第一章、氨基酸的结构及性质PPT
合集下载
高二有机化学优质课件 2.4.2氨基酸和蛋白质

,C 为 α-氨基酸,则 C 的结构简式为
;
D 符合氨基酸的通式,但不与强酸、强碱反应,应该为硝基化
合物,即 CH3CH2NO2。
(2)H2NCH2COOH 和
形成的二肽有 4 种,其结
构如下:
、
、
、
。
答 案 ( 1 ) CH3COONH4 CH3CH2NO2 (2)4
H2NCH2COOH
二、蛋白质的性质 1.蛋白质的水解
除 去 Cl - 的 方 法 是 ____________________________________ 。
(4)浓HNO3溅到皮肤上,使皮肤呈
色,这是由于
浓HNO3和蛋白质发生了
反应的缘故。
(5)鉴定一种物质的成分是真丝还是人造丝,可取一小块进
行
,这是因为___________________________________
【议一议】 1.如何鉴别蛋白质? 答案 鉴别蛋白质的主要依据有:(1)有些蛋白质分子中有 苯环存在,这样的蛋白质与浓硝酸反应时呈黄色。(2)蛋白 质灼烧时有烧焦的羽毛味(常以此来区别毛纺物和棉纺物、 合成纤维等)。
2.如何分离提纯蛋白质? 答案 常用盐析来分离提纯蛋白质。因为盐析是可逆的,在 蛋白质溶液中加入浓的轻金属盐或铵盐溶液,蛋白质的溶解 度降低而从溶液中析出,析出的蛋白质又能溶于水中,并不 影响它原来的生理活性,常用来分离提纯蛋白质。
用途 分离提纯蛋白质
消毒、灭菌,如
除杂,如除去淀
给果树使用波尔
粉溶液中的
多液,保存动物
标本
NaNO3杂质
【特别提醒】 (1)蛋白质的分离与提纯:①常用盐析法分离提纯蛋白质, 因为盐析是可逆的。②可用渗析法除去蛋白质溶液(属于胶 体)中的杂质离子,因为蛋白质属于高分子化合物,不能透 过半透膜,而离子可以通过。 (2)不是所有的蛋白质都能发生颜色反应,只有结构中含有 苯环的才能遇浓HNO3呈黄色。 (3)蛋白质的检验:加浓HNO3溶液显黄色或灼烧有烧焦羽 毛气味。 (4)有机物的水解:能水解的有机物有卤代烃、酯、低聚糖 和多糖、油脂、蛋白质、多肽等。
氨基酸的生物有机化学

色氨酸
16
第二节 氨基酸的性质
一 等电点 二 与茚三酮反应
三 氨基酸金属盐络合物的形成 四 氨基酸的重要反应
17
第十七页,课件共62页
总述:具有胺和羧酸的共性。例如形成酰胺
+
- - 2H2O
2 H3NCH2COO
O
NH HN
2分子甘氨酸
O 2,5-二嗪哌酮
O
HOOCCH2CH2CHCOO-
- H2O
33
第三十三页,课件共62页
6.与醛反应生成西佛碱(Schiff’s base)
R1CHO
COOH
H2N R
COOH R1 N R
Schiff’sw base
34
第三十四页,课件共62页
7.叠氮反应
O R
O NHY
NH2NH2H2O
OH
R
N
O NH2
NHY
HNO2
O
R
N- N
ON
+
NHY
35
第三十五页,课件共62页
四 盖布瑞尔法
RCHCOOH Br
NH3
在封管或高 压釜内进行
RCHCOOH NH2
O
O
NK O
H3O+
+ RCHCOOCH3 Br
N CHCOOCH3
O
R
COOH COOH
+ + NH3CHCOO- + CH3OH R
应用盖布瑞尔法可以制备很纯的氨基酸。
40
第四十页,课件共62页
五 丙二酸酯法
1. 通过酰基丙二酸酯法
37
第三十七页,课件共62页
1. 氨基酸

Born july 31, 1800, Escherheim; Germany Died september 23, 1882, Gö ttingen; Germany
目录
(二)“燃烧”学说使“活力论”再次遭遇重创
Justus von Liebig (12 May 1803 – 18 April 1873) was a German chemist who made major contributions to agricultural and biological chemistry, and worked on the organization of organic chemistry. As a professor, he devised the modern laboratory-oriented teaching method, and for such innovations, he is regarded as one of the greatest chemistry teachers of all time. He is known as the "father of the fertilizer industry" for his discovery of nitrogen as an essential plant nutrient, and his formulation of the Law of the Minimum which described the effect of individual nutrients on crops. He also developed a manufacturing process for beef extracts, and founded a company, Liebig Extract of Meat Company, that later trademarked the Oxo brand beef bouillon cube.
有机化学氨基酸、多肽、蛋白质

6 种异构体 24种异构体
许多种氨基酸按照不同的排列顺序, 构成了自 然界中种类繁多的多肽和蛋白质。
命名多肽时以C-末端的氨基酸残基为母体, 由 N-端叫起, 依次称为某氨酰(基)某氨酸。
O
O
O
H2N CHC NH CH2C NH CHC OH
N-端
CH3
CH2
C-端
丙氨酸残基 甘氨酸残基 苯丙氨酸残基
利用蛋白质分子胶体颗粒大不能透过半透膜 的性质可将蛋白质分离提纯,这种方法称为透析 法(dialysis)。
(三)蛋白质的沉淀和变性
调节蛋白质溶液的pH值至等电点, 再加入适当的脱水剂除去蛋白质分子表 面的水化膜, 可使蛋白质分子聚集而从溶液中沉淀析出。
根据生成紫色化合物颜色的深浅程度,或根据放出
CO2气体的体积,可对 α-氨基酸 进行定量分析。 也常用于层析实验中氨基酸的显色。
第二节 肽肽ຫໍສະໝຸດ 氨基酸残基之间彼此通过酰胺键 (肽键)连 接而成的一类化合物。其通式为:
RO
R’ O
H2N C-C-OH + H N C-C-OH
H
HH
A氨m基ino酸acid
第十四章 氨基酸、蛋白质
第一节 氨基酸
一、氨基酸的分类、命名和构型
氨基酸的结构特点
①都是α-氨基酸(脯氨酸是
α–亚氨基酸); H N
COOH H
R CH COO- 内盐
NH3+
偶极离子
②除甘氨酸外,都是L-氨基酸(左旋);
③各氨基酸侧链R基团不同,氨基酸结构和性质有差异
1、分类
据化学结构:
任何一种蛋白质分子在天然状态下均具有独特 而稳定的构象,这是蛋白质分子在结构上最显著的 特点。为了表示蛋白质分子不同层次的结构,常将 蛋白质分子结构分为一级、二级、三级和四级。一 级结构又称为初级结构或基本结构,二级结构以上 属于构象范畴,称为高级结构。
氨基酸的分类和性质ppt课件

最新课件
49
多肽链N-端氨基酸的α-氨基如果是游离的,那么也
能发生此反应,生成PTC-肽。在酸性溶液中,PTC-肽
会释放出末端的PTH-氨基酸,而产生比原来少1个氨基
酸残基的肽链。新暴露出来的N-端氨基可再次进行同样
的反应。经过多次重复,N-端的氨基酸依次释放出来,
成为PTH-氨基酸。
由于PTH-氨基酸在酸性条件下极稳定,并可溶于
energy by further degradation.
最新课件
15
4、某些氨基酸本身就具有特殊的生 理活性。
Some amino acids possess special bioactivities by themselves.
最新课件
16
蛋白质氨基酸与非蛋白质氨基酸 Proteinogenic and nonproteinogenic AAs
最新课件
19
中性氨基酸 Neutral amino acids
酸性氨基酸 Acidic amino acids
碱性性氨基酸 Basic amino acids
中性非极性氨基酸 中性极性氨基酸
最新课件
20
中性非极性氨基酸(9种) 侧链为疏水性的烷烃链、甲硫基、吲哚基
最新课件
21
侧链含有巯基、羟基、酰胺基等
最新课件
13
2、其他生物分子合成的前体或原料 Precursors(前体) for
synthesizing other biomolecules.
最新课件
14
3、脱氨基后留下的碳骨架可以做为 合成葡萄糖和酮体的原料,也可以进 一步分解为机体供能。
Carbon skeletons after deamination (脱氨基) can serves as precursors for synthesizing glucose(葡萄糖), ketone bodies(酮体) or provide
氨基酸(正式上课)

三级结构: 蛋白质分子在二级结构的基础上进一步盘
曲折叠形成的三维结构。 具有三级结构的多肽链叫亚基 (教材P 106) 四级结构: 蛋白质分子中亚基的立体排布、亚基间的 相互作用与布局称为蛋白质的四级结构。(教材P 107)
蛋白质的结构
一级
二级
三级结构
桑格在20世纪40年代测定出
牛胰岛素分子中全部氨基酸的
甘氨酸 甘
你认识哪些常见的氨基酸? CH2—COOH NH2
丙 丙氨酸
CH3—CH—COOH NH2
谷 谷氨酸 HOOC-(CH2)2-CH-COOH
NH2
苯丙氨酸 苯丙
-CH2-CH-COOH
NH2
氨基酸的成肽反应
H H O OH H H O OH H H O OH H H O OH N CH 2 C N CH 2 C N CH 2 C N CH 2 C
NH CH C
4、蛋白质、淀粉、脂肪是三种重要的营养 脂肪 物质,其中______不是高分子化合物,这 三种物质水解的最终产物分别是 氨基酸 蛋白质→________;
葡萄糖 淀粉→_________; 高级脂肪酸和甘油 脂肪→______________ ;
在蛋白质水解的最终产物分子中,含有 氨基和羧基 ___________ 官能团。
• 什么是蛋白质的一级、二级、三级和四 级结构?
(四)蛋白质的结构 一级结构: 蛋白质分子中各种氨基酸的连接方式和排
列顺序叫蛋白质的一级结构。蛋白质的生物活性首先取 决于蛋白质的一级结构。(教材P 105) 二级结构: 多肽链卷曲盘旋和折叠的空间结构称为蛋 白质的二级结构。蛋白质的二级结构主要依靠肽链中氨 基酸残基亚氨基上的氢原子与羰基上的氧原子之间的氢 键而实现。(教材P 106)α-螺旋结构和ß -折叠结构
有机化学氨基酸
第十六章
氨基酸、多肽与蛋白质
Ⅰ、氨基酸
一、结构、分类和命名
1、结构:分子中含有氨基和羧基
R
H C NH2 COOH
2、分类:
(1)根据氨基与羧基的位置分类
H R C NH2 COOH
R
CH NH2
CH2 COOH
CH2 NH2
CH2
CH2 COOH
α-氨基酸
β-氨基酸
γ-氨基酸
中性氨基酸
(2) 碱性氨基酸
水蛭素多肽——抗血栓分子药理 1884年Haycraft首先发现新鲜医用水蛭Hirud medicinalis提取物含抗凝血物质,但直至1955年Mark wardt等从医用水蛭中才分离出水蛭素(hirudin,HV),共有 7种异构体。1984年Dodt首先测出其一级结构,确认HV是 一条含65个左右氨基酸的多肽。HV酶是血液凝固、止血过程 和血栓形成的中心酶之一。它专一性地水解纤维蛋白原上的 Agr-Gly键,使之转变成纤维蛋白;纤维蛋白相互作用会进一 步形成血栓。HV的2个结构域通过不同的机制分别和凝血酶 相互作用,抑制其活性。其C端长链通过和凝血酶的纤维蛋白 原识别部位结合,拮抗凝血酶对纤维蛋白原的识别。而HV的N 末端核心结构域通过和凝血酶的活性部位结合而抑制它的催 化活性。临床实验结果也表明,HV的抗栓作用不需要其它因 子的作用;又不会引起出血等副作用。其效果超过小分子肝 素。因此被认为是2010年前最强的可逆性凝血酶直接抑制剂。 全球约有20亿美元市场销售量。
+
O
C O
内盐(偶极离子或两性离子)
-
+
HC l
RCH
+
COOH
+
Cl
NH3
氨基酸、多肽与蛋白质
Ⅰ、氨基酸
一、结构、分类和命名
1、结构:分子中含有氨基和羧基
R
H C NH2 COOH
2、分类:
(1)根据氨基与羧基的位置分类
H R C NH2 COOH
R
CH NH2
CH2 COOH
CH2 NH2
CH2
CH2 COOH
α-氨基酸
β-氨基酸
γ-氨基酸
中性氨基酸
(2) 碱性氨基酸
水蛭素多肽——抗血栓分子药理 1884年Haycraft首先发现新鲜医用水蛭Hirud medicinalis提取物含抗凝血物质,但直至1955年Mark wardt等从医用水蛭中才分离出水蛭素(hirudin,HV),共有 7种异构体。1984年Dodt首先测出其一级结构,确认HV是 一条含65个左右氨基酸的多肽。HV酶是血液凝固、止血过程 和血栓形成的中心酶之一。它专一性地水解纤维蛋白原上的 Agr-Gly键,使之转变成纤维蛋白;纤维蛋白相互作用会进一 步形成血栓。HV的2个结构域通过不同的机制分别和凝血酶 相互作用,抑制其活性。其C端长链通过和凝血酶的纤维蛋白 原识别部位结合,拮抗凝血酶对纤维蛋白原的识别。而HV的N 末端核心结构域通过和凝血酶的活性部位结合而抑制它的催 化活性。临床实验结果也表明,HV的抗栓作用不需要其它因 子的作用;又不会引起出血等副作用。其效果超过小分子肝 素。因此被认为是2010年前最强的可逆性凝血酶直接抑制剂。 全球约有20亿美元市场销售量。
+
O
C O
内盐(偶极离子或两性离子)
-
+
HC l
RCH
+
COOH
+
Cl
NH3
氨基酸的分类特点及理化性质详解演示文稿
第41页,共86页。
(2)、氨基酸的pK值和氨基酸解离的关系
• 氨基酸在结晶形态或在水溶液中,并不是以游离的羧基或氨基 形式存在,而是离解成兼性离子。在兼性离子中,氨基是以质 子化(-NH3+)形式存在,羧基是以离解状态(-COO-)存在。
• 在不同的pH条件下,两性离子的状态也随之发生变化。
COOH -H+
含羟基氨基酸
O H2N CH C OH
CH OH CH3
第24页,共86页。
氨基酸的结构
天冬酰胺 Asnaragine
含酰胺氨基酸
O H2N CH C OH
CH2 CO NH2
第25页,共86页。
பைடு நூலகம்
氨基酸的结构
天冬酰胺 Asnaragine
谷氨酰胺 Glutamine
含酰胺氨基酸
O H2N CH C OH
• 在近紫外区(220-300nm) 只有酪氨酸、苯丙氨酸和 色氨酸有吸收光的能力。 可以通过测定280nm 处的 紫外吸收值的方法对蛋白溶 液进行定量。
• 苯丙氨酸的max=257nm,
257=2.0x102
• 酪氨酸的max=275nm, 275=1.4x103
• 色氨酸的max=280nm, 280=5.6x103
脂肪族氨基酸
O H2N CH C OH
CH CH3 CH3
第9页,共86页。
氨基酸的结构
甘氨酸
丙氨酸
缬氨酸
亮氨酸
Glycine
Alanine
Valine
Leucine
脂肪族氨基酸
O
H2N
CH C OH CH2 CH CH3
CH3
第10页,共86页。
(2)、氨基酸的pK值和氨基酸解离的关系
• 氨基酸在结晶形态或在水溶液中,并不是以游离的羧基或氨基 形式存在,而是离解成兼性离子。在兼性离子中,氨基是以质 子化(-NH3+)形式存在,羧基是以离解状态(-COO-)存在。
• 在不同的pH条件下,两性离子的状态也随之发生变化。
COOH -H+
含羟基氨基酸
O H2N CH C OH
CH OH CH3
第24页,共86页。
氨基酸的结构
天冬酰胺 Asnaragine
含酰胺氨基酸
O H2N CH C OH
CH2 CO NH2
第25页,共86页。
பைடு நூலகம்
氨基酸的结构
天冬酰胺 Asnaragine
谷氨酰胺 Glutamine
含酰胺氨基酸
O H2N CH C OH
• 在近紫外区(220-300nm) 只有酪氨酸、苯丙氨酸和 色氨酸有吸收光的能力。 可以通过测定280nm 处的 紫外吸收值的方法对蛋白溶 液进行定量。
• 苯丙氨酸的max=257nm,
257=2.0x102
• 酪氨酸的max=275nm, 275=1.4x103
• 色氨酸的max=280nm, 280=5.6x103
脂肪族氨基酸
O H2N CH C OH
CH CH3 CH3
第9页,共86页。
氨基酸的结构
甘氨酸
丙氨酸
缬氨酸
亮氨酸
Glycine
Alanine
Valine
Leucine
脂肪族氨基酸
O
H2N
CH C OH CH2 CH CH3
CH3
第10页,共86页。
大专生物化学课件(新)-氨基酸的性质和制备
定性鉴别溶液中是否含有某种氨基
酸/样品是不是某种氨基酸
利用某些氨基酸的特殊反应、特殊性质, 如:
脯氨酸,羟脯氨酸与茚三酮反应呈黄色 酪氨酸,色氨酸,苯丙氨酸在280nm左右有光吸 收 其他化学反应
1. 米伦反应:酪氨酸与米伦试剂(硝酸汞溶于含有少量亚硝酸的 硝酸中)反应即生成白色沉淀,加热后变成红色。含有酪氨酸 的蛋白质也有此反应; 2. 坂口反应:在碱性溶液中,胍基与含有萘酚及次溴酸盐的试 剂反应,生成红色物质。这是对于精氨酸专一性较强、灵敏度
会产生吸引作用。
国外膜分离工艺已应用于乳制品工业。采用反渗 透浓缩乳清,使用超滤法从乳清中制备浓缩蛋白质, 使用微米膜分离乳清中的蛋白质,去除脱脂乳中的 细菌,使用纳滤膜去除乳清中的矿物质。近些年, 又开始研究膜过滤分离蛋白质、肽和氨基酸的可行 性。在人体的新陈代谢过程中存在大量生物膜渗透 现象。研究氨基酸的膜分离不仅可以找出有效的生 物分离技术,而且有助于加深对这些新陈代谢过程 的了解。
(4)特殊试剂沉淀法 :采用某些有机或无机试 剂与相应氨基酸形成不溶性衍生物的分离方法。
精氨酸与苯甲醛生成沉淀,盐酸去除苯甲醛
是最早应用于混合氨基酸分离的方法之一。某些氨基酸可以 与一些有机化合物或无机化合物结合,形成结晶性衍生物沉 淀,达到与其它氨基酸分离的目的,但是,特殊沉淀法的沉 淀剂回收困难,排放废液中参杂有沉淀剂,加重了污染,残 留在氨基酸产品中的沉淀剂还会影响纯度。
紫外吸收光谱性质
构成蛋白质的20种氨基酸在可见光区
都没有光吸收,但在远紫外区 (<220nm)均有光吸收。
在近紫外区(220-300nm)只有酪氨酸、
苯丙氨酸和色氨酸有吸收光的能力
《氨基酸脱水缩合》课件
氨基酸脱水缩合的意义
形成蛋白质的基本结构
氨基酸通过脱水缩合形成肽链,进而组装成具有特定空间结构的蛋白质,这是 构成生物体的基本物质。
生物功能实现的基础
蛋白质是生物体内行使各种功能的物质基础,如催化反应、信息传递、免疫防 御等,因此氨基酸脱水缩合是实现这些功能的基础。
02
氨基酸的种类与结构
氨基酸的分类
《氨基酸脱水缩合》ppt课件
目 录
• 氨基酸脱水缩合的概述 • 氨基酸的种类与结构 • 氨基酸脱水缩合的方式与产物 • 氨基酸脱水缩合的生物学意义 • 氨基酸脱水缩合的研究进展与展望
01
氨基酸脱水缩合的概述
氨基酸脱水缩合的定义
定义
氨基酸脱水缩合是指氨基酸在体内经 过一系列化学反应,将氨基和羧基结 合形成肽键的过程。
实验技术和计算模拟在研究中 的应用,提高了对脱水缩合反 应的认识和理解。
氨基酸脱水缩合的研究前景
随着生物技术的不断发展和新材 料的出现,氨基酸脱水缩合反应
的应用前景越来越广泛。
在药物研发、蛋白质工程和生物 医学等领域,脱水缩合反应有望 为解决一些重要问题提供新的思
路和方法。
未来研究将进一步拓展氨基酸脱 水缩合反应的应用领域,并探索 其在构建复杂分子体系中的作用
脱水缩合反应研究的深入发展。
THANKS
感谢观看
根据侧链基团极性分类
极性氨基酸、非极性氨基酸、酸性氨基酸、碱性氨基酸
根据来源分类
必需氨基酸、非必需氨基酸
氨基酸的结构特点
都有一个氨基和一个 羧基连接在同一个碳 原子上
侧链基团不同,决定 了氨基酸的不同
氨基显碱性,羧基显 酸性,二者性质相反
氨基酸的化学性质
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
18
3)半胱氨酸(Cys) 它的个性不仅表现在其侧链 有一定的大小和具有高度的化学反应活性,还 在于两个 Cys 能形成稳定的带有二硫(桥)键 的胱氨酸。二硫键不仅可以在肽链内,也可以 在肽链间存在。更有甚者,同样的一对二硫键 能具有不同的空间取向。
Page 19
半胱氨酸
-OOC-CH-CH2-SH + HS-CH2-CH-COO-
苯丙氨酸 (Phe,F)
Page 11
酪氨酸 (Tyr,Y)
色氨酸 (Trp,W)
3、杂环氨基酸
Page 12
组氨酸 (His, H)
脯氨酸 (Pro, P)
说明:关于杂环氨基酸和杂环亚氨基酸
色氨酸 (Trg,W)
芳香族氨基酸
组氨酸 ( His, H)
Page 13
杂环氨基酸
脯氨酸 ( Pro, P)
脯氨酸和羟脯氨酸能溶于乙醇或乙醚中, 且 二者极易溶于水而潮解。
Page 28
2. 氨基酸的旋光性
●除甘氨酸外,氨基酸均含有一个手性-碳原子, 都具有旋光性。 ●比旋光度是氨基酸的重要物理常数之一,是鉴别各种氨基酸的重要依据。
Page 29
氨基酸的构型-都有 D-型和 L-型 2 种立体异构体
L-(-)甘油醛
氨基酸与水合茚三酮共热,发生氧化脱氨反应,生成NH3与酮酸。 水合茚三酮变为还原型茚三酮。 加热过程中酮酸裂解,放出CO2,自身变为少一个碳的醛。水合 茚三酮变为还原型茚三酮。 NH3与水合茚三酮及还原型茚三酮脱水缩合,生成蓝紫色化合物。
Page 47
反应要点 A.该反应由NH2与COOH共同参与 B.茚三酮是强氧化剂 C.该反应非常灵敏,可在570nm测定吸光值 D. 测定范围:0.5~50µg/ml E.脯氨酸与茚三酮直接生成黄色物质(不释放
D-(+)甘油醛
L-丙氨酸
Page 30
D-丙氨酸
L-丙氨酸
Page 31
D-丙氨酸
蛋白质中发现的氨基酸都是L-型的(故习惯上书写氨基酸都 不注明构型和旋光方向)。
Page 32
3、紫外吸收
构成蛋白质的20种氨基 酸在可见光区都没有光吸收, 但在远紫外区(<220nm)均有 光吸收。在近紫外区(220300nm)只有酪氨酸、苯丙氨 酸和色氨酸有吸收光的能力。
+NH3
-HH
+NH3
-O O C -C H -C H 2-SS-C H 2-C H -C O O -
+ N H 3
+ N H 3
二硫键
胱氨酸
Page 20
人体所需的八种必需氨基酸 赖氨酸(Lys) 缬氨酸(Val) 蛋氨酸(Met) 色氨酸(Trp ) 亮氨酸(Leu) 异亮氨酸(Ile) 苏氨酸(Thr) 苯丙氨酸(Phe)
● 含一氨基一羧基的中性氨基酸
甘氨酸 Gly, G
Page 7
丙氨酸 Ala, A
缬氨酸 Val, V
亮氨酸 Lue, L
异亮氨 酸 Ile, I
● ● 含羟基或硫氨基酸 (一氨基一羧基)
丝氨酸 (Ser, S)
Page 8
苏氨酸 (Thr, T)
半胱氨酸 (Cys, C)
甲硫氨酸 (Met, M)
Page 5
二、常见氨基酸的分类
(1)按R基团的酸碱性分
中性AA 酸性AA 碱性AA
(2)按R基团的电性质分
疏水性R基团AA 电荷极性R基团的AA 带电荷R基团的AA
(3)按R基团的化学结构分 芳香族AA 杂环族AA
Page 6
(一)按R基的化学结构分类 可分为三类:脂肪族、芳香族和杂环族
1、脂肪族氨基酸
杂环亚氨基酸
(二)按R基的极性性质的分类
1. 非极性氨基酸 2. 极性中性氨基酸 3. 酸性氨基酸 4. 碱性氨基酸
* 20种氨基酸的英文名称、缩写符号及分类如下:
Page 14
1. 酸性氨基酸
2. 碱性氨基酸
Page 15
3. 非极性疏水性氨基酸
甘氨酸 glycine Gly G 5.97 丙氨酸 alanine Ala A 6.00 缬氨酸 valine Val V 5.96 亮氨酸 leucine Leu L 5.98 异亮氨酸 isoleucine Ile I 6.02 苯丙氨酸 phenylalanine Phe F 5.48
Page 50
★首先由Sanger应用,确定了胰岛素的一级结构 A.肽分子与DNFB反应,得DNP-肽 B.水解DNP-肽,得DNP-N端氨基酸及其他游离氨基酸 C.分离DNP-氨基酸 D.层析法定性DNP-氨基酸,得出N端氨基酸的种类、
数目
Page 51
(4)与异硫氰酸苯酯(PITC)的反应
pH = pI
净电荷=0
+ OH+ H+ (pK´2)
R CH NH2 COO
pH > pI
净电荷为负
在一定pH条件下, 氨基酸分子中所带的正电荷数和负电 荷数相等, 即净电荷为零, 在电场中既不向阳极也不向阴极 移动, 此时溶液的pH值称为该种氨基酸的等电点(isoelectric point,pI )。 --氨基酸的等电点是它呈现电中性时所处环境的pH值.
Page 23
(四)非蛋白质氨基酸
大多是蛋白质中存在的L型α-氨基酸的衍生 物。但有一些是β、γ 或δ-氨基酸,且有些是D型氨基酸。
细菌细胞壁组成中的肽聚糖中的D-氨基酸: D-谷氨酸、D-丙氨酸
一种抗生素短杆菌肽S中含有D-苯丙氨酸。
Page 24
β -丙氨酸是遍多酸(泛酸,一种维生素)的前体成分 γ –氨基丁酸是传递神经冲动的化学介质
•由Edman于1950年首先提出 •为α- NH2的反应 •用于N末端分析,又称Edman降解法
一、氨基酸的结构通式
氨基酸是蛋白质水解的最终产物,是组成蛋白质的基本单位。从蛋白质水解物中 分离出来的氨基酸有二十种,除脯氨酸和羟脯氨酸外,这些天然氨基酸在结构上 的共同特点为:
(1). 与羧基相邻的α-碳原子上 都有一个氨基,因而称为α-氨 基酸 (2). 除甘氨酸外,其它所有氨基 酸分子中的α-碳原子都为不对 称碳原子,所以:A.氨基酸都具 有旋光性。B.每一种氨基酸都 具有D-型和L-型两种立体异构 体。目前已知的天然蛋白质中 氨基酸都为L-型。
Page 38
(2)等电点理论的应用
A. 等电点时,氨基酸的溶解度最小,易沉淀。 利用该性质可分离制备某些氨基酸。例如谷氨酸的生产,即将微生物发酵液 的pH值调至3.22(谷氨酸的等电点)而使谷氨酸沉淀析出。
B. 利用各种氨基酸的等电点不同,可通过电泳法、离子交换法等在实验室或工 业生产上进行混合氨基酸的分离或制备。 氨基酸的等电点可由其分子上解离基团的解离常数来确定。
Page 35
分光光度计定量分析依据
Lambert-Beer定律:A=Log 1/T=Log Io/I =εC L
入射光 强度 Io
透射光 强度 I
光源
单色器
样品池 (溶液浓度mol / L)
检测器
L-B 定律 可表述为:当一束平行的单色光通过溶液 时,溶液的吸光度 (A) 与溶液的浓度 (C) 和厚度 (L) 的乘积成正比。它是分光光度法定量分析的依据。
Page 16
脯氨酸
饼干写亮一本谱 proline Pro P
6.30
4. 极性中性氨基酸
Page 17
色氨酸 tryptopr S 5.68
酪氨酸 tyrosine Tyr Y 5.66 半胱氨酸 cysteine Cys C 5.07
蛋氨酸 methionine Met M 5.74
Page 25
鸟氨酸 胍氨酸
L-鸟氨酸、 L-瓜氨酸是尿素循环的中间体
Page 26
第二节 氨基酸的重要理化性质和功能
一、一般物理性质 α-氨基酸为无色晶体,熔点极高(一般在200℃以上)。有的无味、有的味
甜、有的味苦、谷氨酸的单钠盐有鲜味(味精的主要成分)。
Page 27
1、溶解性 氨基酸在水中的溶解度差别很大, 除胱氨酸、 半胱氨酸和酪氨酸外, 一般都能溶于水, 并能溶 解于稀酸或稀碱中, 但不能溶解于有机溶剂 ( 通 常酒精能把氨基酸从其溶液中沉淀析出 )。
Page 49
(3) 与2,4-二硝基氟苯(DNFB)反应
反应特点 A.为α- NH2的反应 B.氨基酸α- NH2的一个H原子可被烃基取代(卤代烃) C.在弱碱性条件下,与DNFB发生芳环取代,生成二硝基苯氨基酸
应用:鉴定多肽或蛋白质的N-末端氨基酸
A.虽容然易多与肽α侧- D链NP上氨的基ε酸- N区H2分、和酚分羟离基也能与DNFB反应,但其生成物,
天冬酰胺 asparagine Asn N 5.41
谷氨酰胺 glutamine Gln Q 5.65
苏氨酸 threonine Thr T 5.60
3个有个性的氨基酸
1)脯氨酸(Pro) 因为是一个环状 的亚氨基酸, 它的氨基和其它氨基 酸的羧基形成的肽键有明显的特 点, 较易变成顺式肽键.
2)甘氨酸(Gly) 是唯一的在α-碳原子上 只有2个氢原子, 没有侧链的氨基酸. 为 此它既不能和其它残基的侧链相互作用, 也不产生任何位阻现象, 进而在蛋白质 的立体结构形成中有其特定的作用.
Page 39
(3)氨基酸等电点的计算
一氨基一羧基AA的 等电点计算:
pI =
pK´1 + pK´2
2
一氨基二羧基AA的 等电点计算:
pI =
pK´1 + pK´2
2
二氨基一羧基AA 的等电点计算:
pK´2 + pK´3
pI =
3)半胱氨酸(Cys) 它的个性不仅表现在其侧链 有一定的大小和具有高度的化学反应活性,还 在于两个 Cys 能形成稳定的带有二硫(桥)键 的胱氨酸。二硫键不仅可以在肽链内,也可以 在肽链间存在。更有甚者,同样的一对二硫键 能具有不同的空间取向。
Page 19
半胱氨酸
-OOC-CH-CH2-SH + HS-CH2-CH-COO-
苯丙氨酸 (Phe,F)
Page 11
酪氨酸 (Tyr,Y)
色氨酸 (Trp,W)
3、杂环氨基酸
Page 12
组氨酸 (His, H)
脯氨酸 (Pro, P)
说明:关于杂环氨基酸和杂环亚氨基酸
色氨酸 (Trg,W)
芳香族氨基酸
组氨酸 ( His, H)
Page 13
杂环氨基酸
脯氨酸 ( Pro, P)
脯氨酸和羟脯氨酸能溶于乙醇或乙醚中, 且 二者极易溶于水而潮解。
Page 28
2. 氨基酸的旋光性
●除甘氨酸外,氨基酸均含有一个手性-碳原子, 都具有旋光性。 ●比旋光度是氨基酸的重要物理常数之一,是鉴别各种氨基酸的重要依据。
Page 29
氨基酸的构型-都有 D-型和 L-型 2 种立体异构体
L-(-)甘油醛
氨基酸与水合茚三酮共热,发生氧化脱氨反应,生成NH3与酮酸。 水合茚三酮变为还原型茚三酮。 加热过程中酮酸裂解,放出CO2,自身变为少一个碳的醛。水合 茚三酮变为还原型茚三酮。 NH3与水合茚三酮及还原型茚三酮脱水缩合,生成蓝紫色化合物。
Page 47
反应要点 A.该反应由NH2与COOH共同参与 B.茚三酮是强氧化剂 C.该反应非常灵敏,可在570nm测定吸光值 D. 测定范围:0.5~50µg/ml E.脯氨酸与茚三酮直接生成黄色物质(不释放
D-(+)甘油醛
L-丙氨酸
Page 30
D-丙氨酸
L-丙氨酸
Page 31
D-丙氨酸
蛋白质中发现的氨基酸都是L-型的(故习惯上书写氨基酸都 不注明构型和旋光方向)。
Page 32
3、紫外吸收
构成蛋白质的20种氨基 酸在可见光区都没有光吸收, 但在远紫外区(<220nm)均有 光吸收。在近紫外区(220300nm)只有酪氨酸、苯丙氨 酸和色氨酸有吸收光的能力。
+NH3
-HH
+NH3
-O O C -C H -C H 2-SS-C H 2-C H -C O O -
+ N H 3
+ N H 3
二硫键
胱氨酸
Page 20
人体所需的八种必需氨基酸 赖氨酸(Lys) 缬氨酸(Val) 蛋氨酸(Met) 色氨酸(Trp ) 亮氨酸(Leu) 异亮氨酸(Ile) 苏氨酸(Thr) 苯丙氨酸(Phe)
● 含一氨基一羧基的中性氨基酸
甘氨酸 Gly, G
Page 7
丙氨酸 Ala, A
缬氨酸 Val, V
亮氨酸 Lue, L
异亮氨 酸 Ile, I
● ● 含羟基或硫氨基酸 (一氨基一羧基)
丝氨酸 (Ser, S)
Page 8
苏氨酸 (Thr, T)
半胱氨酸 (Cys, C)
甲硫氨酸 (Met, M)
Page 5
二、常见氨基酸的分类
(1)按R基团的酸碱性分
中性AA 酸性AA 碱性AA
(2)按R基团的电性质分
疏水性R基团AA 电荷极性R基团的AA 带电荷R基团的AA
(3)按R基团的化学结构分 芳香族AA 杂环族AA
Page 6
(一)按R基的化学结构分类 可分为三类:脂肪族、芳香族和杂环族
1、脂肪族氨基酸
杂环亚氨基酸
(二)按R基的极性性质的分类
1. 非极性氨基酸 2. 极性中性氨基酸 3. 酸性氨基酸 4. 碱性氨基酸
* 20种氨基酸的英文名称、缩写符号及分类如下:
Page 14
1. 酸性氨基酸
2. 碱性氨基酸
Page 15
3. 非极性疏水性氨基酸
甘氨酸 glycine Gly G 5.97 丙氨酸 alanine Ala A 6.00 缬氨酸 valine Val V 5.96 亮氨酸 leucine Leu L 5.98 异亮氨酸 isoleucine Ile I 6.02 苯丙氨酸 phenylalanine Phe F 5.48
Page 50
★首先由Sanger应用,确定了胰岛素的一级结构 A.肽分子与DNFB反应,得DNP-肽 B.水解DNP-肽,得DNP-N端氨基酸及其他游离氨基酸 C.分离DNP-氨基酸 D.层析法定性DNP-氨基酸,得出N端氨基酸的种类、
数目
Page 51
(4)与异硫氰酸苯酯(PITC)的反应
pH = pI
净电荷=0
+ OH+ H+ (pK´2)
R CH NH2 COO
pH > pI
净电荷为负
在一定pH条件下, 氨基酸分子中所带的正电荷数和负电 荷数相等, 即净电荷为零, 在电场中既不向阳极也不向阴极 移动, 此时溶液的pH值称为该种氨基酸的等电点(isoelectric point,pI )。 --氨基酸的等电点是它呈现电中性时所处环境的pH值.
Page 23
(四)非蛋白质氨基酸
大多是蛋白质中存在的L型α-氨基酸的衍生 物。但有一些是β、γ 或δ-氨基酸,且有些是D型氨基酸。
细菌细胞壁组成中的肽聚糖中的D-氨基酸: D-谷氨酸、D-丙氨酸
一种抗生素短杆菌肽S中含有D-苯丙氨酸。
Page 24
β -丙氨酸是遍多酸(泛酸,一种维生素)的前体成分 γ –氨基丁酸是传递神经冲动的化学介质
•由Edman于1950年首先提出 •为α- NH2的反应 •用于N末端分析,又称Edman降解法
一、氨基酸的结构通式
氨基酸是蛋白质水解的最终产物,是组成蛋白质的基本单位。从蛋白质水解物中 分离出来的氨基酸有二十种,除脯氨酸和羟脯氨酸外,这些天然氨基酸在结构上 的共同特点为:
(1). 与羧基相邻的α-碳原子上 都有一个氨基,因而称为α-氨 基酸 (2). 除甘氨酸外,其它所有氨基 酸分子中的α-碳原子都为不对 称碳原子,所以:A.氨基酸都具 有旋光性。B.每一种氨基酸都 具有D-型和L-型两种立体异构 体。目前已知的天然蛋白质中 氨基酸都为L-型。
Page 38
(2)等电点理论的应用
A. 等电点时,氨基酸的溶解度最小,易沉淀。 利用该性质可分离制备某些氨基酸。例如谷氨酸的生产,即将微生物发酵液 的pH值调至3.22(谷氨酸的等电点)而使谷氨酸沉淀析出。
B. 利用各种氨基酸的等电点不同,可通过电泳法、离子交换法等在实验室或工 业生产上进行混合氨基酸的分离或制备。 氨基酸的等电点可由其分子上解离基团的解离常数来确定。
Page 35
分光光度计定量分析依据
Lambert-Beer定律:A=Log 1/T=Log Io/I =εC L
入射光 强度 Io
透射光 强度 I
光源
单色器
样品池 (溶液浓度mol / L)
检测器
L-B 定律 可表述为:当一束平行的单色光通过溶液 时,溶液的吸光度 (A) 与溶液的浓度 (C) 和厚度 (L) 的乘积成正比。它是分光光度法定量分析的依据。
Page 16
脯氨酸
饼干写亮一本谱 proline Pro P
6.30
4. 极性中性氨基酸
Page 17
色氨酸 tryptopr S 5.68
酪氨酸 tyrosine Tyr Y 5.66 半胱氨酸 cysteine Cys C 5.07
蛋氨酸 methionine Met M 5.74
Page 25
鸟氨酸 胍氨酸
L-鸟氨酸、 L-瓜氨酸是尿素循环的中间体
Page 26
第二节 氨基酸的重要理化性质和功能
一、一般物理性质 α-氨基酸为无色晶体,熔点极高(一般在200℃以上)。有的无味、有的味
甜、有的味苦、谷氨酸的单钠盐有鲜味(味精的主要成分)。
Page 27
1、溶解性 氨基酸在水中的溶解度差别很大, 除胱氨酸、 半胱氨酸和酪氨酸外, 一般都能溶于水, 并能溶 解于稀酸或稀碱中, 但不能溶解于有机溶剂 ( 通 常酒精能把氨基酸从其溶液中沉淀析出 )。
Page 49
(3) 与2,4-二硝基氟苯(DNFB)反应
反应特点 A.为α- NH2的反应 B.氨基酸α- NH2的一个H原子可被烃基取代(卤代烃) C.在弱碱性条件下,与DNFB发生芳环取代,生成二硝基苯氨基酸
应用:鉴定多肽或蛋白质的N-末端氨基酸
A.虽容然易多与肽α侧- D链NP上氨的基ε酸- N区H2分、和酚分羟离基也能与DNFB反应,但其生成物,
天冬酰胺 asparagine Asn N 5.41
谷氨酰胺 glutamine Gln Q 5.65
苏氨酸 threonine Thr T 5.60
3个有个性的氨基酸
1)脯氨酸(Pro) 因为是一个环状 的亚氨基酸, 它的氨基和其它氨基 酸的羧基形成的肽键有明显的特 点, 较易变成顺式肽键.
2)甘氨酸(Gly) 是唯一的在α-碳原子上 只有2个氢原子, 没有侧链的氨基酸. 为 此它既不能和其它残基的侧链相互作用, 也不产生任何位阻现象, 进而在蛋白质 的立体结构形成中有其特定的作用.
Page 39
(3)氨基酸等电点的计算
一氨基一羧基AA的 等电点计算:
pI =
pK´1 + pK´2
2
一氨基二羧基AA的 等电点计算:
pI =
pK´1 + pK´2
2
二氨基一羧基AA 的等电点计算:
pK´2 + pK´3
pI =