,则4k+4=0,解得,k=﹣1,∴y=﹣x+4,∵点P的横坐标为m,∴P(m,m2+m+4),Q(m,﹣m+4),∵点P在点Q的上方,∴PQ=m2+m+4﹣(﹣m+4)=m2+m,∴PN=(m2+m)=m2+m(0<m<4).(3)∵PN=m2+m=(m﹣2)2+,且<0,0<2<4,∴当m=2时,PN有最大值,PN最大=.18.解:(1)将点B、C的坐标代入抛物线的解析式得:,解得:a=,c=﹣3.∴抛物线的解析式为y=x2+x﹣3(2)令y=0,则x2+x﹣3=0,解得x1=1,x2=﹣4∴A(﹣4,0)、B(1,0)令x=0,则y=﹣3∴C(0,﹣3)∴S△ABC=×AB×OC=×5×3=设D(m,m2+m﹣3)过点D作DE∥y轴交AC于E.直线AC的解析式为y=﹣x﹣3,则E(m,﹣m﹣3)DE=﹣m﹣3﹣(m2+m﹣3)=﹣(m+2)2+3当m=﹣2时,DE有最大值为3此时,S△ACD有最大值为×DE×4=2DE=6∴四边形ABCD的面积的最大值为6+=.(3)如图所示:①过点C作CP1∥x轴交抛物线于点P1,过点P1作P1E1∥AC交x轴于点E1,此时四边形ACP1E1为平行四边形,∵C(0,﹣3)∴设P1(x,﹣3)∴x2+x﹣3=﹣3解得x1=0,x2=﹣3∴P1(﹣3,﹣3);②平移直线AC交x轴于点E,交x轴上方的抛物线于点P,当AC=PE时,四边形ACEP 为平行四边形,∵C(0,﹣3)∴设P(x,3),∴x2+x﹣3=3,解得x=或x=,∴P2(,3)或P3(,3)综上所述存在3个点符合题意,坐标分别是P1(﹣3,﹣3)或P2(,3)或P3(,3).。
沪科版七年级数学(下)第一次月考试卷
一、选择题(每小题3分,共30分)1.下列各数中无理数有( ).3.141,227-,π,0,4.217,0.1010010001 A .2个 B .3 个 C. 4个 D .5个2的算术平方根是( )A :9 B :±9 C :±3 D:33、-8的立方根与4的平方根之和是( )A:0 B:4 C:0或4 D:0或-44、下列各组数中互为相反数的是( )A:-2B :-2 :-2 与12- D :2与2-5、已知:a =7,,且a b a b +=+,则a b -的值为( )A :2或12 B:2或-12 C:-2或12 D:-2或-12 6、不等式组2030x x -<⎧⎨-≥⎩的正整数解的个数是( ) A .1个 B.2个 C .3个 D .4个7、不等式组⎩⎨⎧+>+<+1,159m x x x 的解集是2>x ,则m 的取值范围是( )A . m ≤2 B. m ≥2 C.m≤1 D . m >18、如果关于x 、y 的方程组322x y x y a +=⎧⎨-=-⎩的解是负数,则a 的取值范围是( ) A.-4<a<5 B.a>5 C.a <-4 D.无解9、实数a ,b 在数轴上的位置,如图所示,那么化简||a b +的结果是( ).A .2a b +B .b C.b - D.2a b -+b a10、不等式组240,10x x -<⎧⎨+⎩≥的解集在数轴上表示正确的是( )A. B . C. D.二、填空题(每小题4分,共28分)11的平方根是;12、=-2)3(π ;32-= .; 13、若y =+1,则20082008y x +=;14、比较大小2π-, 2___12 15、若2)21(x -= 2x-1,则x 的取值范围是_______________16、已知不等式组2145x x x m->+⎧⎨>⎩无解,则m 的取值范围是17、已知732.13=,则=300.三、解答题(共62分)18、计算或化简(每题4分,计8分)解:原式= 解:原式=19、(6分)解不等式:2110155364x xx-+-≥-, 并把它的解集在数轴上表示出来.20、(8分)解不等式组2(1)4143x xxx+-≤⎧⎪+⎨>⎪⎩,并把解集在数轴上表示出来.21、(6的整数部分是a,小数部分是b,计算2a b-的值22、(8分)已知22ba++|b2-9|=0,求a+b的值.23、(8分)若方程组⎩⎨⎧=+=+205273y x m y x 的解x 、y 的值都是正数,求整数m 的值。
新沪科版七年级数学下册第一次月考测试卷含答案
新沪科版七年级数学下册第一次月考测试卷含答案班级姓名成绩时间:100分钟满分:100一、选择题(共10小题,每小题4分,满分40分)1.(4分)的算术平方根是()A. B.C.±D.2.(4分)在0.1,3,和这四个实数中,无理数是()A.0.1 B.3 C.D.3.(4分)下列说法正确的是()A.﹣6是36的算术平方根B.±6是36的算术平方根C.是36的算术平方根D.是的算术平方根4.(4分)不等式2x+3<2的解集是()A.2x<﹣1 B.x<﹣2 C.x<﹣ D.x<5.(4分)已知a<b,则下列不等式一定成立的是()A.a+3>b+3 B.2 a>2 b C.﹣a<﹣b D.a﹣b<06.(4分)小颖、小虹和小聪三人去公园玩跷跷板,她们三人的体重分别为a,b,c.从下面的示意图可知,她们三人体重大小的关系是()A.a<b<c B.c<a<b C.c<b<a D.b<a<c7.(4分)估计20的算术平方根的大小在()A.2与3之间 B.3与4之间 C.4与5之间 D.5与6之间8.(4分)如图,数轴上表示的是下列哪个不等式组的解集()A. B. C. D.9.(4分)若不等式组有解,那么n的取值范围是()A.n>8 B.n≤8 C.n<8 D.n≤810.(4分)一家三口准备参加旅行团外出旅游,甲旅行社告知:“父母买全票,小孩按半价优惠”,乙旅行社告知:“家庭旅游可按团体计价,即每人均按全价的8折收费”,若这两家旅行社每人的原价相同,那么可以算出()A.甲比乙优惠 B.乙比甲优惠 C.甲与乙相同 D.与原票价有关二.填空题11.(5分)64的立方根为.12.(5分)如图,M、N、P、Q是数轴上的四个点,这四个点中最适合表示的点是.13.(5分)不等式2x+9≥3(x+2)的正整数解是.14.(5分)已知a<b,c是实数,则下列结论不一定成立的是.①ac<bc ②>③ac2≤bc2④ac2<bc2.三.解答题(15--18每题8分,19,20每题10分.21,22每题12分,23题14分)15.(8分)把下列各数填入相应的集合内:﹣7,0.32,,46,0,,,,﹣.①有理数集合:{ }②无理数集合:{ }③正实数集合:{ }④实数集合:{ }.16.(8分)求下列各式中的x:(1)3x3=﹣24;(2)(x+1)2=9.17.(8分)解不等式≥,并把它的解集在数轴上表示出来.18.(8分)解不等式组:.19.(10分)已知2a﹣1的平方根是±3,3a+b﹣1的立方根是2,求2a﹣b的平方根.20.(10分)已知正方形纸ABCD 的面积是50cm 2,将四个角分别沿虚线往里折叠得到一个较小的正方形EFGH (E,F,G,H 分别为各边中点).(1)正方形EFGH的面积是;(2)求正方形EFGH的边长.21.(12分)若关于x、y的二元一次方程组中,x的值为负数,y的值为正数.(1)用含m的代数式表示x,y;(2)求m的取值范围.22.(12分)“保护好环境,拒绝冒黑烟”.某市公交公司将淘汰某一条线路上“冒黑烟”较严重的公交车,计划购买A型和B型两种环保节能公交车共10辆.若购买A 型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车1辆,共需350万元.(1)求购买A型和B型公交车每辆各需多少万元?(2)预计在该线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A型公交车x辆,完成下表:数量(辆)购买总费用(万元)载客总量(万人次)A型车x 60xB型车(3)若该公司购买A型和B型公交车的总费用不超过1200万元,且确保这10辆公交车在该线路的年均载客量总和不少于680万人次,则该公司有哪几种购车方案?哪种购车方案的总费用最少?最少总费用是多少?23.(14分)我们用[a]表示不大于a的最大整数,例如:[2.5]=2,[3]=3,[﹣2.5]=﹣3;用<a>表示大于a的最小整数,例如:<2.5>=3,<4>=5,<﹣1.5>=﹣1.解决下列问题:(1)[﹣4.5]= ,<3.5>= .(2)若[x]=2,则x的取值范围是;若<y>=﹣1,则y的取值范围是.(3)已知x,y满足方程组,求x,y的取值范围.参考答案与试题解析一、选择题(共10小题,每小题4分,满分40分)1.(4分)的算术平方根是()A. B.C.±D.【解答】解:∵的平方为,∴的算术平方根为.故选:B.2.(4分)在0.1,3,和这四个实数中,无理数是()A.0.1 B.3 C.D.【解答】解:0.1,3,是有理数,是无理数,故选:C.3.(4分)下列说法正确的是()A.﹣6是36的算术平方根B.±6是36的算术平方根C.是36的算术平方根D.是的算术平方根【解答】解:A、6是36的算术平方根,错误;B、6是36的算术平方根,错误;C、6是36的算术平方根,错误;D、是的算术平方根,正确,故选:D.4.(4分)不等式2x+3<2的解集是()A.2x<﹣1 B.x<﹣2 C.x<﹣ D.x<【解答】解:由2x+3<2得2x<1,解得x<﹣,故选:C.5.(4分)已知a<b,则下列不等式一定成立的是()A.a+3>b+3 B.2 a>2 b C.﹣a<﹣b D.a﹣b<0【解答】解:A、两边都加3,不等号的方向不变,故A不符合题意;B、两边都乘以2,不等号的方向不变,故B不符合题意;C、两边都乘以﹣1,不等号的方向改变,故C不符合题意;D、两边都减b,不等号的方向不变,故D符合题意;故选:D.6.(4分)小颖、小虹和小聪三人去公园玩跷跷板,她们三人的体重分别为a,b,c.从下面的示意图可知,她们三人体重大小的关系是()A.a<b<c B.c<a<b C.c<b<a D.b<a<c【解答】解:依图得a>b,c>b⇒b<a<c.故选:D.7.(4分)估计20的算术平方根的大小在()A.2与3之间 B.3与4之间 C.4与5之间 D.5与6之间【解答】解:∵16<20<25,∴<<,∴4<<5.故选:C.8.(4分)如图,数轴上表示的是下列哪个不等式组的解集()A. B. C. D.【解答】解:∵由图可知,x>﹣2且x≥3,∴不等式组为.故选:A9.(4分)若不等式组有解,那么n的取值范围是()A.n>8 B.n≤8 C.n<8 D.n≤8【解答】解:∵不等式组有解,∴n<x<8,∴n<8,m的取值范围为n<8.故选:C.10.(4分)一家三口准备参加旅行团外出旅游,甲旅行社告知:“父母买全票,小孩按半价优惠”,乙旅行社告知:“家庭旅游可按团体计价,即每人均按全价的8折收费”,若这两家旅行社每人的原价相同,那么可以算出()A.甲比乙优惠 B.乙比甲优惠 C.甲与乙相同 D.与原票价有关【解答】解:设每人的原票价为a元,如果选择甲,则所需要费用为2a+a=2.5a(元),如果选择乙,则所需费用为3a×80%=2.4a(元),因为a>0,2.5a>2.4a,所以选择乙旅行社较合算,故选:B.二.填空题11.(5分)64的立方根为 4 .【解答】解:64的立方根是4.故答案为:4.12.(5分)如图,M、N、P、Q是数轴上的四个点,这四个点中最适合表示的点是P .【解答】解:∵4<7<9,∴2<<3,∴在2与3之间,且更靠近3.故答案为:P.13.(5分)不等式2x+9≥3(x+2)的正整数解是1,2,3 .【解答】解:2x+9≥3(x+2),去括号得,2x+9≥3x+6,移项得,2x﹣3x≥6﹣9,合并同类项得,﹣x≥﹣3,系数化为1得,x≤3,故其正整数解为1,2,3.故答案为:1,2,3.14.(5分)已知a<b,c是实数,则下列结论不一定成立的是①②④.①ac<bc ②>③ac2≤bc2④ac2<bc2.【解答】解:①c<0时,ac>bc,故①不成立;②若c>0,则a/c<b/c,故(2)不成立;③c2≥0,ac2≤bc2,故③成立;④c2≥0,ac2≤bc2,故④不成立;故答案为:①②④.三.解答题(15--18每题8分,19,20每题10分.21,22每题12分,23题14分)15.(8分)把下列各数填入相应的集合内:﹣7,0.32,,46,0,,,,﹣.①有理数集合:{ ﹣7,0.32,,46,0,}②无理数集合:{ ,,﹣}③正实数集合:{ 0.32,,46,,,}④实数集合:{ ﹣7,0.32,,46,0,,,,﹣}.【解答】答案:①有理数集合:{﹣7,0.32,,46,0,…}②无理数集合:{,,﹣…};③正实数集合:{0.32,,46,,,…};④实数集合:{﹣7,0.32,,46,0,,,,﹣…};故答案为:﹣7,0.32,,46,0,;,,﹣;0.32,,46,0,,,;﹣7,0.32,,46,,,,﹣.16.(8分)求下列各式中的x:(1)3x3=﹣24;(2)(x+1)2=9.【解答】解:(1)∵3x3=﹣24,∴x3=﹣8,而(﹣2)3=﹣8,∴x=﹣2.(2)两边开平方得:x+1=±3,解得:x=2或x=﹣4.17.(8分)解不等式≥,并把它的解集在数轴上表示出来.【解答】解:去分母得,4(1﹣x)≥3(2﹣x),去括号得,4﹣4x≥6﹣3x,移项得,3x﹣4x≥6﹣4,合并得,﹣x≥2,系数化1得,x≤﹣2;不等式的解集在数轴上表示如下:.18.(8分)解不等式组:.【解答】解:由①得,x>3,由②得,x≥2,∴原不等式组的解集是:x>3.19.(10分)已知2a﹣1的平方根是±3,3a+b﹣1的立方根是2,求2a﹣b的平方根.【解答】解:∵2a﹣1的平方根是±3,∴2a﹣1=9,a=5,∵3a+b﹣1的立方根是2,∴3a+b﹣1=8,∴b=﹣6,∴2a﹣b=16,∴2a﹣b的平方根是±4.20.(10分)已知正方形纸ABCD 的面积是50cm 2,将四个角分别沿虚线往里折叠得到一个较小的正方形EFGH (E,F,G,H 分别为各边中点).(1)正方形EFGH的面积是25cm2;(2)求正方形EFGH的边长.【解答】解:(1)50÷2=25(cm 2).故正方形EFGH的面积是25cm 2.(2)设正方形EFGH 的边长为xcm,由(1)得x2=25,解得x=±5.又∵x 是正方形的边长,∴x>0,∴x=5.答:正方形EFGH 的边长是5 cm.故答案为:25cm 2.21.(12分)若关于x、y的二元一次方程组中,x的值为负数,y的值为正数.(1)用含m的代数式表示x,y;(2)求m的取值范围.【解答】解:(1),①+②,得:2x=4m﹣2,∴x=2m﹣1,②﹣①,得:2y=2m+8,∴y=m+4;(2)∵x的值为负数,y的值为正数,∴,解不等式①,得:m<,解不等式②,得:m>﹣4,∴﹣4<m<.22.(12分)“保护好环境,拒绝冒黑烟”.某市公交公司将淘汰某一条线路上“冒黑烟”较严重的公交车,计划购买A型和B型两种环保节能公交车共10辆.若购买A 型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车1辆,共需350万元.(1)求购买A型和B型公交车每辆各需多少万元?(2)预计在该线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A型公交车x辆,完成下表:数量(辆)购买总费用(万元)载客总量(万人次)A型车x 100x 60xB型车10﹣x 150(10﹣x)100(10﹣x)(3)若该公司购买A型和B型公交车的总费用不超过1200万元,且确保这10辆公交车在该线路的年均载客量总和不少于680万人次,则该公司有哪几种购车方案?哪种购车方案的总费用最少?最少总费用是多少?【解答】解:(1)设购买每辆A型公交车x万元,购买每辆B型公交车每辆y万元,依题意列方程得,,解得(2)由(1)中的可得:数量(辆)购买总费用(万元)载客总量(万人次)A型车x 100x 60xB型车10﹣x 150(10﹣x)100(10﹣x)故答案是:数量(辆)购买总费用(万元)载客总量(万人次)A型车x 100x 60xB型车10﹣x 150(10﹣x)100(10﹣x)(3)设购买x辆A型公交车,则购买(10﹣x)辆B型公交车,依题意列不等式组得,,解得6≤a≤8,∵x是整数∴x=6,7,8有三种方案(一)购买A型公交车6辆,B型公交车4辆(二)购买A型公交车7辆,B型公交车3辆(三)购买A型公交车8辆,B型公交车2辆因A型公交车较便宜,故购买A型车数量最多时,总费用最少,即第三种购车方案最少费用为:8×100+150×2=1100(万元)答:(1)购买A型和B型公交车每辆各需100万元、150万元(3)该公司有3种购车方案,第3种购车方案的总费用最少,最少总费用是1100万元.23.(14分)我们用[a]表示不大于a的最大整数,例如:[2.5]=2,[3]=3,[﹣2.5]=﹣3;用<a>表示大于a的最小整数,例如:<2.5>=3,<4>=5,<﹣1.5>=﹣1.解决下列问题:(1)[﹣4.5]= ﹣5 ,<3.5>= 4 .(2)若[x]=2,则x的取值范围是2≤x<3 ;若<y>=﹣1,则y的取值范围是﹣2≤y<﹣1 .(3)已知x,y满足方程组,求x,y的取值范围.【解答】解:(1)由题意得,[﹣4.5]=﹣5,<3.5>=4;(2)∵[x]=2,∴x的取值范围是2≤x<3;∵<y>=﹣1,∴y的取值范围是﹣2≤y<﹣1;(3)解方程组得:,∴x,y的取值范围分别为﹣1≤x<0,2≤y<3.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
10
P
实验中学2021学年第一学期第一次质量抽测试卷
六年级数学
(完卷时间:90分钟 满分:100分)
一、单项选择题(本大题共 6题,每题 2 分,满分 12分)
1.下列算式中表示整除的算式是………………………………………………………( )
A.0.6÷0.3=2; B. 22÷7=3……1;
C. 2÷1=2; D. 8÷16=0.5.
2. 用1,5,0三个数组成的三位数中能同时被2和5整除的数有………………… ( )
A. 1个 B. 2个 C. 3个 D. 4个
3. 下列说法中正确的是……………………………………………………………… ( )
A.合数都是偶数 B.互素的两个数一定是素数
C. 合数的因数至少有2个 D.一个正整数不是偶数就是奇数
4. ba,都是正整数,如果ba3,那么ba,的最小公倍数是……………………( )
A.b3 B. a C.b D.ab
5. 下列分数31124175,,,,21247519中是最简分数的个数为……………………………( )
A.2个 B.3个 C.4个 D.5个
6. 小明将8米长的绳子对折3次,那么每段绳子的长度为……………………… ( )
A.18米 B. 38米 C. 1 米 D.83米.
二、填空题(本大题共 14题,每题2分,共28分)
7. 分解素因数:12
8. 在正整数中,a是最小的素数,b是最小的合数,则ab=________;
9. 已知aA332,aB322,且A、B的最大公因数是30,则a=________.
10. 36的素因数有______ ___
11. 在10的所有因数中,互素的数共有 对。
12. 一个整数的最大因数和最小倍数之和是128,这个数是
13. 45 (用分数表示).
14. 如图:数轴上有一点P,则点P所表示的数为_______;
班
级
姓
名
学
号
―
―
―
―
―
―
―
―
―
―
―
―
―
―
―
―
―
―
―
―
密
―
―
―
―
―
―
―
―
―
―
―
―
―
―
―
封
―
―
―
―
―
―
―
―
―
―
―
线
―
―
―
―
―
―
―
―
―
―
―
―
―
―
―
24和40公有的因数
40的因数
24的因数
15. 用最简分数表示:18分钟是1小时的__________
16. 在括号内填上适当的数,使等式成立:412)(92415
17. 校合唱队原来有男队员18人,女队员22人,因排练需要又招了2名男队员,这时男队
员占全队人数的__________(几分之几?)
18. 如果用a表示a的全部因数的和,如1263216, 那么812
19. 一个最简分数的分子、分母的和是14,差是4,那么这个分数是
20. 如图,三个大小相同的长方形拼在一起,组成一个大长方形,
把第二个长方形平均分成2份,再把第三个长方形平均分成
3份,那么图中阴影部分的面积是大长方形面积的
三、简答题(本大题共3题,每题 6 分,满分 18分)
21. 将适当的数填写在下面的圈中。
22. 用短除法分解素因数:
(1)78 (2)483
23.用短除法求最大公因数,最小公倍数。
(1) 48和64 (2)72和108
10
8
6
CD
A
B
四、解答题:(本大题共7题,每题 6 分,满分 42分)
24. 如图,直角梯形中阴影部分面积是总面积的几分之几 ?
25.实验中学某班有36名学生参加课外兴趣小组情况的统计表如下,请根据表中数据回答下
列问题:
(1)那么参加体育类课外兴趣小组的人数占了全班人数的几分之几?
(2)如果参加美术的有4人,那么参加文学社的人数是全体人数的几分之几?
26.小明今年13岁,比妈妈小26岁,小明今年的年龄是妈妈年龄的几分之几?等到小明的
年龄增加一倍时,小明的年龄又是妈妈年龄的几分之几?
27.把一张长为72厘米,宽为42厘米的长方形纸片裁成大小相等的正方形纸片,而且
没有剩余,那么裁出的正方形纸片最少有多少张?
课外新区
小组名称
足球 篮球 文学社 三模 美术 电脑动画
参加人数 3 5 10 6
28.崇明东平国家森林公园有一行小树,从第一棵到最后一棵的距离是900米,原来每4米
有一棵小树,现要改成每6米一棵,问有几棵小树不要移动?
29. 为了庆祝国庆佳节,南门华联超市准备在门口用图案和文字两种装饰灯,文字装饰灯的
颜色每9分钟变一次,图案装饰灯的颜色每半小时变一次. 晚间18点整同时使用这两种装
饰灯.
(1)那么至少再过多少时间,两种装饰灯同时变颜色?
(2)节日期间,超市晚间22点整结束营业.请问在节日期间晚间营业中,哪些时刻这两种装饰
灯同时变颜色?
30.分子为1的分数叫做单位分数.早在三千多年前,古埃及人就利用单位分数进行书写和
计算.将一个分数分拆为几个不同的单位分数之和是一个古老且有意义的问题.例如:
2141424142143; 21616361631643
2
(1)仿照上例分别把分数85和53分拆成两个不同的单位分数之和(4分).
85
5
3
(2)在上例中,214143,又因为316162616216321,所以:
31614143,即4
3
可以写成三个不同的单位分数之和.按照这样的思路,它也可以写成
四个,甚至五个不同的单位分数之和.根据这样的思路,探索分数85能写出哪些两个以上的
不同单位分数的和?(写对一个得一分,满分2分)
――――――――――――――――――――密―――――――――――――――封―――――――――――线――――――――――――――
5,10,20,40
1,2,4,83,6,12,24
实验中学2021学年第一学期第一次质量抽测试卷
六年级数学(参考答案)
(完卷时间:90分钟 满分:100分)
一、单项选择题(本大题共 6题,每题 2 分,满分 12分)
1、C 2、B 3、D 4、B 5、B 6、C
二、填空题(本大题共 14题,每题2分,共28分)
7. 12 322 8. 6 9. 5 10. 2,2,3,3 11. 4 12. 64
13. 45 14. 38 15. 103 16. 1 17. 2110
18. 13 19. 59,95 20.187
三、简答题(本大题共3题,每题 6 分,满分 18分)
21、
22、(1)133278 (2)2373483
23、(1)最大公因数16 最小公倍数192
(2)最大公因数36 最小公倍数216
四、解答题:(本大题共7题,每题 6 分,满分 42分)
24、 95 25、(1)92 (2)92
26、(1)31 (2)21 27、84张
28、76棵
29、(1)90分钟 (2) 19:30 21:00
30、(1)218185 2110153
(2)31618185 12141618185