10种三极管驱动开关电路图

合集下载

单片机三极管驱动电路

单片机三极管驱动电路

单片机三极管驱动电路
在现代电子设备中,单片机(Microcontroller)已经成为了各种电子设备的核心控制器。

单片机通过其强大的计算能力和丰富的接口功能,能够实现各种复杂的控制任务。

而在很多应用中,单片机需要驱动外部的电路或器件,其中常用的驱动电路之一就是三极管驱动电路。

三极管是一种常用的半导体器件,它具有放大和开关功能,能够在电子电路中起到很好的驱动作用。

在单片机驱动外部电路时,通常会使用三极管来放大电流或控制电压,以实现对外部器件的控制。

单片机驱动三极管的电路通常包括以下几个部分:
1. 单片机输出端口,单片机通过其输出端口来控制三极管的导通和截止,从而控制外部器件的工作状态。

2. 驱动电路,单片机的输出端口通常只能提供较小的电流,无法直接驱动外部的大功率负载。

因此通常需要通过驱动电路来放大输出端口的电流或电压,以驱动三极管的工作。

3. 三极管,三极管作为电路的关键部分,起到放大电流或控制电压的作用,能够实现对外部负载的驱动。

在实际的电路设计中,需要根据具体的驱动要求和外部负载的特性来选择合适的三极管型号和设计合理的驱动电路。

同时还需要考虑到电路的稳定性、可靠性和功耗等因素,以确保电路工作的稳定和可靠。

总的来说,单片机三极管驱动电路在现代电子设备中具有广泛的应用,它能够实现对外部器件的精确控制和驱动,为各种电子设备的功能实现提供了重要的支持。

因此,对单片机三极管驱动电路的研究和应用具有重要的意义,将会在未来的电子技术发展中发挥越来越重要的作用。

光敏三极管的应用电路

光敏三极管的应用电路

光敏二极管和光敏三极管简介及应用光敏二极管和光敏三极管是光电转换半导体器件,与光敏电阻器相比具有灵敏度高、高频性能好,可靠性好、体积小、使用方便等优。

一、光敏二极管1.结构特点与符号光敏二极管和普通二极管相比虽然都属于单向导电的非线性半导体器件,但在结构上有其特殊的地方。

光敏二极管使用时要反向接入电路中,即正极接电源负极,负极接电源正极。

2. 光电转换原理根据PN结反向特性可知,在一定反向电压范围内,反向电流很小且处于饱和状态。

此时,如果无光照射PN结,则因本征激发产生的电子-空穴对数量有限,反向饱和电流保持不变,在光敏二极管中称为暗电流。

当有光照射PN结时,结内将产生附加的大量电子空穴对(称之为光生载流子),使流过PN结的电流随着光照强度的增加而剧增,此时的反向电流称为光电流。

不同波长的光(兰光、红光、红外光)在光敏二极管的不同区域被吸收形成光电流。

被表面P型扩散层所吸收的主要是波长较短的兰光,在这一区域,因光照产生的光生载流子(电子),一旦漂移到耗尽层界面,就会在结电场作用下,被拉向N区,形成部分光电流;彼长较长的红光,将透过P型层在耗尽层激发出电子一空穴对,这些新生的电子和空穴载流子也会在结电场作用下,分别到达N区和P区,形成光电流。

波长更长的红外光,将透过P型层和耗尽层,直接被N区吸收。

在N区内因光照产生的光生载流子(空穴)一旦漂移到耗尽区界面,就会在结电场作用下被拉向P区,形成光电流。

因此,光照射时,流过PN结的光电流应是三部分光电流之和。

二、光敏三极管光敏三极管和普通三极管的结构相类似。

不同之处是光敏三极管必须有一个对光敏感的PN 结作为感光面,一般用集电结作为受光结,因此,光敏二极管实质上是一种相当于在基极和集电极之间接有光敏二极管的普通二极管。

其结构及符号如图Z0130所示。

三、光敏二极管的两种工作状态光敏二极管又称光电二极管,它是一种光电转换器件,其基本原理是光照到P-N结上时,吸收光能并转变为电能。

三极管

三极管

Q点的影响因素有很多,如电源波动、偏
置电阻的变化、管子的更换、元件的老化等等,
不过最主要的影响则是环境温度的变化。三极
管是一个对温度非常敏感的器件,随温度的变 化,三极管参数会受到影响,具体表现在以下 几个方面。
• 1.温度升高,三极管的反向电流增大
• 2.温度升高,三极管的电流放大系数β增大
• 3.温度升高,相同基极电流IB下,UBE减小,
2.2 共射放大电路
一、 放大的概念
电子学中放大的目的是将微弱的变化信号放大成
较大的信号。这里所讲的主要是电压放大电路。
电压放大电路可以用有输入口和输出口的四端网
络表示,如图。
ui
Au
uo
1、放大体现了信号对能量的控制作用,放大的信
号是变化量。
2、放大电路的负载所获得的随信号变化的能量要
比信号本身所给出的能量大得多,这个多出的
②电感视为短路
共射电路的直流通路
用图解法分析放大器的静态工作点
直流负载线 UCE=UCC–ICRC
U CC RC
ICQ
IC Q
IB UCE
与IB所决 定的那一 条输出特 性曲线的 交点就是 Q点
UCEQ UCC
2、动态分析
计算动态参数Au、Ri、Ro时必须依据交流通路。 交流通路:是指ui单独作用(UCC=0)时,电路 中交流分量流过的通路。 画交流通路时有两个要点:
有以下两种。
IC
IB A RB
V
mA C
B E
UBE
RC USC V
UC(1)输入特性曲线
它是指一定集电极和发射极电压UCE下,三极管 的基极电流IB与发射结电压UBE之间的关系曲线。实 验测得三极管的输入特性曲线如下图所示。

三极管驱动共阴数码管

三极管驱动共阴数码管

三极管驱动共阴数码管数码管是一种将数字输入转换为数字显示的电子元件。

共阴数码管是一种常见的数码管类型,它有七个LED(发光二极管)组成,可以显示数字0到9以及一些字母和符号。

数码管驱动电路是用来控制数码管显示内容的电路。

常用的三极管驱动电路可以实现对共阴数码管的驱动。

在这种电路中,使用NPN型三极管来控制每个数码管的亮灭状态。

三极管是一种电子元件,由发射极(E)、基极(B)和集电极(C)组成。

它有两种工作模式:截止和饱和。

当输入电压较低时,三极管处于截止状态,不能流通电流;当输入电压较高时,三极管处于饱和状态,可以流通电流。

在共阴数码管驱动电路中,每个数码管的LED通过共阴极GND连接到地线,通过三极管的基极控制开关。

当三极管处于饱和状态时,电流从集电极流入发射极,这样数码管的LED就会发光;当三极管处于截止状态时,电流无法通过三极管,数码管的LED就会熄灭。

为了控制数码管的显示内容,控制信号通过信号输入线(比如微控制器的输出引脚)连接到三极管的基极。

当输入电压高时,三极管处于饱和状态,数码管的LED亮;当输入电压低时,三极管处于截止状态,数码管的LED熄灭。

为了保护三极管和数码管,通常在电路中还加入了限流电阻。

限流电阻可以限制电流的大小,避免过大的电流流过三极管和数码管,从而保护它们不会被烧坏。

数码管驱动电路的设计需要考虑电流和电压的匹配。

数码管的电流和工作电压需要在驱动电路能够提供的电流和电压范围内。

同时,数码管的输入电流和电压也需要符合驱动电路的要求,以确保正常的工作。

在实际应用中,可以使用多路三极管驱动电路来驱动多个数码管。

通过同时控制多个三极管的状态,可以实现多个数码管的显示。

三极管驱动共阴数码管的优点是驱动电路比较简单,成本较低。

但是缺点是当显示的数字较多时,需要同时控制多个三极管的状态,增加了复杂性。

此外,由于三极管的特性,可能会有一定的响应时间,对于一些要求快速切换显示内容的应用,可能不太适合。

三极管驱动三极管

三极管驱动三极管

三极管驱动三极管引言:三极管是一种常见的电子元件,广泛应用于各种电路中。

在电路设计中,有时需要使用一个三极管来驱动另一个三极管,以实现特定的功能。

本文将介绍三极管驱动三极管的原理、应用以及一些实际案例。

一、三极管基础知识回顾三极管是一种有三个电极的半导体器件,包括一个发射极(Emitter)、一个基极(Base)和一个集电极(Collector)。

根据不同的结构和工作模式,可以将三极管分为NPN型和PNP型两种。

在正常工作状态下,三极管通常处于放大和开关两种工作模式。

二、三极管驱动三极管的原理三极管驱动三极管的原理是利用前级三极管的输出信号来控制后级三极管的工作状态。

一般情况下,前级三极管处于放大工作状态,通过调节其输入信号的幅值和频率,可以控制后级三极管的工作状态,从而实现电路的特定功能。

三、三极管驱动三极管的应用1. 信号放大器:在放大器电路中,通过使用一个三极管作为输入信号的放大器,并将其输出信号连接到另一个三极管的基极,可以实现信号的进一步放大。

这种电路结构常用于音频放大器、射频放大器等领域。

2. 开关电路:在开关电路中,三极管驱动三极管的应用非常常见。

通过控制前级三极管的工作状态,可以实现对后级三极管的开关控制。

这种电路结构可以用于实现定时器、触发器等功能。

3. 电源管理:在电源管理电路中,通过使用三极管驱动三极管的方式,可以实现对电源输出的稳定调节。

例如,在稳压电源电路中,通过使用一个三极管作为基准电压源,并将其输出信号连接到另一个三极管的基极,可以实现对电源输出电压的精确调节。

四、实际案例1. 信号放大器实例:在音频放大器中,使用一个NPN型三极管作为输入信号的放大器,将其输出信号连接到一个PNP型三极管的基极。

这样,通过调节输入信号的幅值和频率,可以实现对输出音频信号的放大。

2. 开关电路实例:在计时器电路中,使用一个NPN型三极管作为触发器,将其输出信号连接到一个PNP型三极管的基极。

三极管驱动共阴数码管

三极管驱动共阴数码管

三极管驱动共阴数码管任务背景数码管是一种常见的数字显示器件,广泛应用于各种计数和显示场合。

其中,共阴数码管是一种常见的类型,它由多个LED组成,每个LED都可以独立控制。

为了实现对共阴数码管的驱动,我们可以利用三极管来控制LED的亮灭。

三极管简介三极管(Transistor)是一种半导体器件,由三个区域组成:发射区(Emitter)、基区(Base)和集电区(Collector)。

根据不同的接法和控制方式,三极管可以用作放大器、开关、振荡器等。

在本任务中,我们将使用NPN型晶体管作为驱动电路中的三极管。

NPN型晶体管具有以下特点:•发射区与基区之间的电流增益较高•集电区与基区之间存在一个正向偏置电压•当基极接收到足够大的电流时,集电结就会打开共阴数码管原理共阴数码管由多个LED组成,在正常情况下,它们的阳极均连接在一起,并通过外部电源提供正向电压。

当LED的阳极接收到足够大的电流时,LED就会亮起。

为了控制共阴数码管的亮灭,我们需要将其连接到驱动电路中。

驱动电路由三极管、电阻和输入信号组成。

当输入信号为高电平时,三极管导通,将正向电压传递给共阴数码管,使其亮起。

当输入信号为低电平时,三极管截断,中断正向电压传递至共阴数码管,使其熄灭。

三极管驱动共阴数码管原理图驱动电路设计器件清单•NPN型晶体管•共阴数码管•适当大小的电阻•输入信号源(如Arduino)步骤1.根据共阴数码管的规格书确定所需的正向电压和工作电流。

2.选择合适的NPN型晶体管,并查找其规格书以了解最大可承受的集电区电流。

3.根据所需工作电流和晶体管规格计算所需限流电阻的值。

4.连接驱动电路:将晶体管的发射区连接到公共地(GND),将基区连接到限流电阻,再将限流电阻的另一端连接到输入信号源。

将集电区连接到共阴数码管的阳极。

5.将共阴数码管的所有LED的阴极分别连接到适当的电流限制电阻,并将电流限制电阻与公共地相连。

驱动示例假设我们要使用Arduino来驱动一个共阴数码管,其中涉及到4个数字显示。

三极管

三极管

Vceo
在选择晶体管时, 大约为所用电源电压2倍 在选择晶体管时,Vceo大约为所用电源电压 倍 S8050的Vceo为25V 的
S8050 NPN型三极管参数 型三极管参数
c
Ic
b
Ib Ie
Vce
+
e
最大集电极电流, 最大集电极电流,即流过三极管集电极的最大电流
Icm
在选择晶体管时, 在选择晶体管时,Icm大约为三极管正常工作时流过 集电极最大电流的2倍 集电极最大电流的 倍 S8050的Icm为0.5A 的
Ec = Ic x Rc + Vce
三极管仿真电路分析
Ib、Ic、Vce 波形 波形?
集电极电压V 集电极电压 c
NPN 型 集电极电源Ec 集电极电源
基极电源E 基极电源 b
三极管仿真电路分析
Vo 集电极电压(V) 集电极电压( Ic 集电极电流(mA) 集电极电流(
集电极电压V 集电极电压 c
驱动继电器(工作原理 驱动继电器 工作原理) 工作原理
+Vcc
3.R1、R2电阻取值
D IN4007
例如: 例如: 若Vcc=+5V,Ics=50mA,β=100, 且R2=4.7kΩ,计算R1取值。 Vcc-Vbe . . I . b= R 1 5V-0.7V R1 . . . Vbe R2 Ic > β
+Vcc
释放
D IN4007
继电器
c
输入Vi 输入 +Vcc OFF 0V R2 4.7K R1
续流二极管
S8050
b e
用NPN三极管驱动继电器电路图 三极管驱动继电器电路图
驱动继电器(工作原理 驱动继电器 工作原理) 工作原理

三极管门电路课件

三极管门电路课件
输入全为高电平时, 输出为低电平。
第10页,共52页。
(2)输入有低电平0.3V 时。
该发射结导通,VB1=1V。T2、T3都截止。 忽略流过RC2的电流,VB4≈VCC=5V 。
实现了与非门的逻辑
功能的另一方面: 输入有低电平时, 输出为高电平。
综合上述两种情况, 该电路满足与非的 逻辑功能,即:
(b)组成双向总线, 实现信号的分时双向传送。
第32页,共52页。
七、TTL集成逻辑门电路系列简介
1.74系列——为TTL集成电路的早期产品,属中速TTL器件。 2.74L系列——为低功耗TTL系列,又称LTTL系列。 3.74H系列——为高速TTL系列。 4.74S系列——为肖特基TTL系列,进一步提高了速度。
L ABC
由于T4和D导通,所以: VO≈VCC-VBE4-VD =5-0.7-0.7=3.6(V)
第11页,共52页。
二、TTL与非门的开关速度
1.TTL与非门提高工作速度的原理
(1)采用多发射极三极管加快了存储电荷的消散过程。
第12页,共52页。
(2)采用了推拉式输出级,输出阻抗比较小,可迅速给负载电容 充放电。
2.48V) 0.3V) 0.3V)
Vth又常被形象化地称为门槛电压1.0 。Vth的值为1.3V~1.4V。
VOL(max)0.5 0.4V
D
E
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Vi (V)
VOFF VON
第17页,共52页。
3.抗干扰能力
TTL门电路的输出高低电平不是一个值,而是一个范围。
2.或非门
第25页,共52页。
3.与或非门
第26页,共52页。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

10种三极管开关驱动电路图
图1 NPN PNP三极管反相器电路 vin无输入电位Q1
截止。Vin高电平时Q1导通,Q2基极得高电位,Q2
截止。
图2 两只NPN三极管反相器电路 vin无输入电位Q1
截止,Q2导通。Vin接入高电平Q1导通,促使Q2基
极电位下级,Q2截止。

图3 PNP三极管开关电路 当输入端悬空时Q1截止。
VIN输入端接入低电平时,Q1导通,继电器吸合。

图4 PNP三极管开关电路 当vin无输入电位时Q1截
止。Vin接入高电平Q1导通,继电器吸合。
图5 三极管上拉电阻:当有高电位输入时Q导通,因
E-C导通,又因有负载电阻,所以输出看作是低电平。

图6 三极管上拉电阻:当有高电位输入时Q导通,因
E-C导通,又因有负载电阻,所以输出看作是高电平。

图7 光藕控制NPN三极管。
图8 光藕控制NPN三极管。
图9 光藕控制PNP三极管。
图10 光藕控制PNP三极管。

相关文档
最新文档